RadiSys iRM X®
TCP/IP for theiRM X OS

RadiSys Corporation

5445 NE Dawson Creek Drive
Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150
www.radisys.com

07-0629-01

December 1999

EPC, iRMX, INtime, Inside Advantage, and Radi Sys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
isatrademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel isaregistered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999
Copyright 0 1999 by RadiSys Corporation

All rights reserved.

Quick Contents

Getting Started and User's Guide

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.

Overview of TCP/IP

Installing and Starting TCP/IP
Using TELNET

Using File Transfer Protocols

Network Administration

Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.

Reference
Chapter 9.
Chapter 10.
Chapter 11.
Appendix A.
Glossary
Index

Network Services and Daemons

Configuring and Administering Network Files
Commands for the Network Administrator
Tunable Parameters

Files

TCP/IP Components
Library Functions
Recommended Reading

TCP/IP for theiRM X Operating System

Notational Conventions

This manual uses these conventions:

e All numbers are decimal unless otherwise stated. Hexadecimal numbersinclude
the Hradix character (for example, OFFH) or aleading 0x (for example, 0xOFF).

* Bit Oisthelow-order bit unless otherwise stated.
e Syntax is printed like this.

* Ininteractive sessions, conputer output is printed like thisand
user input appears like this.

e System call names, command names, and processes like jobs or daemons
appear in bold.

Directory names and filenames are shown as seen from the iIRMX prompt. To access
files from the DOS prompt on an DOSRMX system, use a backslash (\) in pathnames
rather than the forward slash (/) shown here.

Filenames are shown as they would appear on theiRM X or UNIX operating systems.
On an DOSRMX system using the EDOS file driver, some filenames are truncated to
match the DOS 8.3 character limits. For example, the arpbypass utility isinstalled as
arpbypas, and its associated help file is arpbypas.hlp. From the iRMX prompt you
can use either the truncated name or the full name to view such filenames or to
invoke utilities.

This manual uses this to indicate command syntax; do not enter these characters as
shown:

[1 Surrounds optional items
| Separates one or more items, from which you choose one

italic A variable name. Do not enter as shown; substitute the appropriate
item, such as a command, value, or filename.

|:| Note

Notes indicate important information.

A CAUTION
Cautions indicate situations that may damage hardware or data.

Contents

1 Overview of TCP/IP

Conhecting to NetWOrk RESOUICES..........coouiriiriirierie et 1
Using TCP/IP Programs and UtilIties. ..o 3
AdMINISLENTNG TCP/IP ... 5
Programming With TCP/IPcooiiiiieeee s 5
Understanding Internet Addresses.......ooeoevereneneeeeieeee e 6
SUDNEE AQUIESSES. ..ottt e s e e 7
SpeCial AQArESSES... ..o e 7
Obtaining an Internet Address.........ooeoevireieieneeee e 8
Specifying DOMaiN NaIMES........cceiiieeie et eneens 9
Request For Comment (RFC) REPOIS........coieeieieie e 10
2 Installing and Starting TCP/IP
27 {0 L o TU I =T o R 11
SOftwar€ REQUITEd.........ceeeeece e 12
Hardware€ REQUITEd.........c..oiiieiieececeeeeece e s enea 13
Overview Of the SELUPcovveve e 13
TCP/IP CONfigUIaion.......c.ccoeiieeireteeeeeesaesseseseestesressessesseessessessessesesssessessens 13
Editing the HOSLS Fil€.....ccveceieeeee e 14
USING DNS ... oot et sre s 14
NOt USING DNS ...ttt et sne 14
Configuring TCP/IPasalLoadable Jobccccvvievvveveeecece e 14
Editing the tepstart.cSd File.....ocovvveve i 15
Starting and StOPPING TCP/IPoveceeeeeeee e 15
Testing the TCP/IP SEIUP «...vecveeveeceeeeeeeereere st 16
QLI (018 0] 1= 10011 o TSSO 16
General TCP/IP DEBUGQING.....viveererereerirereeteseseeressesessessessessessessesrennes 16
Setting Up aRemote Unix Host for Telnet.........cccceeeeeveeieveccere e 17
Creating a Terminal Definition for the PC Console..........cccccevcvvevesiennne 17
Setting Terminal Characteristics for User Sessions........ccoceeveevereeeennnn, 18
TCP/IP for theiRM X Operating System Contents %

3 Using Telnet

27 {0 f o TU I 2T] o S 21
TEINEL MOOES......c.eeveeeeieree ettt seeeere 21
S o I N S 22
Starting in INPUE MOcueeeeieeecce e 22

Starting in Command MOdE.........ccccvvvveeeeieeere e 22
Switching TEINEt MOTES........cceceieeeireeeee e 23
Using TELNET for a ReMOte SESSION......cccverierieiieeeeeeiesees e see e sveeeeneas 23
Connecting to the ReEMOte HOSEccuveueeeeiee e 24
Setting the Terminal Type on aUnixX System........cccovveveveeeveeriereenn. 25
Terminal TYPE SHHNGS....ccuveeiereeereeeereesesesees e sre e se e seeeeaeseees 25
Disabling Local Echo on Berkeley Unix HOSES.........ccoevveveieeennee. 26

Entering Commands During the SESSION.........cccevevereveseseseeeeeeeeneens 26
Closing the Remote CONNECLIONcccveeeeeieresese e 27
Using Telnet for aLocal SESSION.......cccveeieeeneeeceeseee e 28
Entering Commandsin aLocal SESSION.......ccccveveverieveseseeeeeeeeeneens 28
Ending the LoCal SESSIONccvciieeieesese et 28

4 File Transfer Protocols

BEfOre YOU BEGIN.....c.coiiieieiiee ettt et s 29
File Transfer ProtOCOl (FTP)cc.ooiiiieieeeeeeeee e 30
FTP Help INfOrmMationcoooeeirieeeee e 30
FTP File Transfer SESSION........cccooveiieeieeiecee et 31
Connecting to the Remote HOSt........coueieeirieeeee e 31

USINg FTP COMMANGAS........eoiiiieieiieieeniesie e 32

Ending the FTP SESSI0Noouiiiiiieteeee e 35
FTPINitiaization File......cocoieeieeee e 35

5 Network Services and Daemons

1010 IS = RSN 38
TEINEE SEIVES ..ottt seenea 39
Configuring Pseudo-terminalsfor Telnetdccccevvevvvvevnveneseseienns 39

vi Contents

6 Configuring and Administering Network Files

Restricting and Updating Network Databases and Fil€es..........ccccvevvvvvveeennee, 41
7 Commands for the Network Administrator
Administrative Commands..........ccccoeveriieiiene et 43
Performing NEtWOrK TESES.....coviiiiie et 43
Verifying NEetWOrk SErVICES.......coveerieee et 44
N0 g S = U = S 44
Verifying Network Configurationcoeeeieienenieienesese e 45
INterface StatUS TESE.......ocie e e e 45
Verifying Interface FUNCIONEIITYcoeieiiriieieeeeee e 46
8 Tunable Parameters
Determining When to Tune Parameters..........ccovvvvvveneseeeeseeseeneeseeseseeseennns 49
TCP/IP ParamMELErS....c.ciuieeeirieieicsiee sttt s st 50
LI TR 50
[UDPY .ttt 50
[RIP ettt 50
[P e 50
[ETHO] ottt 51
[0] TSRS 51
TCP JOD ParaMeterSc.coivieiiirieisee s 51
UDP JOD Parameters.......c.ccevueieierieieie et sieeste st see st seee st seesesse e 53
RaW [P JOb Parameters.........ccooeeeirierinirieere e 54
[P JOD ParamELersS.......cooeieirierieieie ettt sttt 55
DNS Configuration Parameters.........cccvveereresesesesieeeeseseeseseesseseeanens 56
Network Interface Parameters.........cooevveeenieiene s 56
Loopback Pseudo-driver Interface Parameters........ooovvvveveveeseseseeneennns 57
9 Files
101 £ 60
o100 ot = J U 62
1S 1 oSS RRRSRN 64
SEIVICES .. .uiitiectee et et s ee st e st e s b e ettt e et e s be e be e teeabesaeesheesaeesteenreeaneeaeenteenreentean 66

TCP/IP for theiRM X Operating System Contents Vii

10 TCP/IP Components
ProtoCOl JODScvveiieireiirerieees et 70
] o1 o] o RS 71
10 o o TR 72
1703 03[0 o TS 73
UAP.JOD. e e ne 74
Network Interface Controller (NIC) JODS.......ccevueverieresereseeeeeereeseeseesee e 69
100PDACK.JOD ... 70
EULJOD. o 71
(<= oo 1 00 o o TR 72
91T o o TSRS 73
QLI 1L 2 o] o 74
11 Library Functions
USING SOCKELS ...ttt sttt sttt st st sb et e e se et e b e eae s 78
Calling Sequence for Connection-oriented Applications...........ccccceeeeenens 78
Calling Sequence for Connectionless Applications..........ccccceeeeverereenennns 79
Internet SOCKet AQArESSEScceiiiiieie e 80
Network and Host Byt Orderccceveeeeeeieeieniese e 81
Changes From the Standard Socket Interface.........ocooveveeeeieienenieie e, 82
QLIS N 0] 2RSSR 82
Multitasking CONSIAErations..........ccooveeuereriene e 82
INCIUAE IS ... 83
EX@MPI @ PrOgramMScoeeiiieie ettt een 83
L0010 11 oo USRS 84
HaNAliNG EITOrS.ot 84
Errno Values for Network FUNCHIONS.........ccoceoiieiineie e 84
FUNCLION REFEIENCE. ... e e 87
2000 o AT USSR 88
DN, b 0]
DSEFING. .+ e 92
DYLEOIEY ...t 93
(000] 101 ot SN USSP USRI 94
LSOO 96
OELNOSIENT ... e 97
OELNOSHIA ... 100
OELNOSINAME. ...ttt et ne e 101
(01 11 (< | USSP 102
OELPEEIMAIMIE ...ttt ettt ettt e e s ae e sae e sbe e e ean e eaeasbeanbeens 104
(01 1001007 0| USRS RPR USSR 106
(015 K5 S 4V o USSR 108
viii Contents

(015 K 010 (g 7= 0 1TSS 110
(015 K0 (o o SRS 112
10 ST OTURRTRRTN 115
11 1= o TSRO 117
[02V PSPPSR 119
SENA ..ttt bbb bbbt e bt 122
LS 010 o [0 1Y/ o SR SPRR 124
SOCKEL. ...ttt bbb bbb e 126
LS00 (0 | USSR 75
A Recommended Reading
TCPYIP .ot 77
NS, et 77
NEEWOIKS ...t 78
GIOSSAIY oo 79
INAEX oot 87
Tables
Table 11-1. Functionsinthe SOCKEt Librarycccoceevevevieivsesieniesesieeseeeseesesee e 76
Table 11-2. Functionsin the Network Library (continued)..........ccccoeevvvievenenesenennne, 77
Figures
Figure 1-1. Hosts Connected on aNetWOrKcccooeiiiiiinene i 2
Figure 2-1. How TCP/IP Works with iNA 960 SOftware..........cccccvoeverercrierieeieeneeeene 12
Figure 3-1. TELNET MOGES.......oioiiieieeeieeie et 22
TCP/IP for theiRM X Operating System Contents iX

Contents

Overview of TCP/IP

TCP/IP programs are based on a set of protocols called Transmission Control
Protocol/Internet Protocol (TCP/IP). The TCP/IP suite of networking protocols
makes it possible for different brands of computers, running different operating
systems, to supply resources to network users.

This manual describes how to install, use, and maintain TCP/IP networking software
on your iRMXY Operating System (0OS). This software allows you to communicate
across a network with any other computer running TCP/IP software, regardless of its
operating system.

Connecting to Network Resources

Individual computers on acomputer network are called hosts. TCP/IP software lets
you connect to various hosts on a network so that you can use their resources. The
computer you use to make your original connection to the network is the local host.
Any other computer on the network, regardless of itslocation, isaremote host.

Each host on a network is identified by a number, called an Internet address or 1P
address, and an official name. Hosts can also have symbolic names, called aliases.
To access aremote host, you must specify either its Internet address, official name,
or avalid diasto network software.

The computer and software that originate a network command are the client, because
they request a network service. The computer and software responding to the request
are the server, because they provide the network service. Servers provide sharable
resources; the network gives shared access to many users.

Host configurations and sharable resources vary with individual networks. Check
with your network administrator to determine the layout of your network and the
resources available to you.

Figure 1-1 on page 2 illustrates network connections and possible resources. Print
Servers and File Servers have specia responsibilities: they provide network printer
and file storage resources. iIRMX systems cannot function as print servers. The host
labeled Gateway acts as a connection, or router, to other networks, whose resources
can also be accessed. iIRMX systems that function as Gateways must be Multibus 1
systems.

TCP/IP for theiRM X Operating System Chapter 1 1

To Other Networks

T
=y Host
[F—==—"\
N
=S=—I
—_—
-l:“:“:\ﬁ
-E = Gateway
[\
EE
o —|—
Ethernet Cable
[\ |
g - 1)
Host
=
L
o —|—

File Server

W-3402

Figure 1-1. Hosts Connected on a Network

Overview of TCP/IP

Chapter 1

Using TCP/IP Programs and Utilities

To use TCP/IP programs and utilities, you enter network commands at the iRM X
command line. After you enter acommand, TCP/IP software running on the local
host cooperates with TCP/IP software running on the remote host to handle your
transaction.

You can use iIRMX TCP/IP programs and utilities in these ways:

* Network File System (NFS) support allows you to access remote devices on
hosts who use iRM X or non-iRMX operating systems.

» Thetelnet program connectsto aremote host that runsa TELNET server.

e FileTransfer Protocol (FTP) connects to a host that runs an FTP server and
transfers files between hosts.

The TELNET service, sometimes called the Virtual Terminal Program, provides
access to remote hosts on your network and alows you to use them asif your
terminal is directly connected to the remote computers. While TELNET is running,
you can submit commands to control the remote session and get information about it.
To connect to aremote host, you must have the appropriate authorization and know
how to use its OS.

See also: Chapter 3, Using TELNET;
telnet command, Command Reference

FTP transfers files between any two accessible network hosts supporting TCP/IP,
regardless of their OSs. FTP accepts user commands to control the transfer process
and perform additional operations. Y ou don't need to know the OS on the remote
host in order to use FTP. However, you must know the pathnames, filenames, and
names of hostsinvolved in the transfer.

See also: Chapter 4, Using File Transfer Protocols;
ftp command, Command Reference

TCP/IP includes query commands such as hostid, hostname, netstat, and
showmount. The hostid command displays or sets the Internet address of the local
system. The hostname command displays or sets the system name. The netstat
command symbolically displays the contents of network-related data structures to
show the status of active connections (default), configured interfaces, routing tables,
network statistics, STREAMS buffer allocation failures, and packet traffic. The
showmount command reports information on NFS-shared file systems.

See also: hostid, hostname, netstat and showmount commands, Command
Reference

TCP/IP for theiRM X Operating System Chapter 1

Trivial File Transfer Protocol (TFTP) transfers publicly readable files to and from a
remote host. It requires no remote login. However, you must know the pathnames,
filenames, and names of the hosts involved in the transfer.

See also: Chapter 4, Using File Transfer Protocols;
tftp command, Command Reference

The Remote Copy, or rcp, command copies files between TCP/IP hosts that support
the Berkeley R-series commands. Files can be copied between your local host and a
remote host, or between two remote hosts in the network. Rcp will copy multiple
files from directories on the source host to equivalent directories on the destination
host. Recp differsfrom FTPin that it uses an automatic login validation procedure,
can be used only to copy files, and does not provide interactive session control. To
use rcp you must have authorization to use the remote host.

See also: Chapter 5, Network Services and Daemons;
rcp command, Command Reference

The Remote Shell, or rsh, command executes a command or program on remote
hosts that support the Berkeley R-series commands. Rsh differsfrom rlogin in that it
executes only one command at atime. When aforeground command finishes
processing, or when a background command has been initiated, r sh terminates and
returns control to your local host. To use rsh you must have authorization to access
the remote host.

See also: Chapter 5, Network Services and Daemons;
rsh command, Command Reference

The Remote Login, or rlogin, command establishes a connection to a remote host
that supports the Berkeley R-series commands. Y ou can then use the remote host as
if your terminal were directly cabled toit. Sessionswith rlogin are similar to those
with TELNET, except that rlogin uses an automatic login validation procedure and
does not accept user commands for controlling the remote session.

Chapter 1 Overview of TCP/IP

To userlogin, you must have authorization to access the remote host and know how
to use its operating system.

See also: Chapter 5, Network Services and Daemons;
rlogin command, Command Reference

The ruptime command is a Berkeley R-series command that prints a table containing
status information for each host on the network that runs the rwhod daemon. The
command obtainsits information from a report supplied by each host on the local
area network (LAN) every three minutes.

See also: Chapter 5, Network Services and Daemons;
ruptime command, Command Reference

The rwho command is a Berkeley R-series command that prints the host name, login
name, terminal number, and login time for each user on the LAN. The output from
this command is similar to that from the Unix system who command, but includes
users on other network hosts.

See also: Chapter 5, Network Services and Daemons;
rwho command, Command Reference

Administering TCP/IP

Chapter 2 describes aminimal configuration needed to start using TCP/IP. There are
other files you can configure and special commands to control and test the
configuration. If you are the network administrator or are configuring your own host
machine, you should understand how to use these files and commands.

For example, one item you can configureis an FTP server (called the ftpd daemon).
You can set it up so remote hosts can use FTP to transfer filesto and from your local
host.

See also: Chapter 2, Installing and Starting TCP/IP,
Chapters 6 through 9

Programming with TCP/IP

There are two general types of programmatic interface to TCP/IP software: the TLI
calls defined by Unix System V operating systems and socket calls made popular by
Berkeley Unix. TheiRMX implementation provides a socket interface. Y ou can
write applications that make both iIRMX system calls and socket calls, or you can
port existing socket applicationsto thisinterface.

See also: Chapter 10, TCP/IP Components

TCP/IP for theiRM X Operating System Chapter 1 5

Understanding Internet Addresses

To make entries in the configuration files you need to understand the format of
Internet addresses. Y ou will also use either Internet addresses or host names (and
aliases) that represent addresses when communicating with remote systems. If you
already know the format of Internet addresses and names that represent them,
proceed with the installation and configuration instructionsin Chapter 2.

The Defense Advanced Research Projects Agency (DARPA) Internet protocol family
isacollection of protocolsthat utilize the Internet address format. This family
includes the Transmission Control Protocol (TCP), Internet Protocol (1P), Internet
Control Message Protocol (ICMP), and User Datagram Protocol (UDP). A raw
interface is also provided to IP and ICMP.

Internet addresses are also called | P addresses; they use the IP routing protocol. An
IP address is a 4-byte quantity. It isa (net,host) pair, where net identifies a network
and host identifies a host on that network. There are three basic classes of address, as
distinguished by the high-order bits of the address. Class A addresses use an

8-bit net and a 24-bit host; the high-order bit is0. Class B addresses use a 16-hit net
and a 16-bit host; the high-order bits are 10. Class C addresses use a 24-bit net and
an 8-bit host; the high-order bits are 110.

Because of the size of the host part of an address, the different classes of address
correspond to networks of varying size. The format of the addresses is shown below,
along with the number of hosts possible in each class:

Class Byte Byte Byte Byte Number of Hosts
1 : 2 : 3 : 4
A |0 Net Host | 16,777,214
B |10 Net Host | 65534
c |10 Net Host | 254
High-order bits OMO3651

The dot notation form of an Internet address consists of one to four numbers
separated by dots (.). Each number can be expressed in decimal, octal (leading 0), or
hexadecimal (leading 0x).

The most common format is a four-part address (a.b.c.d), consisting of four 8-hit
decimal numbersin the range 0-255. Thisis called dotted-decimal notation. The
four parts are assigned, in order, to the four bytesin the Internet address.

See also: inet function, Chapter 11, for more information about dot notation

6 Chapter 1 Overview of TCP/IP

Y ou can distinguish between the classes of address by the first number of a dotted-
decimal address. Class A addresses begin with numbersin the range 1-126. (Value
127 isa special case used for the loopback device, described later in this manual.)
Class B addresses begin with numbers in the range 128-191. Class C addresses begin
with numbers in the range 192-223 (there are other specia classes of network in the
range 224-255).

Once you know the class of an address, you can tell which part of the address
specifies the network and which specifies the host. For example, in aClass A
address, the first byte is the network number and the last three bytes specify the host.
In the address 89.3.240.9, the network is number 89, and the host is number 3.240.9
on that network. The host address is 89.3.240.9, because it must be specified in terms
of its network. The network addressis 89.0.0.0, which can be interpreted as any host
on that network.

See also: hosts and networks files, Chapter 9

|:| Note
iRMX TCP/IP does not support | P multicast addressing (or 1P
multicasting or multicast addressing).

Subnet Addresses

Sites may implement subnet addressing to accommodate a cluster of local networks.
Subnet addressing further divides the local host portion of the address into a subnet
part and a host part. Within the local cluster, each subnet appears to be an individual
network; externally, the entire cluster appears to be a single network. In the example
address 89.3.240.9, you might choose to use one byte of the host part to designate
subnets. In that case, you would interpret the host to be number 240.9 on subnet 3 of
network 89.

Y ou enable subnet addressing by specifying a subnet mask for a network interface
and by using the subnet mask when setting up the routes to each subnet.

See also: ifconfig and r oute commands, Chapter 9

Special Addresses

Addresses of all Osor all 1sare specia cases and are not assigned to hosts. The
address 0.0.0.0 meansthe local host. The address 255.255.255.255 broadcasts to all
hosts on the network to which you are directly connected. An address with the host
part set to all 1sbroadcaststo al hosts on a specific network.

TCP/IP for theiRM X Operating System Chapter 1 7

In aprogram, use the local address INADDR_ANY to do wildcard matching on
incoming messages and to mean the local host on outgoing messages. Use the
distinguished address INADDR_BROADCAST to broadcast on the primary network
interface if it supports broadcast. These and other Internet-specific data types are
defined in the include (header) file <netinet/in.h>. Thisfileisinstalled in the
f/intel/include directory.

Obtaining an Internet Address

On any network that is connected to the Internet, you must obtain a block of Internet
addresses from a central authority, the InterNIC Registration Services. This prevents
you from using the same Internet address as someone else on the I nternet.

The InterNIC issues a network number whose classis appropriate for the size of your
local network. Y our organization is responsible for issuing and maintaining the host
ID part of the address on local systems.

A CAUTION
Do not use any of the example Internet addresses shown in this
manual as your host address. Always use addresses in the network
range assigned to you.

Because of the growing popularity of the Internet, available addresses are becoming
scarce. It may be necessary for you to have a sponsoring organization that is already
on the Internet. The sponsor would assign your organization a subnet address within
the sponsor's network address.

Y ou can use TCP/IP software without an official Internet address on a network that is
not connected to the Internet. However, it isagood precaution to proceed asif you
intend to connect to the Internet. These are the numbers and addresses for the
InterNIC Registration Services.

User Assistance Service
1-703-742-4777

On-line Mailboxes HOSTMASTER@RS.INTERNIC.NET
Host, domain, network changes, and updates
ACTION@RS.INTERNIC.NET
Computer operations
MAILSERV@RS.INTERNIC.NET
Automatic mail service

Anonymous FTP RS.INTERIC.NET IPaddress 198.41.0.7
log in as ANONY MOUS, with password GUEST

8 Chapter 1 Overview of TCP/IP

Postal address Network Solutions
Attn: InterNIC Registration Services
505 Huntmar Park Drive
Herndon, VA 22070

Specifying Domain Names

Y ou often use an alias to specify a host, not an IP address. The /etc/hostsfile isone
method used to trandate between names and addresses. The iIRMX TCP/IP software
does not include a Domain Name Service (DNS) server, which is another method
used to tranglate the names. However, it doesinclude a DNSclient. The client
contacts any DNS servers running on other hosts on the network and uses their name
trandation services. This section briefly describes the format of domain names,
which is the naming convention generally used for TCP/IP.

The Internet authorities maintain several domains, including:
arpa used by ARPANET
com commercial organizations
edu educational institutions
mil military groups

Within the major domains, Internet authorities assign subdomains for use by
organizations. Local authorities in the organizations then assign machine names and
possibly further subdomains.

Y ou specify domain names with dotted notation; myhost.mydept.mycompany.comis
an example. Inthis name, myhost is the name of the host computer, mydept isa
subdomain assigned by a company, mycompany is a subdomain assigned to that
company, and it isin the com domain because it isacommercia organization. This
isan example of afully-qualified name, beginning with the host name and ending
with the Internet domain. The name myhost is qualified by its domain
mydept.mycompany.com. Each name must be unique within its domain; there cannot
be two mydept names (of either a host or subdomain) within mycompany.

Inalocal network you need only a host name to communicate between systems.
However, to communicate by name with hosts on the Internet, you may want to
specify the complete domain names as their official namesin your /etc/hostsfile.

Request For Comment (RFC) Reports

The Internet community uses RFCs to discuss and define TCP/IP. This manual refers
to certain RFCs by number for protocol definitions and details. Y ou can get RFCsin
electronic format from the InterNIC Information Services.

TCP/IP for theiRM X Operating System Chapter 1 9

10

Anonymous FTP

On-line Mailboxes

Chapter 1

NISNSF.NET IP address 35.1.1.48

RFC index /internet/documents/rfc/INDEX.rfc
NISC.JVNC.NET IP address 128.121.50.7
VENERA.ISI.EDU |P address 128.9.0.32
WUARCHIVE.WUSTL.EDU

IP address 128.252.135.4
NIC.DDN.MIL IP address 192.112.36.5

On al hosts, log in as ANONY MOUS, with password GUEST
or, if requested, your net address.

rfc-info@! S| .EDU Send the message
"help: ways to_get rfcs'. For example:

To: rfc-info@ SI. EDU
Subj ect: getting rfcs
hel p: ways_to_get_rfcs

Info@is.internic.net

Overview of TCP/IP

Installing and Starting TCP/IP

To use TCP/IP software, install it on your system's hard disk along with the iRM X
OS, using the general installation instructions for the OS. Edit text files to configure
the system for your network, following the TCP/IP software requirements and
configuration instructions in this chapter, and then start the network jobs. This
chapter provides additional software requirements and configuration instructions for
TCP/IP. This chapter does not describe the hardware installation or setup.

See also: Installation and Startup for installation instructions

Before You Begin

During the installation, some new files replace existing files of the same name. The
old filesare saved in adifferent directory. If you install over a previous version of
TCP/IP software, there may be old versions of configuration files that you want to
merge with the new files.

A CAUTION
If you install over a previous version, unload the TCP/IP jobs first.
Do not alow the installation to overwrite the files in /rmx386/jobs
while TCP/IPisrunning. If thishappens, restore the files from the
installation disks.

Existing configuration files are preserved during installation, but it isa good
precaution to back up your entire hard drive to tape before beginning the installation.

TCP/IP for theiRM X Operating System Chapter 2 11

Software Required

Figure 2-1 on page 12 shows the relationship between TCP/IP software and the iINA
960 software. The two separate stacks are the two sets of network protocols that can
operate simultaneously when you run iNA 960 software, an iRM X network job, and
TCP/IP software. In the middle of the figure, note that the EDL NIC driver provides
the direct interface between iNA 960 software and the TCP/IP NIC driver. Although
the figure shows multiple NICs, in most systems you only use one.

See dso: Network User's Guide and Reference for more information about the
layers and multiple subnetsin iNA 960 software

See also: Configuring and Administering Network Files, Chapter 6

TCP/IP Stack ISO Stack

TCP/IP RMXNET or iNA
applications applications
(optional)
i P - iNA960 .|_____________.
itcpkern.job oftovere
TCP/IP jobs RMXNET

(TCP, UDP, IP, RIP) A

A

|

1
Transport layer of !
iNA 960 |
1

|

EDL
NIC driver

Subnet driver I

Hardware I Hardware I

Figure2-1. How TCP/IP Workswith iNA 960 Software

12 Chapter 2 Installing and Starting TCP/IP

Hardware Required

TCP/IP can run on any system supported by the required iRM X software.
The NIC must be one supported by the NIC driver software.

See also: Tunable Parameters, Chapter 8;
i*.job and clib.job, System Configuration and Administration;
Hardware Environments, Network User's Guide and Reference

Overview of the Setup

To begin using the TCP/IP software:

1. Install theiRMX OS software.

2. Configure the TCP/IP software by editing the tcp.ini configuration file.
3. Load the TCP/IP jobs with the sysload command.
4

For servers, optionally start the daemons required to support TCP/IP commands:
ftpd and telnetd.

5. If userswill run telnet from a PC console to a UNIX host, set up the remote
UNIX host to support the RMXPC terminal type.

TCP/IP Configuration

TCP/IP can run as a job loaded with the sysload command. Configuring TCP/IP
involves editing one or more of these ASCI| text files:

* Hostsfile
e tcpstart.csd

The purpose of each file is explained in more detail later in this manual, but the
instructions here will get you started using TCP/IP.

Thefilesareinstalled in :CONFIG: directory. Edit the fileswhilelogged in asthe
Super user. On amultiuser machine, access to these files should be restricted to a
network administrator.

The network administrator for your organization should assign the name and address
values described here. If you are the network administrator, you must assign and
keep track of unique values within the network and domain given you by the
InterNIC Registration Services.

See also: Understanding Internet Addresses, Chapter 1

TCP/IP for theiRM X Operating System Chapter 2 13

Editing the Hosts File

For any TCP/IP communications you can specify an | P address for aremote host or
obtain the address from one of two places: the :CONFIG:hosts database or the
Domain Name Service (DNS).

|:| Note
The iRMX TCP/IP software does not include named, the DNS
server. However, it doesinclude a DNSclient. Another system
running an OS like Unix must provide the DNS server.

The client contacts any DNS name server running on the network and uses its name
trandation services to get the P address. Regardless of whether you use DNS or not,
you must edit the :CONFIG:hostsfile.

See also: gethostent, Chapter 11 for more information on DNS;
:CONFIG:hosts, Chapter 9
Using DNS

TCP/IP applications may use a DNS client to get an | P address associated with a
name from the DNS server on the network. |f you choose to use the DNS server, you
need to specify only the local host name in the :config:hostsfile. Y ou also need to
edit the DNS section of the tunable parameters file to configure the DNS client.

See also: Tunable Parameters, Chapter 8;
gethostent, Chapter 11
Not Using DNS

If you don’t use DNS, add one line to : config: hosts for each system on your network,
including the local host. Each line must have at least these two entries:

| P_address official _nane

Specify the official name of the host machine, using a fully-qualified domain name if
you have one. Y ou can add alias names on the same line after the official name.

Configuring TCP/IP as a Loadable Job

To configure TCP/IP as loadable jobs (loaded by the sysload command), you need
check the contents of the :config:tcpstart.csd and : config:inetinit.cf files.

14 Chapter 2 Installing and Starting TCP/IP

Editing the tcpstart.csd File

For TCP/IP jobs |oaded with the sysload command, edit the : config: tcpstart.csd file.
Thisfileisan esubmit file that sets values and starts jobs needed to run TCP/IP
software. The next few subsections describe the changes you need to make in
:config: tepstart.csd.

Configuring the Interfaces

To configure the interfaces you use, edit the :config:tcp.ini file. Y ou must change
the address and mask values to be appropriate for your host and network.

See also: Tunable Parameters, Chapter 9

Starting and Stopping TCP/IP

To load TCP/IP with the sysload command, you need to submit afile to start the
jobs. (This assumesthat you have aready installed aNIC.) Y ou can submit thefile
yourself at the iRMX prompt while logged in as Super. Or, you can place the
commands in startup files so that the file is submitted automatically every time you
boot the system.

The submit command is:

esubmit :config:tcpstart
In addition to the entries described in the earlier Configuration section,
the tcpstart.csd file also starts the TCP/IP kernel as a set of loadable
jobs. By default, this command appears as a comment in the
.config:r?init2 startup file. To automatically submit the file every time
the system boots, remove the semicolon character at the start of the line.

|:| Note

Do not place commands that prompt for keyboard input in any of
the configuration files : config:loadinfo, :config:r?init, or
:config:r?init2. Running commands from the :config:r?init2 file
can make booting alittle slower.

To stop TCP/IP without shutting down the system, you can submit the : config: tcpstop
file. Before unloading TCP/IP, make sure that there are no TCP/IP servers or clients
running.

submit :config:tcpstop
The : config: tcpstop.csd file provides an orderly shutdown of the TCP/IP
jobs and applications. It unloads tcp.job, udp.job, rip.job, ip.job, and
NIC driver jobs.

TCP/IP for theiRM X Operating System Chapter 2 15

Testing the TCP/IP Setup

Test the TCP/IP software and its connection to the network by issuing this command:
pi ng | oopback 56 3

This command sends packets on the network to the local machine. It tests both
TCP/IP and the network hardware; TCP/IP must be able to send and receive packets
to display a message similar to this:

PI NG | oopback: 56 data bytes

64 bytes from|P_address: icnp_seq=0. tinme=0 100th of sec
64 bytes from|P_address: icnp_seq=1. tinme=0 100th of sec
64 bytes from|P_address: icnp_seq=2. tinme=0 100th of sec
----loopback PING Statistics----

3 packets transmitted, 3 packets received, 0% packet |oss
round-trip (100th of sec) m n/avg/ max = 0/0/0

Notice the next-to-last line, indicating that all the packets sent were received.

If this command succeeds, test the connection to other hosts on the network. Repeat
the ping command, specifying the remote host's name or address instead of

| oopback. To use names, you must configure the name-to-address trandation in the
:config: hosts file or from the DNS server as described earlier.

If you enter the ping command without the numeric values, it continues sending
packets until you interrupt it with a <Ctrl-C>.

See also: Network Tests, Chapter 9, for other tests you can perform
ping command, Command Reference

Troubleshooting

Problems can occur at several different levels. For example, TCP/IP may have failed
toinstall correctly. Thisin turn causes jobs dependent on TCF/IP to not load
correctly. This section provides some general troubleshooting guidelines and
explains some specific error conditions.

General TCP/IP Debugging

16

Follow these ordered steps to try and isolate TCP/IP problems:
1. Try to execute some of these commands:

netstat -i
netstat -a

If you get errors then perform steps a through c.

Chapter 2 Installing and Starting TCP/IP

If these commands execute correctly, you can assume that TCP/IP isloaded and
running. Steps athrough c do not apply.

a. Check the messagesin :config:r?init2.log, the log file of the :config:r?init2
file. Besurethat r?init2 submitted the file : config: tcpstart.csd and that all
the commands in the submit file ran properly.

b. Check thehosti d and host name settingsin :config:tcp.ini to be sure they
are correct.

c. Check the :config:hosts file to be sure your host nane isthere with the
correct | P address.

2. If you are having trouble with telnet try the following:
a. Check the pttydrvnn.log, where nn is the slot number of the client board.

b. Enterinitstatusand seeif any ttyp * are available and not locked.

Setting Up a Remote Unix Host for Telnet

Once the ping command succeeds, TCP/IPis set up and ready to support file transfer
viathe File Transfer Protocol (FTP) or the Trivial File Transfer Protocol (TFTP).
Before you can begin remote login through the telnet command, however, you may
need to do additional setup on the remote Unix host.

Creating a Terminal Definition for the PC Console

To run any Unix program that supports cursor movement (any program using the
curses library, such as the vi editor) you must set a TERM environment variable that
matches your iRMX terminal. If you make a connection through the telnet or rlogin
commands from any standard terminal, the Unix host should already have a matching
terminal type definition. However, to use telnet or rlogin from a PC console
(:d_cons:) you need to define a new terminal name, RMXPC. This procedure
modifies system files on the remote Unix host, which requires root privileges. If
necessary, contact your Unix system administrator for assistance.

To set up the RMXPC terminal definition:

1. Copy :config:termcap.rmx and : config:terminfo.rmx from the iRMX host to /etc
on the Unix host. Use FTP or some other method.

2. Log into the Unix host asroot.

3. Edit the existing termcap file to add the contents of termcap.rmx. (If you are
sure that users will be running only applications that use terminfo, instead of
termcap, you can skip this step. But if there is any doubt, perform this step.)

TCP/IP for theiRM X Operating System Chapter 2 17

4. Run this command:
tic term nfo.rnx

If your system does not have atic command, skip this step.

Setting Terminal Characteristics for User Sessions

18

When iRMX users remotely log into a Unix host, the telnet or rlogin commands
change the Unix terminal type to the name of the iIRMX terminal. If the Unix host is
set up to support that terminal type, and the Unix account does not reset the terminal
type, nothing more is necessary.

However, Unix accounts that are also used for local logins need to set the terminal
type during initialization. This overwritesthetelnet or rlogin terminal setting.
Because the remote iIRMX terminals and local Unix terminals are likely to be
different, the best way to handle thisisto prompt for the terminal type.

Use this procedure to set up Unix user accounts for users who use the telnet or rlogin
commands. You may need to experiment; the specifics vary for different shellsand
versions of Unix. If you need help, ask your Unix system administrator.

1. Check that the Unix host is set up to support the required terminal types and that
the terminal names are exactly the same on the Unix and iRMX OS. The
possible names include:

e Standard terminals, like wyse50
« RMXPC for the PC console, as discussed earlier

2. Edittheinitialization file in each user's home directory. For those who use the
Bourne shell, bash, or Korn shell, the file should be $SHOME/.profile, and for C
shell users, SHOME/.login.

* Set up handling of the terminal type. If the account will only be used for
loginsviatelnet or rlogin, comment out any reference to terminal type,
such as:

setenv TERM
TERM =
export TERM

Or, if the account will be used for both remote and local logins, set up a
prompt for the terminal type. This simple example for the Bourne shell
.profile produces a prompt:

echo "TERM=\ c"
read TERM

Chapter 2 Installing and Starting TCP/IP

« Definetheinterrupt sequence, erase sequence, and tab settings for the
potential terminal types. This Bourne shell example for the RMXPC
terminal sets the interrupt to <Ctrl-C> and erase to , and sets tab

expansion.

i f[$TERM = "RWMXPC']
then
stty intr ~C erase "? -tabs

fi
See also: Documentation for your Unix system

TCP/IP for theiRM X Operating System Chapter 2 19

20 Chapter 2 Installing and Starting TCP/IP

Using Telnet

With TELNET you can log in to aremote host asif your terminal were directly
cabled toit. TELNET providesreliable, virtual terminal communication with any
network host that supports the TCP standard, regardless of the host's OS. The remote
host must implement a TELNET server.

Before You Begin

Before you begin a TELNET session on a remote host, you must know:
e A user login name and password on the remote host

e One of the valid names for the remote host: its Internet address, its official host
name, or itsalias

Y ou can get valid host names and addresses from your :config:hostsfile.

The remote host must have a TELNET server process, telnetd, and be listening for
TELNET requests. If you need additional information or help setting up aremote
host login, see your network administrator.

Telnet Modes

TELNET operatesin two modes: input mode and command mode. In input mode,
you log in and enter OS commands, which are processed by the OS on the remote
host. In command mode, you enter TELNET commands, which are processed by the
TELNET program on the local host.

You can start the TELNET program in either mode and switch between modes during
aTELNET session.

TCP/IP for theiRM X Operating System Chapter 3 21

Figure 3-1 shows how commands are processed in input mode and in
command mode.

User
Enies | TELNET

Local Host

Command Mode

User TELNET ~ | TELNET
Entries (Client) (Server)

Local Host Remote Host

Input Mode

W-3403

Figure3-1. TELNET Modes

Starting TELNET

Y ou can use this command to start TELNET and connect to any other remote host:
o telnet

Starting in Input Mode

To start TELNET ininput mode enter t el net host nane at theiRMX prompt,
specifying the name of the remote host to which you want to connect. If TELNET
connects to the host, you are prompted to log in. After you log in, any commands
you enter are processed by the remote host. The input mode prompt is the remote
host's OS prompt. When you exit the remote session, the TELNET program
terminates, and you are returned to the OS prompt on the local host.

Starting in Command Mode

22

To start TELNET in command mode, enter telnet at the iRMX prompt. The
TELNET program starts and displays the command mode prompt, t el net >. It does
not attempt to connect you to a remote host; in command mode you enter TELNET
commands that are processed by the local host. From thet el net > prompt, you can
use the open command to connect to aremote host in input mode. If you open a
remote session in thisway, you will be returned to command mode when you close
the session.

Chapter 3 Using TELNET

Switching Telnet Modes

To switch from input mode to command mode, enter the current TELNET escape
character, followed by a carriage-return. The default escape character is”]
(control 1) . Y ou can change the escape character with the TELNET escape
command. Thet el net > prompt confirms that you have entered command mode.
Y ou can specify several options on the telnet command line.

To switch back from command mode to input mode, enter a <CR> at the command
mode prompt. At this point you can resume what you were doing before you entered
command mode.

Using TELNET for a Remote Session

When you use TELNET for aremote session, you establish a virtual terminal
connection to the remote host. The remote host gives you the same privileges and
capabilities asit does for users with terminals directly cabled to it. While you are
working on the remote host, your session with the local host is maintained.

The procedure for conducting aremote TELNET session consists of three general
steps:

1. Connecting to the remote host

2. Entering commands during the session

3. Closing the remote connection

TCP/IP for theiRM X Operating System Chapter 3 23

Connecting to the Remote Host

Y ou can begin aremote session at the iIRM X system prompt or at the TELNET
command mode prompt. In either case, the TELNET client processin your local host
activatesa TELNET server process in the remote host to service your session.

Y ou specify aremote host by its Internet address, its official name, or an alias name.
To connect to aremote host named host2 at Internet address 128.215.12.21, you
could use either of the command methods shown below to open the connection. You
could use either form of the namein either command:

From the iRMX Prompt From the TELNET Prompt
- telnet 128.215.12.21
- telnet telnet> open host2

If the attempt succeeds, your screen displays a connection message and the remote
host login prompt. The connection message includes information about the TELNET
session, including the current escape character. The output from the above
commandsis similar to this:

Trying 128.215.12.21 ...

Connected to 128.215.12. 21.

Character node i s enabl ed.

Escape character is "].

UNI X System V Rel ease 3.2 (host2.intel.com

| ogi n:
If al ptty devicesarein use and a TELNET request comesin, telnetd will send the
following error back to the client:

No ptty devices available at this tine.

Regardless of the reason, if the connection attempt does not succeed, you are returned
tothet el net > prompt and are requested to log in. This cycle repeats until you
successfully log in or until you close the TELNET session with the ~]quit command,
where] is the current escape character.

24 Chapter 3 Using TELNET

Setting the Terminal Type on a Unix System

When you log into a Unix host, TELNET changes the Unix terminal type to the
name of your iRMX terminal. If the Unix host is set up to support that terminal type,
and your Unix account does not reset the terminal type, you do not need to do
anything more.

Some Unix accounts, however, reset the terminal type during initialization. This
overwrites TELNET's terminal setting. If aterminal prompt appears when you log
in, respond with the name of your iRMX terminal. For example, if you are working
at aWyse 50 terminal, specify:

TERM = wyse50

If you are using the PC console as your iIRMX terminal, the terminal type is RMXPC.
For ICU-configurable iRMX OS with Multibus I and the iSBX 279 Graphics
Module, the terminal typeisi 279. If the system does not recognize your terminal
type, see your Unix system administrator.

Sometimes the initialization file automatically sets a predetermined terminal type.
TELNET will not work properly with this setup, unless the terminal type happensto
be the same asyour iIRMX terminal. |f you suspect this has happened, check your
current terminal type:

echo $TERM

If you need to reset the terminal type, itisbest to do it inyour initialization file.
Otherwise, the problem will happen again every timeyou login. If you need help,
ask your Unix system administrator.

See also: Setting Up a Remote Unix Host for Telnet and Rlogin, Chapter 2, for
initialization file setup
Terminal Type Strings

iRMX supports terminal type lengths of six characters or less. When a TELNET
session begins, the client passes a string representing the terminal type to the server.
If aclient with aterminal type of more than six characters tries to connect to a
telnetd/rlogind server running on iRM X, the following warning displays at the
client end:

Termi nal type too long for i RMX, try another

TCP/IP for theiRM X Operating System Chapter 3 25

Disabling Local Echo on Berkeley Unix Hosts

When you connect to a TELNET server on a Berkeley Unix host, before any other
commands, you need to enter the TELNET localecho command. Thisisatoggle that
turns local echo off. Usetheinstructionsfor entering TELNET commandsin this
section.

Entering Commands During the Session

During the remote session, you can enter input mode commands at the remote host's
OS prompt or command mode commands at the TELNET prompt.

At the remote OS prompt, enter any command that is appropriate for that
environment. The local host will pass your commands to the remote host for
processing without interpreting them.

To enter TELNET commands, switch to command mode by entering the escape
character, followed by a space. The system displaysthet el net > prompt. At the
prompt, type your command, then press <Enter>. Y ou can enter any of the TELNET
commandsin this manner. TELNET processes your command, then returns to input
mode so you can continue your remote session.

This example uses the escape character /] and the TELNET status command during
aremote host session. The $ isthe remote OS's prompt. Unlike the way it is shown
here, the escape character does not appear on your screen when you enter it.

$ M
t el net > st at us

Connected to host2.intel.com
Character node is enabl ed.
Escape character is "].

$

26 Chapter 3 Using TELNET

There are several other TELNET commands that let you control options for the
TELNET session. Usethe TELNET ? command to list all the commands and their
descriptions:

tel net> ?

Commands nmay be abbrevi ated. Conmands are:

cl ose cl ose current connection

| ogout forcibly I ogout renote user and cl ose the
connecti on

di spl ay di spl ay operating paraneters

node try to enter line or character node (' node ?' for
nor e)

t el net connect to a site

open connect to a site

quit exit tel net

send transnmt special characters ('send ?' for nore)

set set operating paraneters ('set ?' for nore)

unset unset operating paraneters ('unset ?' for nore)

status print status information

toggl e toggl e operating paraneters ('toggle ?' for nore)

slc change state of special charaters ('slc ?' for
nor e)

! i nvoke a subshell environ change environment

variables ('environ ?' for nor e)

? print help information

See dso: telnet command, Command Reference

Closing the Remote Connection
To close a connection to aremote host, you can:
» Enter the TELNET quit command
e Usetheremote host's logout procedure
* Enter the TELNET close command

The quit command releases your remote connection, stops the TELNET client and
server processes on both hosts, and returns you to the OS prompt on your local host.

The remote host logout procedure and the close command have the same effect as the
quit command if you connected to the remote host from input mode (the iIRMX
system prompt). If you connected to the remote host from command mode (the
t el net > prompt), you are returned to the t el net > prompt on your local host.

TCP/IP for theiRM X Operating System Chapter 3 27

Using Telnet for a Local Session

It is sometimes convenient to use the TELNET program locally without a connection
to aremote host. For example, you might want to use TELNET locally to get
information about its commands or to set up anew configuration (such as defining a
new escape character) before you begin working on aremote host.

Whenever you use TELNET without a connection to aremote host, TELNET isin
command mode and the t el net > prompt isdisplayed. You can enter only TELNET
commands, not OS commands. To start the TELNET program without a remote host
connection, enter the telnet command without a host nanme parameter:

- telnet
t el net >

Entering Commands in a Local Session

During alocal session you can enter any of the TELNET commands except close.
This command is valid only when you are connected to a remote host.

The status command prints information about the current TELNET session. In this
example, it identifies the host's escape character:

t el net > st atus

No connecti on.

Character node is enabl ed.
Escape character is '""]'.
t el net >

Ending the Local Session

28

Toend alocal TELNET session, enter the quit command at thet el net > prompt.
The TELNET process ends and you are returned to the iRM X system prompt on your
local host.

Chapter 3 Using TELNET

File Transfer Protocols

TCP/IP for theiRMX OS includes implementations of two file transfer protocols:
FTP. Each provides a different degree of security, reliability and functionality.

File Transfer Protocol (FTP) isthe most powerful file transfer program available
among the standard TCP/IP protocols and is, therefore, preferred by many users.

Before You Begin

Before you begin afile transfer session, you must know:
e A user login name and password on the remote host

e One of the valid names of the remote host: its Internet address, its official name,
oritsaias

Y ou can get information about valid remote host names from the : config: hostsfile,
which lists the Internet address, official name, and aliases for each host on the
network.

If you need additional information or help setting up a remote host login, see your
network administrator.

TCP/IP for theiRM X Operating System Chapter 4 29

File Transfer Protocol (FTP)

FTPlets you transfer accessible files between your local host and a remote host that
supports TCP/IP. Y ou don't need to know the remote host's OS to transfer files. FTP
isimplemented entirely as a command line interpreter, where the commands are
processed by the FTP client process on the local host.

During an FTP session, you enter commands to the FTP process to control the file
transfer and manage the files and directories on the remote host. For example, you
can issue FTP commands to open and close a remote host connection, delete remote
files, or create new directories on the remote host.

Some FTP commands, such as bell, debug, and help, are processed completely by
the FTP client process on the local host. These commands can be executed with or
without an established connection to an FTP server process on aremote host.
However, most FTP commands require a connection. These commands are
trandated by the FTP client process into one or more FTP protocol commands, which
the client sends to the FTP server process on the remote host for processing. The
FTP server, called ftpd, is described later in this manual.

Aswith TELNET, you can start FTP without making a connection to the remote host,
using this command at the iRM X prompt:

ftp
or you can start FTP and open the remote connection with the command
ft p host nane

In either case the FTP client process starts and displaysits prompt, f t p>. You can
now enter FTP commands as described in these sections.

See also: ftp command, Command Reference

FTP Help Information

30

For on-line information about FTP commands, enter ? to list all the commands and
their descriptions. Use ? command_name for a description of a single command.

See also: ftp, Command Reference, or Quick Referenceto TELNET and FTP for
descriptions of all FTP commands

Chapter 4 Using File Transfer Protocols

FTP File Transfer Session
An FTPfile transfer session consists of three general steps:
1. Connecting to the remote host
2. Using FTP commands
3. Ending the FTP session

Connecting to the Remote Host

In most cases, you begin afile transfer session by entering a command to establish a
connection to a particular remote host. Upon receipt of your command, the FTP
client process on your local host activates an FTP server process on the remote host
to service the session. If you did not invoke FTP with ahost name parameter, you
establish a connection with the open command at the f t p> prompt.

Specify host nanme asthe Internet address, official name, or alias of the remote host.
To connect to aremote host named host2 at Internet address 128.215.12.21, you
could use either name in either of the command methods shown below:

From the iRMX Prompt From the FTP Prompt
- ftp 128.215.12.21
-ftp ftp> open host2

FTP attempts to connect you to the specified remote host. If the connectionis
established, FTP promptsyou to log in. The message is similar to this:

Connected to host2.intel.com

220 host2.intel.com FTP server (Version 1.2 May 02 1992)
ready.

Name (host2.intel.comacct):

If the connection cannot be established, you are returned to the f t p> prompt.

When a connection is established, FTP prompts you to begin the remote host's login
procedure. You must use avalid login name and password to gain access to the
remote host. If you need help with logging in, see your system administrator.

When the login is successfully completed, FTP again displaysthe f t p> prompt. You
can begin entering file transfer commands.

TCP/IP for theiRM X Operating System Chapter 4 31

If thelogin is not successful, FTP displays a message to that effect and returns you to
thef t p> prompt. At this point you are still connected to the remote host. Tolog in,
enter:

ftp> user nane

where namre isyour user name on the remote host. Y ou are then prompted for your
password.

Y ou can automate the FTP login procedure to make it more convenient with a netrc
file.

See also: FTP Initialization File, in this chapter

Using FTP Commands

Two commands commonly used for file transfer, the put and get commands, are
described here. Severa other FTP commands can be used to manage files and
directories on both the local and remote hosts during a session. For example:

e The commandsdir, Is, and mis provide you with listings of the files and
directories on the remote host.

* The commandsIcd and cd enable you to change directories on the local and
remote hosts, respectively.

e The commands mkdir and rmdir enable you to create or delete directories on
the remote host.

See also: ftp command, Command Reference, for descriptions of these FTP
commands
Put Command
To copy afile from your local host to aremote host, enter this at the f t p> prompt:
put localfile [renptefile]

wherel ocal fi | e isthe name of the local fileto transfer andr enot ef i | e isthe
name for the remote copy of thefile. If you do not enter aremote filename, FTP
givesit the same name as the local copy.

Y ou can use the send command as an alias for put.

The next example shows how FTP prompts for local and remote filenames when you
enter put with no filename parameters. It also shows the message FTP displays when
the transfer is successful.

32 Chapter 4 Using File Transfer Protocols

|:| Note

The ver bose option must be on, asit is by default, to produce the
display shown in thisinteractive session.

ftp> put

(local -file) payroll.1

(remote-file) payroll.2

200 PORT command okay.

150 Opening ASCI|I nmpbde data connection for payroll. 2.
226 Transfer conplete.

2103 bytes sent in 0.29 seconds (6.9 Kbytes/s)

ftp>

The put command transfers one file per transaction. To transfer more than onefilein
asingle transaction, use the mput command.

Get Command
To copy afile from the remote host to your local host, enter this at the f t p> prompt:
get renptefile [local file]

wherer enot ef i | e isthe name of the remote fileto be transferred and | ocal fil e
isthe name for the local copy of thefile. If you do not enter alocal filename, FTP
givesit the same name as the remote copy.

Y ou can use the recv command as an dias for get.

The next example shows how FTP prompts for remote and local filenames when you
enter get with no filename parameters, and the message FTP displays when the
transfer is successful.

ftp> get

(local -file) personnel.1l

(remote-file) personnel.2

200 PORT command okay.

150 Opening ASCI|I npde data connection for personnel.1l (5909
byt es).

226 Transfer conpl ete.

6123 bytes received in 1 seconds (5.979 Kbytes/s)

ftp>

The get command transfers one file per transaction. To transfer more than onefilein
asingle transaction, use the mget command.

TCP/IP for theiRM X Operating System Chapter 4 33

Transferring Files Between Systems With Different File Naming Conventions

When you transfer files between hosts with different operating systems, be sureto
specify aname for the new file that conformsto the local file naming conventions. |If
you do not specify a destination name on the command line, FTP attempts to use the
source name. |f that name is not valid on the local host, the command fails. For
example, you may need to copy a Unix tar file to the DOS file system on iRMX for
PCs. Use acommand line like one of these:

ftp> get bash.tar.Z bash_t.Z
ftp> put bash.tar.Z bash_t.Z

The destination file name, bash t.Z, conforms to the DOS 8.3 file name convention,
so it can be used with the DOS file drivers.

Transferring Large Files

To transfer large files to aremote Unix host using FTP, you might need to increase
the value of the system parameter ulimit on the remote host. Ulimit isa Unix System
V security feature that enables the network administrator to limit the size of files that
can be created by local users. The default limit on many systemsis 2048 512-byte
blocks, or 1 MB. Filetransfer applications such as FTP and TFTP and rcp must obey
the file size limitations imposed by the system on which the file isto be created. The
default value of ulimit for the remote host governs the maximum size of afile that
can be sent.

FTP alows you to change ulimit on a remote Unix host, but you must have root
privileges on the Unix host to increase the value. Users without root privileges can
only check the value or decreaseit. If you do decrease the ulimit in a remote session,
you cannot increase it, even to its origina value, unless you have root privileges. If
you need to increase ulimit on a host on which you do not have root privileges,
contact your network administrator for assistance.

First you need to establish an FTP connection with the remote host, logging in as
root. Then change the ulimit value for the remote session, using the FTP site
command as follows:

ftp> site ulimt 16384

200 ULIMT set to 16384 bl ocks
ftp> put bigl

[File transfer information]

ftp>

34 Chapter 4 Using File Transfer Protocols

There are other remote commands you can execute with site, depending on the
commands made available by the remote FTP server, ftpd.

See also: ftp and ftpd commands, Command Reference

Ending the FTP Session
To end afile transfer session, enter one of these commands:
* bye, oritsaiasquit
* close

The bye and quit commands release your connection, stop the FTP client and server
processes in the local and remote hosts, and return you to the iIRMX OS prompt on
your local host.

The close command releases your connection to the remote host and returns you to
the ftp> prompt on your local host.

FTP Initialization File

If you set up an FTP initialization file, the FTP process will log you on to aremote
host automatically. Name the file netrc or r?netrc and put it in your home directory
on thelocal host. If the FTP process finds :home: netrc at startup, it reads the fileto
obtain the information it needs to complete remote host login procedures.

|:| Note

For those familiar with FTP in a Unix environment, on iRMX this
file is named netrc without a beginning . (period or dot) in the
filename. To hidethefile on aniIRMX system, name it r?netrc.
When any program refersto netrc, the iIRMX OS automatically
maps it to r?netrc.

To create netrc, build afile that contains this information about each remote host
where you want to log in automatically:

* Theofficial host name as set with the hosthname command; an Internet address
or aliasis not acceptable

e Your user login name on the remote host
e Optional: the password to your login on the remote host

Each line of the netrc file describes a different host. Thereis no limit to the number
of linesthefile can contain. The format for each lineis:

machi ne host | ogin | ogin-name [password password]

TCP/IP for theiRM X Operating System Chapter 4 35

36

The keywords nachi ne and | ogi n must appear in each line, followed by the official
host name and your remote user login name, respectively. Each word on the line
must be separated from other words by a space or tab.

The keyword passwor d and your password are optional. If you do not enter
password information for aremote host in the netrc file, FTP prompts you for it when
you log in to the host. Because the netrc file might contain password information,
make the file readable only by the owner. FTP for theiRMX OS, unlike other
versions, does not enforce owner-only file access. FTP does print awarning if the
netrc file contains account information or passwords.

Below isan example of arecord in anetrc file. Inthisexample, t vi 386 isthe
official name of the remote host and nancy isthelogin name on that host. Because
the password is omitted, Nancy will be prompted for it during login.

machine tvi386 I|ogin nancy

See also: netrc file, Chapter 10

Chapter 4 Using File Transfer Protocols

Network Services and Daemons

As network administrator, you determine which services each host on the network
will provide. Many network services involve the interaction of a client process on
one host and a server process on another. By defining the server processes that run
on a particular host, you control the types of access available to remote clients.

An example of thistype of network serviceis FTP, which isimplemented by a client
process (ftp) and a server process (ftpd). In general, the client and server share the
same root name, and the server name includes the suffix d, which designatesit asa
daemon. A daemon operatesin the background. A server daemon operates when it
receives aclient request. Virtualy all of the networking commands available to the
general user invoke the client process of a client/server pair.

Several additional network services are implemented by network daemons that are
not associated with client processes. These daemons exchange messages with their
counterparts on remote hosts and update local kernel tables or network databases
based upon the information received. By defining the daemon processes that will be
running on a particular host, you control the automatic (by daemon) or manual (by
administrative command) updating of the related network tables.

These sections describe the network services that you can control for each host. Each
section contains a brief description of the service, some guidelines for determining
whether or not the service should be enabled, and instructions for configuring,
enabling, or disabling the service, where applicable. The servers and daemons are
described in alphabetical order.

See also: TCP/IP daemons, Chapter 2;
Stopping and Restarting TCP/IP, Chapter 2

TCP/IP for theiRM X Operating System Chapter 5 37

Ftpd Server

38

Ftpd.job isthe server process for the File Transfer Protocol (FTP). The client
process is the ftp command. Running ftpd.job on the local machine allows remote
ftp usersto connect to this host to transfer files.

To enable FTPD on the local host, edit the startup script :config:tcpstart.csd and
uncomment the line which sysloads the ftpd.job. If you are starting the TCP/IP stack
from the :config:loadinfo file, uncomment the line which sysloads the ftpd.job in this
file. Because FTPisone of the basic networking services provided by the TCP/IP
package, it is very unusual to encounter a network host that is not listening for FTP
requests.

If thelocal host is currently providing FTP access, the display from anetstat -a
command includes an entry with alocal address of * .ftp.

See also:ftpd.job, System Configuration and
Administration

Chapter 5 Network Services and Daemons

Telnetd Server

Telnetd.job isthe server process for the TELNET protocol, which defines the
network virtual terminal access to aremote host. The client processisthe telnet
command.

To enable TELNETD on the local host, edit the startup script :config:tcpstart.csd and
uncomment the line which sysoads the telnetd.job. If you are starting the TCP/IP
stack from the :config:loadinfo file, uncomment the line which sysloads the
telnetd.job in thisfile. Because TELNET is one of the basic networking services
provided by the TCP/IP package, it is very unusual to encounter a network host that is
not listening for TELNET requests.

If thelocal host is currently providing the TELNET service, the display from a
netstat -a command includes an entry with alocal address of *.telnet.

Configuring Pseudo-terminals for Telnetd

The telnetd server node needs some additional configuration to set up pseudo-
terminals for the remote client TELNET sessionsto access. Like terminals, pseudo-
terminals need to be identified and enabled in the :config:terminalsfile. Then the
number of supported pseudo-terminals needs to be specified as a parameter to
telnetd.job as follows:

1. Add anentry to the :config:terminal (s) file to initialize each iRM X pseudo-
terminal device for users. List these devices asptty O, ptty 1, up through
ptty _n-1 where n is the number of pseudo terminals supported. N can vary from
1to 16 inclusively. For example:

ptty_O,,,any

Also edit thefirst line of the file, increasing the number by one for each new
entry added. If that number issmaller than the number of entries, the extra
entries are ignored

For example, pt t y_2 in the following file cannot be used because the 3 at the
beginning means the Human Interface initializes only the first three terminals.

3

d_cons,,, pc
ptty_O,,,any
ptty_1,,,any
ptty_2,,,any

2. Update the :config:tcpstart.csd and/or the :config:loadinfo files to uncomment
the line which syd oads the /rmx386/jobs/tel netd.job service and specify the

TCP/IP for theiRM X Operating System Chapter 5 39

number of pseudo-terminalsto be supported. The sysload command has the
following form:

Sysload /rmx386/jobs/telnet.job num_pttys=n
Where

n is the number of pseudo-terminalsto be supported. This number can vary
between 1 and 16 inclusively. If num_pttysis not specified, the telnetd service
assumes 4 pseudo-terminals.

See also: Configuring terminals, System Configuration and
Administration;
telnetd.job, System Configuration and
Administration

40 Chapter 5 Network Services and Daemons

Configuring and Administering
Network Files

As network administrator, you define the operation of several network daemons and
servers by setting up their configuration files. The network configuration files are
described in this chapter.

Network Configuration File Network Daemon or Job
:config:tcp.ini TCP/IP jobs

Restricting and Updating Network Databases
and Files

The following list shows files that that maintain information about hosts, networks,
protocols, and available network services. Some of these files enable remote user
access. As network administrator, you should ensure that these files are updated
whenever the topology of the network changes. Only the network administrator
should have permission to modify these files.

File Purpose

:config:hosts Lists addresses and names of accessible hosts and
interfaces on the net

:config:services Lists hames, port numbers, and protocols associated with
available services

:home:netrc User-specific file that provides login information to
FTP servers

See also: Chapter 9 for details about the contents of each file

TCP/IP for theiRM X Operating System Chapter 6 41

42 Chapter 6 Configuring and Administering Network Files

Commands for the
Network Administrator

There are several TCP/IP commands that display configuration information and
perform network maintenance. The network administrator uses these commands to
monitor the overall status of the network, monitor and make available remote
resources, test specific interfaces or functions, and configure certain interface
characteristics. This chapter describes the purpose for using such commands.

See also: Command syntax and descriptions, Command Reference

Administrative Commands

These are the network mai ntenance commands:

netstat Displays information from network data structures so you can identify
network problems. This chapter describes network tests you can
perform with this command.

ping Tests low-level communications between two hosts to determine if
thereis afault between them.

Performing Network Tests

As network administrator, you perform tests to determine whether the network
services and daemons are running as expected, whether the interfaces and routes have
been correctly configured, and whether each interface is functioning properly.

Y ou should run a comprehensive set of tests after the network isfirst installed. These
tests should include the functional tests of the software loopback interface as well as
the basic assessment of the network configuration. At subsequent times when the
network is brought up, you should run a subset of the initial teststo determine, at a
minimum, that the correct daemons and interfaces are available. Y ou should also
thoroughly test each network interface when it isinitially configured.

The tests described here are only suggestions. Y our own networking environment
will determine the tests that you select as most useful.

See also: netstat command, Command Reference, for more information about
test results

TCP/IP for theiRM X Operating System Chapter 7 43

Verifying Network Services
When the network is first brought up, you can perform the Network Status Test to
verify that the network startup script tcpstart.csd has been properly configured.
Network Status Test
For the Network Status Test, perform these steps:

1. Usethe netstat -a command to display all the active network connections and
listening servers.

2. Veify that thereisan entry in the netstat -a table for every network server
daemon you have configured.

See also: Chapter 5 for definitions of network servers

44 Chapter 7 Commandsfor the Network Administrator

3. For TCP-based services, verify that the entriesin the netstat -a table have these
attributes:

e The protocal istcp.
* The address part of the local addressis wild-carded.

e The port part of the local address shows the service name as defined in the
.config:servicesfile.

Both the address and port parts of the foreign address are wild-carded.
* ThestateisLISTEN.

4. For UDP-based services, verify that entriesin the netstat -a table have these
attributes:

* Theprotocol isudp.
e The address part of the local addressiswild-carded.

* The port part of the local address shows the service name as defined in the
:config:servicesfile.

e The address part of the foreign addressis a name, address, or wildcard.
* The port part of the foreign address is wild-carded.
e The stateis empty.

Verifying Network Configuration

Y ou can perform the Interface Status Test, the Interface Configuration Test, and the
Route Configuration Test to verify network configuration.

Interface Status Test
For the Interface Status Test, perform these steps:
1. Usethe netstat -i command to display the configured network interfaces.

2. Comparethe netstat -i display with the contents of the network configuration
file tep.ini to verify that all interfaces have been successfully configured.

TCP/IP for theiRM X Operating System Chapter 7 45

3. Ensure these conditions are true for each entry in the netstat -i table:

* Theinterface name isthe same as the one defined in the tcp.ini file. This
nameis unique.

* The maximum transfer unit (MTU) for each interface is a positive nonzero
integer that reflects the type of communications medium used: 4096 for the
software loopback interface and 1500 for Ethernet interfaces. If the MTU is
zero, the interface did not initialize properly.

* Thenetwork and address fields each contain a name, not an Internet address.
The address field contains the host name assigned to the interface in the
tep.ini file. The network field contains the network name from the
:config: networks file that matches the network portion of the address
associated with that host name in the : config: hosts file. (If the network
address is displayed, make sure the : config: networks file has an entry for the
address also.)

» Theinput and output error fields are 0. The input packetsfield is at least 2.
The output packetsfield is 0 or a positive integer.

Interface Configuration Test
CHRIS?

46 Chapter 7 Commandsfor the Network Administrator

Verifying Interface Functionality

The purpose of thistype of network testing is to verify that each configured interface
is functioning properly and that all three of the Transport Layer protocols (tcp, udp,
and raw) are working as expected. Test the software loopback interface first as
described below to determine that the basic streams have been properly constructed.
Then test each network interface in the same manner.

1. Totest thetcp transport layer, perform these steps:
« Enter:
tel net e

In response to your command, a DNS database or the :config:hosts fileis
accessed to obtain the Internet address for the host e, at which point
TELNET displays this message:

Trying 127.0.0.1

If this message is not displayed, check the : config: hosts file to make sure
that the proper name-to-address trandation is available.

Assoon as TELNET makes the connection, it displays the connection status
and then the login banner received from the remote host (in this case, the
local host through the loopback connection).

* Loginand then log off to terminate the test.
The three errors most often encountered when running thistest are:

— No address trand ation can be found for the remote host name
(unknown host).

— Theremote host is not listening for TELNET connections
(connection refused).

— Theremote host did not respond to the connection request
(connection timed out).

Thelast error can be caused by a hardware problem. It can also occur if the
remote host is down, does not have the network running, or is very busy.

2. Totest the udp transport layer, use the command:
tftp nme

3. Totest theraw transport layer, use the command:

TCP/IP for theiRM X Operating System Chapter 7 47

ping ne 1 10

This sends ten one-byte ECHO_REQUEST packetsto the local host, using the
loopback device. The transmission summary should show no packet loss and
reasonably consistent round trip times for the individual packets.

Y ou can use the netstat command to test the functionality of the udp and tcp
transport layers.

See also: telnet, netstat, and ping commands, Command Reference

Chapter 7 Commandsfor the Network Administrator

Tunable Parameters

A number of tunable parameters affect the functionality and performance of TCP/IP
software. For each TCP/IP job, there are parameters that define how that job
operates.

Tuning is a tradeoff between all ocating enough resources to facilitate networking
operations and keeping the kernel small enough to be manageable. The
recommendations made in this chapter are generally on the small end of the scale.
Y ou will ailmost certainly need to revise them to meet the needs of your network’s
configuration. Start with the values specified and monitor the system closely for a
while to determine what your environment really needs.

Determining When to Tune Parameters

The TCP/IP kernel isinstalled with default parameters that are adequate for asimple
host configuration, with one network interface and a moderate amount of network
traffic. After you determine your host and network configuration, you should review
the TCP/IP parameters listed in this chapter and reset them as needed.

TCP/IP for theiRM X Operating System Chapter 8 49

TCP/IP Parameters

Parametersin the: config:tcp.ini file affect the TCP/IP jobs operation, and

[TCP]

[UDP]

[RIP]

[IP]

performance.

|:| Note

Values not enclosed in single quotes are hexadecimal numbers.

File
DEFMSS
RCVSPACE
SNDSPACE
CTLBUFS
TRANSBUFS
MAXTRANS
MAXPORTS
LOWFIXPID
HIFIXPID
LOWAUTOPID
HIAUTOPID

File
CHECKSUM
RCVSPACE
CTLBUFS
TRANSBUFS
MAXTRANS
MAXPORTS
LOWFIXPID
HIFIXPID
LOWAUTOPID
HIAUTOPID

File
CTLBUFS
TRANSBUFS
MAXTRANS

MAXPORTS

File

Chapter 8

Default Value
200
4000
4000
40
40
10
1388
1
3FF
400
1387

Default Value
1
0A000
40

40

10
1388
1

3FF
400
1387

Default Value
20

20

8

80

Default Value

Description

Default maximum segment size
Maximum receive space per socket
Max send space per socket

Maximum total control buffers
Maximum total transaction buffers
Maximum simultaneous IP transactions
Maximum port ids

Well-known port id range

Ephemeral port id range

Description

Enable checksum

Maximum receive space per socket
Maximum total control buffers
Maximum total transaction buffers
Maximum simultaneous IP transactions
Maximum port ids

Well-known port id range

Ephemeral port id range

Description

Maximum total control buffers
Maximum total transaction buffers
Maximum simultaneous IP
transactions

Maximum port ids

Description

Tunable Parameters

IFNAMES

'ETHO, LOO'

BUFHEAPSIZE 140
LOCALSUBNETS 1

Interface names
Tot al receive buffer size in Kbytes
Enable local subnets

TTL 8 Default segment time to live

TOS 0 Default type of service

ARPTIMEOUT 20 ARP cache flush timeout in minutes

CTLBUFS 80 Maximum total control buffers

TRANSBUFS 80 Maximum total transaction buffers
[ETHO]

File Default Value Description

HOST '206.103.53.11 Interface IP address

5
NETMASK '255.255.255.0 Net mask
DEFROUTE '206.103.53.25 Default route
o

RCVBUFS 3F Maximum receive buffers

MAXTRANS 6F Maximum simultaneous transactions
[LOO]

File Default Value Description

HOST '127.0.0.1" Interface IP address

NETMASK '255.255.0.0' Net mask

RCVBUFS 3F Maximum receive buffers

MAXTRANS 6F Maximum simultaneous transactions

TCP Job Parameters

DEFMSS
Default maximum size of segments sent by the TCP job. To avoid fragmentation at

the IP level, set this parameter to the smallest maximum packet size that a sent packet
islikely to encounter in its route to the destination. Once a connection is established,
the source and destination TCPs negotiate an optimum maximum packet size.

RCVSPACE
Size, in bytes, of the receive buffer area per TCP socket. The receive buffer holds
incoming data until it is received at the socket by the application.

SNDSPACE
Size, in bytes, of the send buffer area per TCP socket. The send buffer holds
outgoing data until it is successfully sent to the destination.

CTLBUFS
Maximum number of control buffers allocated for the TCP job. Control buffersare
used by the TCP job whenever datais sent or received through a TCP socket.

TCP/IP for theiRM X Operating System Chapter 8 51

If insufficient control buffers are available, an ENOBUFS error is returned to the
application. Thisindicates that the number of configured control buffers for the TCP
job should be increased. The default value should be used for most applications.

TRANSBUFS
Maximum number of transaction buffers allocated for the TCP job. Transaction
buffers are used by the TCP job whenever datais sent or received through a TCP
socket.

If insufficient transaction buffers are available, an ENOBUFS error isreturned to the
application. Thisindicates that the number of transaction buffers for the TCP job
should be increased. The default value should be used for most applications.

MAXTRANS
Maximum number of simultaneous transactions allowed between the TCP job and the
IPjob. Transactions are used by the TCP job whenever datais sent or received
through a TCP socket.

If insufficient transactions are available, an ENOBUFS error isreturned to the
application. Thisindicates that the number of transactions for communication
between the TCP job and the IP job should be increased. The default value should be
used for most applications.

MAXPORTS
Maximum number of port ids available to the TCP job. Whenever a TCP socket is
bound (see the bind() system call), alocal port id is assigned to the socket. This
parameter specifies the maximum number of unique port ids available.

LOWFIXPID, HIFIXPID
When a TCP socket is bound (see the bind() system call), the user may specify the
local port id that isto be associated with the socket. LOWFIXPID and HIFIXPID:

» Definetherange of port id values that may be specified.

* Must be within the range of 0 to MAXPORTS, exclusive, and must not overlap
the port id range defined by LOWAUTOPID and HIAUTORPID.

LOWAUTOPID, HIAUTOPID
When a TCP socket is bound (see the bind() system call), the user may request that
the TCP job select the local port id that is to be associated with the socket (known as
an ephemeral port id). LOWAUTOPID and HIAUTOPID:

» Definetherange of port id values that the TCP job may choose from.

* Must be within the range of 0 to MAXPORTS, exclusive, and must not overlap
the port id range defined by LOWFIXPID and HIFIXPID.

52 Chapter 8 Tunable Parameters

UDP Job Parameters

CHECKSUM
A value of 0 disables checksum calculation on all segments sent or received by the
UDPjob. A vaue of 1 enables checksum calculation. This parameter should
normally be set to 1.

RCVSPACE
Size of the receive buffer area per UDP socket, in bytes. The receive buffer holds
incoming data until it is received at the socket by the application.

CTLBUFS
Maximum number of control buffers allocated for the UDP job. Control buffers are
used by the UDP job whenever dataiis sent or received through a UDP socket.

If insufficient control buffers are available, an ENOBUFS error is returned to the
application. Thisindicates that the number of configured control buffers for the UDP
job should be increased. The default value should be used for most applications.

TRANSBUFS
Maximum number of transaction buffers allocated for the UDP job. Transaction
buffers are used by the UDP job whenever datais sent or received through a UDP
socket.

If insufficient transaction buffers are available, an EBOBUFS error is returned to the
application. Thisindicates that the number of transaction buffers for the UDP job
should be increased. The default value should be used for most applications.

MAXTRANS
Maximum number of simultaneous transactions allowed between the UDP job and
the IPjob. Transactions are used by the UDP job whenever datais sent or received
through a UDP socket.

If insufficient transactions are available, an ENOBUFS error isreturned to the
application. Thisindicates that the number of transactions for communication
between the UDP job and the IP job should be increased. The default value should be
used for most applications.

MAXPORTS
Maximum number of port ids available to the UDP job. Whenever a UDP socket is
bound (see the bind() system call), alocal port id is assigned to the socket. This
parameter specifies the maximum number of unique port ids available.

TCP/IP for theiRM X Operating System Chapter 8 53

LOWFIXPID, HIFIXPID
When a UDP socket is bound (see the bind() system call), the user may specify the
local port id that isto be associated with the socket. LOWFIXPID and HIFIXPID:

» Definethe range of port id values that may be specified

* Must be within the range of 0 to MAXPORTS, exclusive, and must not overlap
the port id range defined by LOWAUTOPID and HIAUTORPID.

LOWAUTOPID, HIAUTOPID
When a UDP socket is bound (see the bind() system call), the user may request that
the UDP job select the local port id that is to be associated with the socket (known as
an ephemeral port id). LOWAUTOPID and HIAUTOPID:

» Definetherange of port id values that the UDP job may choose from.

* Must be within the range of 0 to MAXPORTS, exclusive, and must not overlap
the port id range defined by LOWFIXPID and HIFIXPID.

Raw IP Job Parameters

CTLBUFS
Maximum number of control buffers allocated for the Raw IP job. Control buffers
are used by the Raw I P job whenever datais sent or received through a Raw IP
socket.

If insufficient control buffers are available, an ENOBUFS error is returned to the
application. Thisindicates that the number of configured control buffers for the Raw
IP job should be increased. The default value should be used for most applications.

TRANSBUFS
Maximum number of transaction buffers allocated for the Raw IP job. Transaction
buffers are used by the Raw |P job whenever datais sent or received through a RAW
| P socket.

If insufficient transaction buffers are available, an ENOBUFS error isreturned to the
application. Thisindicates that the number of transaction buffers for the Raw IP job
should beincreased. The default value should be used for most applications.

MAXTRANS
Maximum number of simultaneous transactions allowed between the Raw IP job and
the IPjob. Transactions are used by the Raw IP job whenever datais sent or received
through a Raw | P socket.

If insufficient transactions are available, an ENOBUFS error isreturned to the
application. Thisindicates that the number of transactions for communication
between the Raw P job and the I P job should be increased. The default value should
be used for most applications.

54 Chapter 8 Tunable Parameters

MAXPORTS
Maximum total number of Raw | P sockets that may be created.

IP Job Parameters

IFNAMES
A list of interfaces that the IP job may communicate with to send and receive
datagrams. Each interface name in the list must match an interface description
included in the :config:tcp.ini file (e.g., [ETHO]), and also must match the name
associated with aNIC driver loaded in the :config: tcpstart submit file.

BUFHEAPSIZE
Total buffer space, in Kbytes, available to the IP job for sending and receiving
datagrams. The buffers specified in the interface descriptions (e.g., the RCVBUFS
parameter of the [ETHOQ] interface description) are allocated from the buffer space
defined here.

LOCALSUBNETS
If this host is directly connected to a network that is divided into subnets, set this
parameter to 1. If not, setitto 0.

TTL Default timeto live for outgoing datagrams. The TTL isused to limit the life of TCP
segments and prevent packets from endlessly circling the Internet on the way to some
unreachable destination.

TOS Default type of service for outgoing datagrams. This parameter encodes both
precedence and the type of service as defined by the MIL-STD 1777. The upper
three hits of the byte encode the precedence; the lower five bits encode the type
of service.

ARPTIMEOUT
The number of minutes after which a complete ARP table entry will be deleted
from the ARP cache if no ARP packets from the associated host are observed on
the network.

CTLBUFS
Maximum number of control buffers allocated for the IP job. Control buffersare
used by the IP job whenever dataiis sent or received.

If insufficient control buffers are available, an ENOBUFS error is returned to the
application. Thisindicates that the number of configured control buffers for the IP
job should be increased. The default value should be used for most applications.

TCP/IP for theiRM X Operating System Chapter 8 55

TRANSBUFS
Maximum number of transaction buffers allocated for the IP job. Transaction buffers
are used by the IP job whenever datais sent or received.

If insufficient transaction buffers are available, an ENOBUFS error isreturned to the
application. Thisindicates that the number of transaction buffersfor the IP job
should be increased. The default value should be used for most applications.

DNS Configuration Parameters

DOMAIN
A string containing the name of the local domain.

SERVER1
A string that contains the | P address of the primary DNS server used by the client

SERVER2

SERVER3
Each of these parameters takes a string containing the I P addresses of secondary DNS
servers. A total of three servers may be configured. If this section is not defined, or
no servers are defined, then DNS name resol ution does not occur.

Network Interface Parameters
HOST The IP address associated with this interface.

NETMASK
The net mask for the P address associated with this interface.

DEFROUTE
The default route. If the destination of a datagram is not on the network attached to
thisinterface, the default route is used as a destination. The host at the default route
address will then forward the datagram to the desired destination.

RCVBUFS
The number of buffers allocated to receive datagrams from this interface. These
buffers are allocated from the memory pool defined by the IP job’'s BUFHEAPSIZE
configuration parameter.

Set this parameter to the maximum number of datagrams expected to be received at
one time on this interface.

MAXTRANS
The maximum number of simultaneous transactions between the IP job and this
interface. Each datagram sent or received consumes one transaction. The transaction
isrecycled when the send or receive is processed.

56 Chapter 8 Tunable Parameters

Set this parameter to the sum of the maximum number of incoming datagrams
expected at onetime (i.e., the value of the RCVBUFS parameter, above) plusthe
maximum expected number of simultaneous sends to thisinterface.

Loopback Pseudo-driver Interface Parameters
HOST The IP address associated with the loopback interface.

NETMASK
The net mask for the IP address associated with the loopback interface.

RCVBUFS
The number of buffers allocated to receive datagrams from this interface. These
buffers are allocated from the memory pool defined by the IP job’'s BUFHEAPSIZE
configuration parameter.

Set this parameter to the maximum number of datagrams expected to be received at
one time on this interface.

MAXTRANS
The maximum number of simultaneous transactions between the IP job and this
interface. Each datagram sent or received consumes one transaction. The transaction
isrecycled when the send or receive is processed.

Set tthis parameter to the sum of the maximum number of incoming datagrams
expected at onetime (i.e., the value of the RCVBUFS parameter, above) plusthe
maximum expected number of simultaneous sends to thisinterface.

TCP/IP for theiRM X Operating System Chapter 8 57

Chapter 8 Tunable Parameters

Files

This chapter describes the format and contents of network filesfor TCP/IP. All the
filesbelow areinstaled in the :config: directory except netrc, which must be in each
user's home directory.

File Description

hosts host name database
protocols protocol name database
services network services database
netrc ftp autologin information

TCP/IP for theiRM X Operating System Chapter 9 59

hosts Network Name Database

hosts

The : config: hosts file contains information regarding the known hosts on the Internet.
The file should contain an entry for each host and each interface accessible through
the network. The primary purpose of the file isto provide the Internet address
associated with a symbolic host name. This allows users to specify a name instead of
an address.

For each host there should be asingle line in the file with thisinformation:;
Internet _address official_host_name alias ...

Each entry beginsin column one of the line. Fields are separated by any number of
blanks and/or tab characters. A pound sign (#) indicates the beginning of a comment
extending to the end of theline.

Specify Internet addresses in the conventional dot notation. The official host name
should be the fully-qualified domain name as stored with a hostname command or
sethostname() function. Alias names are optional; there may be more than one, but
they must all be on the same line. Host names may contain any character or digit
other than space, tab, newline, and pound sign.

See also: Internet addresses, Chapter 1

The :config: hosts file must contain an entry for every interface used in the network
configuration file :config:tcp.ini. For example, if the local host is configured with the
software loopback interface (100), the hosts file must contain an entry defining the
Internet address (127.0.0.1), the official name (Ioopback) and the aliases (me and
localhost) of that interface. The hostsfile isthe sole source for the name-to-address
trang ations required to initialize the interface correctly.

The hosts file must contain the names and addresses of all local interfaces and remote
hosts that will be accessed by name.

No specific order isrequired for either the entriesin thefile or the list of diasesina
specific entry. Because both the file and the alias list are searched sequentialy for a
given name, it may be useful to list the most often used namesfirst in order to speed
the process, although the file is rarely long enough to make a noticeabl e difference.

60 Chapter 9 Files

Network Name Database hosts

Below isatypical hostsfile.

:config: hosts

#

FORMAT:

address official _nane alias(es)
#

software | oopback interface
127.0.0.1 | oopback ne | ocal host

add local network interface definitions here
add renote definitions here (if desired/ needed)

As network administrator, you should be the owner of thisfile. Modify it and update
it as necessary.

TCP/IP for theiRM X Operating System Chapter 9 61

protocols Host Name Database

protocols

62

The : config: protocols file contains the official name, protocol number, and aliases of
the protocols with which the ip module directly communicates. The protocols are
standardized throughout the Internet community and are defined in RFC 1060,
Assigned Numbers (Reynolds & Postel).

While the actual protocol numbers are used by the TCP/IP kernel modules, the
number-to-name trandation information is used primarily by the netstat command to
display the symbolic name of the protocol instead of its number. There are no
required entriesin the protocolsfile; the information is used to make displays more
readable and meaningful.

For each protocol there should be a single line in the file with this information:
of ficial _protocol _nane protocol _nunber aliases

Thefirst field on each line should begin in column one. Fields are separated by any
number of blanks and/or tab characters. A comment begins with a pound sign (#) and
continues to the end of theline. A comment can appear on a separate line or at the
end of aline listing network name and address information.

Protocol names can contain any printable character other than a space, tab, newline,
or comment character. The official name and number of the protocol should be as
defined by the RFC 1060. A list of one or more aliasesis optional.

Although no specific order is required for entriesin the file, entries are generally
maintained in numerical order by protocol number. Below isan example of a
protocolsfile.

:config:protocols

#

FORMAT:

of fi ci al _name protocol _nunber alias(es)
#

Internet protocols

ip 0 1P # reserved for ip (pseudo-protocol nunber)
icnp 1 ICVMP # internet control nessage protocol

tcp 6 TCP # transnission control protocol

egp 8 EGP # exterior gateway protocol

igp 9 IGP # any private interior gateway protocol
pup 12 PUP # PARC uni versal packet protocol

udp 17 UDP # user datagram protocol

Chapter 9 Files

Host Name Database protocols

As network administrator, you should be the owner of thisfile. Update it, if
necessary, so that its contents always reflect the protocols operating on the local host.
Y ou can add entries if protocols interfacing with ip are added to the local host. The
information for this file should be obtained from the most current relevant RFC.

See also: getprotoent function, Chapter 11

TCP/IP for theiRM X Operating System Chapter 9 63

netrc FTP Autologin Information

netrc

The :home: netrc file contains information used to automatically validate FTP
connections to one or more remote hosts.

|:| Note

Unlike the Unix environment, the iRMX version of thisfileis
named netrc without a beginning . (period or dot) in the filename.
To hide the file, name it r?netrc. When any program refersto
netrc, the iIRMX OS automatically mapsit to r?netrc.

When ftp opens a connection to a remote machine, it checks the user's home
directory (:home:) for thisfile. If thefile exists, ftp checks for an entry for the
specified host machine. If such an entry isfound, the login name (and optional
password) in that entry is supplied to the FTP server without the user being prompted.
If the normal validation process used by the FTP server succeeds, the FTP connection
is completed without any interactive input by the user. If the file does not contain
password information, the user is not prompted for alogin name but is prompted for a
password.

If netrc does not exist for that user, or it exists but contains no entry for the remote
hogt, the user is prompted for alogin name and password.

The netrc file may contain multiple entries, each specifying login information to a
different host name. An entry begins with the keyword nachi ne (or the special
keyword def aul t , described below) and ends with the next occurrence of the word
machi ne or with the end of the file. Thus a single entry may be on one line or span
multiple lines.

<machi ne nane | default> | ogin nane [password string]
[account string] <[nmacdef nane

string

1> ...

Each entry contains several keyword-value pairsin the format shown above. The
first field on each line should begin in column one. Subsequent fields should be
separated by spaces or tab characters. Comments begin with a pound sign (#) and
can appear on a separate line or at the end of aline listing host and login information.
The angle brackets shown above are not part of the syntax; they surround multiple
itemsin the same field.

64 Chapter 9 Files

FTP Autologin Information netrc

The machi ne keyword identifies the name of aremote host to which autologinis
supported. The nanme can be either the official host name or an alias. FTP usesthe
first entry it finds in netrc that matches the name of the remote host specified on the
ftp command line. The keyword def aul t isaspecia instance of machi ne which
matches any host name. Since def aul t matches every host name, any entries
appearing after it in the file are ignored.

Thel ogi n keyword identifies alogin name to be used on the remote machine.

The passwor d keyword, where present, specifies the password to the given login.
Theaccount keyword, where present, specifies a resource access password to be
used when required by the remote host. Theaccount keyword does not apply to a
Unix or iIRMX OS and should not be used for such remote systems. Specifying a
password or account isoptional. If you include thisinformation, also set thefile
permissions so only the owner can read it. FTP for theiRMX OS, unlike other
versions, does not enforce the restriction of access permissionsto the owner. FTP
does print awarning if the netrc file contains account information or passwords.

Themacdef keyword identifies an FTP macro definition to be used during a
connection to the specified host. The macro name should follow the keyword; the
macro definition should begin on the next line of the file and continue until a blank
line or the end of thefile is encountered. Multiple macros can be defined in this
manner, since the next entry does not start until the machi ne or def aul t keyword is
encountered. The special macro namei ni t causes the associated macro to be
invoked as the last step in the autologin process.

See also: ftp command, Command Reference;
FTP Initialization File, Chapter 5

The following example is an empty netrc file. To prevent creation of an
unauthorized netrc file, such asin the Super user's home directory, install an empty
file that only Super can access.

netrc

#

FORMAT:

nmachi ne host nane | ogi n nane

nmachi ne host nane | ogi n nane password passwd
#

The default permissions of the netrc file are to be readable and writable by the owner.
All owners of anetrc file should modify thisfile and update it as necessary.

TCP/IP for theiRM X Operating System Chapter 9 65

services Network Services Database

services

The : config: services file contains information about the services available through
the transport layer protocols. The services are defined in RFC 1060, Assigned
Numbers (Reynolds & Postel), and are standardized throughout the Internet
community. The service information is used by applications and TCP/IP kernel
modules to identify and validate logical connections. The netstat command uses the
servicesfile to display the symbolic name of the service instead of its number.

The transport layer protocols use ports to identify the endpoints of alogical
connection. Specific application services are associated with certain ports, often
called well-known ports. The server process for the application listens at the assigned
port for incoming connections. The Internet community, through RFC 1060,
coordinates and standardizes the ports assigned to specific services. Wherever
possible, the TCP, UDP, and | SO-TP4 service assignments are coordinated.

For each service there should be asingle linein the services file with this
information:

of ficial _service_name port_nunber/protocol _name aliases

Thefirst field on each line should begin in column one. Fields are separated by any
number of blanks and/or tab characters. A comment begins with a pound sign (#)
and continues to the end of theline. A comment can appear on a separate line or at
the end of aline listing service information.

Service names may contain any printable character other than a space, tab, newline,
or comment character. The port number and protocol name are considered a single
field; a dash separates the port and protocol (for example, 512/ t cp). A list of one
or more aliasesis optional.

Although there is no specific order required for the entriesin thisfile, entriesare
generally maintained in numerical order by port number.

66 Chapter 9 Files

Network Services Database services

As network administrator, you should be the owner of thisfile. Update it, if
necessary, so that its contents always reflect the services available on the local host.
Port numbers O through 1023 are reserved for privileged processes, and should be
used only for the service identified by the Assigned Numbers through RFC. Assign
port numbers 1024 and above to custom applications and services unique to the local
networking environment.

See also: getservent function, Chapter 13

Thisisatypical servicesfile:

:config:services

#

FORMAT:

service port/protocol alias(es)

#

ports O - 512 are privileged ports
#

net st at 15/tcp

net st at 15/ udp

ftp-data 20/tcp

ftp 21/tcp

tel net 23/tcp

tftp 69/ udp

r pchi nd 111/ udp

r pchi nd 111/ udp

nf sd 2049/ udp

#

#

ports > 1024 host-specific functions
#

TCP/IP for theiRM X Operating System Chapter 9 67

services Network Services Database

68 Chapter 9 Files

TCP/IP Components

This chapter describes the purpose of special filesrelated to the network interface
devices, protocols, and protocol families. Thesefilesare installed in the
/rmx386/jobs directory:

File See Description

ip.job IP layer

rip.job Raw IP layer

tcp.job TCP layer

udp.job UDP layer

eeprol100.job NIC driver.

edl.job NIC-sytle interface to iNA jobs
loopback.job Loopback pseudo-driver
ne.job NIC driver.

tulip.job NIC driver.

TCP/IP for theiRM X Operating System Chapter 10

69

Protocol Jobs

70

All network protocols are associated with a specific protocol family, such asthe
Internet family inet. Associated with each protocol family is an address format, such
asthe Internet format AF_INET. A protocol family provides basic servicesto the
protocol implementation to allow it to function within a specific network
environment. These services may include packet fragmentation and reassembly,
routing, addressing, and basic transport.

A protocol family normally comprises a number of protocols, such as the Internet
protocolstcp and ip. A protocol normally accepts only one type of address format, as
determined by the addressing structure inherent in the design of the protocol family
and network architecture.

A network interface corresponds to a path through which messages can be sent and
received. It can be either a hardware device, such as an Ethernet driver, or a pseudo-
device, such asthe loopback driver. Network interfaces comprise the lowest layer of
the networking subsystem, interacting with the actual transport hardware. A network
interface may support more than one protocol family and/or address format.
Interface structures and attribute flags are defined in the include file <net/if.h>.

The interface address structure contains information about an address associated with
aparticular interface, maintained by an address family. These structures are linked
together so that all addresses for an interface can be located.

Chapter 10 TCP/IP Components

Internet Protocol ip

ip.job
Theip.job implements both the Address Resolution Protocol (ARP) and the Internet
Protocal (IP).

ARP is used to dynamically map between Internet software addresses and Ethernet
hardware addresses.

ARRP caches Internet-to-Ethernet address mappings. When the interface requests a
mapping for an address not in the cache, ARP queues the message that requires the
mapping and broadcasts a message on the associated network, requesting the address
mapping. If ARP receives aresponse, it caches the new mapping and transmits any
pending messages to that host. While waiting for a response, ARP will queue only
one packet; it keeps only the most recently transmitted packet.

ARP watches passively for hosts impersonating the local host (that is, a host that
responds to an ARP mapping request for the local host's address).

IPisthe network layer protocol used by the Internet protocol family. It can be
accessed through the higher-level Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) aswell as directly through the Raw I P interface.

TCP/IP for theiRM X Operating System Chapter 10 71

rip Raw IP Service

rip.job

Syntax

#i ncl ude <netinet/in.h>
#i ncl ude <neti net/raw. h>

Theraw ip service provides a direct interface to lower-level IP. It can be used to
implement a new protocol above IP. The ping command uses the raw interface.
Rip.job only receives packets for the protocol specified.

The IP header and any |P options are |eft intact by raw on receipt of datagrams.

72 Chapter 10 TCP/IP Components

Transmission Control Protocol tep

tcp.job

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <netinet/in.h>
#i ncl ude <netinet/tcp. h>

The Transmission Control Protocol (TCP) provides reliable, flow-controlled,
two-way transmission of data. It is a byte-stream protocol used to support the
SOCK_STREAM abstraction. TCP uses the standard Internet address format
augmented by a host-specific collection of port addresses. Thus, each TCP addressis
composed of an Internet address specifying the host and network, with a specific TCP
port on the host identifying the peer entity.

TCP/IP for theiRM X Operating System Chapter 10 73

udp User Data Protocol

udp.job

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <netinet/in.h>
#i ncl ude <netinet/udp. h>

The User Datagram Protocol (UDP) isasimple, unreliable datagram protocol. UDP
streams are connectionless.

UDP address formats are identical to those used by TCP, UDP provides a port
identifier in addition to the normal Internet address format. Note that the UDP port
space is separate from the TCP port space (that is, a UDP port may not be connected
toaTCP port). If the underlying network interface supports broadcast, UDP can
send broadcast packets by using a reserved broadcast address. The broadcast address
is dependent on the network interface.

74 Chapter 10 TCP/IP Components

Network Interface Controller (NIC) Jobs

These driver jobs provide an interface between the TCP/IP protocol stack and the
network adapters themselves. At least one of the following NIC jobs must be loaded

in addition to the loopback.job to allow the TCP/IP protocol stack to communicate
with other peers on the network.

TCP/IP for theiRM X Operating System Chapter 10 69

loopback Software Loopback Device

loopback.job

70

The loopback job provides a NIC-style interface to a | software loopback mechanism
that can be used for performance analysis, software testing, or local communication.
The loopback interface is accessible at Internet address 127.0.0.1. By convention, the
interface name is me, loopback, or localhost.

The loopback interface should be the last interface configured, as protocols use the
order of configuration as an indication of priority. The loopback interface should
never be configured first unless no hardware interfaces exist.

Chapter 10 TCP/IP Components

INA 960 EDL Interface edl

edl.job

The edl.job provides a NIC-style interface to an iNA 960 network interrface job.
Using thisinterface allowsiRMX-NET and the new TCP/IP protocol stack to use the
same hardware to gain access to the network.

TCP/IP for theiRM X Operating System Chapter 10 71

eeprol00 Intel EtherExpressPro 100Plus NIC

eeprol100.job

The eepro100.job peovides an interface to the Intel EhterExpressPro 100PIus PCI
network adapter card.

72 Chapter 10 TCP/IP Components

NE2000 Compatible NIC ne

ne.job
The ne.job peovides an interface to NE2000 compatible | SA network adapter cards.

TCP/IP for theiRM X Operating System Chapter 10 73

ud 0] User Datagram Protocol

Tulip.job

The tulip.job peovides an interface to a DEC 21143 based PCI network adapter card.

74 Chapter 10 TCP/IP Components

Library Functions

This chapter describes functions for the network socket libraries listed below.

C Library Network Library Compiler Model
ciff3m.lib netf3m.lib Microsoft Flat
cifc32.lib net3c.lib Intel iIC386 Compact

See also: Using Non-Intel Toolsto Develop iRMX Application in Programming
Techniques for non-Intel compiler version numbers.

Thelibraries are installed in the /intel/lib directory and facilitate the programmatic
interface to TCP/IP. In thefinal bind of your application, add one or both libraries to
thelist of libraries to be linked to your program.

D Note

The socket primitives are embedded in the C library.

TCP/IP for theiRM X Operating System Chapter 11 75

76

Table 11-1 lists functions from the socket library.

Table 11-1. Functionsin the Socket Library

Name See Description

accept accept accept a connection on a socket
bind bind bind a name to a socket

connect connect initiate a connection on a socket
getpeername getpeername get name of connected peer
getsockname getsockname get socket name

getsockopt getsockopt get options on sockets

listen listen listen for connections on a socket
recv recv receive a message from a socket
recvfrom recv receive a message from a socket
recvmsg recv receive a message from a socket
send send send a message from a socket
sendto send send a message from a socket
sendmsg send send a message from a socket
setsockopt getsockopt set options on sockets
shutdown shutdown shut down part of a connection
socket socket create an endpoint for communication
socktout socktout define a timeout for a socket

Chapter 11

Library Functions

Table 11-Error! Bookmark not defined. lists functions from the network library.

Table 11-2. Functionsin the Network Library (continued)

Name See Description

bcmp bstring compare binary strings
bcopy bstring copy binary string

bzero bstring put zeros in binary string
endhostent gethostent close resolver connection
endnetent getnetent close networks database
endprotoent getprotoent close the protocols database
endservent getservent close service database

ffs ffs identify set bits
gethostbyaddr gethostent get host entry by address
gethostbyname gethostent get host entry by name
gethostid gethostid get unique id of current host
gethostname gethostname get host name
getnetbyaddr getnetent get network entry by address
getnetbyname getnetent get network entry by name
getnetent getnetent get next network entry
getprotobyname getprotoent get protocol entry by name
getprotobynumber getprotoent get protocol entry
getprotoent getprotoent get next protocol entry
getservbyname getservent get service entry by name
getservbyport getservent get service entry by port
getservent getservent get next service entry

htonl byteorder host to net order (long)
htons byteorder host to net order (short)
inet_addr inet string to Internet address
inet_Inaof inet get locnet part of address
inet_makeaddr inet construct Internet address
inet_netof inet get net part of address
inet_network inet string to network address
inet_ntoa inet Internet address to string
ntohl byteorder net to host order (long)
ntohs byteorder net to host order (short)
sethostent gethostent open resolver connection
sethostid gethostid set unique id of current host
sethostname gethostname set host name

setnetent getnetent open/rewind networks database
setprotoent getprotoent open/rewind protocols database
setservent getservent open/rewind services database

TCP/IP for theiRM X Operating System

Chapter 11

7

Using Sockets

The socket compatibility library constitutes a self-contained interface to the transport
level protocols.

A socket is an endpoint for communication between processes. Each socket has
gueues for sending and receiving data.

Sockets are typed according to their communications properties, including such
things as whether messages sent and received at a socket require the name of the
partner, whether communication is reliable, and what format is used in naming
message recipients.

See also: socket in this chapter for more information about the types available
and their properties

Each set of communications protocols supports addresses of a certain format. An
address family isthe set of addresses for a specific group of protocols. Each socket
has an address chosen from the address family in which the socket was created.

Certain semantics of the basic socket abstractions are protocol-specific. All protocols
are expected to support the basic model for their particular socket type, but may, in
addition, provide nonstandard facilities or extensionsto a mechanism. For example,
aprotocol supporting the SOCK_STREAM type may allow more than one byte of
out-of-band data to be transmitted per out-of-band (urgent) message.

Use the TCP protocol to support connection-oriented sockets of type
SOCK_STREAM. Use UDP to support connectionless, or datagram, sockets of type
SOCK_DGRAM.

Calling Sequence for Connection-oriented Applications

78

Applications that communicate using connections are typically divided in two parts,
designated as client and server. The server uses a passive open; it opens a socket,
then listens for requests for service. The client uses an active open; it opens a socket
and reguests a connection to a specific server. Once the connection is established, the
client and server send and receive data as necessary. Typically the client closes the
connection, while the server continues to listen for further connection requests.

Thisisthe sequence of calls used by the client:

Client Call Description

socket() Create a SOCK_STREAM socket for connections

bind() Bind the socket to a local address (port A)

connect() Request a connection to a remote socket, specifying a remote IP

address and well-known port B
send(), recv() Send and receive data as determined by the application
shutdown() Close the connection

Chapter 11 Library Functions

Thisisthe sequence of calls used by the server:

Server Call Description

socket() Create a SOCK_STREAM socket (S1) for connections

bind() Bind the socket to well-known port B

listen() Listen for connection requests at port B

accept() Accept the connection on a new socket So

create_task Create a child task to perform the service

socket() Child task opens SOCK_INHERIT socket so it can receive
socket Sp

shutdown() Parent closes Sp, specifying the job ID of child task, then
continues to listen at port B (socket Sq)

bind() Child binds socket S to port C

send(), recv() Child sends and receives data with client (port C to port A)

shutdown() Child closes S2 and exits when client breaks connection

Active sockets initiate connections to passive sockets. By default, TCP sockets are
created active; to create a passive socket you must use the listen() function after
binding the socket with the bind() function. Only passive sockets may use the
accept() call to accept incoming connections. Only active sockets may use the
connect() call to initiate connections.

Passive sockets may underspecify their location to match incoming connection
reguests from multiple hosts. This technique, termed wildcard addressing, allows a
single server to provide service to clients on multiple hosts. To establish a socket that
listens for al network addresses, bind the Internet address INADDR_ANY. You
may specify the TCP port in thisbind() call; if the port is not specified the system
will assign one.

Once a connection has been established, the socket's address is fixed by the peer
entity's location. The address assigned to the socket is the address associated with the
network interface through which packets are being transmitted and received.
Normally, this address corresponds to the peer entity's network.

Calling Sequence for Connectionless Applications

A connectionless application may also be established as a client and server.
However, thereis no calling sequence that establishes this division of duties. Thisis
the typical sequence of callsfor both parties:

Call Description

socket() Create a SOCK_DGRAM socket for UDP

bind() Bind the socket to a local address

sendto(), recvfrom() Send and receive data as determined by the application
shutdown() Close the connection

TCP/IP for theiRM X Operating System Chapter 11 79

However, you can use the connect() cal to fix the destination for future packets, in
which case you can userecv() and send() calls with the SOCK_DGRAM socket.

Internet Socket Addresses
An Internet address is defined as a discriminated union:

struct i n_addr {
union {
struct { uchar s_bl, s_b2, s b3, s _b4; } S un_b;
struct { unsigned short s_wl, s w2; } S un_w
unsi gned |l ong S _addr;

} S un;
#def i ne s_addr S_un. S _addr
#def i ne s_inmp S un.S un_w.s_w2
#def i ne s_net S un.S un_b.s_bl
#def i ne s_host S un.S un_b.s_h2
#def i ne s_Ih S un.S un_b.s_hbh3
#def i ne s_inmpno S un.S un_b.s_b4
s
In the Internet address family, sockets use this address structure:
struct sockaddr_in {
uchar sin_len;
uchar sin_famly;
unsi gned short sin_port;
struct in_addr si n_addr;
char sin_zero[8];
s

|:| Note

The structure above is more correctly called a name than an
address. For example, thisis the name that you bind the socket to
inabind() call, and the name returned by getsockname() and
getpeer name(), where the peer uses the Internet address family.
The structure is more than just the address; it contains the address
family and port number along with the Internet address. However,
much of the literature refers to this structure (and the more general
struct sockaddr) asan address.

See dso: <netinet/in.h>

80 Chapter 11 Library Functions

Network and Host Byte Order

Two methods used to store data on different computers are little-endian (the least
significant byte of multibyte datais stored in the lowest memory) and big-endian (the
most significant byte is stored in the lowest memory).

Within these categories there may also be variation. For example, a certain machine
may store wordsin one order, but swap bytes within the words. Whatever method is
used is called host byte order; it is specific to the local host.

The Internet standard for binary data to be sent across the network is big-endian. The
most significant byte of an integer is sent first. Thisis network standard byte order.
It may or may not be the same as the byte order used on the local machine.

To write portable code, trandate any binary data from host to network order before
sending it. Trandate from network to host order after receiving the data. This does
not apply to data messages you send between applications; the applications
themselves should use data in the same format. 1t does apply to items that will be
used by the protocols on the remote machine.

For example, in the bind() and connect() calls you specify a port value as part of
the local or remote socket address (si n_port inthe sockaddr _i n structure).
Convert this unsigned short value from host to network order with htons(), before
placing it in the structure. If your application uses such data (for example, doing a
printf of aport value obtained from an address), convert from network to host order.

See also: byteorder () function, in this chapter
This code fragment shows how to convert the port value properly:

#i ncl ude <netinet/in.h>
int s;
struct sockaddr_in sin;

sin.sin_len = sizeof sin

sin.sin_famly = AF_| NET;

sin.sin_port = htons (1200);

sin.sin_addr.s_addr = inet_addr ("128.215.18.2");

bind (s, &sin, sizeof sin)

Thisgoresthe loca addressin astructure whose e ements appear in memory in this order:

Value Description

0x10 Length of sock_addre_in structure

AF_INET Address family

0xb004 port 1200 = 0x4b0, swapped to network byte order
0x80d71202 Internet address 128.215.18.2

TCP/IP for theiRM X Operating System Chapter 11 81

Changes From the Standard Socket Interface

This implementation of the socket library has these differences from the standard
socket interface:

» Inthe standard socket interface, you can only specify whether socket calls are
blocking or non-blocking. Thislibrary provides the socktout() call that allows
you to define the maximum time to wait for completion of a socket call. The
timeout resolution is 10 ms.

» Theaddressfamily AF_UNIX is not supported.
e Theselect() and socketpair () calls are not implemented.
* The SIGPIPE and SIGPOLL signals are not supported.

A CAUTION
The socket descriptors are not equivalent to the file descriptors
used in the C stdio interface. Never use the closg() function on a
socket descriptor. Y ou also cannot use such routines asread(),
fread(), write(), and fwrite(), among others, to read and write
data to socket connections.

Task Priority

User applications that bind to net3c.lib should run at a priority between 131 and 254.
If you userq_create task, be sureto create the new task with a priority in this range.
When applications launch from the CL1, there should not be a problem, because the
typical user priority fallsin thisrange: 141 for Super user and 142 for other users.

Multitasking Considerations

Y ou must ensure that only one iIRMX job accesses a connection. Connections may
be shared between individual tasks within asingle job.

Connections may be inherited by other child jobsif you specify thisin the
shutdown() and socket() calls. Since socket descriptors are not file descriptors, and
under iRMX are not automatically inherited by child jobs as in Unix, these routines
provide a means to imitate this functionality under iIRMX.

A CAUTION
Never delete atask whileit is executing a socket call. Thiswill
cause a general-protection trap in the TCP/IP job, with
unpredictable results. Killing the job, on the other hand, is all right.

82 Chapter 11 Library Functions

If atask ishung inaread call, and you want to kill it, first close the
connection and wait until the task returns.

Only one task should operate on a socket until a connection is established. After the
connection has been established, any number of tasks may use the socket
simultaneoudly. A shutdown() may be performed at any time. All tasks executing a
call on the socket at that time will return immediately with errno set to EBADF.

Include Files

The descriptions of library functions show which files must be included for each
function. Theinclude directory is/intel/include. To get the correct information from
the include files, put this definition in your code:

#define _UNI X_SOURCE

or use these control statementsin the iC-386, and Microsoft or Borland invocation
lines, respectively:

-df _UNI X_SOURCE
-d _UNI X_SOURCE
-D _UNI X_SOURCE

To use socket functions, these include files are generally needed:

<sys/types. h>
<sys/errno. h>
<sys/ socket . h>

Functions that use an argument of typest ruct sockaddr and use a socket in the
DARPA Internet domain (AF_INET) may use the Internet view of the sockaddr
structure, defined in <netinet/in.h> assockaddr _i n.

Example Programs
Example programs are installed under the /rmx386/demo/c/tcpip directory, including:

tcpclient.c creating a TCP socket as a client
tcpserver.c creating a TCP socket as a server

TCP/IP for theiRM X Operating System Chapter 11 83

Compiling

The libraries conform to the 386 compact model. When you compile, specify the
conpact option. You aso need to use the appropriate control statement.

-df _ NOALIGN (iC-386 compiler)
-D __NOALIGN (Borland and Microsoft compiler)

(NQALI GN preceded by two underscores and followed by two more) in the invocetion line.

Handling Errors

Most socket calls have one or more error returns. Error conditions are indicated by
impossible return values (usually -1); individual descriptions specify details.

Unless otherwise noted, function return codes and values are of type integer. An
error number is also made available in the external variable errno, which is not
cleared on successful calls. Thus, you should test errno only after an error occurs.

Link to cstart.obj and cifc32.1ib (or the third party compiler equivalent) if your
application makes calls to the socket library and you use Intel 32-bit development
tools. You must use in-line exception handling or socket calls will fail, often with the
comand aborted by EHerror. To prevent this, add this code to the beginning of
mai n() inyour program:

EXCEPTI ONSTRUCT i nf o;

unsi gned short rq_status:

i nf o. excepti onnode = O:

rgset excepti onhandl er ((EXCEPTI ONSTRUCT far *) & nfo.
& g_status);

Always test the return status of iIRMX system calls, and take action if thereisan
error.

See also: Using Interface Libraries in Programming Techniques and System Call
Reference for shared C libraries to link to when not using Intel 32-bit
application devel opment tools.

Errno Values for Network Functions

Thislist describes errors specific to networking as given in <syserrno.h>.

EADDRI NUSE Address al ready in use
Only one usage of each address is normally permitted.

EADDRNOTAVAI L Can't assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

84 Chapter 11 Library Functions

EAFNOSUPPORT Address family not supported by protocol famly
An address incompatible with the requested protocol was used. For example, you
shouldn't necessarily expect to be able to use PUP (PARC Universal Packet) Internet
addresses with ARPA Internet protocols.

EALREADY Qperation already in progress
An operation was attempted on a non-blocking object that already had an operation in
progress.

EBADF Bad file
The socket descriptor isinvalid.

ECONNABORTED Sof t ware caused connection abort
A connection abort was caused internal to your host machine.

ECONNREFUSED Connection refused
No connection could be made; the target machine actively refused it. Thisusually
results from trying to connect to a service that isinactive on the foreign host.

ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer
executing a shutdown call.

EDESTADDRREQ Desti nati on address required
A required address was omitted from an operation on a socket.

EHOSTDOWN Host down
The specified host is not running.

EHOSTUNREACH Host unreachabl e
Thereis no route to the host.

El NPROGRESS Qper ati on now i n progress
An operation that takes along time to complete (such as a connect) was attempted on
anon-blocking object.

El SCONN Socket is already connected
A connect request was made on an already connected socket, or a sendto or
sendmsg request on a connected socket specified a destination other than the
connected party.

EMSGSI ZE Message too | ong
A message sent on a socket was larger than the internal message buffer.

ENETDOM Network is down
A socket operation encountered a dead network.

ENETRESET Networ k dr opped connection on reset
The host you were connected to crashed and rebooted.

ENETUNREACH Network is unreachabl e
A socket operation was attempted to an unreachable network.

TCP/IP for theiRM X Operating System Chapter 11 85

ENOBUFS No buffer space avail abl e
An operation on a socket or pipe was not performed because the system lacked
sufficient buffer space.

ENOPROTOOPT Bad protocol option
A bad option was specified in a getsockopt or setsockopt call.

ENOTCONN Socket is not connected
A request to send or receive data was disallowed because the socket is not connected.

EOPNOTSUPP Operati on not supported on socket
For example, trying to accept a connection on a datagram socket.

EPFNOSUPPORT Protocol fanmily not supported
The protocol family has not been configured into the system or no implementation for
it exists.

EPOWNERFAI L Power failure
The connection was lost due to a power-fail/recovery cycle.

EPROTONCSUPPORT Pr ot ocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

EPROTOTYPE Protocol wong type for socket
A protocol was specified that does not support the semantics of the socket type
requested. For example, you cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

ESHUTDOMN Can't send after socket shutdown
A request to send data was disallowed because the socket had already been shut down
with a previous shutdown call.

ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no
implementation for it exists.

ETI MEDOUT Connection timed out
A connect request failed because the connected party did not properly respond after a
period of time. The timeout period is dependent on the communication protocol.

EUNATCH Protocol driver not attached
The TCP/IP kernel has not been |oaded.

EWOULDBLOCK Oper ati on woul d bl ock
An operation that would cause a process to block was attempted on an object in non-
blocking mode.

86 Chapter 11 Library Functions

Function Reference

This section provides a reference to the functions from the network and socket
libraries. Each function reference page provides a brief description of the function,
its syntax, any additional information, and related error messages. Functions are
ordered alphabetically for quick reference.

TCP/IP for theiRM X Operating System Chapter 11 87

accept

Socket Library

accept

Accepts a connection on a socket.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt accept(s, addr, addrlen)
int s;

struct sockaddr *addr;

int *addrl en;

Parameters
s A socket of type SOCK_STREAM, created with the socket() call,
bound to an address with bind(), and currently listening for
connections with listen().
addr Points to a structure that accept() fillsin with the address of the

connected peer. The format of the returned address is determined by

the domain in which the communication occurs.

addrl en Initialize to the number of bytesin the buffer referenced by addr. On
return, addr | en will contain the actual length in bytes of the returned

address.

Return Value

If the call succeeds, it returns a non-negative integer that is a descriptor for the
accepted socket, created by thiscall. The call returns-1 on an error.

Additional Information

Accept() getsthe first connection request from the queue of pending connections and
creates a new socket with the same propertiesass. The call accepts the connection
on the new socket and returns a file descriptor for that socket. Y ou cannot accept
more connections on the new socket; the original socket s remains open.

88 Chapter 11

Library Functions

Socket Library accept

If no pending connections are present on the queue and the socket is not marked as
non-blocking, accept() blocks the caller until a connection request arrives. If the
socket is marked non-blocking and no pending connections are present on the queue,
accept() returns an error.

See also: bind(), connect(), listen(), and socket() functions, in this chapter

Errors

[EBADF]
The descriptor isinvalid.

[EFAULT]
The addr parameter isnot in awritable part of the user address space.

[El NVAL]

One of these has occurred:

e The number of bytes allocated for an incoming argument is not sufficient to store
the value of that argument.

» The function wasissued in the wrong sequence on the transport endpoint
referenced by s.

» Thetransport endpoint referred to by s isnot in the idle state.

» The specified options were in an incorrect format or contained illegal
information.

e Theamount of user data specified was not within the bounds allowed by the
transport provider.

[EIJ Oneof these has occurred:
» Anasynchronous event has occurred on this transport endpoint and requires
immediate attention.
» A system error has occurred during execution of this function.
* Anunspecified I/O error has occurred.
[ENOTSOCK]
The descriptor references afile, not a socket.

[EOPNOTSUPP]
The referenced socket is not of type SOCK_STREAM.

[EUNATCH|
The TCP/IP kernel has not been loaded.

[EWDUL DBLOCK]
The socket is marked non-blocking and no connections are present to be accepted.

TCP/IP for theiRM X Operating System Chapter 11 89

bind Socket Library

bind

Assigns a name to an unnamed socket. When a socket is created with socket() it
exists in a name space (address family) but has no name assigned. A name must be
bound to the socket before the socket can be used.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt bind(s, name, nanelen)
int s, nanel en;
struct sockaddr *name;

Parameters
s The socket to be bound.
nane Points to the structure containing the name. The rules used in name

binding vary between communication domains. Inthe AF_INET
domain, a name consists of the address family (AF_INET), aport ID,
and an |P address.

See also: Internet Socket Addresses, in this chapter

nanel en Thelength of the name.

Return Value

Zero if the call issuccessful or -1 if an error occurs.

Errors

[EADDRI NUSE]
The specified addressis already in use.

[EADDRNOTAVAI L]
The specified addressis not available from the local machine.

[EBADF]
Sisnot avalid descriptor.

[EFAULT]
The name parameter isnot in avalid part of the user address space.

[El NVAL]
The socket is already bound to an address.

0 Chapter 11 Library Functions

Socket Library bind

[ElQ Anunspecified /O error has occurred.

[ENOTSOCK]
S isnot a socket.

[EUNATCH|
The TCP/IP kernel has not been |oaded.

TCP/IP for theiRM X Operating System Chapter 11 9

bstring Network Library

bstring

The bemp(), beopy(), and bzer o() functions execute binary string operations.
They operate on variable length strings of bytes but do not check for null bytes as the
routinesin string do.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <strings. h>

int bcnp(bl, b2, |ength)
char *bl, *b2;
i nt |ength;

i nt bcopy(bl, b2, Iength)
char *bl, *b2;
unsi gned int |ength;

voi d bzero(b, Iength)
char *b;
int length;

Additional Information

Bcemp() comparesthefirst | engt h bytes of stringsb1 and b2, returning O if they are
identical, non-zero otherwise. Both strings are assumed to be at least | engt h bytes
long.

Bcopy() copiesthefirst | engt h bytesfrom string b1 to string b2. Bcopy() always
returns O.

Bzero() placesOsin thefirst | engt h bytes of string b.

|:| Note

The bcopy() function takesitstwo char * parametersin the
reverse order from strcpy() and memcpy().

92 Chapter 11 Library Functions

Network Library byteorder

byteorder
The htonl(), htong(), ntohl(), and ntohs() functions convert short (16-bit) and long
(32-bit) quantities between network byte order and host byte order.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/endi an. h>

unsi gned | ong htonl (hostl ong)
unsi gned | ong host ! ong;

unsi gned short htons(hostshort)
unsi gned short hostshort;

unsi gned | ong ntohl (netl ong)
unsi gned | ong netl ong;

unsi gned short ntohs(netshort)
unsi gned short netshort;
Additional Information

These routines are most often used in conjunction with Internet addresses and ports as
returned by gethostent() and getservent(). The conversion involves reversing the
order of the bytesin the short or long value.

See also: gethostent() and getservent() functions, in this chapter

TCP/IP for theiRM X Operating System Chapter 11 93

connect Socket Library

connect

Initiates a connection on a socket. |If the socket type is SOCK_DGRAM, this call
permanently specifies the peer to which datagrams are to be sent. If the typeis
SOCK_STREAM, this call attempts to make a connection to another socket.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt connect (s, name, nanelen)
int s, nanel en;
struct sockaddr *name;

Parameters
s The local socket
nane The remote socket, specified as an address in the communications space

of the socket. Each communications space interprets the nanme
parameter in its own way.

nanel en Thelength of the nane parameter, in bytes.

Return Value

Zero if the call is successful or -1 if an error occurs.

Errors

[EADDRI NUSE]
Unused.

[EADDRNOTAVAI L]
The specified addressis not avail able on this machine.

[EAFNOSUPPORT]
Unused.

[EBADF]
Sisnot avalid descriptor.

[ECONNREFUSED]
The attempt to connect was forcefully rejected.

[EFAULT]
The name parameter specifies an area outside the process address space.

94 Chapter 11 Library Functions

Socket Library connect

[El NVAL]

One of these has occurred:

» The function wasissued in the wrong sequence.

» The specified protocol optionswere in an incorrect format or contained illegal
information.

» Theamount of user data specified was not within the bounds allowed by the
transport provider.

e The number of bytes allocated for an incoming argument is not sufficient to store
the value of that argument.

[El Anunspecified I/O error has occurred.

[El SCONN|
The socket is already connected.
[ENETUNREACH]
The network isn't reachable from this host.
[ENOTSOCK]
Sisadescriptor for afile, not a socket.
[EOPNOTSUPP]
This function is not supported by the underlying transport provider.
[ETI MEDOUT]
Connection establishment timed out without establishing a connection.
[EUNATCH|
The TCP/IP kernel has not been |oaded.
[EWDUL DBLOCK]

The socket is non-blocking and the connection cannot be completed immediately.

TCP/IP for theiRM X Operating System Chapter 11 95

ffs

Network Library

ffs

Identifies the first set bit in avalue.

Syntax
#i ncl ude <strings. h>
i nt ffs(mask)

| ong nask;

Additional Information

This function returns the index of the first (low order) set bit in the argument. Bits
are numbered starting at one. If no bits were set (mask was 0) a0 will be returned.

96 Chapter 11

Library Functions

Network Library gethostent

gethostent
The gethostbyaddr (), gethostbyname(), sethostent(), endhostent(),
_gethtbyaddr (), _gethtbyname(), _sethtent(), _gethtent(), and _endhtent()
functions set and return entries that identify the network host.

Syntax

#i ncl ude <netdb. h>

struct hostent *gethostbyaddr(addr, |en, type)
char *addr;
int len, type;

struct hostent *gethost bynane(nane)
char *nane;

voi d set host ent (st ayopen)
i nt stayopen;

voi d endhostent ()

struct hostent *_gethtbyaddr(addr, |en, type)
char *addr;
int len, type;

struct hostent *_get ht byname(name)
char *nane;

voi d _set htent (stayopen)
i nt stayopen;

struct hostent * _gethtent()

void _endhtent()

Additional Information

Network host information can be obtained from either of two places, the hosts
database or the Domain Name Service (DNS). The iRMX TCP/IP software does not
include named, the DNS name server. However, it doesinclude aDNSclient. The
client contacts any DNS name servers running on other hosts on the network and uses
their name tranglation services.

TCP/IP for theiRM X Operating System Chapter 11 97

gethostent Network Library

The environment variable NONAMESERV ER specifies how the two sources are
accessed for requested information. If NONAMERSERVER is set, host information
isretrieved from the host’ s database hosts. If NONAMERSERVER is not set, the
host database is searched firgt; if the search does not succeed, an attempt is made to
retrieve the information from a DNS name server on the network.

Y ou can set this environment variable by adding “NONAMESERVER = 1" to
:config: r?env.

A set of functionsis also provided to explicitly retrieve information from the hosts
database. All information obtained from the hosts database is contained in a static
area, so it must be copied if it isto be saved. Only Internet addresses are understood.

The gethostbyname() and _gethtbyname() functions retrieve a specific entry by
host name. Gethostbyname() usesthe NONAMESERV ER environment variable to
determine the source; _gethtbyname() always searches from the hosts database.

The gethostbyaddr () and _gethtbyaddr (') functions retrieve a specific entry by
Internet address. Gethostbyaddr () usesthe NONAMESERVER environment
variable to determine the source; _gethtbyaddr () always searches from the hosts
database. The Internet address used in both calls should be in host order. The
network type should be AF_INET, as defined in the system include file sys/socket.h.
Thel en argument isthe length, in bytes, of the address.

Toretrieve a sequential series of host entries from the hosts database, it is more
efficient to use the _sethtent(), _gethtent(), and _endhtent() functions. However,
the sethostent(), gethostent(), and endhostent() functions have the same basic
behavior described below.

You must pair the callsto _sethtent() and _endhtent().

The _sethtent() function opens or rewinds (sets the file pointer to 0) the hosts
database. If passed a 0 value for the argument st ayopen, _sethtent() opensthe
:config:hostsfile. Subsequent callsto the _gethtent() function return the next entry
in the hosts database until end of file, opening it if necessary. The _endhtent()
function closes the database.

98 Chapter 11 Library Functions

Network

Library gethostent

Errors

If passed a non-zero value for the argument st ayopen, _sethtent() rewinds the
:config:hostsfile or opensiit, if it is not already open. Subsequent callsto the
_gethtent() function return the next entry in the hosts database until end of file,
opening it if necessary. The hosts database remains open until the application
executes exit(). Calling _endhtent() does not close the database.

The host entry has this structure:

struct hostent {

char * h_nane;

char ** h_aliases;

i nt h_addrtype;

i nt h_I engt h;

char ** h_addr _list;
#define h_addr h_addr _Ii st[0]
b
Where:
h_name The official name of the host.

h_al i ases A list of alternate namesfor the host. Thelist isterminated by anull
string.

h_addrtype
The type of host address; AF_INET isthe only type supported.

h_length Thelength, in bytes, of the host address.

h_addr _Ii st
A list of addresses for the host. Thefirst entry in the list can be
retrieved by the defined name h_addr as well as by its position in the
list. Thelististerminated by a0 address. All host addresses are
returned in network byte order.

See also: hostsfile, Chapter 11, and the system include file <sys/socket.h>

A null pointer isreturned by gethostbyaddr (), gethostbyname(), _gethtbyaddr(),
_gethtbyname(), and _gethtent() on an EOF or on an error.

TCP/IP for theiRM X Operating System Chapter 11 99

gethostid Network Library

gethostid

The gethostid() and sethostid(') functions get or set the unique 32-bit identifier of
the local host.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <arpa/inet. h>

unsi gned | ong gethostid()

i nt sethostid(hostid)
unsi gned | ong hosti d;

Return Value

For a successful call, gethostid() returnsthe host ID and sethostid() returns 0. If an
error occurs, both calls return -1.

Additional Information

Sethostid() establishes a 32-hit identifier for the current processor which is intended
to be unique among all Internet systemsin existence. Thisisnormally an Internet
address for the local machine's primary network interface. Thiscall isnormally
performed at boot time. Only the Super user can set host identifier.

Gethostid() returns the 32-bit identifier for the current processor.

See also: hostid command, Command Reference;
gethostname() function, in this chapter

Errors

[EADDRNOTAVA! L]
The specified host ID isinvalid.

[EPERM Only the Super user is alowed to set the host identifier.
[EUNATCH] The TCP/IP kernel has not been loaded.

100 Chapter 11 Library Functions

Network Library gethostname

gethostname
The gethostname() and sethostname() functions get and set the local host name.

Syntax
#i ncl ude <arpa/inet. h>

i nt get host nane(nane, |en)
char *nane;
int len;

i nt sethost nane(nane, |en)
char *nane;
int len;

Additional Information

Gethostname() retrieves the host name and placesit in the character string pointed
to by the argument name. Thel en isthe maximum number of characters of the
name that can be returned; it should be set to the size of nane. If the host nameis
longer than | en, it will be truncated; it will be null terminated only if the name is
shorter than | en.

Sethostname() sets the host name to the argument name. Only the Super user can
set the host name.

Errors

Both functions return 0 on success and -1 on failure; errno may be one of these:

[EFAULT]
The name was anull pointer.

[El NVAL]
Thel en was less than one.

[EPERM
Only the Super user can set the host name.

[EUNATCH|
The TCP/IP kernel has not been loaded.

See also: uname and hostname commands, Command Reference

TCP/IP for theiRM X Operating System Chapter 11 101

getnetent Network Library

getnetent

The getnetbyaddr (), getnetbyname(), setnetent(), getnetent(), and endnetent()
functions return information about a network entry from the : config: networks
database.

Syntax
#i ncl ude <net db. h>

struct netent *getnetbyname(namne)
char *nane;

struct netent *getnetbyaddr(net, type)
int net, type;

voi d set netent (stayopen)
i nt stayopen;

struct netent *getnetent()

voi d endnetent ()

Additional Information

A specific entry can be retrieved by the network name with getnetbyname(), or by
its Internet address with getnetbyaddr (). Both functions sequentially search the
database for the specified entry. The network address used in the getnetbyaddr ()
call should be in host order; the network type should be AF_INET, as defined in the
system include file <sys/socket.h>.

All returned information is contained in a static area, so it must be copied if it isto be
saved. Only Internet network numbers are understood.

Toretrieve a sequential series of network entries, it is more efficient to use the
setnetent(), getnetent(), and endnetent() functions. Y ou must pair the callsto
setnetent() and endnetent().

The setnetent() function opens or rewinds (sets the file pointer to 0) the networks
database. If passed a0 value for the argument st ayopen, setnetent() opens the
:config: networks file. Subsequent calls to the getnetent() function return the next
entry in the networks database until end of file, opening it if necessary. The
endnetent() function closes the database.

102 Chapter 11 Library Functions

Network Library getnetent

If passed a non-zero value for the argument st ayopen, setnetent() rewinds the
:config: networks file or opensit, if it isnot already open. Subsequent callsto the
getnetent() function return the next entry in the networks database until end of file,
opening it if necessary. The networks database remains open until the application
executes exit(). Calling endnetent() does not close the database.

The network entry has this structure:

struct netent {

char * n_nane;
char ** n_aliases;
i nt n_addrtype;
unsi gned | ong n_net;

b

Where:

n_namne The official name of the network.

n_al i ases A list of alternate names for the network. Thelist isterminated by a
null string.

n_addrtype
The type of network address; AF_INET isthe only type supported.

n_net The network number in host order.

See also: networks file, Chapter 9, and the system include file <sys/socket.h>

Errors

A null pointer is returned by getnetbyaddr (), getnetbyname(), and getnetent() on
an EOF or on an error.

TCP/IP for theiRM X Operating System Chapter 11 103

getpeername Network Library

getpeername

Returns the socket name of the connected remote socket.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt getpeernane(s, nane, nanel en)
int s;

struct sockaddr *name;

i nt *nanel en;

Parameters
s Thelocal socket.
nane A pointer to the space where the call returns a name.

nanel en Initiaize thisto indicate the amount of space pointed to by name. On
return it contains the actual size of the name returned, in bytes.

Return Value

Zero if the call issuccessful or -1 if an error occurs.

Additional Information

A socket name in the AF_INET family contains the length, address family, a port
number, and the | P address.

See also: bind() and getsockname() functions, in this chapter

Errors
[EBADF]
The argument s is not avalid descriptor.

[EFAULT]
The name parameter points to memory not in avalid part of the process address
space.

[El NVAL]
Thenanel en parameter istoo small.

[ENOBUFS]
Insufficient resources were available in the system to perform the operation.

104 Chapter 11 Library Functions

Socket Library getpeername

[ENOTCONN]
The socket is not connected.

[ENOTSOCK]
The argument s isafile, not a socket.

[EUNATCH|
The TCP/IP kernel has not been [oaded.

TCP/IP for theiRM X Operating System Chapter 11 105

getprotoent Network Library

getprotoent

The getprotobyname(), getprotobynumber (), setprotoent(), getprotoent(), and
endprotoent() functions return an entry from the : config: protocol s database file.

Syntax
#i ncl ude <net db. h>

struct protoent *getprotobynanme(nane)
char *nane;

struct protoent *getprotobynunber (proto)
i nt proto;

voi d set protoent (stayopen)
i nt stayopen;

struct protoent *getprotoent()

voi d endprotoent()

Additional Information

All returned information is contained in a static area, so it must be copied if it isto be
saved. Only Internet protocols are understood.

A specific entry can be retrieved by the protocol name with getprotobyname(), or
by its number with getprotobynumber (). Both functions sequentially search the
database for the specified entry. The protocol number used in the
getprotobynumber () call should be in host order.

Toretrieve a sequential series of protocol entries, it is more efficient to use the
setprotoent(), getprotoent(), and endprotoent() functions. You must pair the
callsto setprotoent() and endprotoent().

The setprotoent() function opens or rewinds (sets the file pointer to 0) the protocols
database. If passed a 0 value for the argument st ayopen, setprotoent() opensthe
:config: protocolsfile. Subsequent callsto the getprotoent() function return the next
entry in the protocols database until end of file, opening it if necessary. The
endprotoent() function closes the database.

106 Chapter 11 Library Functions

Network Library getprotoent

If passed a non-zero value for the argument st ayopen, setprotoent() rewinds the
:config: protocolsfile or opensit, if it is not already open. Subsequent calls to the
getprotoent() function return the next entry in the protocols database until end of
file, opening it if necessary. The protocols database remains open until the
application executes exit(). Calling endprotoent() does not close the database.

The returned protocol entry has this structure:

struct protoent {

char * p_nane;
char ** p_aliases;
unsi gned | ong p_proto

b

Where:

p_name The official name of the protocol.

p_al i ases A list of aternate namesfor the protocol. Thelist isterminated by a
null string.

p_proto The protocol number in host byte order.

SoX protocolsfile, Chapter 9

Errors

A null pointer isreturned by getprotobynumber (), getpr otobyname(), and
getprotoent() on an EOF or on an error.

TCP/IP for theiRM X Operating System Chapter 11 107

getservent Network Library

getservent

The getservbyport(), getservbyname(), setservent(), getservent(), and
endservent() functions set or return an entry from the : config: services database file.

Syntax

#i ncl ude <net db. h>

struct servent *getservbynane(nane, proto)

char

*name, *proto;

struct servent *getservbyport(port, proto)

i nt

port;

char *proto;

voi d setservent (stayopen)
i nt stayopen;

struct servent *getservent()

voi d endservent ()

Additional Information

108

All returned information is contained in a static area, so it must be copied if it isto be
saved. Only Internet services are understood.

A specific entry can be retrieved by the service name with getser vbyname(), or by
its port with getser vbyport(). Both functions sequentially search the database for
the specified entry. The port number used in the getser vbyport() call must bein
network order. Use the htong() function to convert the port number from host byte
order to network byte order.

See also: htons() function, in this chapter

Toretrieve a sequential series of service entries, it is more efficient to use the
setservent(), getservent(), and endservent() functions. Y ou must pair the callsto
setservent() and endservent().

Setservent() opens or rewinds the services database. |f passed a non-zero value for
the argument st ayopen, setservent() will set aflag to prevent the database from
being closed until endservent() is called.

Endservent() closes the services database.

Chapter 11 Library Functions

Network Library getservent

Getservent() returns the next entry in the services database, opening it if necessary.
If preceded by acall to setservent() with the st ayopen flag set, it can be called
successively to retrieve, in order, all of the database entries. When getservent() is
called without a previous call to setservent(), it opens the database, retrieves the first
entry, and closes the database.

The returned service entry has this structure:

struct servent {
char * s_nane;
char ** s _aliases;
i nt S_port;
char * s_proto;

}s

Where:

s_nanme The official name of the service.

s_al i ases A list of alternate namesfor the service. Thelist isterminated by anull
string.

s_port The port number at which the service can be reached, in network byte
order.

s_proto Thename of the protocol to be used when contacting the service.

See also: protocols and services files, Chapter 9

Errors

A null pointer is returned by getservbyaddr (), getservbyname() and getservent()
on an EOF or on an error.

TCP/IP for theiRM X Operating System Chapter 11 109

getsockname Socket Library

getsockname

Returns the current name for the specified socket.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt getsocknane(s, nane, nanel en)
int s;

struct sockaddr *name;

i nt *nanel en;

Parameters
s A local socket.
nane A pointer to the space where the call returns a name.

nanel en Initiaize thisto indicate the amount of space pointed to by name. On
return it contains the actual size of the name returned, in bytes.

Return Value

Zero if the call issuccessful or -1 if an error occurs.

Additional Information

A socket name in the AF_INET family contains the length, address family, a port
number, and the | P address.

See also: bind() and getpeer name() functions, in this chapter

Errors

[EBADF]
The argument s is not avalid descriptor.

[ENOTSOCK]
The argument s isafile, not a socket.

[ENOBUFS]
Insufficient resources were available in the system to perform the operation.

[EFAULT]
The nanme parameter points to memory not in avalid part of the process address
space.

110 Chapter 11 Library Functions

Socket Library

getsockname

[EADDRNOTAVA! L]
Socket not bound.

[EUNATCH|
The TCP/IP kernel has not been |oaded.

See also: bind() function, in this chapter

TCP/IP for theiRM X Operating System

Chapter 11

111

getsockopt Socket Library

getsockopt

The getsockopt() and setsockopt() functions return or set options associated with a
socket.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt getsockopt(s, level, optname, optval, optlen)
int s, level, optnaneg;

char *optval;

int *optlen;

i nt setsockopt(s, level, optname, optval, optlen)
int s, level, optnanme, optlen;
char *optval;

Parameters
s The socket whose options will be set or returned.

| evel Thelevel at which the option is maintained. At the socket level, specify
SOL_SOCKET. To manipulate options at any other level, specify the
protocol number of the appropriate protocol controlling the option. For
example, if the option isto be interpreted by the TCP protocol, set
| evel to the protocol number of TCP (IPPROTO_TCP).

See also: getprotoent() function, in this chapter
optname Specify the name of the option to set or return.

opt val For setsockopt(), specify the value of the option. For getsockopt(),
the valueis returned in this buffer.

optlen Specify the length of the opt val buffer, in bytes. For getsockopt(),
opt | en isapointer; the value it pointsto is modified on return to
indicate the actual size of the opt val parameter.

Return Value

Getsockopt() returns O if the call succeeds and the specified option is set; otherwise,
thereturnis-1. Setsockopt() returns O if the call succeeds or -1 if it fails.

112 Chapter 11 Library Functions

Socket Library

getsockopt

Additional Information

Options may exist at multiple protocol levels; they are always present at the
uppermost, or socket, level. To manipulate socket options, you must specify the level
at which the option resides and the name of the option. If no option valueisto be

supplied or returned, opt val may be set to 0.

The following options are supported:

level

SOL_SOCKET

IPPROTO_TCP

IPPROTO_IP

optname

SO_ATMARK
SO_BROADCAST
SO_DONTROUTE
SO_KEEPALIVE
SO_LINGER
SO_OOBINLINE
SO_RCVLOWAT
SO_SNDLOWAT
SO_REUSEADDR
SO_RCVBUF
SO_SNDBUF
SO_REUSEPORT

TCP_MAXSEG
TCP_NODELAY
TCP_NOOPT
TCP_NOPUSH

IP_TOS
IP_TTL
IP_HDRINCL

Description

Report if at OOB mark

Permit sending of broadcast msgs
Just use interface addresses
Keep connections alive

Linger on close if data present
Leave received OOB data in-line
Receive low-water mark

Send low-water mark

Allow local address reuse

Size of socket receive buffer
Size of socket send buffer

Allow local port reuse

Get TCP maximum segment size
Don't delay send to coalesce packets
Don’t use TCP options

Don't push last block of write

Type of service
Segment time to live
Application (RAW IP) supplies IP header

Opt name and any specified options are passed without interpretation to the
appropriate protocol module for interpretation. Options at other protocol levels vary

in format and name.

See dso:

protocols, Chapter 9

TCP/IP for theiRM X Operating System

socket() and getprotoent() function, in this chapter;

Chapter 11 113

getsockopt

Socket Library

Errors

[EBADF]
The argument s is not avalid descriptor.

[ENOTSOCK]
The argument s isafile, not a socket.

[ENOPROTOOPT]
The option isunknown at the level specified.

[EFAULT]

The options are not in avalid part of the process address space.

[ENOBUFS]
No buffer spaceisavailable.

[El NVAL]

Invalid option specified.
[EPROTQ

Invalid level specified.

[EUNATCH|
The TCP/IP kernel has not been |oaded.

114 Chapter 11

Library Functions

Network Library

inet

inet
Theinet_addr (), inet_Inaof(), inet_makeaddr (), inet_netof(), inet_network(),
and inet_ntoa() functions manipulate | nternet addresses.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <netinet/in.h>

unsi gned | ong i net_addr (cp)
char *cp;

i nt inet_lnaof(in)
struct in_addr in;

struct in_addr inet_makeaddr(net, host)
int net, host;

i nt inet_netof(in)
struct in_addr in;

unsi gned | ong i net_network(cp)
char *cp;

char *inet_ntoa(in)
struct in_addr in;

Additional Information

The functionsinet_addr () and inet_network() convert dot notation character
strings to the equivalent Internet address and network number, respectively. The
function inet_ntoa() performs the reverse operation, converting an Internet address

to the equivalent dot notation character string.

The function inet_makeaddr () constructs an Internet address from a network
number and host address. The functionsinet_netof() and inet_Inaof() return the
network and local network portions, respectively, of the Internet number passed as an

argument.

All functions correctly handle Class A, B, and C Internet addresses; I nternet

addresses are returned in network byte order.

The dot notation form of an Internet address consists of one to four numbers
separated by dots (periods). Each number can be expressed in decimal, octal (leading

0), or hexadecimal (leading 0x).

TCP/IP for theiRM X Operating System

Chapter 11 115

inet

Network Library

Errors

116

A four-part address (a.b.c.d) consists of four 8-bit numbers, each in the range 0- 255.
The four parts are assigned, in order, to the four bytesin the long Internet address.
Thisisthe most commonly used format.

A three-part address (a.b.c) consists of two 8-bit numbers followed by a 16-bit
number. The first two parts are assigned in order to the leftmost two bytes of the
long Internet address; the third part is placed in the rightmost two bytes. Thisformat
is often used for specifying Class B network addresses as 128.net.host.

A two-part address (a.b) consists of a single 8-bit humber followed a 24-bit number.
Thefirst part is assigned to the leftmost byte of the long I nternet address; the second
part is placed in the rightmost three bytes. Thisformat is often used for specifying
Class A addresses as net.host.

A one-part address is converted to a 32-bit quantity and stored directly in the long
Internet address without any byte rearrangement.

See also: gethostent() and getnetent() functions, in this chapter;
hosts and networks, Chapter 9

Thevaue-1lisreturned by inet_addr() and inet_network() for malformed
requests.

Chapter 11 Library Functions

Socket Library listen

listen

Listens for connection requests on a socket.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int listen(s, backl og)
int s, backl og;

Parameters

s An unconnected socket of type SOCK_STREAM, which has been
bound to a name with bind().

backl og The maximum number of incoming connection requests that can be
gueued. If aconnection request arrives with the queue full, the client
will receive an error with an indication of ECONNREFUSED.

|:| Note

This parameter is ignored.

Return Value

Zero if the call is successful or -1 if an error occurs.

Additional Information

For a server application to accept connections, it must first create a socket with
socket(), then specify abacklog for incoming connection requests with listen(). To
complete a connection, accept connection requests with accept().

A listen(s,0) call succeeds and sets a connection queue length of 0. This causes all
connect() attemptsto the listening port to fail, with the error ECONNREFUSED. A
listen(s,1) call accepts only a single connection with no pending requests allowed.

See also: accept(), connect(), and socket() functions, in this chapter

TCP/IP for theiRM X Operating System Chapter 11 117

listen

Socket Library

Errors

[EBADF]
The argument s is not avalid descriptor.

[EId Anioctl of SETQUEUELENGTH hasfailed.

[ENOTSOCK]
The argument s isnot a socket.

[EOPNOTSUPP]

The socket is not of atype that supports the operation listen().

[EUNATCH|
The TCP/IP kernel has not been |oaded.

118 Chapter 11

Library Functions

Socket Library recv

recv

Therecv(), recvfrom(), and recvmsg() functions receive a message from a socket.
You can use therecv() call only on a connected socket, while recvfrom() and
recvmsg() can receive data on a socket whether it isin a connected state or not.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int recv(s, buf, len, flags)
int s, len, flags;
char *buf;

int recvfrom(s, buf, len, flags, from fromnlen)
int s, len, flags;

char *buf;

struct sockaddr *from

int *from en;

int recvimsg(s, nsg, flags)
int s, flags;
struct msghdr nsg[];

Parameters
s The socket to receive the message from.
buf A pointer to a buffer where the received message will be placed.
I en The length in bytes of the buffer indicated by buf .
flags Youmay set f | ags to one of the following:
0 No special handling.
MSG_PEEK Peek at the incoming data present on the socket;

the datais returned but not consumed, so that
subsequent receive operation will see the same
data.

|:| Note

This parameter is ignored.
MSG_WAITALL Wait for all data requested.

TCP/IP for theiRM X Operating System Chapter 11 119

recv Socket Library

|:| Note

This parameter is ignored.
from If f r omis non-zero, the source address of the message isfilled in.

from en Initialize to the size of the buffer associated withfrom Fromnl en is
modified on return to indicate the actual size of the address stored there.

nmsg Therecvmsg() call usesanmsghdr structure to minimize the number of
directly supplied parameters. This structure hasthis form, as defined in
<sys/socket.h>:
struct msghdr {
caddr _t nsg_nane; /* optional address */
i nt nmsg_nanel en; /* size of address */
struct iovec *meg_iov;, [/* scatter/gather array */
i nt nmsg_i ovl en; /* # elements in nsg_iov */
caddr _t nmsg_accrights; /* access rights sent/received */
i nt nmsg_accri ght sl en;

b

Herensg_nane and nsg_nanel en specify the destination address if the socket is
unconnected; msg_nane may be given asanull pointer if no names are desired or
required.

Return Value
The number of bytes received in the message, or -1 if an error occurs.

If amessage istoo long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the messageis received from. If no messages are
available at the socket, the receive call waits for a message to arrive, unless the
socket is non-blocking. In this case avalue of -1 isreturned with errno set to
EWOULDBLOCK.

See also: send() and socktout() functions, in this chapter

Errors

[EBADF]
The argument s is an invalid descriptor.

[EFAULT]
The data was specified to be received into a non-existent or protected part of the
process address space.

120 Chapter 11 Library Functions

Socket Library recv

[El NTR]
The receive was interrupted by delivery of asignal before any data was available for
the receive.
[El NVAL]
Invalidf | ags, | en or f r onl en parameters specified; the number of bytes allocated
for the incoming protocol address or optionsis not sufficient to store the information.
[ENOTSOCK]
The argument s is not a socket.
[EOPNOTSUPP]
This function is not supported by the underlying transport provider.
[EUNATCH|
The TCP/IP kernel has not been |oaded.

[EWDUL DBLOCK]
The socket is marked non-blocking and the receive operation would block.

TCP/IP for theiRM X Operating System Chapter 11 121

send

Socket Library

send

The send(), sendto(), and sendmsg() functions send a message from one socket to
another. Send() may be used only when the socket isin a connected state, while
sendto() and sendmsg() may be used at any time.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int send(s, buf, len, flags)
int s, len, flags;
char *buf;

int sendto(s, buf, len, flags,
int s, len, flags, tolen;
char *buf;

struct sockaddr *to;

i nt sendmsg(s, nsg, flags)
int s, flags;
struct msghdr nsg[];

to, tolen)

Parameters
s The local socket.
buf Points to the buffer holding the message to be sent.
I en The length of the message in bytes, for send() and sendto().
fl ags May be set to MSG_OOB, to send out-of-band data on sockets that
support this notion (for example, SOCK_STREAM). The underlying
protocol must also support out-of-band data. The BSD
MSG_DONTROUTE flag is not supported. You may set the flag to
one of the following:
0 No special handling.
MSG_0OB Process out of band data
to The address of the target socket.
tol en Thelength in bytes of thet o argument.
nmsg Points to a structure holding the message and information about it.

122 Chapter 11

Library Functions

Socket Library send

Thensghdr structureis asfollows:

struct msghdr {

caddr _t nsg_nane; /* optional address */

i nt nmsg_nanel en; /* size of address */

struct iovec *msg_iov; [/* scatter/gather array */

i nt nsg_i ovl en; /* # elements in nsg_iov */

caddr _t nmsg_accri ghts; /* access rights sent/received */
i nt nmsg_accrightslen

H

Herensg_nane and nsg_nanel en specify the destination address if the socket is
unconnected; msg_nane may be given as anull pointer if no names are desired or
required.

Return Value

The number of characters sent, or -1 if an error occurs.

Additional Information

No indication of failureto deliver isimplicit in asend(). Returnvaluesof -1
indicate some locally detected errors.

If no message space is available at the socket to hold the message to be transmitted,
send(') normally blocks, unless the socket has been placed in non-blocking I/O mode.

Errors

[EBADF]
s isainvalid descriptor.

[EFAULT]
Aninvalid user space address was specified for a parameter.

[ENOTSOCK]
The argument s is not a socket.

[EOPNOTSUPP]
This function is not supported by the underlying transport provider.

[EUNATCH|
The TCP/IP kernel has not been |oaded.

[EWOULDBLOCK]
The socket is marked non-blocking and the requested operation would block.

[EPI PE]
A broken connection exists or a peer has closed the connection.

TCP/IP for theiRM X Operating System Chapter 11 123

shutdown Socket Library

shutdown

Shuts down all or part of afull-duplex connection.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt shutdown(s, how)
int s, how

Parameters
s A connected socket.
how Specifies what part(s) of the connection to shut down:
Value Description
0 Disallow further receives (not currently implemented)
1 Disallow further sends (not currently implemented)
2 Disallow further receives and sends

job-ID Transfer the socket to the specified iRMX job.

Additional Information

This call closes the socket when you disallow both receive and send functions. This
can occur with ahow of 2, or with subsequent calls specifying ahowof 1 and ahow
of 0.

There is an extension to this call which allows the transfer of a socket to another
iRMX job. If the how parameter isthe job ID of avalidiRMX job, the connection
remains and is transferred along with the socket to the specified job. To inherit the
socket, the other job must specify SOCK_INHERIT asthet ype parameter in a
socket() call.

The task that bequeaths a socket (using the inherit-style shutdown) will block in the
shutdown() call until thetask inj ob- I Dinheritsit (calls socket() with
SOCK_INHERIT). If the bequeathing task creates the inheriting task, it must do so
prior to calling shutdown().

See also: connect() and socket() functions, in this chapter

Return Value

Zero if the call is successful or -1 if an error occurs.

124 Chapter 11 Library Functions

Socket Library shutdown

Errors

[EBADF]

s isnot avalid descriptor.
[El NVAL]

Invalid value specified for how.
[ENOTSOCK]

s isnot a socket.

[EUNATCH|
The TCP/IP kernel has not been |oaded.

TCP/IP for theiRM X Operating System Chapter 11 125

socket Socket Library

socket

Creates an endpoint for communication.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt socket(af, type, protocol)
int af, type, protocol;

Parameters
af An address format for interpreting addresses specified in later
operations:
Value Format
AF_INET Internet addresses
type Specifies the semantics of communication; one of these:
Value Meaning

SOCK_STREAM The socket will be used for connections.

SOCK_DGRAM The socket will be used for datagrams.

SOCK_RAW The socket gives direct access to the IP layer.

SOCK_INHERIT This iRMX job blocks, waiting to inherit another
job's open socket

prot ocol The protocol to be used with the socket. For a socket of type
SOCK_STREAM or SOCK_DGRAM, specify 0 to get the default
protocol, IPPROTO_TCP and IPPROTO_UDP, respectively. A
SOCK_RAW socket can use IPPROTO_ICMP or IPPROTO_RAW.
Specify 0 for a SOCK_INHERIT socket. If you include <netinet/in.h>,
these values are defined:

Literal Value Meaning

IPPROTO_IP 0 dummy for IP

IPPROTO_ICMP 1 Internet control message protocol
IPPROTO_GGP 3 gateway-gateway protocol
IPPROTO_TCP 6 transmission control protocol
IPPROTO_EGP 8 exterior gateway protocol
IPPROTO_PUP 12 PARC universal packet protocol
IPPROTO_UDP 17 user datagram protocol
IPPROTO_IDP 22 Xerox XNS IDP

IPPROTO_RAW 255 raw IP packet

See also: services and protocolsfiles, Chapter 9

126 Chapter 11 Library Functions

Socket Library socket

Return Value

A descriptor referencing the socket, or -1 if an error occurs.

Additional Information

Sockets of type SOCK_STREAM are sequenced, reliable, two-way connection-based
byte streams with an out-of-band data transmission mechanism. They are similar to
Unix pipes. A stream socket must be in a connected state before any data may be
sent or received on it. A connection to another socket is created with a connect()
call. Once connected, data may be transferred using some variant of the send() and
recv() calls. When a session has been completed a shutdown() must be performed.
Out-of-band data may also be transmitted and received.

The communications protocols used to implement a SOCK_STREAM ensure that
datais not lost or duplicated. If apiece of datafor which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, the
connection is considered broken. Such callsindicate an error with -1 returns and with
ETIMEDOUT as the specific code in the global variable errno. The protocols
optionally keep sockets viable by forcing transmissions approximately every minute,
in the absence of other activity. Anerror isthenindicated if no response can be
elicited on an otherwise idle connection for an extended period (e.g., five minutes).

SOCK_DGRAM sockets allow you to send and receive datagrams. A datagram isa
connectionless, unreliable message with a fixed maximum length, typically small.

See also: send() and recv() functions, in this chapter
A SOCK_RAW socket gives direct access to the IP layer.

If SOCK_INHERIT is specified asthet ype parameter, the current job will block in
the socket() call until another job closes a socket using the current job's ID number
as the how parameter to the shutdown() call. Theresult isthat the job which
specifies SOCK_INHERIT inits socket() call actually inherits an open socket from
another iRMX job. Thisisanon-standard extension to the IRMX implementation of
TCP/IP.

See also: shutdown() function, in this chapter

All sockets are, by default, SO_LINGER. If the socket promises reliable delivery of
data, the system will block the process on a shutdown attempt until it isableto
transmit the data or until it decidesit is unable to deliver the information.

TCP/IP for theiRM X Operating System Chapter 11 127

socket Socket Library

Errors

[EAFNOSUPPORT]

The specified address family is not supported in this version of the system.
[El NVAL]

An unknown error occurred.
[ElQ TCP/IPisnot configured into the iIRMX system.

[ENOBUFS]
Unused.

[EPROTONCSUPPORT]
Unused.

[ESOCKTNCSUPPORT]
The specified socket type is not supported in this address family.

[EUNATCH|
The TCP/IP kernel has not been |oaded.

128 Chapter 11 Library Functions

Socket Library

socktout

socktout

Defines a maximum time to wait for completion of any subsequent calls on the
socket.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt socktout(s, val)

int s;

unsi gned int val;

Parameters
s The socket.
val The timeout period in 10-msunits. Settingval to Oxf f ff disablesthe

timeouts.

Return Value

Zero if the call issuccessful or -1 if an error occurs.

Additional Information

After reaching the timeout limit, the timed-out socket call returns with the return
value-1, and errnois set to EWOULDBLOCK. The socktout() call isa
nonstandard extension to the iRM X implementation of TCP/IP. Since theiRMX
environment does not have the alarm function built into Unix, this call servesasa
substitute measure.

An example of using this function is when you want to receive a datagram. Since
UDP isunreliable service, the datagram might be sent but never received. If this

occurred, your recvfrom(') call would block forever unless you had first issued a
socktout() call.

See also: accept(), connect(), recv(), and send() functions, in this chapter

TCP/IP for theiRM X Operating System Chapter 11

75

socktout Socket Library

Errors
[E2BI G
val istoo big.
[EBADF]
s isnot avalid descriptor.
[EUNATCH|

The TCP/IP kernel has not been loaded.

76 Chapter 11 Library Functions

Recommended Reading

This appendix names afew of the many books available on TCP/IP, NFS, and related
subjects.

TCP/IP

NFS

D. E. Comer. Internetworking with TCP/IP: Principles, Protocols, and
Architectures. Volume |, second edition. Englewood Cliffs, NJ: Prentice-Hall, 1991.
This definitive textbook contains both introductory material and detailed reference
material on the TCP/IP protocol suite and applications.

M. T. Rose. The Simple Book: An Introduction to Management of TCP/IP-based
Internets. Englewood Cliffs, NJ: Prentice-Hall, 1991. Describes network
management of a TCP/IP internet based on the Simple Network Management
Protocol (SNMP).

A. S. Tannenbaum. "Network Protocols,” ACM Computing Surveys. Volume 13,
Number 4, December 1981. This article discusses different types of protocols and
network architectures.

W. Richard Stevens. UNIX Network Programming. Englewood Cliffs, NJ: Prentice-
Hall, 1990. Thoroughly covers common implementations of TCP/IP networking and
related UNIX functions, complete with example code.

Douglas E. Comer. Internetworking with TCP/IP. Volumesl, I, and 1.
Englewood Cliffs, NJ: Prentice-Hall, 1993. Volume | discusses the fundamental
concepts that permeate the Internet suite. Volume Il describes how the Internet
technological infrastructureisrealized. Volume Il discusses how to architect and
build client/server applications.

TCP/IP for theiRM X Operating System Appendix A 77

Networks

R. Bowker. Racal InterLan on Interoperability. Boxborough, MA: Racal InterLan,
1989. A survey of interoperability that coversindustry standards, operating systems,
Application Program Interfaces, network operating systems and architectures, and
local area networks. Bowker describes the current state of interoperability, and
whereit is headed.

E. B. Brooner. The Local Area Network Book. Indianapolis, IN: Howard W. Sams &
Co., Inc., 1984. Anintroduction to local area networking written for readers with
minimal technical background.

J. H. Green. Local Area Networks. Glenview, IL: Scott, Foresman and Company,
1985. Discusses networking from the perspective of the business professional.

T. W. Madron. LANSs: applications of IEEE/ANS 802 standards. John Wiley &
Sons, Inc., 1989. A description of IEEE/ANSI 802 standards that includes a chapter
on TCP/IP internetworking.

J. S. Quarterman. The Matrix: Computer Networks and Conferencing Systems
Worldwide. Bedford, MA: Digital Press, 1990. A comprehensive discussion of
networks, protocols and conferencing systems used throughout the world. Part |
includes chapters on layers, protocols, network administration, and various standards
bodiesin the U.S., Europe and Japan. Part Il describes what Quarterman calls the
Matrix: the complex infrastructure of networks and conferencing systems.
Quarterman's book ends with an appendix that highlights some applications of law to
Computer Mediated Communication (CMC).

M. T. Rose. The Open Book: A Practical Perspective on OS. Englewood Cliffs, NJ:
Prentice-Hall, 1991. A clear discussion of the OS| architecture and protocols, with
an emphasis on TCP/IP-to-OSlI transition issues. Also includes implementation
examples.

A. S. Tannenbaum. Computer Networks. Englewood Cliffs, NJ: Prentice-Hall, 1981.
Tannenbaum discusses all aspects of computer networking.

78 Appendix A Recommended Reading

Glossary

dias
ARP

ARPA

ARPANET

BIOS

bps
broadcast

BSD

canonical

client process

connection

A symbolic name for adomain, host, or user.

Address Resolution Protocol. An Internet protocol which runs on
Ethernets and Token Rings which maps Internet addresses to
MAC addresses.

Advanced Research Projects Agency. The former name of what
isnow called DARPA.

A wide area network developed in the 1960s by the Advanced
Research Projects Agency. The ARPANET links government,
commercial, and academic installations around the world.

The Basic I/0O System layer of theiRMX OS. Thisisdifferent
from the ROM BIOS stored in ROM on a DOS system.

Bits per second. A measure of data transmission speed.

A technique by which a single system on a network can send
information to all other systems on the network using asingle
operation.

Berkeley Software Distribution. An enhanced Unix operating
system that was designed at the University of Californiaat
Berkeley. Local network support is one of the enhancements
provided by BSD-based systems.

The standard or regular name or expression, not the alias.

A process activated by a user when issuing a networking
command. The client process sends a request for serviceto a
process on the remote host. If the request is honored, a
connection is established between the local client and the remote
SErver process.

The path between two protocol modules that provides reliable
stream delivery service. In TCP/IP Internet, a connection extends
from a TCP module on one machine to a TCP module on the
other.

TCP/IP for theiRM X Operating System Glossary 79

connectionless service

DARPA

datagram

DDN

decimal address

default route

domain

DNS

dotted decimal

EGP

EIOS

80 Glossary

Characteristic of the packet delivery service offered by most
hardware and Internet Protocol (IP). The connectionless service
treats each packet or datagram as a separate entity that contains
source and destination addresses. Usually, connectionless service
can drop packets or deliver them out of sequence.

Department of Defense Advanced Research Projects Agency.
The government agency that funded the ARPANET and later
started the Internet.

The unit transmitted between a pair of internet modules. The
Internet Protocol provides for transmitting blocks of data, called
datagrams, from sourcesto destinations. The Internet Protocol
does not provide areliable communication facility. There are no
acknowledgments either end-to-end or hop-by-hop. Thereisno
error control for data, only a header checksum. There are no
retransmissions. Thereisno flow control. See|P.

Defense Data Network. Comprisesthe MILNET and several
other networks.

See dotted decimal

A routing table entry which is used to direct any data addressed to
any network numbers not explicitly listed in the routing table.

A grouping of hosts according to affiliation. For example, most
universities belong to the EDU domain of educational institutions.

The Domain Name System is a mechanism used in the Internet
for trandlating names of host computers into addresses. The DNS
also allows host computers not directly on the Internet to have
registered names in the same style.

An Internet address that uses the base-10 number system, with the
parts of the address separated by periods (dots).

External Gateway Protocol. A protocol which distributes routing
information to the routers and gateways which interconnect
networks.

The Extended 1/0 System.

Ethernet

frame

FTP

gateway

globbing

header

host
host name

host number

ICMP

ICU

|IEEE

A network standard for the hardware and Data Link levels. There
are two types of Ethernet: Digital/Intel/Xerox (DIX) and IEEE
802.3.

A self-contained package of data at the link layer.

File Transfer Protocol. A TCP/IP protocol used for transferring
files between hosts on the network.

A special-purpose dedicated computer that attaches to two or
more networks and routes packets from one network to the other.
In particular, an Internet gateway routes | P datagrams among the
networks it connects. Gateways route packets to other gateways
until they can be delivered to the final destination directly across
one physical network. Thisdefinition is more commonly used in
TCP/IP literature for a gateway. However, amore strict
definition is that a gateway not only routes between networks but
can trangl ate between network protocols as it routes.

Determines how local filenames are processed by the shell in
FTP. With globbing disabled, names specified on the command
line are treated literally. With globbing enabled, each local file or
pathname is processed for the shell metacharacters

*?2[]1~{}. Globbingisaways enabled for references to remote
files.

The portion of a packet, preceding the actual data, containing
source and destination addresses and error-checking fields.

An individual computer on a network.
A text name that can be used to identify a network host.

The part of an internet address that designates which node on the
(sub)network is being addressed.

Internet Control Message Protocol. A protocol used by the
Internet Protocol to report errors, give limited routing advice, and
provide smple low-level services.

Interactive Configuration Utility. A screen-oriented utility
provided by the iRM X I11 OS to help build the OS desired.

Ingtitute of Electrical and Electronics Engineers.

TCP/IP for theiRM X Operating System Glossary 81

IGP

internet

Internet

Internet address

Internet Protocol (1P)

InterNIC

IP
IP address

I P datagram

LAN

82 Glossary

Interior Gateway Protocol. The generic term applied

to any protocol used to propagate how reachable a network is and
the routing information within an autonomous

system. Although there is no Internet standard IGP,

RIP is among the most popular.

Short for internetwork, meaning any connection of two or more
local or wide-area networks.

The global collection of interconnected regional and wide-area
networks that use I P as the network layer protocol.

A unique address that identifies a host on a TCP/IP network. The
Internet address or | P address, consists of four decimal numbers
separated by periods (129.84.3.71, for example). Each number
has a value between 0 and 255 and represents eight bits of the
complete 32-bit address. The Internet address is independent of
the hardware to which it is assigned.

The network layer protocol for the Internet. It isthe datagram
protocol defined by RFC 791.

An organization that provides network users with information
about services provided by the network. It isthe primary
repository for RFCs and Internet drafts.

See Internet Protocol.

The 32-bit address assigned to hosts that want to participate in the
Internet using TCP/IP.

The basic unit of information passed across the Internet. An IP
datagram is to the Internet as a hardware packet isto a physical
network. It contains a source and destination address along with
data

International Standards Organization. It developed the OSI
(Open Systems Interconnection) reference model for networking.

Local AreaNetwork. A collection of computers, typically
connected by a single transmission cable, joined together for the
purpose of sharing resources and facilitating communication. A
LAN islimited to a small area such as a single building or a set of
closely grouped buildings.

local host

MAC

MAC address
MTU

network number

NFS

nslookup

octet

octal address

out-of-band

packet

point-to-point network

The computer from which the user originates a networking
command.

Medium (or Media) Access Control. For broadcast networks, it is
the method which devices use to determine which device has
accessto theline at any given time.

The hardware-level address, such as an Ethernet address.

The maximum transfer unit for agiven interface. Thisisthe
largest number of bytes of data that can be transferred in asingle
packet. For example, the maximum frame size for Ethernet is
1526 bytes, including header information. The MTU is 1500.

The part of an internet address that designates the network to
which the addressed node belongs.

Network File Support. NFS enables hosts to share their local
resources with remote hosts (clients) in a manner that hides the
heterogeneous nature of a network. For example, a server
running the iIRMX OS may share a specific directory with a client
machine running the Unix OS. The client can access the
directory using commands and calls that appear to be directed at
local resources.

A tool that queries a name server for information about hosts on
the network.

Eight bits. Since datais sent across the network as individual
bits, the logical 8-bit groups are sometimes called octets instead
of bytes.

An Internet address that uses the base-8 number system.

An urgent data message. TCP attempts to expedite out-of-band
data by notifying the application of its urgency. Normal
(in-band) datais received after any out-of-band data.

A single unit of data and control information that is transmitted
over the network. The length of a packet varies. A single
message may be transmitted in one packet or a series of packets.

A network configuration that consists of two computers
connected by a single communications line.

TCP/IP for theiRM X Operating System Glossary 83

port

POSIX

protocol

RawEDL

RFC

router

RPC

server

84 Glossary

A number associated with a particular service. The port number
is part of the address bound to a socket. Asthe Internet address
defines a particular hogt, the port (combined with the protocol)
defines the destination on that host. Certain well-known ports are
reserved for certain services; for example, 21 for FTP and 23 for
TELNET. Ingeneral, port numbers greater than 1024 are
available for definition by alocal application. However, some
port numbersin this range have become standardized for certain
services through common usage.

Portable Operating System Interface. An operating system
procedure call interface, based on Unix.

A formal description of message formats and the rules two
computers must follow to exchange those messages. Protocols
can describe low-level details of machine-to-machine interfaces
(e.g., the order in which bits and bytes are sent across awire) or
high-level exchanges between allocation programs (e.g., the way
in which two programs transfer afile across the Internet).

The raw External Data Link layer of iNA software. This
interface allows non-OSl protocols such as TCP/IP to use iNA.

The Internet's Request for Comments documents series. The
RFCs are working notes of the Internet research and devel opment
community. A document in this series may be on any topic
related to computer communication, and may be anything from a
meeting report to the specification of a standard.

A computer that attaches to two or more networks and routes
packets from one network to the other. A router may understand
more than one address protocol but does not tranglate from one
protocol to another.

Remote Procedure Call. A procedure-oriented interface to
remote services used to implement the client-server model of
distributed computing.

A computer that sharesits resources, such as printers and files,
with other computers on the network.

Server process

socket

Streams

subnet

subnet number

TCP

TCP/IP

TELNET

The remote host process that services the request made by the
client process. The server is started up at network boot time asa
background process that listens for incoming service requests.
When it receives arequest, it establishes a connection with the
requesting client, spawns a child process, and goes back to
listening for more incoming requests.

A communication endpoint. A socket isidentified by an address
derived from a host's Internet address concatenated with a TCP
port humber.

This emulates the STREAMS mechanism on Unix systems. It
congtructs a series of protocol drivers and code modules to
sequentially act on data passing through them. The series of
driversiscaled a stream, and can act on data flowing in either
direction. Upstream isthe stream head, put in place below a user
process. Downstream is the stream end, a device driver (interface
to a hardware device) or pseudo-device driver (interface to other
software rather than directly to hardware). With the stream in
place, a user process such as FTP makes use of the network
hardware without needing to be aware of the protocols managing
the datain between.

A portion of a network, which may be a physically independent
network. A subnet shares a network address with other portions
of the network and is distinguished by a subnet number. A subnet
isto anetwork what a network isto an internet.

A part of the internet address which designates a subnet. It is
ignored for the purposes of internet routing, but is used for
intranet routing.

Transmission Control Protocol. A transport layer protocol for the
Internet. It isa connection-oriented, stream protocol defined by
RFC 793.

Transmission Control Protocol/Internet Protocol. A set of
computer networking protocols and applications that enables two
or more hosts to communicate. TCP/IP includes a suite of
protocols besides TCP and IP; it has been widely adopted as a
networking standard.

A TCP/IP protocol used for remote login between hosts.

TCP/IP for theiRM X Operating System Glossary 85

TFTP

UDP

86

Glossary

Trivial File Transfer Protocol. A Department of Defense
standard for transferring files between hosts. TFTP lacks the
error-checking and user-authentication facilities offered by FTP.

User Datagram Protocol. A transport layer protocol for the
Internet, defined by RFC 768. It isadatagram protocol that adds
alevel of reliability to |P datagrams.

Index

/dev/loop file, 70
letc/hosts file

retrieving entries from, 98
letc/networks file

retrieving entries from, 102
[etc/protocolsfile

retrieving entries from, 106
Jetc/servicesfile

retrieving entries from, 108
:config/

servicesfile, 66
.config:ftpusersfile, 41
:config:hosts file, 14, 41, 46, 60
:config:hosts.equiv file, 41
:config:inetinit.cf file, 41

verifying configuration of, 45
:config:networksfile, 41
:config:nfsstart.csd file, 16
:config:nfsstop.csd file, 16
:config:protocolsfile, 41, 62
:config:r/init2.log file, 17
.config:servicesfile, 41
‘\config:tcpstart.csd file, 17
:config:tcpstart.csd file, 15
:config:tcpstop.csd file, 15
:home:netrc file, 64
:homerhostsfile, 41

A

accept(), 79, 88
accepting connections, 88
access permissions
controlling, 13
of netrcfile, 65
active open, 78
address

TCP/IP for theiRM X Operating System

broadcast, 7
host, 7, 60, 97
Internet, 6, 7, 9, 60
Internet, 8
InterNIC Registration Services, 8
network, 7
subnet, 7
address family, 70
Address Resolution Protocol, see ARP
administrative commands, 43
AF_INET, 70, 83, 90, 126
AF_UNIX, 82
ARP, 71
automatic FTP login, 35

B

bemp(), 92
beopy(), 92
Berkeley R-series commands, 4,5
big-endian, 81
binary string operations, 92
bind(), 75, 78, 79, 80, 81
bits, set, 96
books

network, 78

TCPIP, 77
broadcast address, 7

and UDP, 74
byte order, 81, 93, 106, 108
bzero(), 92

C

client, 1
process, 37
using sockets, 78
clonable device, 69

close(), 82

Index 87

commands

TCP/IP administrative, 43
config:inetinit.cf file, 60
configuration

verifying network, 45
configuration files, 59

/

config/

services, 66
:config:hosts, 14, 60
:config:protocols, 62
netrc, 64

connect(), 78, 81, 94
connections
accepting, 88
closing, 124
inheriting, 82, 124, 127
queuing requestsfor, 117
requesting, 94
sharing by tasks, 82
to remote host, 24, 31
waiting for, 117
create task call, 79

D

daemons and services, 37
datagram, 127

protocol, 74

socket calls, 79
domain name, 9, 60
domain name service (DNS), 9, 14
dot notation, 6, 115

E

endhostent(), 97
endnetent(), 102
endpoint, 78, 126
endprotoent(), 106
endservent(), 108
errno, 83

testing, 84

vaues, 84
errors

general-protection, 83

88 Index

handling, 84

returned by network functions, 84
escape character

telnet, 23, 24
Ethernet

adapter card, see NIC
example programs, 83

F

ffs(), 96
file descriptors, 82
File Transfer Protocol, see FTP
ftp
automatic login, 64
FTP, 3
? command, 30
automatic login, 35
client, 37
commands, 30
commands, accessing on-line help, 30
connecting to hosts, 31
disabling, 38
file size limitations, 34
get command, 33
macros, 65
naming conventions when transferring files,
34
netrc file, 65
open command, 31
put command, 32
quitting, 35
remote connection, 31
server, 37, 38
starting, 30
transferring files, 32, 33
transferring largefiles, 34
using, 29
ftpd server, 37, 38
ftpusersfile, 41
full-duplex, 124

G

gateway, 2
gethostbyaddr(), 97
gethostbyname(), 97

gethostid(), 100
gethostname(), 101
getnetbyaddr(), 102
getnetbyname(), 102
getnetent(), 102
getpeername(), 75, 80, 104
getprotobyname(), 106
getprotobynumber(), 106
getprotoent(), 106
getservbyname(), 108
getservbyport(), 108
getservent(), 108
getsockname(), 75, 80, 110
getsockopt(), 112

H

hardware requirements, 13
host
address, 7, 97
byte order, 81, 93, 106
local, 1
local ID, 100
local name of, 98, 101
officia nameof, 1,9
remote, 1
host name, 97, 101

mapping to Internet address, 60

hostid command, 3, 17
hostname command, 3, 17
hostsfile, 14, 41, 60
hosts.equiv file, 41
htonl(), 93

htons(), 81, 93

ICMP (Internet Control Message Protocol), 6,

126
inet_addr(), 115
inet_Inaof(), 115
inet_makeaddr(), 115
inet_netof(), 115
inet_network(), 115
inet_ntoa(), 115

inheriting sockets, 82, 124, 127

interfaces

TCP/IP for theiRM X Operating System

verifying functionality of, 46
Internet address, 6, 7, 9

classesof, 6,7

converting formats of, 115

dot notation, 6

get or set local, 100

mapping to host name, 60

obtaining, 8

structure of, 80
InterNIC Registration Services, 8
IP, 71

address, see Internet address
IPPROTO_ICMP, 126
IPPROTO_RAW, 126
IPPROTO_TCP, 112, 126
IPPROTO _UDP, 126

J

job
inherits socket, 124
sharing connections, 82
TCP/IP kernel, 15

L

library functions, 77
listen(), 79, 117
little-endian, 81
logging in

to remote host, 24, 31, 35
loopback, 60

M

macro, defining in netrc file, 65
maximum transfer unit, see MTU

message
receiving, 119
sending, 122

MSG_DONTROUTE flag, 122
msghdr structure, 120, 123
MTU

checking, 46
multitasking, 82

Index

89

N

name
domain, 9
host, 60
name server, 21, 29
net3c.lib library, 77
netrc file, 35, 41, 64
netstat command, 38, 43
-aoption, 39, 44
-i option, 45
network
address, 7, 102
books about, 78
byte order, 81, 93, 108
configuration files, 41
daemons and servers
telnetd, 39
databases, 41
interface adapter (NIA), seeNIC
library functions, 77
name, 102
services, 37
testing the TCP/IP, 43
verifying configuration of, 45
verifying TCP/IP services, 44
Network Information Center, 10
networksfile, 41
NIC (network interface controller), 13
nslookup command, 21
ntohl(), 93
ntohs(), 93

O

options, for socket, 112
OVL 286 (80286 overlay generator), 117

P

passive open, 78
password
restricting accessto, 36, 65
ping command, 47, 72
port, 73, 74
changing byte order of, 81
numbers, 66, 108

20 Index

well-known, 66
prompt

ftp, 30

telnet, 22
protocals, 1

family, 70

file, 41, 62

name and number, 106

name database, 62, 106

trandating numbers to names, 62
pseudo-device, 70

Q

query commands
hostid, 3
hostname, 3

R

rnetrc file, 35, 64
raw
interface, 72
testing transport layer, 47
rcp command, 4
rcp, file size limitations, 34
recv(), 78,79, 119
recvfrom(), 79, 119
recvmsg(), 119
remote copy, 4
remotelogin, 5, 24, 31, 35
remote shell, 4
remote Unix host for telnet, setting up, 17
Request for Comments, see RFC
RFC, 10
1060, Assigned Numbers, 62, 66
whereto obtain, 10
rhostsfile, 41
rlogin command, 5
rsh command, 4
ruptime command, 5
ruptime command, -aoption, 5

S

security
controlling accessto files, 13

password information, 36, 65
select(), 82
send(), 78, 79, 122
sendmsg(), 122
sendto(), 79, 122
server, 1
process, 37
using sockets, 79
services and daemons, 37
servicesfile, 41, 66, 108
set hits, 96
sethostent('), 97
sethostid(), 100
sethostname(), 101
setnetent(), 102
setprotoent(), 106
setservent(), 108
setsockopt(), 112
shutdown(), 78, 124
site commands, 34
dipd, 41
dipd.cf file, 41
SO_LINGER, 127
SOCK_DGRAM socket, 80, 94
creating, 126
SOCK_INHERIT type, 124, 126
SOCK_RAW socket
creating, 126
SOCK_STREAM socket, 78, 88, 94
creating, 126
sockaddr_in structure, 80, 83
socket, 5
calsmade by client, 78, 84
calls made by server, 79
connection-oriented calls, 78, 79
creating, 126
datagram calls, 79
definition of, 78
descriptor, 82, 127
inheriting, 82, 124, 127
name of local, 110
name of remote, 104
naming, 90
nonstandard implementation, 82, 75
optionsfor, 112
socket(), 78,79, 126
socket3c.lib library, 76, 84

TCP/IP for theiRM X Operating System

socketpair(), 82
socktout(), 82, 75
SOL_SOCKET level, 112
startup script, seetcpstart.csd
strings

binary, 92
subnet mask, 7
system calls, 5

T

task
deleting, 83
tcp driver, 73
TCP/IP, 73
books about, 77
configuring
sysloadablejob, 14
installing, 11
kernel job, 37
protocals, 1
required hardware, 13
stopping, 15
testing, 45
testing setup, 16
troubleshooting, 16
tcplisten daemon, 37
tepstart.csd file, 15, 17, 37, 38, 39
tcpstop.csd file, 15
telnet, 21, 39
close command, 27
command mode, 21, 22, 26, 28
commands, 27, 28
connecting to hosts, 24
disabling, 39
escape character, 23,24
input mode, 21, 22
open command, 22
prompt, 22
quit command, 27
quitting asession, 24
remote connection, 24
remote Unix host, setting up, 17
status command, 27
TELNET, 3
telnetd server, 39
terminal

Index

91

characteristics for user sessions, setting, 18 U
creating a definition for the PC console, 17

setting the type on Unix, 25 UDP (User Datagram Protocol), 74
tests testing, 45

network, 43 udp driver, 74
TFTP (Trivia File Transfer Protocol) ulimit command, 34

file size limitations, 34 User Datagram Protocol, see UDP
timeout, 75
TLI, 5 W
Transmission Control Protocol, see TCP
troubleshooting, 16 well-known ports, 66

92 Index

	iRMX® TCP/IP for the iRMX OS
	Quick Contents
	Notational Conventions

	Contents
	Chapter 1: Overview of TCP/IP
	Connecting to Network Resources
	Using TCP/IP Programs and Utilities
	Administering TCP/IP
	Programming with TCP/IP
	Understanding Internet Addresses
	Subnet Addresses
	Obtaining an Internet Address
	Specifying Domain Names

	Request For Comment (RFC) Reports

	Chapter 2: Installing and Starting TCP/IP
	Before You Begin
	Software Required
	Hardware Required
	Overview of the Setup

	TCP/IP Configuration
	Editing the Hosts File
	Configuring TCP/IP as a Loadable Job
	Starting and Stopping TCP/IP
	Testing the TCP/IP Setup

	Troubleshooting
	General TCP/IP Debugging

	Setting Up a Remote Unix Host for Telnet
	Creating a Terminal Definition for the PC Console
	Setting Terminal Characteristics for User Sessions

	Chapter 3: Using Telnet
	Before You Begin
	Telnet Modes
	Starting TELNET
	Switching Telnet Modes

	Using TELNET for a Remote Session
	Connecting to the Remote Host
	Entering Commands During the Session
	Closing the Remote Connection

	Using Telnet for a Local Session
	Entering Commands in a Local Session
	Ending the Local Session

	Chapter 4: File Transfer Protocols
	Before You Begin
	File Transfer Protocol (FTP)
	FTP Help Information
	FTP File Transfer Session

	Chapter 5: Network Services and Daemons
	Ftpd Server
	Telnetd Server
	Configuring Pseudo-terminals for Telnetd

	Chapter 6: Configuring and Administering Network Files
	Restricting and Updating Network Databases and€Files

	Chapter 7: Commands for the Network Administrator
	Administrative Commands
	Performing Network Tests
	Verifying Network Services
	Verifying Network Configuration
	Verifying Interface Functionality

	Chapter 8: Tunable Parameters
	Determining When to Tune Parameters
	TCP/IP Parameters
	TCP Job Parameters
	UDP Job Parameters
	Raw IP Job Parameters
	IP Job Parameters
	DNS Configuration Parameters
	Network Interface Parameters
	Loopback Pseudo-driver Interface Parameters

	Chapter 9: Files
	hosts
	protocols
	netrc
	services

	Chapter 10: TCP/IP Components
	Protocol Jobs
	ip.job
	rip.job
	tcp.job
	udp.job

	Network Interface Controller (NIC) Jobs
	loopback.job
	edl.job
	eepro100.job
	ne.job
	Tulip.job

	Chapter 11: Library Functions
	Using Sockets
	Calling Sequence for Connection-oriented Applications
	Calling Sequence for Connectionless Applications
	Internet Socket Addresses
	Network and Host Byte Order
	Changes From the Standard Socket Interface
	Include Files
	Example Programs
	Compiling
	Handling Errors
	Errno Values for Network Functions

	Function Reference
	accept
	bind
	bstring
	byteorder
	connect
	ffs
	gethostent
	gethostid
	gethostname
	getnetent
	getpeername
	getprotoent
	getservent
	getsockname
	getsockopt
	inet
	listen
	recv
	send
	shutdown
	socket
	socktout

	Appendix A: Recommended Reading
	TCP/IP
	NFS
	Networks

	Glossary
	Index

