Photon timing studies with the BABAR DIRC

J. Schwiening, Group B R&D Meeting, SLAC, Sep 11, 2003

Photon time resolution in DIRC limited by DIRC PMT intrinsic
(TTS) resolution - average resolution ~1.7nsec
Can we see chromatic effects in DIRC in spite of that poor resolution?

Yes (probably) because we reconstruct photons with
very long path lengths (10-15m and more)

Can we learn something relevant to the R&D setup?

Well... I'm going to present a brief overview, form your own opinions...



Dispersion Effects in the BABAR DIRC

Recipe:

» Used di-muon events (~ 3.5 million tracks) from 2001, select clean events
that are well-contained in DIRC.

 Hits in DIRC are associated with a given track,
up to 16 ambiguous “solutions” per hit

» Most ambiguities are eliminated by physical constraints and
DIRC timing (c=1.7ns), typically 2-3 solutions per hit remain

 Calculate pathlength of solution in radiator bar, number of bounces, etc

 Plot delta(thetaC) difference between thetaC of photon and
expected thetaC of muon track.

 Bin delta(thetaC) in pathlength, fit with Gaussian plus background function
extract mean and sigma of Gaussian
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Dispersion Effects in the BABAR DIRC
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Dispersion Effects in the BABAR DIRC
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Time Imaging In DIRCs-Conceptual Isssues

Example:Time Resolution in BaBar DIRC
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Dispersion Effects in the BABAR DIRC

Blue: photons go directly to PMT
Red: photons reflected on end mirror
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Relevance to R&D Setup

Select events in which muon track hits bar at
90deg angle in dip (no selection in track phi)

Require delta(dip)<10mrad

Approx. fixed z=3.2m

(close to position #2 in
test beam setup)

Use about 3500 muon tracks—

How do things look now?
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Relevance to R&D Setup

delta(thetaC), path, bounce spectra for ~3500 tracks, no cuts on photon exit angle
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Relevance to R&D Setup

Limit exit angles of photon to £40/50deg range available in test setup
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Pathlength and bounce spectrum for:

no cut on photon exit angle -
(~37,000 solutions with path>10m)

(10m translates to ~6m in position #2)

50deg cut on photon exit angle -

40deg cut on photon exit angle -
(~16,000 solutions with path>10m
- for a 4.9m long bar -)

Relevance to R&D Setup
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Summary

What does all that mean for our test beam project?

Limitation in photon exit angle should limit us to range of
~4 ... 6m pathlength at the second-to-last (initial) z position

That should still be enough to see some initial evidence
for chromaticity effects.

A scan of seven z positions should provide good coverage

In pathlength, significant overlap.
(No fine z scan within the seven z positions required)

The available range should be about ~0 ... 9m pathlength.

Statistics of ((3k) good tracks per z position sounds
reasonable and feasible.



i Backup slides

Some more of Blair's Pylos slides for reference.



Radiators-Dispersion

Example
-Chromaticity at Cherenkov Photon R2efractive Indices and Dispersion versus Wavelength for Sioz10
Production:
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Time Imaging In DIRCs-Conceptual Issues
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maging In DIRCs-Conceptual Issues-Resoluti

Measuring the Chromatic Smearing?

*Detectors have been proposed that could
measure photon wavelength to about 0.15 ev

S 009
(e.g., the TES (Transition Edge Sensor), but 3 008
these detectors work at ~40 mk , and are 22 oq
rather slow.... £.20.05
=004
=»impractical? %3%88:2%
«Use the large dispersion in nyin a 3-D DIRC 530-0(1) | | |
=

to measure the photon wavelength....(l.e., 02 04 06 08
compare the individual photon flight time Photon Wavelength (microns)
with its measured angle.

o

=» can improve chromatic limit by ~5x with
100 ps detector resolution at 6m. Scales with
resolution.
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