J. Schwiening, Group B R&D Meeting, SLAC, Sep 11, 2003

Photon time resolution in DIRC limited by DIRC PMT intrinsic (TTS) resolution \rightarrow average resolution ~1.7nsec

Can we see chromatic effects in DIRC in spite of that poor resolution?

Yes (probably) because we reconstruct photons with very long path lengths (10-15m and more)

Can we learn something relevant to the R&D setup?

Well... I'm going to present a brief overview, form your own opinions...

Recipe:

- Used di-muon events (~ 3.5 million tracks) from 2001, select clean events that are well-contained in DIRC.
- Hits in DIRC are associated with a given track, up to 16 ambiguous "solutions" per hit
- Most ambiguities are eliminated by physical constraints and DIRC timing (σ =1.7ns), typically 2-3 solutions per hit remain
- Calculate pathlength of solution in radiator bar, number of bounces, etc
- Plot delta(thetaC) difference between thetaC of photon and expected thetaC of muon track.
- Bin delta(thetaC) in pathlength, fit with Gaussian plus background function extract mean and sigma of Gaussian

Dispersion Effects in the BABAR DIRC

Pathlength and Number of Bounces spectra for 3.5M muon tracks

(required that |delta(thetaC)|<30mrad)

delta(thetaC) spectrum of all accepted tracks

resolution ~10mrad

(background under peak due to ambiguities, accelerator, delta electrons, ...)

SLAC, Sept. 11, 2003

Dispersion Effects in the BABAR DIRC

example delta(thetaC) spectra in path bins

shape varies a lot (ambiguities!)

After careful fits, plot

sigma from Gaussian vs. path...

Time Imaging In DIRCs-Conceptual Isssues

Example: Time Resolution in BaBar DIRC

Dispersion Effects in the BABAR DIRC

Blue: photons go directly to PMT Red: photons reflected on end mirror

"A" is a measure of PMT resolution

~1.5ns (consistent with TTS of PMT)

"B" is measure of dispersion effects

~180ps/m for direct photons ~110ps/m for reflected photons

(*not* an actual measurement of a meaningful number – that will come from our R&D setup...)

Consistent with Blair's toy model

Relevance to R&D Setup

delta(thetaC), path, bounce spectra for ~3500 tracks, no cuts on photon exit angle

SLAC, Sept. 11, 2003

Relevance to R&D Setup

Limit exit angles of photon to $\pm 40/50$ deg range available in test setup

Relevance to R&D Setup

Pathlength and bounce spectrum for:

no cut on photon exit angle \rightarrow (~37,000 solutions with path>10m)

(10m translates to ~6m in position #2)

50deg cut on photon exit angle \rightarrow

40deg cut on photon exit angle → (~16,000 solutions with path>10m - for a 4.9m long bar -)

Summary

What does all that mean for our test beam project?

Limitation in photon exit angle should limit us to range of ~4 ... 6m pathlength at the second-to-last (initial) z position

That should still be enough to see some initial evidence for chromaticity effects.

A scan of seven z positions should provide good coverage in pathlength, significant overlap. (No fine z scan within the seven z positions required)

The available range should be about ~0 ... 9m pathlength.

Statistics of O(3k) good tracks per z position sounds reasonable and feasible.

Some more of Blair's Pylos slides for reference.

Radiators-Dispersion

•Chromaticity at Cherenkov Photon Production:

$$\sigma_{\theta_c}(i) = \frac{\delta n}{\tan \theta_c}$$
 For $\beta = 1$

•Time Dispersion during photon transport.

$$\delta^{2} t_{p}(i) = \delta^{2} L_{p}(i) + \frac{2C(L_{p}, n_{g})}{L_{p}(i)n_{g}(i)} + \delta^{2} n_{g}(i) \quad 1$$

Typical Weighted Values(DIRC EMI 9125 PMT & Fused Silica) δn 0.00534.0

$$\sigma_{\theta_{c}} = \frac{\delta n}{\tan \theta_{c}} = \frac{0.0053}{1.08} = 4.9 \text{ mrad}$$
$$\delta t_{p} \approx \delta n_{g} = 0.016 * \text{F}$$

Where 2/3<F< 4/3, depending on photon dip angle and its measurement accuracy.

Time Imaging In DIRCs-Conceptual Issues

Angle Dependence. (In Dispersive Limit)

- Examples: For β =1 particle, and α_x very well measured. EMI 9125 Bi-alkali Photodetector response detection curve
- 1. $(\theta_t, \phi_t) = (90^\circ, 90^\circ)$ **uncorrelated limit** $\sigma_{\theta_c} = \tan \theta_c (\operatorname{sqrt}[\delta^2(n_g) + \delta^2(t_p)])$
- 2. $(\theta_t, \phi_t) = (90^\circ, 90^\circ)$ correlated limit with

$$\sigma_{\theta_{c}} = \tan \theta_{c}(\operatorname{sqrt}[\delta^{2}(n_{g}) + 2C(n_{g}, t_{p}) \delta(n_{g}) \delta(t_{p})] + \delta^{2}(t_{p})])$$

Pylos, June 2002

Blair Ratcliff, SLAC

2

Imaging In DIRCs-Conceptual Issues-Resolution

Measuring the Chromatic Smearing?

•Detectors have been proposed that could measure photon wavelength to about 0.15 ev (e.g., the TES (Transition Edge Sensor), but these detectors work at ~40 mk , and are rather slow....

→impractical?

•Use the large dispersion in n_g in a 3-D DIRC to measure the photon wavelength....(I.e., compare the individual photon flight time with its measured angle.

 \rightarrow can improve chromatic limit by ~5x with 100 ps detector resolution at 6m. Scales with resolution.

