
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

iRMX®

TCP/IP for the iRMX OS

07-0629-01
December 1999

ii

EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
is a trademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright  1999 by RadiSys Corporation

All rights reserved.

TCP/IP for the iRMX Operating System iii

Quick Contents

Getting Started and User's Guide
Chapter 1. Overview of TCP/IP

Chapter 2. Installing and Starting TCP/IP

Chapter 3. Using TELNET

Chapter 4. Using File Transfer Protocols

Network Administration
Chapter 5. Network Services and Daemons

Chapter 6. Configuring and Administering Network Files

Chapter 7. Commands for the Network Administrator

Chapter 8. Tunable Parameters

Reference
Chapter 9. Files

Chapter 10. TCP/IP Components

Chapter 11. Library Functions

Appendix A. Recommended Reading

Glossary

Index

iv

Notational Conventions
This manual uses these conventions:

• All numbers are decimal unless otherwise stated. Hexadecimal numbers include
the H radix character (for example, 0FFH) or a leading 0x (for example, 0x0FF).

• Bit 0 is the low-order bit unless otherwise stated.

• Syntax is printed like this.

• In interactive sessions, computer output is printed like this and
user input appears like this.

• System call names, command names, and processes like jobs or daemons
appear in bold.

Directory names and filenames are shown as seen from the iRMX prompt. To access
files from the DOS prompt on an DOSRMX system, use a backslash (\) in pathnames
rather than the forward slash (/) shown here.

Filenames are shown as they would appear on the iRMX or UNIX operating systems.
On an DOSRMX system using the EDOS file driver, some filenames are truncated to
match the DOS 8.3 character limits. For example, the arpbypass utility is installed as
arpbypas, and its associated help file is arpbypas.hlp. From the iRMX prompt you
can use either the truncated name or the full name to view such filenames or to
invoke utilities.

This manual uses this to indicate command syntax; do not enter these characters as
shown:

[] Surrounds optional items

| Separates one or more items, from which you choose one

italic A variable name. Do not enter as shown; substitute the appropriate
item, such as a command, value, or filename.

✏ Note
Notes indicate important information.

▲▲! CAUTION
Cautions indicate situations that may damage hardware or data.

TCP/IP for the iRMX Operating System Contents v

Contents

1 Overview of TCP/IP
Connecting to Network Resources... 1
Using TCP/IP Programs and Utilities .. 3
Administering TCP/IP ... 5
Programming with TCP/IP .. 5
Understanding Internet Addresses ... 6

Subnet Addresses.. 7
Special Addresses.. 7

Obtaining an Internet Address .. 8
Specifying Domain Names... 9

Request For Comment (RFC) Reports... 10

2 Installing and Starting TCP/IP
Before You Begin.. 11

Software Required.. 12
Hardware Required... 13
Overview of the Setup .. 13

TCP/IP Configuration.. 13
Editing the Hosts File ... 14

Using DNS .. 14
Not Using DNS ... 14

Configuring TCP/IP as a Loadable Job .. 14
Editing the tcpstart.csd File ... 15

Starting and Stopping TCP/IP .. 15
Testing the TCP/IP Setup ... 16

Troubleshooting... 16
General TCP/IP Debugging.. 16

Setting Up a Remote Unix Host for Telnet.. 17
Creating a Terminal Definition for the PC Console 17
Setting Terminal Characteristics for User Sessions.................................. 18

vi Contents

3 Using Telnet
Before You Begin.. 21
Telnet Modes... 21

Starting TELNET... 22
Starting in Input Mode .. 22
Starting in Command Mode .. 22

Switching Telnet Modes... 23
Using TELNET for a Remote Session... 23

Connecting to the Remote Host.. 24
Setting the Terminal Type on a Unix System.................................... 25
Terminal Type Strings... 25
Disabling Local Echo on Berkeley Unix Hosts 26

Entering Commands During the Session .. 26
Closing the Remote Connection ... 27

Using Telnet for a Local Session... 28
Entering Commands in a Local Session ... 28
Ending the Local Session ... 28

4 File Transfer Protocols
Before You Begin.. 29
File Transfer Protocol (FTP) ... 30

FTP Help Information .. 30
FTP File Transfer Session .. 31

Connecting to the Remote Host... 31
Using FTP Commands .. 32
Ending the FTP Session .. 35
FTP Initialization File ... 35

5 Network Services and Daemons
Ftpd Server .. 38
Telnetd Server ... 39

Configuring Pseudo-terminals for Telnetd ... 39

TCP/IP for the iRMX Operating System Contents vii

6 Configuring and Administering Network Files
Restricting and Updating Network Databases and Files 41

7 Commands for the Network Administrator
Administrative Commands .. 43
Performing Network Tests... 43

Verifying Network Services ... 44
Network Status Test .. 44

Verifying Network Configuration .. 45
Interface Status Test .. 45

Verifying Interface Functionality ... 46

8 Tunable Parameters
Determining When to Tune Parameters... 49
TCP/IP Parameters .. 50

[TCP]... 50
[UDP].. 50
[RIP].. 50
[IP] .. 50
[ETH0] .. 51
[LO0]... 51

TCP Job Parameters ... 51
UDP Job Parameters... 53
Raw IP Job Parameters... 54
IP Job Parameters ... 55
DNS Configuration Parameters .. 56
Network Interface Parameters .. 56
Loopback Pseudo-driver Interface Parameters ... 57

9 Files
hosts... 60
protocols .. 62
netrc... 64
services .. 66

viii Contents

10 TCP/IP Components
Protocol Jobs ... 70

ip.job .. 71
rip.job ... 72
tcp.job... 73
udp.job.. 74

Network Interface Controller (NIC) Jobs .. 69
loopback.job ... 70
edl.job... 71
eepro100.job... 72
ne.job.. 73
Tulip.job... 74

11 Library Functions
Using Sockets .. 78

Calling Sequence for Connection-oriented Applications.......................... 78
Calling Sequence for Connectionless Applications 79
Internet Socket Addresses .. 80
Network and Host Byte Order .. 81
Changes From the Standard Socket Interface... 82

Task Priority.. 82
Multitasking Considerations.. 82

Include Files ... 83
Example Programs ... 83
Compiling... 84
Handling Errors .. 84
Errno Values for Network Functions.. 84

Function Reference.. 87
accept ... 88
bind... 90
bstring... 92
byteorder .. 93
connect ... 94
ffs ... 96
gethostent ... 97
gethostid ... 100
gethostname.. 101
getnetent ... 102
getpeername ... 104
getprotoent.. 106
getservent ... 108

TCP/IP for the iRMX Operating System Contents ix

getsockname ... 110
getsockopt... 112
inet.. 115
listen ... 117
recv... 119
send .. 122
shutdown .. 124
socket.. 126
socktout .. 75

A Recommended Reading
TCP/IP... 77
NFS.. 77
Networks ... 78

Glossary ... 79

Index ... 87

Tables
Table 11-1. Functions in the Socket Library... 76
Table 11-2. Functions in the Network Library (continued)... 77

Figures
Figure 1-1. Hosts Connected on a Network .. 2
Figure 2-1. How TCP/IP Works with iNA 960 Software.. 12
Figure 3-1. TELNET Modes... 22

x Contents

TCP/IP for the iRMX Operating System Chapter 1 1

Overview of TCP/IP 1
TCP/IP programs are based on a set of protocols called Transmission Control
Protocol/Internet Protocol (TCP/IP). The TCP/IP suite of networking protocols
makes it possible for different brands of computers, running different operating
systems, to supply resources to network users.

This manual describes how to install, use, and maintain TCP/IP networking software
on your iRMX Operating System (OS). This software allows you to communicate
across a network with any other computer running TCP/IP software, regardless of its
operating system.

Connecting to Network Resources
Individual computers on a computer network are called hosts. TCP/IP software lets
you connect to various hosts on a network so that you can use their resources. The
computer you use to make your original connection to the network is the local host.
Any other computer on the network, regardless of its location, is a remote host.

Each host on a network is identified by a number, called an Internet address or IP
address, and an official name. Hosts can also have symbolic names, called aliases.
To access a remote host, you must specify either its Internet address, official name,
or a valid alias to network software.

The computer and software that originate a network command are the client, because
they request a network service. The computer and software responding to the request
are the server, because they provide the network service. Servers provide sharable
resources; the network gives shared access to many users.

Host configurations and sharable resources vary with individual networks. Check
with your network administrator to determine the layout of your network and the
resources available to you.

Figure 1-1 on page 2 illustrates network connections and possible resources. Print
Servers and File Servers have special responsibilities: they provide network printer
and file storage resources. iRMX systems cannot function as print servers. The host
labeled Gateway acts as a connection, or router, to other networks, whose resources
can also be accessed. iRMX systems that function as Gateways must be Multibus II
systems.

2 Chapter 1 Overview of TCP/IP

W-3402

Gateway

Ethernet Cable

Host

Host

Host

Host

Host

Host

To Other Networks

File Server

Print Server

Figure 1-1. Hosts Connected on a Network

TCP/IP for the iRMX Operating System Chapter 1 3

Using TCP/IP Programs and Utilities
To use TCP/IP programs and utilities, you enter network commands at the iRMX
command line. After you enter a command, TCP/IP software running on the local
host cooperates with TCP/IP software running on the remote host to handle your
transaction.

You can use iRMX TCP/IP programs and utilities in these ways:

• Network File System (NFS) support allows you to access remote devices on
hosts who use iRMX or non-iRMX operating systems.

• The telnet program connects to a remote host that runs a TELNET server.

• File Transfer Protocol (FTP) connects to a host that runs an FTP server and
transfers files between hosts.

The TELNET service, sometimes called the Virtual Terminal Program, provides
access to remote hosts on your network and allows you to use them as if your
terminal is directly connected to the remote computers. While TELNET is running,
you can submit commands to control the remote session and get information about it.
To connect to a remote host, you must have the appropriate authorization and know
how to use its OS.

See also: Chapter 3, Using TELNET;
telnet command, Command Reference

FTP transfers files between any two accessible network hosts supporting TCP/IP,
regardless of their OSs. FTP accepts user commands to control the transfer process
and perform additional operations. You don't need to know the OS on the remote
host in order to use FTP. However, you must know the pathnames, filenames, and
names of hosts involved in the transfer.

See also: Chapter 4, Using File Transfer Protocols;
ftp command, Command Reference

TCP/IP includes query commands such as hostid, hostname, netstat, and
showmount. The hostid command displays or sets the Internet address of the local
system. The hostname command displays or sets the system name. The netstat
command symbolically displays the contents of network-related data structures to
show the status of active connections (default), configured interfaces, routing tables,
network statistics, STREAMS buffer allocation failures, and packet traffic. The
showmount command reports information on NFS-shared file systems.

See also: hostid, hostname, netstat and showmount commands, Command
Reference

4 Chapter 1 Overview of TCP/IP

Trivial File Transfer Protocol (TFTP) transfers publicly readable files to and from a
remote host. It requires no remote login. However, you must know the pathnames,
filenames, and names of the hosts involved in the transfer.

See also: Chapter 4, Using File Transfer Protocols;
tftp command, Command Reference

The Remote Copy, or rcp, command copies files between TCP/IP hosts that support
the Berkeley R-series commands. Files can be copied between your local host and a
remote host, or between two remote hosts in the network. Rcp will copy multiple
files from directories on the source host to equivalent directories on the destination
host. Rcp differs from FTP in that it uses an automatic login validation procedure,
can be used only to copy files, and does not provide interactive session control. To
use rcp you must have authorization to use the remote host.

See also: Chapter 5, Network Services and Daemons;
rcp command, Command Reference

The Remote Shell, or rsh, command executes a command or program on remote
hosts that support the Berkeley R-series commands. Rsh differs from rlogin in that it
executes only one command at a time. When a foreground command finishes
processing, or when a background command has been initiated, rsh terminates and
returns control to your local host. To use rsh you must have authorization to access
the remote host.

See also: Chapter 5, Network Services and Daemons;
rsh command, Command Reference

The Remote Login, or rlogin, command establishes a connection to a remote host
that supports the Berkeley R-series commands. You can then use the remote host as
if your terminal were directly cabled to it. Sessions with rlogin are similar to those
with TELNET, except that rlogin uses an automatic login validation procedure and
does not accept user commands for controlling the remote session.

TCP/IP for the iRMX Operating System Chapter 1 5

To use rlogin, you must have authorization to access the remote host and know how
to use its operating system.

See also: Chapter 5, Network Services and Daemons;
rlogin command, Command Reference

The ruptime command is a Berkeley R-series command that prints a table containing
status information for each host on the network that runs the rwhod daemon. The
command obtains its information from a report supplied by each host on the local
area network (LAN) every three minutes.

See also: Chapter 5, Network Services and Daemons;
ruptime command, Command Reference

The rwho command is a Berkeley R-series command that prints the host name, login
name, terminal number, and login time for each user on the LAN. The output from
this command is similar to that from the Unix system who command, but includes
users on other network hosts.

See also: Chapter 5, Network Services and Daemons;
rwho command, Command Reference

Administering TCP/IP
Chapter 2 describes a minimal configuration needed to start using TCP/IP. There are
other files you can configure and special commands to control and test the
configuration. If you are the network administrator or are configuring your own host
machine, you should understand how to use these files and commands.

For example, one item you can configure is an FTP server (called the ftpd daemon).
You can set it up so remote hosts can use FTP to transfer files to and from your local
host.

See also: Chapter 2, Installing and Starting TCP/IP;
Chapters 6 through 9

Programming with TCP/IP
There are two general types of programmatic interface to TCP/IP software: the TLI
calls defined by Unix System V operating systems and socket calls made popular by
Berkeley Unix. The iRMX implementation provides a socket interface. You can
write applications that make both iRMX system calls and socket calls, or you can
port existing socket applications to this interface.

See also: Chapter 10, TCP/IP Components

6 Chapter 1 Overview of TCP/IP

Understanding Internet Addresses
To make entries in the configuration files you need to understand the format of
Internet addresses. You will also use either Internet addresses or host names (and
aliases) that represent addresses when communicating with remote systems. If you
already know the format of Internet addresses and names that represent them,
proceed with the installation and configuration instructions in Chapter 2.

The Defense Advanced Research Projects Agency (DARPA) Internet protocol family
is a collection of protocols that utilize the Internet address format. This family
includes the Transmission Control Protocol (TCP), Internet Protocol (IP), Internet
Control Message Protocol (ICMP), and User Datagram Protocol (UDP). A raw
interface is also provided to IP and ICMP.

Internet addresses are also called IP addresses; they use the IP routing protocol. An
IP address is a 4-byte quantity. It is a (net,host) pair, where net identifies a network
and host identifies a host on that network. There are three basic classes of address, as
distinguished by the high-order bits of the address. Class A addresses use an
8-bit net and a 24-bit host; the high-order bit is 0. Class B addresses use a 16-bit net
and a 16-bit host; the high-order bits are 10. Class C addresses use a 24-bit net and
an 8-bit host; the high-order bits are 110.

Because of the size of the host part of an address, the different classes of address
correspond to networks of varying size. The format of the addresses is shown below,
along with the number of hosts possible in each class:

A

B

C

Byte
1

Byte
2

Byte
3

Byte
4

Host

10 Net Host

110 Net

High-order bits

16,777,214

65534

254

OM03651

Net

Host

0

Class Number of Hosts

The dot notation form of an Internet address consists of one to four numbers
separated by dots (.). Each number can be expressed in decimal, octal (leading 0), or
hexadecimal (leading 0x).

The most common format is a four-part address (a.b.c.d), consisting of four 8-bit
decimal numbers in the range 0-255. This is called dotted-decimal notation. The
four parts are assigned, in order, to the four bytes in the Internet address.

See also: inet function, Chapter 11, for more information about dot notation

TCP/IP for the iRMX Operating System Chapter 1 7

You can distinguish between the classes of address by the first number of a dotted-
decimal address. Class A addresses begin with numbers in the range 1-126. (Value
127 is a special case used for the loopback device, described later in this manual.)
Class B addresses begin with numbers in the range 128-191. Class C addresses begin
with numbers in the range 192-223 (there are other special classes of network in the
range 224-255).

Once you know the class of an address, you can tell which part of the address
specifies the network and which specifies the host. For example, in a Class A
address, the first byte is the network number and the last three bytes specify the host.
In the address 89.3.240.9, the network is number 89, and the host is number 3.240.9
on that network. The host address is 89.3.240.9, because it must be specified in terms
of its network. The network address is 89.0.0.0, which can be interpreted as any host
on that network.

See also: hosts and networks files, Chapter 9

✏ Note
iRMX TCP/IP does not support IP multicast addressing (or IP
multicasting or multicast addressing).

Subnet Addresses
Sites may implement subnet addressing to accommodate a cluster of local networks.
Subnet addressing further divides the local host portion of the address into a subnet
part and a host part. Within the local cluster, each subnet appears to be an individual
network; externally, the entire cluster appears to be a single network. In the example
address 89.3.240.9, you might choose to use one byte of the host part to designate
subnets. In that case, you would interpret the host to be number 240.9 on subnet 3 of
network 89.

You enable subnet addressing by specifying a subnet mask for a network interface
and by using the subnet mask when setting up the routes to each subnet.

See also: ifconfig and route commands, Chapter 9

Special Addresses

Addresses of all 0s or all 1s are special cases and are not assigned to hosts. The
address 0.0.0.0 means the local host. The address 255.255.255.255 broadcasts to all
hosts on the network to which you are directly connected. An address with the host
part set to all 1s broadcasts to all hosts on a specific network.

8 Chapter 1 Overview of TCP/IP

In a program, use the local address INADDR_ANY to do wildcard matching on
incoming messages and to mean the local host on outgoing messages. Use the
distinguished address INADDR_BROADCAST to broadcast on the primary network
interface if it supports broadcast. These and other Internet-specific data types are
defined in the include (header) file <netinet/in.h>. This file is installed in the
/intel/include directory.

Obtaining an Internet Address
On any network that is connected to the Internet, you must obtain a block of Internet
addresses from a central authority, the InterNIC Registration Services. This prevents
you from using the same Internet address as someone else on the Internet.

The InterNIC issues a network number whose class is appropriate for the size of your
local network. Your organization is responsible for issuing and maintaining the host
ID part of the address on local systems.

▲▲! CAUTION
Do not use any of the example Internet addresses shown in this
manual as your host address. Always use addresses in the network
range assigned to you.

Because of the growing popularity of the Internet, available addresses are becoming
scarce. It may be necessary for you to have a sponsoring organization that is already
on the Internet. The sponsor would assign your organization a subnet address within
the sponsor's network address.

You can use TCP/IP software without an official Internet address on a network that is
not connected to the Internet. However, it is a good precaution to proceed as if you
intend to connect to the Internet. These are the numbers and addresses for the
InterNIC Registration Services:

User Assistance Service
1-703-742-4777

On-line Mailboxes HOSTMASTER@RS.INTERNIC.NET
Host, domain, network changes, and updates

ACTION@RS.INTERNIC.NET
Computer operations

MAILSERV@RS.INTERNIC.NET
Automatic mail service

Anonymous FTP RS.INTERIC.NET IP address 198.41.0.7
log in as ANONYMOUS, with password GUEST

TCP/IP for the iRMX Operating System Chapter 1 9

Postal address Network Solutions
Attn: InterNIC Registration Services
505 Huntmar Park Drive
Herndon, VA 22070

Specifying Domain Names
You often use an alias to specify a host, not an IP address. The /etc/hosts file is one
method used to translate between names and addresses. The iRMX TCP/IP software
does not include a Domain Name Service (DNS) server, which is another method
used to translate the names. However, it does include a DNS client. The client
contacts any DNS servers running on other hosts on the network and uses their name
translation services. This section briefly describes the format of domain names,
which is the naming convention generally used for TCP/IP.

The Internet authorities maintain several domains, including:

arpa used by ARPANET

com commercial organizations

edu educational institutions

mil military groups

Within the major domains, Internet authorities assign subdomains for use by
organizations. Local authorities in the organizations then assign machine names and
possibly further subdomains.

You specify domain names with dotted notation; myhost.mydept.mycompany.com is
an example. In this name, myhost is the name of the host computer, mydept is a
subdomain assigned by a company, mycompany is a subdomain assigned to that
company, and it is in the com domain because it is a commercial organization. This
is an example of a fully-qualified name, beginning with the host name and ending
with the Internet domain. The name myhost is qualified by its domain
mydept.mycompany.com. Each name must be unique within its domain; there cannot
be two mydept names (of either a host or subdomain) within mycompany.

In a local network you need only a host name to communicate between systems.
However, to communicate by name with hosts on the Internet, you may want to
specify the complete domain names as their official names in your /etc/hosts file.

Request For Comment (RFC) Reports
The Internet community uses RFCs to discuss and define TCP/IP. This manual refers
to certain RFCs by number for protocol definitions and details. You can get RFCs in
electronic format from the InterNIC Information Services.

10 Chapter 1 Overview of TCP/IP

Anonymous FTP NIS.NSF.NET IP address 35.1.1.48
RFC index /internet/documents/rfc/INDEX.rfc

NISC.JVNC.NET IP address 128.121.50.7
VENERA.ISI.EDU IP address 128.9.0.32
WUARCHIVE.WUSTL.EDU

IP address 128.252.135.4
NIC.DDN.MIL IP address 192.112.36.5

On all hosts, log in as ANONYMOUS, with password GUEST
or, if requested, your net address.

On-line Mailboxes rfc-info@ISI.EDU Send the message
"help: ways_to_get_rfcs". For example:

To: rfc-info@ISI.EDU
Subject: getting rfcs

help: ways_to_get_rfcs

Info@is.internic.net

■■ ■■ ■■

TCP/IP for the iRMX Operating System Chapter 2 11

Installing and Starting TCP/IP 2
To use TCP/IP software, install it on your system's hard disk along with the iRMX
OS, using the general installation instructions for the OS. Edit text files to configure
the system for your network, following the TCP/IP software requirements and
configuration instructions in this chapter, and then start the network jobs. This
chapter provides additional software requirements and configuration instructions for
TCP/IP. This chapter does not describe the hardware installation or setup.

See also: Installation and Startup for installation instructions

Before You Begin
During the installation, some new files replace existing files of the same name. The
old files are saved in a different directory. If you install over a previous version of
TCP/IP software, there may be old versions of configuration files that you want to
merge with the new files.

▲▲! CAUTION
If you install over a previous version, unload the TCP/IP jobs first.
Do not allow the installation to overwrite the files in /rmx386/jobs
while TCP/IP is running. If this happens, restore the files from the
installation disks.

Existing configuration files are preserved during installation, but it is a good
precaution to back up your entire hard drive to tape before beginning the installation.

Chapter 2 Installing and Starting TCP/IP12

Software Required
Figure 2-1 on page 12 shows the relationship between TCP/IP software and the iNA
960 software. The two separate stacks are the two sets of network protocols that can
operate simultaneously when you run iNA 960 software, an iRMX network job, and
TCP/IP software. In the middle of the figure, note that the EDL NIC driver provides
the direct interface between iNA 960 software and the TCP/IP NIC driver. Although
the figure shows multiple NICs, in most systems you only use one.

See also: Network User's Guide and Reference for more information about the
layers and multiple subnets in iNA 960 software

See also: Configuring and Administering Network Files, Chapter 6

RMXNET or iNA
applications
(optional)

TCP/IP
applications

TCP/IP jobs

(TCP, UDP, IP, RIP)

Transport layer of
iNA 960

Subnet driver

EDL
NIC driver

NIC driver

RMXNET

itcpkern.job iNA960
software

TCP/IP Stack ISO Stack

Hardware Hardware

Figure 2-1. How TCP/IP Works with iNA 960 Software

TCP/IP for the iRMX Operating System Chapter 2 13

Hardware Required
TCP/IP can run on any system supported by the required iRMX software.

The NIC must be one supported by the NIC driver software.

See also: Tunable Parameters, Chapter 8;
i*.job and clib.job, System Configuration and Administration;
Hardware Environments, Network User's Guide and Reference

Overview of the Setup
To begin using the TCP/IP software:

1. Install the iRMX OS software.

2. Configure the TCP/IP software by editing the tcp.ini configuration file.

3. Load the TCP/IP jobs with the sysload command.

4. For servers, optionally start the daemons required to support TCP/IP commands:
ftpd and telnetd.

5. If users will run telnet from a PC console to a UNIX host, set up the remote
UNIX host to support the RMXPC terminal type.

TCP/IP Configuration
TCP/IP can run as a job loaded with the sysload command. Configuring TCP/IP
involves editing one or more of these ASCII text files:

• Hosts file

• tcpstart.csd

•

The purpose of each file is explained in more detail later in this manual, but the
instructions here will get you started using TCP/IP.

The files are installed in :CONFIG: directory. Edit the files while logged in as the
Super user. On a multiuser machine, access to these files should be restricted to a
network administrator.

The network administrator for your organization should assign the name and address
values described here. If you are the network administrator, you must assign and
keep track of unique values within the network and domain given you by the
InterNIC Registration Services.

See also: Understanding Internet Addresses, Chapter 1

Chapter 2 Installing and Starting TCP/IP14

Editing the Hosts File
For any TCP/IP communications you can specify an IP address for a remote host or
obtain the address from one of two places: the :CONFIG:hosts database or the
Domain Name Service (DNS).

✏ Note
The iRMX TCP/IP software does not include named, the DNS
server. However, it does include a DNS client. Another system
running an OS like Unix must provide the DNS server.

The client contacts any DNS name server running on the network and uses its name
translation services to get the IP address. Regardless of whether you use DNS or not,
you must edit the :CONFIG:hosts file.

See also: gethostent, Chapter 11 for more information on DNS;
:CONFIG:hosts, Chapter 9

Using DNS

TCP/IP applications may use a DNS client to get an IP address associated with a
name from the DNS server on the network. If you choose to use the DNS server, you
need to specify only the local host name in the :config:hosts file. You also need to
edit the DNS section of the tunable parameters file to configure the DNS client.

See also: Tunable Parameters, Chapter 8;
gethostent, Chapter 11

Not Using DNS

If you don’t use DNS, add one line to :config:hosts for each system on your network,
including the local host. Each line must have at least these two entries:

IP_address official_name

Specify the official name of the host machine, using a fully-qualified domain name if
you have one. You can add alias names on the same line after the official name.

Configuring TCP/IP as a Loadable Job
To configure TCP/IP as loadable jobs (loaded by the sysload command), you need
check the contents of the :config:tcpstart.csd and :config:inetinit.cf files.

TCP/IP for the iRMX Operating System Chapter 2 15

Editing the tcpstart.csd File

For TCP/IP jobs loaded with the sysload command, edit the :config:tcpstart.csd file.
This file is an esubmit file that sets values and starts jobs needed to run TCP/IP
software. The next few subsections describe the changes you need to make in
:config:tcpstart.csd.

Configuring the Interfaces

To configure the interfaces you use, edit the :config:tcp.ini file. You must change
the address and mask values to be appropriate for your host and network.

See also: Tunable Parameters, Chapter 9

Starting and Stopping TCP/IP
To load TCP/IP with the sysload command, you need to submit a file to start the
jobs. (This assumes that you have already installed a NIC.) You can submit the file
yourself at the iRMX prompt while logged in as Super. Or, you can place the
commands in startup files so that the file is submitted automatically every time you
boot the system.

The submit command is:

esubmit :config:tcpstart
In addition to the entries described in the earlier Configuration section,
the tcpstart.csd file also starts the TCP/IP kernel as a set of loadable
jobs. By default, this command appears as a comment in the
:config:r?init2 startup file. To automatically submit the file every time
the system boots, remove the semicolon character at the start of the line.

✏ Note
Do not place commands that prompt for keyboard input in any of
the configuration files :config:loadinfo, :config:r?init, or
:config:r?init2. Running commands from the :config:r?init2 file
can make booting a little slower.

To stop TCP/IP without shutting down the system, you can submit the :config:tcpstop
file. Before unloading TCP/IP, make sure that there are no TCP/IP servers or clients
running.

submit :config:tcpstop
The :config:tcpstop.csd file provides an orderly shutdown of the TCP/IP
jobs and applications. It unloads tcp.job, udp.job, rip.job, ip.job, and
NIC driver jobs.

Chapter 2 Installing and Starting TCP/IP16

Testing the TCP/IP Setup
Test the TCP/IP software and its connection to the network by issuing this command:

ping loopback 56 3

This command sends packets on the network to the local machine. It tests both
TCP/IP and the network hardware; TCP/IP must be able to send and receive packets
to display a message similar to this:

PING loopback: 56 data bytes

64 bytes from IP_address: icmp_seq=0. time=0 100th of sec

64 bytes from IP_address: icmp_seq=1. time=0 100th of sec

64 bytes from IP_address: icmp_seq=2. time=0 100th of sec

----loopback PING Statistics----

3 packets transmitted, 3 packets received, 0% packet loss

round-trip (100th of sec) min/avg/max = 0/0/0

Notice the next-to-last line, indicating that all the packets sent were received.

If this command succeeds, test the connection to other hosts on the network. Repeat
the ping command, specifying the remote host's name or address instead of
loopback. To use names, you must configure the name-to-address translation in the
:config:hosts file or from the DNS server as described earlier.

If you enter the ping command without the numeric values, it continues sending
packets until you interrupt it with a <Ctrl-C>.

See also: Network Tests, Chapter 9, for other tests you can perform
ping command, Command Reference

Troubleshooting
Problems can occur at several different levels. For example, TCP/IP may have failed
to install correctly. This in turn causes jobs dependent on TCP/IP to not load
correctly. This section provides some general troubleshooting guidelines and
explains some specific error conditions.

General TCP/IP Debugging
Follow these ordered steps to try and isolate TCP/IP problems:

1. Try to execute some of these commands:

netstat -i

netstat -a

If you get errors then perform steps a through c.

TCP/IP for the iRMX Operating System Chapter 2 17

If these commands execute correctly, you can assume that TCP/IP is loaded and
running. Steps a through c do not apply.

a. Check the messages in :config:r?init2.log, the log file of the :config:r?init2
file. Be sure that r?init2 submitted the file :config:tcpstart.csd and that all
the commands in the submit file ran properly.

b. Check the hostid and hostname settings in :config:tcp.ini to be sure they
are correct.

c. Check the :config:hosts file to be sure your hostname is there with the
correct IP address.

2. If you are having trouble with telnet try the following:

a. Check the pttydrvnn.log, where nn is the slot number of the client board.

b. Enter initstatus and see if any ttyp_* are available and not locked.

Setting Up a Remote Unix Host for Telnet
Once the ping command succeeds, TCP/IP is set up and ready to support file transfer
via the File Transfer Protocol (FTP) or the Trivial File Transfer Protocol (TFTP).
Before you can begin remote login through the telnet command, however, you may
need to do additional setup on the remote Unix host.

Creating a Terminal Definition for the PC Console
To run any Unix program that supports cursor movement (any program using the
curses library, such as the vi editor) you must set a TERM environment variable that
matches your iRMX terminal. If you make a connection through the telnet or rlogin
commands from any standard terminal, the Unix host should already have a matching
terminal type definition. However, to use telnet or rlogin from a PC console
(:d_cons:) you need to define a new terminal name, RMXPC. This procedure
modifies system files on the remote Unix host, which requires root privileges. If
necessary, contact your Unix system administrator for assistance.

To set up the RMXPC terminal definition:

1. Copy :config:termcap.rmx and :config:terminfo.rmx from the iRMX host to /etc
on the Unix host. Use FTP or some other method.

2. Log into the Unix host as root.

3. Edit the existing termcap file to add the contents of termcap.rmx. (If you are
sure that users will be running only applications that use terminfo, instead of
termcap, you can skip this step. But if there is any doubt, perform this step.)

Chapter 2 Installing and Starting TCP/IP18

4. Run this command:

tic terminfo.rmx

If your system does not have a tic command, skip this step.

Setting Terminal Characteristics for User Sessions
When iRMX users remotely log into a Unix host, the telnet or rlogin commands
change the Unix terminal type to the name of the iRMX terminal. If the Unix host is
set up to support that terminal type, and the Unix account does not reset the terminal
type, nothing more is necessary.

However, Unix accounts that are also used for local logins need to set the terminal
type during initialization. This overwrites the telnet or rlogin terminal setting.
Because the remote iRMX terminals and local Unix terminals are likely to be
different, the best way to handle this is to prompt for the terminal type.

Use this procedure to set up Unix user accounts for users who use the telnet or rlogin
commands. You may need to experiment; the specifics vary for different shells and
versions of Unix. If you need help, ask your Unix system administrator.

1. Check that the Unix host is set up to support the required terminal types and that
the terminal names are exactly the same on the Unix and iRMX OS. The
possible names include:

• Standard terminals, like wyse50

• RMXPC for the PC console, as discussed earlier

2. Edit the initialization file in each user's home directory. For those who use the
Bourne shell, bash, or Korn shell, the file should be $HOME/.profile, and for C
shell users, $HOME/.login.

• Set up handling of the terminal type. If the account will only be used for
logins via telnet or rlogin, comment out any reference to terminal type,
such as:

setenv TERM

TERM =

export TERM

Or, if the account will be used for both remote and local logins, set up a
prompt for the terminal type. This simple example for the Bourne shell
.profile produces a prompt:

echo "TERM=\c"

read TERM

TCP/IP for the iRMX Operating System Chapter 2 19

• Define the interrupt sequence, erase sequence, and tab settings for the
potential terminal types. This Bourne shell example for the RMXPC
terminal sets the interrupt to <Ctrl-C> and erase to , and sets tab
expansion.

if[$TERM = "RMXPC"]

then

stty intr ^C erase ^? -tabs

fi

See also: Documentation for your Unix system

■■ ■■ ■■

Chapter 2 Installing and Starting TCP/IP20

TCP/IP for the iRMX Operating System Chapter 3 21

Using Telnet 3
With TELNET you can log in to a remote host as if your terminal were directly
cabled to it. TELNET provides reliable, virtual terminal communication with any
network host that supports the TCP standard, regardless of the host's OS. The remote
host must implement a TELNET server.

Before You Begin
Before you begin a TELNET session on a remote host, you must know:

• A user login name and password on the remote host

• One of the valid names for the remote host: its Internet address, its official host
name, or its alias

You can get valid host names and addresses from your :config:hosts file.

The remote host must have a TELNET server process, telnetd, and be listening for
TELNET requests. If you need additional information or help setting up a remote
host login, see your network administrator.

Telnet Modes
TELNET operates in two modes: input mode and command mode. In input mode,
you log in and enter OS commands, which are processed by the OS on the remote
host. In command mode, you enter TELNET commands, which are processed by the
TELNET program on the local host.

You can start the TELNET program in either mode and switch between modes during
a TELNET session.

Chapter 3 Using TELNET22

Figure 3-1 shows how commands are processed in input mode and in
command mode.

W-3403

TELNET
(Client)

Command Mode

User
Entries

Local Host

TELNET
(Server)

Remote Host

TELNET

Local Host

Input Mode

User
Entries

Figure 3-1. TELNET Modes

Starting TELNET
You can use this command to start TELNET and connect to any other remote host:

• telnet

Starting in Input Mode

To start TELNET in input mode enter telnet hostname at the iRMX prompt,
specifying the name of the remote host to which you want to connect. If TELNET
connects to the host, you are prompted to log in. After you log in, any commands
you enter are processed by the remote host. The input mode prompt is the remote
host's OS prompt. When you exit the remote session, the TELNET program
terminates, and you are returned to the OS prompt on the local host.

Starting in Command Mode

To start TELNET in command mode, enter telnet at the iRMX prompt. The
TELNET program starts and displays the command mode prompt, telnet>. It does
not attempt to connect you to a remote host; in command mode you enter TELNET
commands that are processed by the local host. From the telnet> prompt, you can
use the open command to connect to a remote host in input mode. If you open a
remote session in this way, you will be returned to command mode when you close
the session.

TCP/IP for the iRMX Operating System Chapter 3 23

Switching Telnet Modes
To switch from input mode to command mode, enter the current TELNET escape
character, followed by a carriage-return. The default escape character is ^]
(control]) . You can change the escape character with the TELNET escape
command. The telnet> prompt confirms that you have entered command mode.
You can specify several options on the telnet command line.

To switch back from command mode to input mode, enter a <CR> at the command
mode prompt. At this point you can resume what you were doing before you entered
command mode.

Using TELNET for a Remote Session
When you use TELNET for a remote session, you establish a virtual terminal
connection to the remote host. The remote host gives you the same privileges and
capabilities as it does for users with terminals directly cabled to it. While you are
working on the remote host, your session with the local host is maintained.

The procedure for conducting a remote TELNET session consists of three general
steps:

1. Connecting to the remote host

2. Entering commands during the session

3. Closing the remote connection

Chapter 3 Using TELNET24

Connecting to the Remote Host
You can begin a remote session at the iRMX system prompt or at the TELNET
command mode prompt. In either case, the TELNET client process in your local host
activates a TELNET server process in the remote host to service your session.

You specify a remote host by its Internet address, its official name, or an alias name.
To connect to a remote host named host2 at Internet address 128.215.12.21, you
could use either of the command methods shown below to open the connection. You
could use either form of the name in either command:

From the iRMX Prompt From the TELNET Prompt
- telnet 128.215.12.21
- telnet telnet> open host2

If the attempt succeeds, your screen displays a connection message and the remote
host login prompt. The connection message includes information about the TELNET
session, including the current escape character. The output from the above
commands is similar to this:

Trying 128.215.12.21 ...

Connected to 128.215.12.21.

Character mode is enabled.

Escape character is ^].

UNIX System V Release 3.2 (host2.intel.com)

login:

If all ptty devices are in use and a TELNET request comes in, telnetd will send the
following error back to the client:

No ptty devices available at this time.

Regardless of the reason, if the connection attempt does not succeed, you are returned
to the telnet> prompt and are requested to log in. This cycle repeats until you
successfully log in or until you close the TELNET session with the ^]quit command,
where ^] is the current escape character.

TCP/IP for the iRMX Operating System Chapter 3 25

Setting the Terminal Type on a Unix System

When you log in to a Unix host, TELNET changes the Unix terminal type to the
name of your iRMX terminal. If the Unix host is set up to support that terminal type,
and your Unix account does not reset the terminal type, you do not need to do
anything more.

Some Unix accounts, however, reset the terminal type during initialization. This
overwrites TELNET's terminal setting. If a terminal prompt appears when you log
in, respond with the name of your iRMX terminal. For example, if you are working
at a Wyse 50 terminal, specify:

TERM = wyse50

If you are using the PC console as your iRMX terminal, the terminal type is RMXPC.
For ICU-configurable iRMX OS with Multibus II and the iSBX 279 Graphics
Module, the terminal type is i279. If the system does not recognize your terminal
type, see your Unix system administrator.

Sometimes the initialization file automatically sets a predetermined terminal type.
TELNET will not work properly with this setup, unless the terminal type happens to
be the same as your iRMX terminal. If you suspect this has happened, check your
current terminal type:

echo $TERM

If you need to reset the terminal type, it is best to do it in your initialization file.
Otherwise, the problem will happen again every time you log in. If you need help,
ask your Unix system administrator.

See also: Setting Up a Remote Unix Host for Telnet and Rlogin, Chapter 2, for
initialization file setup

Terminal Type Strings

iRMX supports terminal type lengths of six characters or less. When a TELNET
session begins, the client passes a string representing the terminal type to the server.
If a client with a terminal type of more than six characters tries to connect to a
telnetd/rlogind server running on iRMX, the following warning displays at the
client end:

Terminal type too long for iRMX, try another

Chapter 3 Using TELNET26

Disabling Local Echo on Berkeley Unix Hosts

When you connect to a TELNET server on a Berkeley Unix host, before any other
commands, you need to enter the TELNET localecho command. This is a toggle that
turns local echo off. Use the instructions for entering TELNET commands in this
section.

Entering Commands During the Session
During the remote session, you can enter input mode commands at the remote host's
OS prompt or command mode commands at the TELNET prompt.

At the remote OS prompt, enter any command that is appropriate for that
environment. The local host will pass your commands to the remote host for
processing without interpreting them.

To enter TELNET commands, switch to command mode by entering the escape
character, followed by a space. The system displays the telnet> prompt. At the
prompt, type your command, then press <Enter>. You can enter any of the TELNET
commands in this manner. TELNET processes your command, then returns to input
mode so you can continue your remote session.

This example uses the escape character ^] and the TELNET status command during
a remote host session. The $ is the remote OS's prompt. Unlike the way it is shown
here, the escape character does not appear on your screen when you enter it.

$ ^]

telnet> status

Connected to host2.intel.com.

Character mode is enabled.

Escape character is ^].

$

TCP/IP for the iRMX Operating System Chapter 3 27

There are several other TELNET commands that let you control options for the
TELNET session. Use the TELNET ? command to list all the commands and their
descriptions:

telnet> ?

Commands may be abbreviated. Commands are:

close close current connection

logout forcibly logout remote user and close the

connection

display display operating parameters

mode try to enter line or character mode ('mode ?' for

more)

telnet connect to a site

open connect to a site

quit exit telnet

send transmit special characters ('send ?' for more)

set set operating parameters ('set ?' for more)

unset unset operating parameters ('unset ?' for more)

status print status information

toggle toggle operating parameters ('toggle ?' for more)

slc change state of special charaters ('slc ?' for

more)

! invoke a subshellenviron change environment

variables ('environ ?' for more)

? print help information

See also: telnet command, Command Reference

Closing the Remote Connection
To close a connection to a remote host, you can:

• Enter the TELNET quit command

• Use the remote host's logout procedure

• Enter the TELNET close command

The quit command releases your remote connection, stops the TELNET client and
server processes on both hosts, and returns you to the OS prompt on your local host.

The remote host logout procedure and the close command have the same effect as the
quit command if you connected to the remote host from input mode (the iRMX
system prompt). If you connected to the remote host from command mode (the
telnet> prompt), you are returned to the telnet> prompt on your local host.

Chapter 3 Using TELNET28

Using Telnet for a Local Session
It is sometimes convenient to use the TELNET program locally without a connection
to a remote host. For example, you might want to use TELNET locally to get
information about its commands or to set up a new configuration (such as defining a
new escape character) before you begin working on a remote host.

Whenever you use TELNET without a connection to a remote host, TELNET is in
command mode and the telnet> prompt is displayed. You can enter only TELNET
commands, not OS commands. To start the TELNET program without a remote host
connection, enter the telnet command without a hostname parameter:

- telnet

telnet>

Entering Commands in a Local Session
During a local session you can enter any of the TELNET commands except close.
This command is valid only when you are connected to a remote host.

The status command prints information about the current TELNET session. In this
example, it identifies the host's escape character:

telnet> status

No connection.

Character mode is enabled.

Escape character is '^]'.

telnet>

Ending the Local Session
To end a local TELNET session, enter the quit command at the telnet> prompt.
The TELNET process ends and you are returned to the iRMX system prompt on your
local host.

■■ ■■ ■■

TCP/IP for the iRMX Operating System Chapter 4 29

File Transfer Protocols 4
TCP/IP for the iRMX OS includes implementations of two file transfer protocols:
FTP. Each provides a different degree of security, reliability and functionality.

File Transfer Protocol (FTP) is the most powerful file transfer program available
among the standard TCP/IP protocols and is, therefore, preferred by many users.

Before You Begin
Before you begin a file transfer session, you must know:

• A user login name and password on the remote host

• One of the valid names of the remote host: its Internet address, its official name,
or its alias

You can get information about valid remote host names from the :config:hosts file,
which lists the Internet address, official name, and aliases for each host on the
network.

If you need additional information or help setting up a remote host login, see your
network administrator.

Chapter 4 Using File Transfer Protocols30

File Transfer Protocol (FTP)
FTP lets you transfer accessible files between your local host and a remote host that
supports TCP/IP. You don't need to know the remote host's OS to transfer files. FTP
is implemented entirely as a command line interpreter, where the commands are
processed by the FTP client process on the local host.

During an FTP session, you enter commands to the FTP process to control the file
transfer and manage the files and directories on the remote host. For example, you
can issue FTP commands to open and close a remote host connection, delete remote
files, or create new directories on the remote host.

Some FTP commands, such as bell, debug, and help, are processed completely by
the FTP client process on the local host. These commands can be executed with or
without an established connection to an FTP server process on a remote host.
However, most FTP commands require a connection. These commands are
translated by the FTP client process into one or more FTP protocol commands, which
the client sends to the FTP server process on the remote host for processing. The
FTP server, called ftpd, is described later in this manual.

As with TELNET, you can start FTP without making a connection to the remote host,
using this command at the iRMX prompt:

ftp

or you can start FTP and open the remote connection with the command

ftp hostname

In either case the FTP client process starts and displays its prompt, ftp>. You can
now enter FTP commands as described in these sections.

See also: ftp command, Command Reference

FTP Help Information
For on-line information about FTP commands, enter ? to list all the commands and
their descriptions. Use ? command_name for a description of a single command.

See also: ftp, Command Reference, or Quick Reference to TELNET and FTP for
descriptions of all FTP commands

TCP/IP for the iRMX Operating System Chapter 4 31

FTP File Transfer Session
An FTP file transfer session consists of three general steps:

1. Connecting to the remote host

2. Using FTP commands

3. Ending the FTP session

Connecting to the Remote Host

In most cases, you begin a file transfer session by entering a command to establish a
connection to a particular remote host. Upon receipt of your command, the FTP
client process on your local host activates an FTP server process on the remote host
to service the session. If you did not invoke FTP with a hostname parameter, you
establish a connection with the open command at the ftp> prompt.

Specify hostname as the Internet address, official name, or alias of the remote host.
To connect to a remote host named host2 at Internet address 128.215.12.21, you
could use either name in either of the command methods shown below:

From the iRMX Prompt From the FTP Prompt
- ftp 128.215.12.21

- ftp ftp> open host2

FTP attempts to connect you to the specified remote host. If the connection is
established, FTP prompts you to log in. The message is similar to this:

Connected to host2.intel.com.

220 host2.intel.com FTP server (Version 1.2 May 02 1992)

ready.

Name (host2.intel.com:acct):

If the connection cannot be established, you are returned to the ftp> prompt.

When a connection is established, FTP prompts you to begin the remote host's login
procedure. You must use a valid login name and password to gain access to the
remote host. If you need help with logging in, see your system administrator.

When the login is successfully completed, FTP again displays the ftp> prompt. You
can begin entering file transfer commands.

Chapter 4 Using File Transfer Protocols32

If the login is not successful, FTP displays a message to that effect and returns you to
the ftp> prompt. At this point you are still connected to the remote host. To log in,
enter:

ftp> user name

where name is your user name on the remote host. You are then prompted for your
password.

You can automate the FTP login procedure to make it more convenient with a netrc
file.

See also: FTP Initialization File, in this chapter

Using FTP Commands

Two commands commonly used for file transfer, the put and get commands, are
described here. Several other FTP commands can be used to manage files and
directories on both the local and remote hosts during a session. For example:

• The commands dir, ls, and mls provide you with listings of the files and
directories on the remote host.

• The commands lcd and cd enable you to change directories on the local and
remote hosts, respectively.

• The commands mkdir and rmdir enable you to create or delete directories on
the remote host.

See also: ftp command, Command Reference, for descriptions of these FTP
commands

Put Command

To copy a file from your local host to a remote host, enter this at the ftp> prompt:

put localfile [remotefile]

where localfile is the name of the local file to transfer and remotefile is the
name for the remote copy of the file. If you do not enter a remote filename, FTP
gives it the same name as the local copy.

You can use the send command as an alias for put.

The next example shows how FTP prompts for local and remote filenames when you
enter put with no filename parameters. It also shows the message FTP displays when
the transfer is successful.

TCP/IP for the iRMX Operating System Chapter 4 33

✏ Note
The verbose option must be on, as it is by default, to produce the
display shown in this interactive session.

ftp> put

(local-file) payroll.1

(remote-file) payroll.2

200 PORT command okay.

150 Opening ASCII mode data connection for payroll.2.

226 Transfer complete.

2103 bytes sent in 0.29 seconds (6.9 Kbytes/s)

ftp>

The put command transfers one file per transaction. To transfer more than one file in
a single transaction, use the mput command.

Get Command

To copy a file from the remote host to your local host, enter this at the ftp> prompt:

get remotefile [localfile]

where remotefile is the name of the remote file to be transferred and localfile

is the name for the local copy of the file. If you do not enter a local filename, FTP
gives it the same name as the remote copy.

You can use the recv command as an alias for get.

The next example shows how FTP prompts for remote and local filenames when you
enter get with no filename parameters, and the message FTP displays when the
transfer is successful.

ftp> get

(local-file) personnel.1

(remote-file) personnel.2

200 PORT command okay.

150 Opening ASCII mode data connection for personnel.1 (5909

bytes).

226 Transfer complete.

6123 bytes received in 1 seconds (5.979 Kbytes/s)

ftp>

The get command transfers one file per transaction. To transfer more than one file in
a single transaction, use the mget command.

Chapter 4 Using File Transfer Protocols34

Transferring Files Between Systems With Different File Naming Conventions

When you transfer files between hosts with different operating systems, be sure to
specify a name for the new file that conforms to the local file naming conventions. If
you do not specify a destination name on the command line, FTP attempts to use the
source name. If that name is not valid on the local host, the command fails. For
example, you may need to copy a Unix tar file to the DOS file system on iRMX for
PCs. Use a command line like one of these:

ftp> get bash.tar.Z bash_t.Z

ftp> put bash.tar.Z bash_t.Z

The destination file name, bash_t.Z, conforms to the DOS 8.3 file name convention,
so it can be used with the DOS file drivers.

Transferring Large Files

To transfer large files to a remote Unix host using FTP, you might need to increase
the value of the system parameter ulimit on the remote host. Ulimit is a Unix System
V security feature that enables the network administrator to limit the size of files that
can be created by local users. The default limit on many systems is 2048 512-byte
blocks, or 1 MB. File transfer applications such as FTP and TFTP and rcp must obey
the file size limitations imposed by the system on which the file is to be created. The
default value of ulimit for the remote host governs the maximum size of a file that
can be sent.

FTP allows you to change ulimit on a remote Unix host, but you must have root
privileges on the Unix host to increase the value. Users without root privileges can
only check the value or decrease it. If you do decrease the ulimit in a remote session,
you cannot increase it, even to its original value, unless you have root privileges. If
you need to increase ulimit on a host on which you do not have root privileges,
contact your network administrator for assistance.

First you need to establish an FTP connection with the remote host, logging in as
root. Then change the ulimit value for the remote session, using the FTP site
command as follows:

ftp> site ulimit 16384

200 ULIMIT set to 16384 blocks

ftp> put big1

[File transfer information]

.

.

.

ftp>

TCP/IP for the iRMX Operating System Chapter 4 35

There are other remote commands you can execute with site, depending on the
commands made available by the remote FTP server, ftpd.

See also: ftp and ftpd commands, Command Reference

Ending the FTP Session

To end a file transfer session, enter one of these commands:

• bye, or its alias quit

• close

The bye and quit commands release your connection, stop the FTP client and server
processes in the local and remote hosts, and return you to the iRMX OS prompt on
your local host.

The close command releases your connection to the remote host and returns you to
the ftp> prompt on your local host.

FTP Initialization File

If you set up an FTP initialization file, the FTP process will log you on to a remote
host automatically. Name the file netrc or r?netrc and put it in your home directory
on the local host. If the FTP process finds :home:netrc at startup, it reads the file to
obtain the information it needs to complete remote host login procedures.

✏ Note
For those familiar with FTP in a Unix environment, on iRMX this
file is named netrc without a beginning . (period or dot) in the
filename. To hide the file on an iRMX system, name it r?netrc.
When any program refers to netrc, the iRMX OS automatically
maps it to r?netrc.

To create netrc, build a file that contains this information about each remote host
where you want to log in automatically:

• The official host name as set with the hostname command; an Internet address
or alias is not acceptable

• Your user login name on the remote host

• Optional: the password to your login on the remote host

Each line of the netrc file describes a different host. There is no limit to the number
of lines the file can contain. The format for each line is:

machine host login login-name [password password]

Chapter 4 Using File Transfer Protocols36

The keywords machine and login must appear in each line, followed by the official
host name and your remote user login name, respectively. Each word on the line
must be separated from other words by a space or tab.

The keyword password and your password are optional. If you do not enter
password information for a remote host in the netrc file, FTP prompts you for it when
you log in to the host. Because the netrc file might contain password information,
make the file readable only by the owner. FTP for the iRMX OS, unlike other
versions, does not enforce owner-only file access. FTP does print a warning if the
netrc file contains account information or passwords.

Below is an example of a record in a netrc file. In this example, tvi386 is the
official name of the remote host and nancy is the login name on that host. Because
the password is omitted, Nancy will be prompted for it during login.

machine tvi386 login nancy

See also: netrc file, Chapter 10

■■ ■■ ■■

TCP/IP for the iRMX Operating System Chapter 5 37

Network Services and Daemons 5
As network administrator, you determine which services each host on the network
will provide. Many network services involve the interaction of a client process on
one host and a server process on another. By defining the server processes that run
on a particular host, you control the types of access available to remote clients.

An example of this type of network service is FTP, which is implemented by a client
process (ftp) and a server process (ftpd). In general, the client and server share the
same root name, and the server name includes the suffix d, which designates it as a
daemon. A daemon operates in the background. A server daemon operates when it
receives a client request. Virtually all of the networking commands available to the
general user invoke the client process of a client/server pair.

Several additional network services are implemented by network daemons that are
not associated with client processes. These daemons exchange messages with their
counterparts on remote hosts and update local kernel tables or network databases
based upon the information received. By defining the daemon processes that will be
running on a particular host, you control the automatic (by daemon) or manual (by
administrative command) updating of the related network tables.

These sections describe the network services that you can control for each host. Each
section contains a brief description of the service, some guidelines for determining
whether or not the service should be enabled, and instructions for configuring,
enabling, or disabling the service, where applicable. The servers and daemons are
described in alphabetical order.

See also: TCP/IP daemons, Chapter 2;
Stopping and Restarting TCP/IP, Chapter 2

Chapter 5 Network Services and Daemons38

Ftpd Server
Ftpd.job is the server process for the File Transfer Protocol (FTP). The client
process is the ftp command. Running ftpd.job on the local machine allows remote
ftp users to connect to this host to transfer files.

To enable FTPD on the local host, edit the startup script :config:tcpstart.csd and
uncomment the line which sysloads the ftpd.job. If you are starting the TCP/IP stack
from the :config:loadinfo file, uncomment the line which sysloads the ftpd.job in this
file. Because FTP is one of the basic networking services provided by the TCP/IP
package, it is very unusual to encounter a network host that is not listening for FTP
requests.

If the local host is currently providing FTP access, the display from a netstat -a
command includes an entry with a local address of *.ftp.

See also:ftpd.job, System Configuration and
Administration

TCP/IP for the iRMX Operating System Chapter 5 39

Telnetd Server
Telnetd.job is the server process for the TELNET protocol, which defines the
network virtual terminal access to a remote host. The client process is the telnet
command.

To enable TELNETD on the local host, edit the startup script :config:tcpstart.csd and
uncomment the line which sysloads the telnetd.job. If you are starting the TCP/IP
stack from the :config:loadinfo file, uncomment the line which sysloads the
telnetd.job in this file. Because TELNET is one of the basic networking services
provided by the TCP/IP package, it is very unusual to encounter a network host that is
not listening for TELNET requests.

If the local host is currently providing the TELNET service, the display from a
netstat -a command includes an entry with a local address of *.telnet.

Configuring Pseudo-terminals for Telnetd
The telnetd server node needs some additional configuration to set up pseudo-
terminals for the remote client TELNET sessions to access. Like terminals, pseudo-
terminals need to be identified and enabled in the :config:terminals file. Then the
number of supported pseudo-terminals needs to be specified as a parameter to
telnetd.job as follows:

1. Add an entry to the :config:terminal(s) file to initialize each iRMX pseudo-
terminal device for users. List these devices as ptty_0, ptty_1, up through
ptty_n-1 where n is the number of pseudo terminals supported. N can vary from
1 to 16 inclusively. For example:

ptty_0,,,any

Also edit the first line of the file, increasing the number by one for each new
entry added. If that number is smaller than the number of entries, the extra
entries are ignored

For example, ptty_2 in the following file cannot be used because the 3 at the
beginning means the Human Interface initializes only the first three terminals.

3
d_cons,,,pc
ptty_0,,,any
ptty_1,,,any
ptty_2,,,any

2. Update the :config:tcpstart.csd and/or the :config:loadinfo files to uncomment
the line which sysloads the /rmx386/jobs/telnetd.job service and specify the

Chapter 5 Network Services and Daemons40

number of pseudo-terminals to be supported. The sysload command has the
following form:

Sysload /rmx386/jobs/telnet.job num_pttys=n

Where

n is the number of pseudo-terminals to be supported. This number can vary
between 1 and 16 inclusively. If num_pttys is not specified, the telnetd service
assumes 4 pseudo-terminals.

See also: Configuring terminals, System Configuration and
Administration;
telnetd.job, System Configuration and
Administration

■■ ■■ ■■

TCP/IP for the iRMX Operating System Chapter 6 41

Configuring and Administering
Network Files

As network administrator, you define the operation of several network daemons and
servers by setting up their configuration files. The network configuration files are
described in this chapter.

Network Configuration File Network Daemon or Job
:config:tcp.ini TCP/IP jobs

Restricting and Updating Network Databases
and Files

The following list shows files that that maintain information about hosts, networks,
protocols, and available network services. Some of these files enable remote user
access. As network administrator, you should ensure that these files are updated
whenever the topology of the network changes. Only the network administrator
should have permission to modify these files.

File Purpose
:config:hosts Lists addresses and names of accessible hosts and

interfaces on the net
:config:services Lists names, port numbers, and protocols associated with

available services
:home:netrc User-specific file that provides login information to

FTP servers

See also: Chapter 9 for details about the contents of each file

■■ ■■ ■■

6

Chapter 6 Configuring and Administering Network Files42

TCP/IP for the iRMX Operating System Chapter 7 43

Commands for the
Network Administrator

There are several TCP/IP commands that display configuration information and
perform network maintenance. The network administrator uses these commands to
monitor the overall status of the network, monitor and make available remote
resources, test specific interfaces or functions, and configure certain interface
characteristics. This chapter describes the purpose for using such commands.

See also: Command syntax and descriptions, Command Reference

Administrative Commands
These are the network maintenance commands:

netstat Displays information from network data structures so you can identify
network problems. This chapter describes network tests you can
perform with this command.

ping Tests low-level communications between two hosts to determine if
there is a fault between them.

Performing Network Tests
As network administrator, you perform tests to determine whether the network
services and daemons are running as expected, whether the interfaces and routes have
been correctly configured, and whether each interface is functioning properly.

You should run a comprehensive set of tests after the network is first installed. These
tests should include the functional tests of the software loopback interface as well as
the basic assessment of the network configuration. At subsequent times when the
network is brought up, you should run a subset of the initial tests to determine, at a
minimum, that the correct daemons and interfaces are available. You should also
thoroughly test each network interface when it is initially configured.

The tests described here are only suggestions. Your own networking environment
will determine the tests that you select as most useful.

See also: netstat command, Command Reference, for more information about
test results

7

Chapter 7 Commands for the Network Administrator44

Verifying Network Services
When the network is first brought up, you can perform the Network Status Test to
verify that the network startup script tcpstart.csd has been properly configured.

Network Status Test

For the Network Status Test, perform these steps:

1. Use the netstat -a command to display all the active network connections and
listening servers.

2. Verify that there is an entry in the netstat -a table for every network server
daemon you have configured.

See also: Chapter 5 for definitions of network servers

TCP/IP for the iRMX Operating System Chapter 7 45

3. For TCP-based services, verify that the entries in the netstat -a table have these
attributes:

• The protocol is tcp.

• The address part of the local address is wild-carded.

• The port part of the local address shows the service name as defined in the
:config:services file.

• Both the address and port parts of the foreign address are wild-carded.

• The state is LISTEN.

4. For UDP-based services, verify that entries in the netstat -a table have these
attributes:

• The protocol is udp.

• The address part of the local address is wild-carded.

• The port part of the local address shows the service name as defined in the
:config:services file.

• The address part of the foreign address is a name, address, or wildcard.

• The port part of the foreign address is wild-carded.

• The state is empty.

Verifying Network Configuration
You can perform the Interface Status Test, the Interface Configuration Test, and the
Route Configuration Test to verify network configuration.

Interface Status Test

For the Interface Status Test, perform these steps:

1. Use the netstat -i command to display the configured network interfaces.

2. Compare the netstat -i display with the contents of the network configuration
file tcp.ini to verify that all interfaces have been successfully configured.

Chapter 7 Commands for the Network Administrator46

3. Ensure these conditions are true for each entry in the netstat -i table:

• The interface name is the same as the one defined in the tcp.ini file. This
name is unique.

• The maximum transfer unit (MTU) for each interface is a positive nonzero
integer that reflects the type of communications medium used: 4096 for the
software loopback interface and 1500 for Ethernet interfaces. If the MTU is
zero, the interface did not initialize properly.

• The network and address fields each contain a name, not an Internet address.
The address field contains the host name assigned to the interface in the
tcp.ini file. The network field contains the network name from the
:config:networks file that matches the network portion of the address
associated with that host name in the :config:hosts file. (If the network
address is displayed, make sure the :config:networks file has an entry for the
address also.)

• The input and output error fields are 0. The input packets field is at least 2.
The output packets field is 0 or a positive integer.

Interface Configuration Test

CHRIS?

TCP/IP for the iRMX Operating System Chapter 7 47

Verifying Interface Functionality
The purpose of this type of network testing is to verify that each configured interface
is functioning properly and that all three of the Transport Layer protocols (tcp, udp,
and raw) are working as expected. Test the software loopback interface first as
described below to determine that the basic streams have been properly constructed.
Then test each network interface in the same manner.

1. To test the tcp transport layer, perform these steps:

• Enter:

telnet me

In response to your command, a DNS database or the :config:hosts file is
accessed to obtain the Internet address for the host me, at which point
TELNET displays this message:

Trying 127.0.0.1

If this message is not displayed, check the :config:hosts file to make sure
that the proper name-to-address translation is available.

As soon as TELNET makes the connection, it displays the connection status
and then the login banner received from the remote host (in this case, the
local host through the loopback connection).

• Log in and then log off to terminate the test.

The three errors most often encountered when running this test are:

– No address translation can be found for the remote host name
(unknown host).

– The remote host is not listening for TELNET connections
(connection refused).

– The remote host did not respond to the connection request
(connection timed out).

The last error can be caused by a hardware problem. It can also occur if the
remote host is down, does not have the network running, or is very busy.

2. To test the udp transport layer, use the command:

tftp me

3. To test the raw transport layer, use the command:

Chapter 7 Commands for the Network Administrator48

ping me 1 10

This sends ten one-byte ECHO_REQUEST packets to the local host, using the
loopback device. The transmission summary should show no packet loss and
reasonably consistent round trip times for the individual packets.

You can use the netstat command to test the functionality of the udp and tcp
transport layers.

See also: telnet, netstat, and ping commands, Command Reference

■■ ■■ ■■

TCP/IP for the iRMX Operating System Chapter 8 49

Tunable Parameters 8
A number of tunable parameters affect the functionality and performance of TCP/IP
software. For each TCP/IP job, there are parameters that define how that job
operates.

Tuning is a tradeoff between allocating enough resources to facilitate networking
operations and keeping the kernel small enough to be manageable. The
recommendations made in this chapter are generally on the small end of the scale.
You will almost certainly need to revise them to meet the needs of your network's
configuration. Start with the values specified and monitor the system closely for a
while to determine what your environment really needs.

Determining When to Tune Parameters
The TCP/IP kernel is installed with default parameters that are adequate for a simple
host configuration, with one network interface and a moderate amount of network
traffic. After you determine your host and network configuration, you should review
the TCP/IP parameters listed in this chapter and reset them as needed.

Chapter 8 Tunable Parameters50

TCP/IP Parameters
Parameters in the:config:tcp.ini file affect the TCP/IP jobs’ operation, and
performance.

✏ Note
Values not enclosed in single quotes are hexadecimal numbers.

[TCP]
File Default Value Description
DEFMSS 200 Default maximum segment size
RCVSPACE 4000 Maximum receive space per socket
SNDSPACE 4000 Max send space per socket
CTLBUFS 40 Maximum total control buffers
TRANSBUFS 40 Maximum total transaction buffers
MAXTRANS 10 Maximum simultaneous IP transactions
MAXPORTS 1388 Maximum port ids
LOWFIXPID 1 Well-known port id range
HIFIXPID 3FF
LOWAUTOPID 400 Ephemeral port id range
HIAUTOPID 1387

[UDP]
File Default Value Description
CHECKSUM 1 Enable checksum
RCVSPACE 0A000 Maximum receive space per socket
CTLBUFS 40 Maximum total control buffers
TRANSBUFS 40 Maximum total transaction buffers
MAXTRANS 10 Maximum simultaneous IP transactions
MAXPORTS 1388 Maximum port ids
LOWFIXPID 1 Well-known port id range
HIFIXPID 3FF
LOWAUTOPID 400 Ephemeral port id range
HIAUTOPID 1387

[RIP]
File Default Value Description
CTLBUFS 20 Maximum total control buffers
TRANSBUFS 20 Maximum total transaction buffers
MAXTRANS 8 Maximum simultaneous IP

transactions
MAXPORTS 80 Maximum port ids

[IP]
File Default Value Description

TCP/IP for the iRMX Operating System Chapter 8 51

IFNAMES ’ETH0, LO0' Interface names
BUFHEAPSIZE 140 Tot al receive buffer size in Kbytes
LOCALSUBNETS 1 Enable local subnets
TTL 8 Default segment time to live
TOS 0 Default type of service
ARPTIMEOUT 20 ARP cache flush timeout in minutes
CTLBUFS 80 Maximum total control buffers
TRANSBUFS 80 Maximum total transaction buffers

[ETH0]
File Default Value Description
HOST '206.103.53.11

5'
Interface IP address

NETMASK '255.255.255.0
'

Net mask

DEFROUTE '206.103.53.25
0'

Default route

RCVBUFS 3F Maximum receive buffers
MAXTRANS 6F Maximum simultaneous transactions

[LO0]
File Default Value Description
HOST '127.0.0.1' Interface IP address
NETMASK '255.255.0.0' Net mask
RCVBUFS 3F Maximum receive buffers
MAXTRANS 6F Maximum simultaneous transactions

TCP Job Parameters
DEFMSS

Default maximum size of segments sent by the TCP job. To avoid fragmentation at
the IP level, set this parameter to the smallest maximum packet size that a sent packet
is likely to encounter in its route to the destination. Once a connection is established,
the source and destination TCPs negotiate an optimum maximum packet size.

RCVSPACE
Size, in bytes, of the receive buffer area per TCP socket. The receive buffer holds
incoming data until it is received at the socket by the application.

SNDSPACE
Size, in bytes, of the send buffer area per TCP socket. The send buffer holds
outgoing data until it is successfully sent to the destination.

CTLBUFS
Maximum number of control buffers allocated for the TCP job. Control buffers are
used by the TCP job whenever data is sent or received through a TCP socket.

Chapter 8 Tunable Parameters52

If insufficient control buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of configured control buffers for the TCP
job should be increased. The default value should be used for most applications.

TRANSBUFS
Maximum number of transaction buffers allocated for the TCP job. Transaction
buffers are used by the TCP job whenever data is sent or received through a TCP
socket.

If insufficient transaction buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of transaction buffers for the TCP job
should be increased. The default value should be used for most applications.

MAXTRANS
Maximum number of simultaneous transactions allowed between the TCP job and the
IP job. Transactions are used by the TCP job whenever data is sent or received
through a TCP socket.

If insufficient transactions are available, an ENOBUFS error is returned to the
application. This indicates that the number of transactions for communication
between the TCP job and the IP job should be increased. The default value should be
used for most applications.

MAXPORTS
Maximum number of port ids available to the TCP job. Whenever a TCP socket is
bound (see the bind() system call), a local port id is assigned to the socket. This
parameter specifies the maximum number of unique port ids available.

LOWFIXPID, HIFIXPID
When a TCP socket is bound (see the bind() system call), the user may specify the
local port id that is to be associated with the socket. LOWFIXPID and HIFIXPID:

• Define the range of port id values that may be specified.

• Must be within the range of 0 to MAXPORTS, exclusive, and must not overlap
the port id range defined by LOWAUTOPID and HIAUTOPID.

LOWAUTOPID, HIAUTOPID
When a TCP socket is bound (see the bind() system call), the user may request that
the TCP job select the local port id that is to be associated with the socket (known as
an ephemeral port id). LOWAUTOPID and HIAUTOPID:

• Define the range of port id values that the TCP job may choose from.

• Must be within the range of 0 to MAXPORTS, exclusive, and must not overlap
the port id range defined by LOWFIXPID and HIFIXPID.

TCP/IP for the iRMX Operating System Chapter 8 53

UDP Job Parameters
CHECKSUM

A value of 0 disables checksum calculation on all segments sent or received by the
UDP job. A value of 1 enables checksum calculation. This parameter should
normally be set to 1.

RCVSPACE
Size of the receive buffer area per UDP socket, in bytes. The receive buffer holds
incoming data until it is received at the socket by the application.

CTLBUFS
Maximum number of control buffers allocated for the UDP job. Control buffers are
used by the UDP job whenever data is sent or received through a UDP socket.

If insufficient control buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of configured control buffers for the UDP
job should be increased. The default value should be used for most applications.

TRANSBUFS
Maximum number of transaction buffers allocated for the UDP job. Transaction
buffers are used by the UDP job whenever data is sent or received through a UDP
socket.

If insufficient transaction buffers are available, an EBOBUFS error is returned to the
application. This indicates that the number of transaction buffers for the UDP job
should be increased. The default value should be used for most applications.

MAXTRANS
Maximum number of simultaneous transactions allowed between the UDP job and
the IP job. Transactions are used by the UDP job whenever data is sent or received
through a UDP socket.

If insufficient transactions are available, an ENOBUFS error is returned to the
application. This indicates that the number of transactions for communication
between the UDP job and the IP job should be increased. The default value should be
used for most applications.

MAXPORTS
Maximum number of port ids available to the UDP job. Whenever a UDP socket is
bound (see the bind() system call), a local port id is assigned to the socket. This
parameter specifies the maximum number of unique port ids available.

Chapter 8 Tunable Parameters54

LOWFIXPID, HIFIXPID
When a UDP socket is bound (see the bind() system call), the user may specify the
local port id that is to be associated with the socket. LOWFIXPID and HIFIXPID:

• Define the range of port id values that may be specified

• Must be within the range of 0 to MAXPORTS, exclusive, and must not overlap
the port id range defined by LOWAUTOPID and HIAUTOPID.

LOWAUTOPID, HIAUTOPID
When a UDP socket is bound (see the bind() system call), the user may request that
the UDP job select the local port id that is to be associated with the socket (known as
an ephemeral port id). LOWAUTOPID and HIAUTOPID:

• Define the range of port id values that the UDP job may choose from.

• Must be within the range of 0 to MAXPORTS, exclusive, and must not overlap
the port id range defined by LOWFIXPID and HIFIXPID.

Raw IP Job Parameters
CTLBUFS

Maximum number of control buffers allocated for the Raw IP job. Control buffers
are used by the Raw IP job whenever data is sent or received through a Raw IP
socket.

If insufficient control buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of configured control buffers for the Raw
IP job should be increased. The default value should be used for most applications.

TRANSBUFS
Maximum number of transaction buffers allocated for the Raw IP job. Transaction
buffers are used by the Raw IP job whenever data is sent or received through a RAW
IP socket.

If insufficient transaction buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of transaction buffers for the Raw IP job
should be increased. The default value should be used for most applications.

MAXTRANS
Maximum number of simultaneous transactions allowed between the Raw IP job and
the IP job. Transactions are used by the Raw IP job whenever data is sent or received
through a Raw IP socket.

If insufficient transactions are available, an ENOBUFS error is returned to the
application. This indicates that the number of transactions for communication
between the Raw IP job and the IP job should be increased. The default value should
be used for most applications.

TCP/IP for the iRMX Operating System Chapter 8 55

MAXPORTS
Maximum total number of Raw IP sockets that may be created.

IP Job Parameters
IFNAMES

A list of interfaces that the IP job may communicate with to send and receive
datagrams. Each interface name in the list must match an interface description
included in the :config:tcp.ini file (e.g., [ETH0]), and also must match the name
associated with a NIC driver loaded in the :config:tcpstart submit file.

BUFHEAPSIZE
Total buffer space, in Kbytes, available to the IP job for sending and receiving
datagrams. The buffers specified in the interface descriptions (e.g., the RCVBUFS
parameter of the [ETH0] interface description) are allocated from the buffer space
defined here.

LOCALSUBNETS
If this host is directly connected to a network that is divided into subnets, set this
parameter to 1. If not, set it to 0.

TTL Default time to live for outgoing datagrams. The TTL is used to limit the life of TCP
segments and prevent packets from endlessly circling the Internet on the way to some
unreachable destination.

TOS Default type of service for outgoing datagrams. This parameter encodes both
precedence and the type of service as defined by the MIL-STD 1777. The upper
three bits of the byte encode the precedence; the lower five bits encode the type
of service.

ARPTIMEOUT
The number of minutes after which a complete ARP table entry will be deleted
from the ARP cache if no ARP packets from the associated host are observed on
the network.

CTLBUFS
Maximum number of control buffers allocated for the IP job. Control buffers are
used by the IP job whenever data is sent or received.

If insufficient control buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of configured control buffers for the IP
job should be increased. The default value should be used for most applications.

Chapter 8 Tunable Parameters56

TRANSBUFS
Maximum number of transaction buffers allocated for the IP job. Transaction buffers
are used by the IP job whenever data is sent or received.

If insufficient transaction buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of transaction buffers for the IP job
should be increased. The default value should be used for most applications.

DNS Configuration Parameters
DOMAIN

A string containing the name of the local domain.

SERVER1
A string that contains the IP address of the primary DNS server used by the client

SERVER2
SERVER3

Each of these parameters takes a string containing the IP addresses of secondary DNS
servers. A total of three servers may be configured. If this section is not defined, or
no servers are defined, then DNS name resolution does not occur.

Network Interface Parameters
HOST The IP address associated with this interface.

NETMASK
The net mask for the IP address associated with this interface.

DEFROUTE
The default route. If the destination of a datagram is not on the network attached to
this interface, the default route is used as a destination. The host at the default route
address will then forward the datagram to the desired destination.

RCVBUFS
The number of buffers allocated to receive datagrams from this interface. These
buffers are allocated from the memory pool defined by the IP job’s BUFHEAPSIZE
configuration parameter.

Set this parameter to the maximum number of datagrams expected to be received at
one time on this interface.

MAXTRANS
The maximum number of simultaneous transactions between the IP job and this
interface. Each datagram sent or received consumes one transaction. The transaction
is recycled when the send or receive is processed.

TCP/IP for the iRMX Operating System Chapter 8 57

Set this parameter to the sum of the maximum number of incoming datagrams
expected at one time (i.e., the value of the RCVBUFS parameter, above) plus the
maximum expected number of simultaneous sends to this interface.

Loopback Pseudo-driver Interface Parameters
HOST The IP address associated with the loopback interface.

NETMASK
The net mask for the IP address associated with the loopback interface.

RCVBUFS
The number of buffers allocated to receive datagrams from this interface. These
buffers are allocated from the memory pool defined by the IP job’s BUFHEAPSIZE
configuration parameter.

Set this parameter to the maximum number of datagrams expected to be received at
one time on this interface.

MAXTRANS
The maximum number of simultaneous transactions between the IP job and this
interface. Each datagram sent or received consumes one transaction. The transaction
is recycled when the send or receive is processed.

Set tthis parameter to the sum of the maximum number of incoming datagrams
expected at one time (i.e., the value of the RCVBUFS parameter, above) plus the
maximum expected number of simultaneous sends to this interface.

■■ ■■ ■■

Chapter 8 Tunable Parameters58

TCP/IP for the iRMX Operating System Chapter 9 59

Files 9
This chapter describes the format and contents of network files for TCP/IP. All the
files below are installed in the :config: directory except netrc, which must be in each
user's home directory.

File Description
hosts host name database
protocols protocol name database
services network services database
netrc ftp autologin information

hosts Network Name Database

Chapter 9 Files60

hosts
The :config:hosts file contains information regarding the known hosts on the Internet.
The file should contain an entry for each host and each interface accessible through
the network. The primary purpose of the file is to provide the Internet address
associated with a symbolic host name. This allows users to specify a name instead of
an address.

For each host there should be a single line in the file with this information:

Internet_address official_host_name alias ...

Each entry begins in column one of the line. Fields are separated by any number of
blanks and/or tab characters. A pound sign (#) indicates the beginning of a comment
extending to the end of the line.

Specify Internet addresses in the conventional dot notation. The official host name
should be the fully-qualified domain name as stored with a hostname command or
sethostname() function. Alias names are optional; there may be more than one, but
they must all be on the same line. Host names may contain any character or digit
other than space, tab, newline, and pound sign.

See also: Internet addresses, Chapter 1

The :config:hosts file must contain an entry for every interface used in the network
configuration file :config:tcp.ini. For example, if the local host is configured with the
software loopback interface (lo0), the hosts file must contain an entry defining the
Internet address (127.0.0.1), the official name (loopback) and the aliases (me and
localhost) of that interface. The hosts file is the sole source for the name-to-address
translations required to initialize the interface correctly.

The hosts file must contain the names and addresses of all local interfaces and remote
hosts that will be accessed by name.

No specific order is required for either the entries in the file or the list of aliases in a
specific entry. Because both the file and the alias list are searched sequentially for a
given name, it may be useful to list the most often used names first in order to speed
the process, although the file is rarely long enough to make a noticeable difference.

Network Name Database hosts

TCP/IP for the iRMX Operating System Chapter 9 61

Below is a typical hosts file.

:config:hosts

#

FORMAT:

address official_name alias(es)

#

software loopback interface

127.0.0.1 loopback me localhost

add local network interface definitions here

add remote definitions here (if desired/needed)

As network administrator, you should be the owner of this file. Modify it and update
it as necessary.

protocols Host Name Database

Chapter 9 Files62

protocols
The :config:protocols file contains the official name, protocol number, and aliases of
the protocols with which the ip module directly communicates. The protocols are
standardized throughout the Internet community and are defined in RFC 1060,
Assigned Numbers (Reynolds & Postel).

While the actual protocol numbers are used by the TCP/IP kernel modules, the
number-to-name translation information is used primarily by the netstat command to
display the symbolic name of the protocol instead of its number. There are no
required entries in the protocols file; the information is used to make displays more
readable and meaningful.

For each protocol there should be a single line in the file with this information:

official_protocol_name protocol_number aliases

The first field on each line should begin in column one. Fields are separated by any
number of blanks and/or tab characters. A comment begins with a pound sign (#) and
continues to the end of the line. A comment can appear on a separate line or at the
end of a line listing network name and address information.

Protocol names can contain any printable character other than a space, tab, newline,
or comment character. The official name and number of the protocol should be as
defined by the RFC 1060. A list of one or more aliases is optional.

Although no specific order is required for entries in the file, entries are generally
maintained in numerical order by protocol number. Below is an example of a
protocols file.

:config:protocols

#

FORMAT:

official_name protocol_number alias(es)

#

Internet protocols

ip 0 IP # reserved for ip (pseudo-protocol number)

icmp 1 ICMP # internet control message protocol

tcp 6 TCP # transmission control protocol

egp 8 EGP # exterior gateway protocol

igp 9 IGP # any private interior gateway protocol

pup 12 PUP # PARC universal packet protocol

udp 17 UDP # user datagram protocol

Host Name Database protocols

TCP/IP for the iRMX Operating System Chapter 9 63

As network administrator, you should be the owner of this file. Update it, if
necessary, so that its contents always reflect the protocols operating on the local host.
You can add entries if protocols interfacing with ip are added to the local host. The
information for this file should be obtained from the most current relevant RFC.

See also: getprotoent function, Chapter 11

netrc FTP Autologin Information

Chapter 9 Files64

netrc
The :home:netrc file contains information used to automatically validate FTP
connections to one or more remote hosts.

✏ Note
Unlike the Unix environment, the iRMX version of this file is
named netrc without a beginning . (period or dot) in the filename.
To hide the file, name it r?netrc. When any program refers to
netrc, the iRMX OS automatically maps it to r?netrc.

When ftp opens a connection to a remote machine, it checks the user's home
directory (:home:) for this file. If the file exists, ftp checks for an entry for the
specified host machine. If such an entry is found, the login name (and optional
password) in that entry is supplied to the FTP server without the user being prompted.
If the normal validation process used by the FTP server succeeds, the FTP connection
is completed without any interactive input by the user. If the file does not contain
password information, the user is not prompted for a login name but is prompted for a
password.

If netrc does not exist for that user, or it exists but contains no entry for the remote
host, the user is prompted for a login name and password.

The netrc file may contain multiple entries, each specifying login information to a
different host name. An entry begins with the keyword machine (or the special
keyword default, described below) and ends with the next occurrence of the word
machine or with the end of the file. Thus a single entry may be on one line or span
multiple lines.

<machine name | default> login name [password string]

[account string] <[macdef name

string

]> ...

Each entry contains several keyword-value pairs in the format shown above. The
first field on each line should begin in column one. Subsequent fields should be
separated by spaces or tab characters. Comments begin with a pound sign (#) and
can appear on a separate line or at the end of a line listing host and login information.
The angle brackets shown above are not part of the syntax; they surround multiple
items in the same field.

FTP Autologin Information netrc

TCP/IP for the iRMX Operating System Chapter 9 65

The machine keyword identifies the name of a remote host to which autologin is
supported. The name can be either the official host name or an alias. FTP uses the
first entry it finds in netrc that matches the name of the remote host specified on the
ftp command line. The keyword default is a special instance of machine which
matches any host name. Since default matches every host name, any entries
appearing after it in the file are ignored.

The login keyword identifies a login name to be used on the remote machine.

The password keyword, where present, specifies the password to the given login.
The account keyword, where present, specifies a resource access password to be
used when required by the remote host. The account keyword does not apply to a
Unix or iRMX OS and should not be used for such remote systems. Specifying a
password or account is optional. If you include this information, also set the file
permissions so only the owner can read it. FTP for the iRMX OS, unlike other
versions, does not enforce the restriction of access permissions to the owner. FTP
does print a warning if the netrc file contains account information or passwords.

The macdef keyword identifies an FTP macro definition to be used during a
connection to the specified host. The macro name should follow the keyword; the
macro definition should begin on the next line of the file and continue until a blank
line or the end of the file is encountered. Multiple macros can be defined in this
manner, since the next entry does not start until the machine or default keyword is
encountered. The special macro name init causes the associated macro to be
invoked as the last step in the autologin process.

See also: ftp command, Command Reference;
FTP Initialization File, Chapter 5

The following example is an empty netrc file. To prevent creation of an
unauthorized netrc file, such as in the Super user's home directory, install an empty
file that only Super can access.

netrc

#

FORMAT:

machine hostname login name

machine hostname login name password passwd

#

The default permissions of the netrc file are to be readable and writable by the owner.
All owners of a netrc file should modify this file and update it as necessary.

services Network Services Database

Chapter 9 Files66

services
The :config:services file contains information about the services available through
the transport layer protocols. The services are defined in RFC 1060, Assigned
Numbers (Reynolds & Postel), and are standardized throughout the Internet
community. The service information is used by applications and TCP/IP kernel
modules to identify and validate logical connections. The netstat command uses the
services file to display the symbolic name of the service instead of its number.

The transport layer protocols use ports to identify the endpoints of a logical
connection. Specific application services are associated with certain ports, often
called well-known ports. The server process for the application listens at the assigned
port for incoming connections. The Internet community, through RFC 1060,
coordinates and standardizes the ports assigned to specific services. Wherever
possible, the TCP, UDP, and ISO-TP4 service assignments are coordinated.

For each service there should be a single line in the services file with this
information:

official_service_name port_number/protocol_name aliases

The first field on each line should begin in column one. Fields are separated by any
number of blanks and/or tab characters. A comment begins with a pound sign (#)
and continues to the end of the line. A comment can appear on a separate line or at
the end of a line listing service information.

Service names may contain any printable character other than a space, tab, newline,
or comment character. The port number and protocol name are considered a single
field; a slash separates the port and protocol (for example, 512/tcp). A list of one
or more aliases is optional.

Although there is no specific order required for the entries in this file, entries are
generally maintained in numerical order by port number.

Network Services Database services

TCP/IP for the iRMX Operating System Chapter 9 67

As network administrator, you should be the owner of this file. Update it, if
necessary, so that its contents always reflect the services available on the local host.
Port numbers 0 through 1023 are reserved for privileged processes, and should be
used only for the service identified by the Assigned Numbers through RFC. Assign
port numbers 1024 and above to custom applications and services unique to the local
networking environment.

See also: getservent function, Chapter 13

This is a typical services file:

:config:services

#

FORMAT:

service port/protocol alias(es)

#

ports 0 - 512 are privileged ports

#

netstat 15/tcp

netstat 15/udp

ftp-data 20/tcp

ftp 21/tcp

telnet 23/tcp

tftp 69/udp

rpcbind 111/udp

rpcbind 111/udp

nfsd 2049/udp

#

#

ports > 1024 host-specific functions

#

■■ ■■ ■■

services Network Services Database

Chapter 9 Files68

TCP/IP for the iRMX Operating System Chapter 10 69

TCP/IP Components 10
This chapter describes the purpose of special files related to the network interface
devices, protocols, and protocol families. These files are installed in the
/rmx386/jobs directory:

File See Description
ip.job IP layer
rip.job Raw IP layer
tcp.job TCP layer
udp.job UDP layer

eepro100.job NIC driver.
edl.job NIC-sytle interface to iNA jobs
loopback.job Loopback pseudo-driver
ne.job NIC driver.
tulip.job NIC driver.

Chapter 10 TCP/IP Components70

Protocol Jobs
All network protocols are associated with a specific protocol family, such as the
Internet family inet. Associated with each protocol family is an address format, such
as the Internet format AF_INET. A protocol family provides basic services to the
protocol implementation to allow it to function within a specific network
environment. These services may include packet fragmentation and reassembly,
routing, addressing, and basic transport.

A protocol family normally comprises a number of protocols, such as the Internet
protocols tcp and ip. A protocol normally accepts only one type of address format, as
determined by the addressing structure inherent in the design of the protocol family
and network architecture.

A network interface corresponds to a path through which messages can be sent and
received. It can be either a hardware device, such as an Ethernet driver, or a pseudo-
device, such as the loopback driver. Network interfaces comprise the lowest layer of
the networking subsystem, interacting with the actual transport hardware. A network
interface may support more than one protocol family and/or address format.
Interface structures and attribute flags are defined in the include file <net/if.h>.

The interface address structure contains information about an address associated with
a particular interface, maintained by an address family. These structures are linked
together so that all addresses for an interface can be located.

Internet Protocol ip

TCP/IP for the iRMX Operating System Chapter 10 71

ip.job
The ip.job implements both the Address Resolution Protocol (ARP) and the Internet
Protocol (IP).

ARP is used to dynamically map between Internet software addresses and Ethernet
hardware addresses.

ARP caches Internet-to-Ethernet address mappings. When the interface requests a
mapping for an address not in the cache, ARP queues the message that requires the
mapping and broadcasts a message on the associated network, requesting the address
mapping. If ARP receives a response, it caches the new mapping and transmits any
pending messages to that host. While waiting for a response, ARP will queue only
one packet; it keeps only the most recently transmitted packet.

ARP watches passively for hosts impersonating the local host (that is, a host that
responds to an ARP mapping request for the local host's address).

IP is the network layer protocol used by the Internet protocol family. It can be
accessed through the higher-level Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) as well as directly through the Raw IP interface.

rip Raw IP Service

Chapter 10 TCP/IP Components72

rip.job

Syntax

#include <netinet/in.h>
#include <netinet/raw.h>

The raw ip service provides a direct interface to lower-level IP. It can be used to
implement a new protocol above IP. The ping command uses the raw interface.
Rip.job only receives packets for the protocol specified.

The IP header and any IP options are left intact by raw on receipt of datagrams.

Transmission Control Protocol tcp

TCP/IP for the iRMX Operating System Chapter 10 73

tcp.job

Syntax

#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/tcp.h>

The Transmission Control Protocol (TCP) provides reliable, flow-controlled,
two-way transmission of data. It is a byte-stream protocol used to support the
SOCK_STREAM abstraction. TCP uses the standard Internet address format
augmented by a host-specific collection of port addresses. Thus, each TCP address is
composed of an Internet address specifying the host and network, with a specific TCP
port on the host identifying the peer entity.

udp User Data Protocol

Chapter 10 TCP/IP Components74

udp.job

Syntax

#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/udp.h>

The User Datagram Protocol (UDP) is a simple, unreliable datagram protocol. UDP
streams are connectionless.

UDP address formats are identical to those used by TCP; UDP provides a port
identifier in addition to the normal Internet address format. Note that the UDP port
space is separate from the TCP port space (that is, a UDP port may not be connected
to a TCP port). If the underlying network interface supports broadcast, UDP can
send broadcast packets by using a reserved broadcast address. The broadcast address
is dependent on the network interface.

TCP/IP for the iRMX Operating System Chapter 10 69

Network Interface Controller (NIC) Jobs
These driver jobs provide an interface between the TCP/IP protocol stack and the
network adapters themselves. At least one of the following NIC jobs must be loaded
in addition to the loopback.job to allow the TCP/IP protocol stack to communicate
with other peers on the network.

loopback Software Loopback Device

Chapter 10 TCP/IP Components70

loopback.job
The loopback job provides a NIC-style interface to a lsoftware loopback mechanism
that can be used for performance analysis, software testing, or local communication.
The loopback interface is accessible at Internet address 127.0.0.1. By convention, the
interface name is me, loopback, or localhost.

The loopback interface should be the last interface configured, as protocols use the
order of configuration as an indication of priority. The loopback interface should
never be configured first unless no hardware interfaces exist.

INA 960 EDL Interface edl

TCP/IP for the iRMX Operating System Chapter 10 71

edl.job
The edl.job provides a NIC-style interface to an iNA 960 network interrface job.
Using this interface allows iRMX-NET and the new TCP/IP protocol stack to use the
same hardware to gain access to the network.

eepro100 Intel EtherExpressPro 100Plus NIC

Chapter 10 TCP/IP Components72

eepro100.job
The eepro100.job peovides an interface to the Intel EhterExpressPro 100Plus PCI
network adapter card.

NE2000 Compatible NIC ne

TCP/IP for the iRMX Operating System Chapter 10 73

ne.job
The ne.job peovides an interface to NE2000 compatible ISA network adapter cards.

udp User Datagram Protocol

Chapter 10 TCP/IP Components74

Tulip.job
The tulip.job peovides an interface to a DEC 21143 based PCI network adapter card.

■■ ■■ ■■

TCP/IP for the iRMX Operating System Chapter 11 75

Library Functions 11
This chapter describes functions for the network socket libraries listed below.

C Library Network Library Compiler Model

ciff3m.lib netf3m.lib Microsoft Flat
cifc32.lib net3c.lib Intel iC386 Compact

See also: Using Non-Intel Tools to Develop iRMX Application in Programming
Techniques for non-Intel compiler version numbers.

The libraries are installed in the /intel/lib directory and facilitate the programmatic
interface to TCP/IP. In the final bind of your application, add one or both libraries to
the list of libraries to be linked to your program.

✏ Note
The socket primitives are embedded in the C library.

Chapter 11 Library Functions76

Table 11-1 lists functions from the socket library.

Table 11-1. Functions in the Socket Library

Name See Description
accept accept accept a connection on a socket
bind bind bind a name to a socket
connect connect initiate a connection on a socket
getpeername getpeername get name of connected peer
getsockname getsockname get socket name
getsockopt getsockopt get options on sockets
listen listen listen for connections on a socket
recv recv receive a message from a socket
recvfrom recv receive a message from a socket
recvmsg recv receive a message from a socket
send send send a message from a socket
sendto send send a message from a socket
sendmsg send send a message from a socket
setsockopt getsockopt set options on sockets
shutdown shutdown shut down part of a connection
socket socket create an endpoint for communication
socktout socktout define a timeout for a socket

TCP/IP for the iRMX Operating System Chapter 11 77

Table 11-Error! Bookmark not defined. lists functions from the network library.

Table 11-2. Functions in the Network Library (continued)

Name See Description
bcmp bstring compare binary strings
bcopy bstring copy binary string
bzero bstring put zeros in binary string
endhostent gethostent close resolver connection
endnetent getnetent close networks database
endprotoent getprotoent close the protocols database
endservent getservent close service database
ffs ffs identify set bits
gethostbyaddr gethostent get host entry by address
gethostbyname gethostent get host entry by name
gethostid gethostid get unique id of current host
gethostname gethostname get host name
getnetbyaddr getnetent get network entry by address
getnetbyname getnetent get network entry by name
getnetent getnetent get next network entry
getprotobyname getprotoent get protocol entry by name
getprotobynumber getprotoent get protocol entry
getprotoent getprotoent get next protocol entry
getservbyname getservent get service entry by name
getservbyport getservent get service entry by port
getservent getservent get next service entry
htonl byteorder host to net order (long)
htons byteorder host to net order (short)
inet_addr inet string to Internet address
inet_lnaof inet get locnet part of address
inet_makeaddr inet construct Internet address
inet_netof inet get net part of address
inet_network inet string to network address
inet_ntoa inet Internet address to string
ntohl byteorder net to host order (long)
ntohs byteorder net to host order (short)
sethostent gethostent open resolver connection
sethostid gethostid set unique id of current host
sethostname gethostname set host name
setnetent getnetent open/rewind networks database
setprotoent getprotoent open/rewind protocols database
setservent getservent open/rewind services database

Chapter 11 Library Functions78

Using Sockets
The socket compatibility library constitutes a self-contained interface to the transport
level protocols.

A socket is an endpoint for communication between processes. Each socket has
queues for sending and receiving data.

Sockets are typed according to their communications properties, including such
things as whether messages sent and received at a socket require the name of the
partner, whether communication is reliable, and what format is used in naming
message recipients.

See also: socket in this chapter for more information about the types available
and their properties

Each set of communications protocols supports addresses of a certain format. An
address family is the set of addresses for a specific group of protocols. Each socket
has an address chosen from the address family in which the socket was created.

Certain semantics of the basic socket abstractions are protocol-specific. All protocols
are expected to support the basic model for their particular socket type, but may, in
addition, provide nonstandard facilities or extensions to a mechanism. For example,
a protocol supporting the SOCK_STREAM type may allow more than one byte of
out-of-band data to be transmitted per out-of-band (urgent) message.

Use the TCP protocol to support connection-oriented sockets of type
SOCK_STREAM. Use UDP to support connectionless, or datagram, sockets of type
SOCK_DGRAM.

Calling Sequence for Connection-oriented Applications
Applications that communicate using connections are typically divided in two parts,
designated as client and server. The server uses a passive open; it opens a socket,
then listens for requests for service. The client uses an active open; it opens a socket
and requests a connection to a specific server. Once the connection is established, the
client and server send and receive data as necessary. Typically the client closes the
connection, while the server continues to listen for further connection requests.

This is the sequence of calls used by the client:

Client Call Description
socket() Create a SOCK_STREAM socket for connections
bind() Bind the socket to a local address (port A)
connect() Request a connection to a remote socket, specifying a remote IP

address and well-known port B
send(), recv() Send and receive data as determined by the application
shutdown() Close the connection

TCP/IP for the iRMX Operating System Chapter 11 79

This is the sequence of calls used by the server:

Server Call Description
socket() Create a SOCK_STREAM socket (S1) for connections
bind() Bind the socket to well-known port B
listen() Listen for connection requests at port B
accept() Accept the connection on a new socket S2
create_task Create a child task to perform the service
socket() Child task opens SOCK_INHERIT socket so it can receive

socket S2
shutdown() Parent closes S2, specifying the job ID of child task, then

continues to listen at port B (socket S1)
bind() Child binds socket S2 to port C
send(), recv() Child sends and receives data with client (port C to port A)
shutdown() Child closes S2 and exits when client breaks connection

Active sockets initiate connections to passive sockets. By default, TCP sockets are
created active; to create a passive socket you must use the listen() function after
binding the socket with the bind() function. Only passive sockets may use the
accept() call to accept incoming connections. Only active sockets may use the
connect() call to initiate connections.

Passive sockets may underspecify their location to match incoming connection
requests from multiple hosts. This technique, termed wildcard addressing, allows a
single server to provide service to clients on multiple hosts. To establish a socket that
listens for all network addresses, bind the Internet address INADDR_ANY. You
may specify the TCP port in this bind() call; if the port is not specified the system
will assign one.

Once a connection has been established, the socket's address is fixed by the peer
entity's location. The address assigned to the socket is the address associated with the
network interface through which packets are being transmitted and received.
Normally, this address corresponds to the peer entity's network.

Calling Sequence for Connectionless Applications
A connectionless application may also be established as a client and server.
However, there is no calling sequence that establishes this division of duties. This is
the typical sequence of calls for both parties:

Call Description
socket() Create a SOCK_DGRAM socket for UDP
bind() Bind the socket to a local address
sendto(), recvfrom() Send and receive data as determined by the application
shutdown() Close the connection

Chapter 11 Library Functions80

However, you can use the connect() call to fix the destination for future packets, in
which case you can use recv() and send() calls with the SOCK_DGRAM socket.

Internet Socket Addresses
An Internet address is defined as a discriminated union:

struct in_addr {

union {

struct { uchar s_b1, s_b2, s_b3, s_b4; } S_un_b;

struct { unsigned short s_w1, s_w2; } S_un_w;

unsigned long S_addr;

} S_un;

#define s_addr S_un.S_addr

#define s_imp S_un.S_un_w.s_w2

#define s_net S_un.S_un_b.s_b1

#define s_host S_un.S_un_b.s_b2

#define s_lh S_un.S_un_b.s_b3

#define s_impno S_un.S_un_b.s_b4

};

In the Internet address family, sockets use this address structure:

struct sockaddr_in {

uchar sin_len;

uchar sin_family;

unsigned short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

✏ Note
The structure above is more correctly called a name than an
address. For example, this is the name that you bind the socket to
in a bind() call, and the name returned by getsockname() and
getpeername(), where the peer uses the Internet address family.
The structure is more than just the address; it contains the address
family and port number along with the Internet address. However,
much of the literature refers to this structure (and the more general
struct sockaddr) as an address.

See also: <netinet/in.h>

TCP/IP for the iRMX Operating System Chapter 11 81

Network and Host Byte Order
Two methods used to store data on different computers are little-endian (the least
significant byte of multibyte data is stored in the lowest memory) and big-endian (the
most significant byte is stored in the lowest memory).

Within these categories there may also be variation. For example, a certain machine
may store words in one order, but swap bytes within the words. Whatever method is
used is called host byte order; it is specific to the local host.

The Internet standard for binary data to be sent across the network is big-endian. The
most significant byte of an integer is sent first. This is network standard byte order.
It may or may not be the same as the byte order used on the local machine.

To write portable code, translate any binary data from host to network order before
sending it. Translate from network to host order after receiving the data. This does
not apply to data messages you send between applications; the applications
themselves should use data in the same format. It does apply to items that will be
used by the protocols on the remote machine.

For example, in the bind() and connect() calls you specify a port value as part of
the local or remote socket address (sin_port in the sockaddr_in structure).
Convert this unsigned short value from host to network order with htons(), before
placing it in the structure. If your application uses such data (for example, doing a
printf of a port value obtained from an address), convert from network to host order.

See also: byteorder() function, in this chapter

This code fragment shows how to convert the port value properly:

#include <netinet/in.h>

int s;

struct sockaddr_in sin;

sin.sin_len = sizeof sin

sin.sin_family = AF_INET;

sin.sin_port = htons (1200);

sin.sin_addr.s_addr = inet_addr ("128.215.18.2");

bind (s, &sin, sizeof sin)

This stores the local address in a structure whose elements appear in memory in this order:

Value Description
0x10 Length of sock_addre_in structure
AF_INET Address family
0xb004 port 1200 = 0x4b0, swapped to network byte order
0x80d71202 Internet address 128.215.18.2

Chapter 11 Library Functions82

Changes From the Standard Socket Interface
This implementation of the socket library has these differences from the standard
socket interface:

• In the standard socket interface, you can only specify whether socket calls are
blocking or non-blocking. This library provides the socktout() call that allows
you to define the maximum time to wait for completion of a socket call. The
timeout resolution is 10 ms.

• The address family AF_UNIX is not supported.

• The select() and socketpair() calls are not implemented.

• The SIGPIPE and SIGPOLL signals are not supported.

▲▲! CAUTION
The socket descriptors are not equivalent to the file descriptors
used in the C stdio interface. Never use the close() function on a
socket descriptor. You also cannot use such routines as read(),
fread(), write(), and fwrite(), among others, to read and write
data to socket connections.

Task Priority

User applications that bind to net3c.lib should run at a priority between 131 and 254.
If you use rq_create_task, be sure to create the new task with a priority in this range.
When applications launch from the CLI, there should not be a problem, because the
typical user priority falls in this range: 141 for Super user and 142 for other users.

Multitasking Considerations

You must ensure that only one iRMX job accesses a connection. Connections may
be shared between individual tasks within a single job.

Connections may be inherited by other child jobs if you specify this in the
shutdown() and socket() calls. Since socket descriptors are not file descriptors, and
under iRMX are not automatically inherited by child jobs as in Unix, these routines
provide a means to imitate this functionality under iRMX.

▲▲! CAUTION
Never delete a task while it is executing a socket call. This will
cause a general-protection trap in the TCP/IP job, with
unpredictable results. Killing the job, on the other hand, is all right.

TCP/IP for the iRMX Operating System Chapter 11 83

If a task is hung in a read call, and you want to kill it, first close the
connection and wait until the task returns.

Only one task should operate on a socket until a connection is established. After the
connection has been established, any number of tasks may use the socket
simultaneously. A shutdown() may be performed at any time. All tasks executing a
call on the socket at that time will return immediately with errno set to EBADF.

Include Files
The descriptions of library functions show which files must be included for each
function. The include directory is /intel/include. To get the correct information from
the include files, put this definition in your code:

#define _UNIX_SOURCE

or use these control statements in the iC-386, and Microsoft or Borland invocation
lines, respectively:

-df _UNIX_SOURCE

-d _UNIX_SOURCE

-D _UNIX_SOURCE

To use socket functions, these include files are generally needed:

<sys/types.h>

<sys/errno.h>

<sys/socket.h>

Functions that use an argument of type struct sockaddr and use a socket in the
DARPA Internet domain (AF_INET) may use the Internet view of the sockaddr
structure, defined in <netinet/in.h> as sockaddr_in.

Example Programs
Example programs are installed under the /rmx386/demo/c/tcpip directory, including:

tcpclient.c creating a TCP socket as a client
tcpserver.c creating a TCP socket as a server

Chapter 11 Library Functions84

Compiling
The libraries conform to the 386 compact model. When you compile, specify the
compact option. You also need to use the appropriate control statement.

-df __NOALIGN__ (iC-386 compiler)
-D __NOALIGN__ (Borland and Microsoft compiler)

(NOALIGN preceded by two underscores and followed by two more) in the invocation line.

Handling Errors
Most socket calls have one or more error returns. Error conditions are indicated by
impossible return values (usually -1); individual descriptions specify details.

Unless otherwise noted, function return codes and values are of type integer. An
error number is also made available in the external variable errno, which is not
cleared on successful calls. Thus, you should test errno only after an error occurs.

Link to cstart.obj and cifc32.lib (or the third party compiler equivalent) if your
application makes calls to the socket library and you use Intel 32-bit development
tools. You must use in-line exception handling or socket calls will fail, often with the
command aborted by EH error. To prevent this, add this code to the beginning of
main() in your program:

EXCEPTIONSTRUCT info;

unsigned short rq_status:

info.exceptionmode = 0:

rqsetexceptionhandler ((EXCEPTIONSTRUCT far *) &info.

&rq_status);

Always test the return status of iRMX system calls, and take action if there is an
error.

See also: Using Interface Libraries in Programming Techniques and System Call
Reference for shared C libraries to link to when not using Intel 32-bit
application development tools.

Errno Values for Network Functions
This list describes errors specific to networking as given in <sys/errno.h>.

EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

EADDRNOTAVAIL Can't assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

TCP/IP for the iRMX Operating System Chapter 11 85

EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you
shouldn't necessarily expect to be able to use PUP (PARC Universal Packet) Internet
addresses with ARPA Internet protocols.

EALREADY Operation already in progress
An operation was attempted on a non-blocking object that already had an operation in
progress.

EBADF Bad file
The socket descriptor is invalid.

ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

ECONNREFUSED Connection refused
No connection could be made; the target machine actively refused it. This usually
results from trying to connect to a service that is inactive on the foreign host.

ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer
executing a shutdown call.

EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

EHOSTDOWN Host down
The specified host is not running.

EHOSTUNREACH Host unreachable
There is no route to the host.

EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a connect) was attempted on
a non-blocking object.

EISCONN Socket is already connected
A connect request was made on an already connected socket, or a sendto or
sendmsg request on a connected socket specified a destination other than the
connected party.

EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer.

ENETDOWN Network is down
A socket operation encountered a dead network.

ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

Chapter 11 Library Functions86

ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked
sufficient buffer space.

ENOPROTOOPT Bad protocol option
A bad option was specified in a getsockopt or setsockopt call.

ENOTCONN Socket is not connected
A request to send or receive data was disallowed because the socket is not connected.

EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation for
it exists.

EPOWERFAIL Power failure
The connection was lost due to a power-fail/recovery cycle.

EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket type
requested. For example, you cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket had already been shut down
with a previous shutdown call.

ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no
implementation for it exists.

ETIMEDOUT Connection timed out
A connect request failed because the connected party did not properly respond after a
period of time. The timeout period is dependent on the communication protocol.

EUNATCH Protocol driver not attached
The TCP/IP kernel has not been loaded.

EWOULDBLOCK Operation would block
An operation that would cause a process to block was attempted on an object in non-
blocking mode.

TCP/IP for the iRMX Operating System Chapter 11 87

Function Reference
This section provides a reference to the functions from the network and socket
libraries. Each function reference page provides a brief description of the function,
its syntax, any additional information, and related error messages. Functions are
ordered alphabetically for quick reference.

accept Socket Library

Chapter 11 Library Functions88

accept
Accepts a connection on a socket.

Syntax

#include <sys/types.h>
#include <sys/socket.h>

int accept(s, addr, addrlen)
int s;
struct sockaddr *addr;
int *addrlen;

Parameters

s A socket of type SOCK_STREAM, created with the socket() call,
bound to an address with bind(), and currently listening for
connections with listen().

addr Points to a structure that accept() fills in with the address of the
connected peer. The format of the returned address is determined by
the domain in which the communication occurs.

addrlen Initialize to the number of bytes in the buffer referenced by addr. On
return, addrlen will contain the actual length in bytes of the returned
address.

Return Value

If the call succeeds, it returns a non-negative integer that is a descriptor for the
accepted socket, created by this call. The call returns -1 on an error.

Additional Information

Accept() gets the first connection request from the queue of pending connections and
creates a new socket with the same properties as s. The call accepts the connection
on the new socket and returns a file descriptor for that socket. You cannot accept
more connections on the new socket; the original socket s remains open.

Socket Library accept

TCP/IP for the iRMX Operating System Chapter 11 89

If no pending connections are present on the queue and the socket is not marked as
non-blocking, accept() blocks the caller until a connection request arrives. If the
socket is marked non-blocking and no pending connections are present on the queue,
accept() returns an error.

See also: bind(), connect(), listen(), and socket() functions, in this chapter

Errors
[EBADF]

The descriptor is invalid.

[EFAULT]
The addr parameter is not in a writable part of the user address space.

[EINVAL]
One of these has occurred:
• The number of bytes allocated for an incoming argument is not sufficient to store

the value of that argument.
• The function was issued in the wrong sequence on the transport endpoint

referenced by s.
• The transport endpoint referred to by s is not in the idle state.
• The specified options were in an incorrect format or contained illegal

information.
• The amount of user data specified was not within the bounds allowed by the

transport provider.

[EIO] One of these has occurred:
• An asynchronous event has occurred on this transport endpoint and requires

immediate attention.
• A system error has occurred during execution of this function.
• An unspecified I/O error has occurred.

[ENOTSOCK]
The descriptor references a file, not a socket.

[EOPNOTSUPP]
The referenced socket is not of type SOCK_STREAM.

[EUNATCH]
The TCP/IP kernel has not been loaded.

[EWOULDBLOCK]
The socket is marked non-blocking and no connections are present to be accepted.

bind Socket Library

Chapter 11 Library Functions90

bind
Assigns a name to an unnamed socket. When a socket is created with socket() it
exists in a name space (address family) but has no name assigned. A name must be
bound to the socket before the socket can be used.

Syntax

#include <sys/types.h>
#include <sys/socket.h>

int bind(s, name, namelen)
int s, namelen;
struct sockaddr *name;

Parameters

s The socket to be bound.

name Points to the structure containing the name. The rules used in name
binding vary between communication domains. In the AF_INET
domain, a name consists of the address family (AF_INET), a port ID,
and an IP address.

See also: Internet Socket Addresses, in this chapter

namelen The length of the name.

Return Value

Zero if the call is successful or -1 if an error occurs.

Errors
[EADDRINUSE]

The specified address is already in use.

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EBADF]
S is not a valid descriptor.

[EFAULT]
The name parameter is not in a valid part of the user address space.

[EINVAL]
The socket is already bound to an address.

Socket Library bind

TCP/IP for the iRMX Operating System Chapter 11 91

[EIO] An unspecified I/O error has occurred.

[ENOTSOCK]
S is not a socket.

[EUNATCH]
The TCP/IP kernel has not been loaded.

bstring Network Library

Chapter 11 Library Functions92

bstring
The bcmp(), bcopy(), and bzero() functions execute binary string operations.
They operate on variable length strings of bytes but do not check for null bytes as the
routines in string do.

Syntax

#include <sys/types.h>
#include <strings.h>

int bcmp(b1, b2, length)
char *b1, *b2;
int length;

int bcopy(b1, b2, length)
char *b1, *b2;
unsigned int length;

void bzero(b, length)
char *b;
int length;

Additional Information

Bcmp() compares the first length bytes of strings b1 and b2, returning 0 if they are
identical, non-zero otherwise. Both strings are assumed to be at least length bytes
long.

Bcopy() copies the first length bytes from string b1 to string b2. Bcopy() always
returns 0.

Bzero() places 0s in the first length bytes of string b.

✏ Note
The bcopy() function takes its two char * parameters in the
reverse order from strcpy() and memcpy().

Network Library byteorder

TCP/IP for the iRMX Operating System Chapter 11 93

byteorder
The htonl(), htons(), ntohl(), and ntohs() functions convert short (16-bit) and long
(32-bit) quantities between network byte order and host byte order.

Syntax

#include <sys/types.h>
#include <sys/endian.h>

unsigned long htonl(hostlong)
unsigned long hostlong;

unsigned short htons(hostshort)
unsigned short hostshort;

unsigned long ntohl(netlong)
unsigned long netlong;

unsigned short ntohs(netshort)
unsigned short netshort;

Additional Information

These routines are most often used in conjunction with Internet addresses and ports as
returned by gethostent() and getservent(). The conversion involves reversing the
order of the bytes in the short or long value.

See also: gethostent() and getservent() functions, in this chapter

connect Socket Library

Chapter 11 Library Functions94

connect
Initiates a connection on a socket. If the socket type is SOCK_DGRAM, this call
permanently specifies the peer to which datagrams are to be sent. If the type is
SOCK_STREAM, this call attempts to make a connection to another socket.

Syntax

#include <sys/types.h>
#include <sys/socket.h>

int connect(s, name, namelen)
int s, namelen;
struct sockaddr *name;

Parameters

s The local socket

name The remote socket, specified as an address in the communications space
of the socket. Each communications space interprets the name
parameter in its own way.

namelen The length of the name parameter, in bytes.

Return Value

Zero if the call is successful or -1 if an error occurs.

Errors
[EADDRINUSE]

Unused.

[EADDRNOTAVAIL]
The specified address is not available on this machine.

[EAFNOSUPPORT]
Unused.

[EBADF]
S is not a valid descriptor.

[ECONNREFUSED]
The attempt to connect was forcefully rejected.

[EFAULT]
The name parameter specifies an area outside the process address space.

Socket Library connect

TCP/IP for the iRMX Operating System Chapter 11 95

[EINVAL]
One of these has occurred:
• The function was issued in the wrong sequence.
• The specified protocol options were in an incorrect format or contained illegal

information.
• The amount of user data specified was not within the bounds allowed by the

transport provider.
• The number of bytes allocated for an incoming argument is not sufficient to store

the value of that argument.

[EIO] An unspecified I/O error has occurred.

[EISCONN]
The socket is already connected.

[ENETUNREACH]
The network isn't reachable from this host.

[ENOTSOCK]
S is a descriptor for a file, not a socket.

[EOPNOTSUPP]
This function is not supported by the underlying transport provider.

[ETIMEDOUT]
Connection establishment timed out without establishing a connection.

[EUNATCH]
The TCP/IP kernel has not been loaded.

[EWOULDBLOCK]
The socket is non-blocking and the connection cannot be completed immediately.

ffs Network Library

Chapter 11 Library Functions96

ffs
Identifies the first set bit in a value.

Syntax

#include <strings.h>

int ffs(mask)
long mask;

Additional Information

This function returns the index of the first (low order) set bit in the argument. Bits
are numbered starting at one. If no bits were set (mask was 0) a 0 will be returned.

Network Library gethostent

TCP/IP for the iRMX Operating System Chapter 11 97

gethostent
The gethostbyaddr(), gethostbyname(), sethostent(), endhostent(),
_gethtbyaddr(), _gethtbyname(), _sethtent(), _gethtent(), and _endhtent()
functions set and return entries that identify the network host.

Syntax

#include <netdb.h>

struct hostent *gethostbyaddr(addr, len, type)
char *addr;
int len, type;

struct hostent *gethostbyname(name)
char *name;

void sethostent(stayopen)
int stayopen;

void endhostent()

struct hostent *_gethtbyaddr(addr, len, type)
char *addr;
int len, type;

struct hostent *_gethtbyname(name)
char *name;

void _sethtent(stayopen)
int stayopen;

struct hostent * _gethtent()

void _endhtent()

Additional Information

Network host information can be obtained from either of two places, the hosts
database or the Domain Name Service (DNS). The iRMX TCP/IP software does not
include named, the DNS name server. However, it does include a DNS client. The
client contacts any DNS name servers running on other hosts on the network and uses
their name translation services.

gethostent Network Library

Chapter 11 Library Functions98

The environment variable NONAMESERVER specifies how the two sources are
accessed for requested information. If NONAMERSERVER is set, host information
is retrieved from the host’s database hosts. If NONAMERSERVER is not set, the
host database is searched first; if the search does not succeed, an attempt is made to
retrieve the information from a DNS name server on the network.

You can set this environment variable by adding “NONAMESERVER = 1” to
:config:r?env.

A set of functions is also provided to explicitly retrieve information from the hosts
database. All information obtained from the hosts database is contained in a static
area, so it must be copied if it is to be saved. Only Internet addresses are understood.

The gethostbyname() and _gethtbyname() functions retrieve a specific entry by
host name. Gethostbyname() uses the NONAMESERVER environment variable to
determine the source; _gethtbyname() always searches from the hosts database.

The gethostbyaddr() and _gethtbyaddr() functions retrieve a specific entry by
Internet address. Gethostbyaddr() uses the NONAMESERVER environment
variable to determine the source; _gethtbyaddr() always searches from the hosts
database. The Internet address used in both calls should be in host order. The
network type should be AF_INET, as defined in the system include file sys/socket.h.
The len argument is the length, in bytes, of the address.

To retrieve a sequential series of host entries from the hosts database, it is more
efficient to use the _sethtent(), _gethtent(), and _endhtent() functions. However,
the sethostent(), gethostent(), and endhostent() functions have the same basic
behavior described below.

You must pair the calls to _sethtent() and _endhtent().

The _sethtent() function opens or rewinds (sets the file pointer to 0) the hosts
database. If passed a 0 value for the argument stayopen, _sethtent() opens the
:config:hosts file. Subsequent calls to the _gethtent() function return the next entry
in the hosts database until end of file, opening it if necessary. The _endhtent()
function closes the database.

Network Library gethostent

TCP/IP for the iRMX Operating System Chapter 11 99

If passed a non-zero value for the argument stayopen, _sethtent() rewinds the
:config:hosts file or opens it, if it is not already open. Subsequent calls to the
_gethtent() function return the next entry in the hosts database until end of file,
opening it if necessary. The hosts database remains open until the application
executes exit(). Calling _endhtent() does not close the database.

The host entry has this structure:

struct hostent {

char * h_name;

char ** h_aliases;

int h_addrtype;

int h_length;

char ** h_addr_list;

#define h_addr h_addr_list[0]

};

Where:

h_name The official name of the host.

h_aliases A list of alternate names for the host. The list is terminated by a null
string.

h_addrtype
The type of host address; AF_INET is the only type supported.

h_length The length, in bytes, of the host address.

h_addr_list
A list of addresses for the host. The first entry in the list can be
retrieved by the defined name h_addr as well as by its position in the
list. The list is terminated by a 0 address. All host addresses are
returned in network byte order.

See also: hosts file, Chapter 11, and the system include file <sys/socket.h>

Errors

A null pointer is returned by gethostbyaddr(), gethostbyname(), _gethtbyaddr(),
_gethtbyname(), and _gethtent() on an EOF or on an error.

gethostid Network Library

Chapter 11 Library Functions100

gethostid
The gethostid() and sethostid() functions get or set the unique 32-bit identifier of
the local host.

Syntax

#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>

unsigned long gethostid()

int sethostid(hostid)
unsigned long hostid;

Return Value

For a successful call, gethostid() returns the host ID and sethostid() returns 0. If an
error occurs, both calls return -1.

Additional Information

Sethostid() establishes a 32-bit identifier for the current processor which is intended
to be unique among all Internet systems in existence. This is normally an Internet
address for the local machine's primary network interface. This call is normally
performed at boot time. Only the Super user can set host identifier.

Gethostid() returns the 32-bit identifier for the current processor.

See also: hostid command, Command Reference;
gethostname() function, in this chapter

Errors
[EADDRNOTAVAIL]

The specified host ID is invalid.

[EPERM] Only the Super user is allowed to set the host identifier.

[EUNATCH] The TCP/IP kernel has not been loaded.

Network Library gethostname

TCP/IP for the iRMX Operating System Chapter 11 101

gethostname
The gethostname() and sethostname() functions get and set the local host name.

Syntax

#include <arpa/inet.h>

int gethostname(name, len)
char *name;
int len;

int sethostname(name, len)
char *name;
int len;

Additional Information

Gethostname() retrieves the host name and places it in the character string pointed
to by the argument name. The len is the maximum number of characters of the
name that can be returned; it should be set to the size of name. If the host name is
longer than len, it will be truncated; it will be null terminated only if the name is
shorter than len.

Sethostname() sets the host name to the argument name. Only the Super user can
set the host name.

Errors

Both functions return 0 on success and -1 on failure; errno may be one of these:

[EFAULT]
The name was a null pointer.

[EINVAL]
The len was less than one.

[EPERM]
Only the Super user can set the host name.

[EUNATCH]
The TCP/IP kernel has not been loaded.

See also: uname and hostname commands, Command Reference

getnetent Network Library

Chapter 11 Library Functions102

getnetent
The getnetbyaddr(), getnetbyname(), setnetent(), getnetent(), and endnetent()
functions return information about a network entry from the :config:networks
database.

Syntax

#include <netdb.h>

struct netent *getnetbyname(name)
char *name;

struct netent *getnetbyaddr(net, type)
int net, type;

void setnetent(stayopen)
int stayopen;

struct netent *getnetent()

void endnetent()

Additional Information

A specific entry can be retrieved by the network name with getnetbyname(), or by
its Internet address with getnetbyaddr(). Both functions sequentially search the
database for the specified entry. The network address used in the getnetbyaddr()
call should be in host order; the network type should be AF_INET, as defined in the
system include file <sys/socket.h>.

All returned information is contained in a static area, so it must be copied if it is to be
saved. Only Internet network numbers are understood.

To retrieve a sequential series of network entries, it is more efficient to use the
setnetent(), getnetent(), and endnetent() functions. You must pair the calls to
setnetent() and endnetent().

The setnetent() function opens or rewinds (sets the file pointer to 0) the networks
database. If passed a 0 value for the argument stayopen, setnetent() opens the
:config:networks file. Subsequent calls to the getnetent() function return the next
entry in the networks database until end of file, opening it if necessary. The
endnetent() function closes the database.

Network Library getnetent

TCP/IP for the iRMX Operating System Chapter 11 103

If passed a non-zero value for the argument stayopen, setnetent() rewinds the
:config:networks file or opens it, if it is not already open. Subsequent calls to the
getnetent() function return the next entry in the networks database until end of file,
opening it if necessary. The networks database remains open until the application
executes exit(). Calling endnetent() does not close the database.

The network entry has this structure:

struct netent {

char * n_name;

char ** n_aliases;

int n_addrtype;

unsigned long n_net;

};

Where:

n_name The official name of the network.

n_aliases A list of alternate names for the network. The list is terminated by a
null string.

n_addrtype
The type of network address; AF_INET is the only type supported.

n_net The network number in host order.

See also: networks file, Chapter 9, and the system include file <sys/socket.h>

Errors

A null pointer is returned by getnetbyaddr(), getnetbyname(), and getnetent() on
an EOF or on an error.

getpeername Network Library

Chapter 11 Library Functions104

getpeername
Returns the socket name of the connected remote socket.

Syntax

#include <sys/types.h>
#include <sys/socket.h>

int getpeername(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

Parameters

s The local socket.

name A pointer to the space where the call returns a name.

namelen Initialize this to indicate the amount of space pointed to by name. On
return it contains the actual size of the name returned, in bytes.

Return Value

Zero if the call is successful or -1 if an error occurs.

Additional Information

A socket name in the AF_INET family contains the length, address family, a port
number, and the IP address.

See also: bind() and getsockname() functions, in this chapter

Errors
[EBADF]

The argument s is not a valid descriptor.

[EFAULT]
The name parameter points to memory not in a valid part of the process address
space.

[EINVAL]
The namelen parameter is too small.

[ENOBUFS]
Insufficient resources were available in the system to perform the operation.

Socket Library getpeername

TCP/IP for the iRMX Operating System Chapter 11 105

[ENOTCONN]
The socket is not connected.

[ENOTSOCK]
The argument s is a file, not a socket.

[EUNATCH]
The TCP/IP kernel has not been loaded.

getprotoent Network Library

Chapter 11 Library Functions106

getprotoent
The getprotobyname(), getprotobynumber(), setprotoent(), getprotoent(), and
endprotoent() functions return an entry from the :config:protocols database file.

Syntax

#include <netdb.h>

struct protoent *getprotobyname(name)
char *name;

struct protoent *getprotobynumber(proto)
int proto;

void setprotoent(stayopen)
int stayopen;

struct protoent *getprotoent()

void endprotoent()

Additional Information

All returned information is contained in a static area, so it must be copied if it is to be
saved. Only Internet protocols are understood.

A specific entry can be retrieved by the protocol name with getprotobyname(), or
by its number with getprotobynumber(). Both functions sequentially search the
database for the specified entry. The protocol number used in the
getprotobynumber() call should be in host order.

To retrieve a sequential series of protocol entries, it is more efficient to use the
setprotoent(), getprotoent(), and endprotoent() functions. You must pair the
calls to setprotoent() and endprotoent().

The setprotoent() function opens or rewinds (sets the file pointer to 0) the protocols
database. If passed a 0 value for the argument stayopen, setprotoent() opens the
:config:protocols file. Subsequent calls to the getprotoent() function return the next
entry in the protocols database until end of file, opening it if necessary. The
endprotoent() function closes the database.

Network Library getprotoent

TCP/IP for the iRMX Operating System Chapter 11 107

If passed a non-zero value for the argument stayopen, setprotoent() rewinds the
:config:protocols file or opens it, if it is not already open. Subsequent calls to the
getprotoent() function return the next entry in the protocols database until end of
file, opening it if necessary. The protocols database remains open until the
application executes exit(). Calling endprotoent() does not close the database.

The returned protocol entry has this structure:

struct protoent {

char * p_name;

char ** p_aliases;

unsigned long p_proto

};

Where:

p_name The official name of the protocol.

p_aliases A list of alternate names for the protocol. The list is terminated by a
null string.

p_proto The protocol number in host byte order.

so: protocols file, Chapter 9

Errors

A null pointer is returned by getprotobynumber(), getprotobyname(), and
getprotoent() on an EOF or on an error.

getservent Network Library

Chapter 11 Library Functions108

getservent
The getservbyport(), getservbyname(), setservent(), getservent(), and
endservent() functions set or return an entry from the :config:services database file.

Syntax

#include <netdb.h>

struct servent *getservbyname(name, proto)
char *name, *proto;

struct servent *getservbyport(port, proto)
int port;
char *proto;

void setservent(stayopen)
int stayopen;

struct servent *getservent()

void endservent()

Additional Information

All returned information is contained in a static area, so it must be copied if it is to be
saved. Only Internet services are understood.

A specific entry can be retrieved by the service name with getservbyname(), or by
its port with getservbyport(). Both functions sequentially search the database for
the specified entry. The port number used in the getservbyport() call must be in
network order. Use the htons() function to convert the port number from host byte
order to network byte order.

See also: htons() function, in this chapter

To retrieve a sequential series of service entries, it is more efficient to use the
setservent(), getservent(), and endservent() functions. You must pair the calls to
setservent() and endservent().

Setservent() opens or rewinds the services database. If passed a non-zero value for
the argument stayopen, setservent() will set a flag to prevent the database from
being closed until endservent() is called.

Endservent() closes the services database.

Network Library getservent

TCP/IP for the iRMX Operating System Chapter 11 109

Getservent() returns the next entry in the services database, opening it if necessary.
If preceded by a call to setservent() with the stayopen flag set, it can be called
successively to retrieve, in order, all of the database entries. When getservent() is
called without a previous call to setservent(), it opens the database, retrieves the first
entry, and closes the database.

The returned service entry has this structure:

struct servent {

char * s_name;

char ** s_aliases;

int s_port;

char * s_proto;

};

Where:

s_name The official name of the service.

s_aliases A list of alternate names for the service. The list is terminated by a null
string.

s_port The port number at which the service can be reached, in network byte
order.

s_proto The name of the protocol to be used when contacting the service.

See also: protocols and services files, Chapter 9

Errors

A null pointer is returned by getservbyaddr(), getservbyname() and getservent()
on an EOF or on an error.

getsockname Socket Library

Chapter 11 Library Functions110

getsockname
Returns the current name for the specified socket.

Syntax

#include <sys/types.h>
#include <sys/socket.h>

int getsockname(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

Parameters

s A local socket.

name A pointer to the space where the call returns a name.

namelen Initialize this to indicate the amount of space pointed to by name. On
return it contains the actual size of the name returned, in bytes.

Return Value

Zero if the call is successful or -1 if an error occurs.

Additional Information

A socket name in the AF_INET family contains the length, address family, a port
number, and the IP address.

See also: bind() and getpeername() functions, in this chapter

Errors
[EBADF]

The argument s is not a valid descriptor.

[ENOTSOCK]
The argument s is a file, not a socket.

[ENOBUFS]
Insufficient resources were available in the system to perform the operation.

[EFAULT]
The name parameter points to memory not in a valid part of the process address
space.

Socket Library getsockname

TCP/IP for the iRMX Operating System Chapter 11 111

[EADDRNOTAVAIL]
Socket not bound.

[EUNATCH]
The TCP/IP kernel has not been loaded.

See also: bind() function, in this chapter

getsockopt Socket Library

Chapter 11 Library Functions112

getsockopt
The getsockopt() and setsockopt() functions return or set options associated with a
socket.

Syntax

#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *optlen;

int setsockopt(s, level, optname, optval, optlen)
int s, level, optname, optlen;
char *optval;

Parameters

s The socket whose options will be set or returned.

level The level at which the option is maintained. At the socket level, specify
SOL_SOCKET. To manipulate options at any other level, specify the
protocol number of the appropriate protocol controlling the option. For
example, if the option is to be interpreted by the TCP protocol, set
level to the protocol number of TCP (IPPROTO_TCP).

See also: getprotoent() function, in this chapter

optname Specify the name of the option to set or return.

optval For setsockopt(), specify the value of the option. For getsockopt(),
the value is returned in this buffer.

optlen Specify the length of the optval buffer, in bytes. For getsockopt(),
optlen is a pointer; the value it points to is modified on return to
indicate the actual size of the optval parameter.

Return Value

Getsockopt() returns 0 if the call succeeds and the specified option is set; otherwise,
the return is -1. Setsockopt() returns 0 if the call succeeds or -1 if it fails.

Socket Library getsockopt

TCP/IP for the iRMX Operating System Chapter 11 113

Additional Information

Options may exist at multiple protocol levels; they are always present at the
uppermost, or socket, level. To manipulate socket options, you must specify the level
at which the option resides and the name of the option. If no option value is to be
supplied or returned, optval may be set to 0.

The following options are supported:

level optname Description

SOL_SOCKET SO_ATMARK Report if at OOB mark
SO_BROADCAST Permit sending of broadcast msgs
SO_DONTROUTE Just use interface addresses
SO_KEEPALIVE Keep connections alive
SO_LINGER Linger on close if data present
SO_OOBINLINE Leave received OOB data in-line
SO_RCVLOWAT Receive low-water mark
SO_SNDLOWAT Send low-water mark
SO_REUSEADDR Allow local address reuse
SO_RCVBUF Size of socket receive buffer
SO_SNDBUF Size of socket send buffer
SO_REUSEPORT Allow local port reuse

IPPROTO_TCP TCP_MAXSEG Get TCP maximum segment size
TCP_NODELAY Don’t delay send to coalesce packets
TCP_NOOPT Don’t use TCP options
TCP_NOPUSH Don’t push last block of write

IPPROTO_IP IP_TOS Type of service
IP_TTL Segment time to live
IP_HDRINCL Application (RAW IP) supplies IP header

Optname and any specified options are passed without interpretation to the
appropriate protocol module for interpretation. Options at other protocol levels vary
in format and name.

See also: socket() and getprotoent() function, in this chapter;
protocols, Chapter 9

getsockopt Socket Library

Chapter 11 Library Functions114

Errors
[EBADF]

The argument s is not a valid descriptor.

[ENOTSOCK]
The argument s is a file, not a socket.

[ENOPROTOOPT]
The option is unknown at the level specified.

[EFAULT]
The options are not in a valid part of the process address space.

[ENOBUFS]
No buffer space is available.

[EINVAL]
Invalid option specified.

[EPROTO]
Invalid level specified.

[EUNATCH]
The TCP/IP kernel has not been loaded.

Network Library inet

TCP/IP for the iRMX Operating System Chapter 11 115

inet
The inet_addr(), inet_lnaof(), inet_makeaddr(), inet_netof(), inet_network(),
and inet_ntoa() functions manipulate Internet addresses.

Syntax

#include <sys/types.h>
#include <netinet/in.h>

unsigned long inet_addr(cp)
char *cp;

int inet_lnaof(in)
struct in_addr in;

struct in_addr inet_makeaddr(net, host)
int net, host;

int inet_netof(in)
struct in_addr in;

unsigned long inet_network(cp)
char *cp;

char *inet_ntoa(in)
struct in_addr in;

Additional Information

The functions inet_addr() and inet_network() convert dot notation character
strings to the equivalent Internet address and network number, respectively. The
function inet_ntoa() performs the reverse operation, converting an Internet address
to the equivalent dot notation character string.

The function inet_makeaddr() constructs an Internet address from a network
number and host address. The functions inet_netof() and inet_lnaof() return the
network and local network portions, respectively, of the Internet number passed as an
argument.

All functions correctly handle Class A, B, and C Internet addresses; Internet
addresses are returned in network byte order.

The dot notation form of an Internet address consists of one to four numbers
separated by dots (periods). Each number can be expressed in decimal, octal (leading
0), or hexadecimal (leading 0x).

inet Network Library

Chapter 11 Library Functions116

A four-part address (a.b.c.d) consists of four 8-bit numbers, each in the range 0- 255.
The four parts are assigned, in order, to the four bytes in the long Internet address.
This is the most commonly used format.

A three-part address (a.b.c) consists of two 8-bit numbers followed by a 16-bit
number. The first two parts are assigned in order to the leftmost two bytes of the
long Internet address; the third part is placed in the rightmost two bytes. This format
is often used for specifying Class B network addresses as 128.net.host.

A two-part address (a.b) consists of a single 8-bit number followed a 24-bit number.
The first part is assigned to the leftmost byte of the long Internet address; the second
part is placed in the rightmost three bytes. This format is often used for specifying
Class A addresses as net.host.

A one-part address is converted to a 32-bit quantity and stored directly in the long
Internet address without any byte rearrangement.

See also: gethostent() and getnetent() functions, in this chapter;
hosts and networks, Chapter 9

Errors

The value -1 is returned by inet_addr() and inet_network() for malformed
requests.

Socket Library listen

TCP/IP for the iRMX Operating System Chapter 11 117

listen
Listens for connection requests on a socket.

Syntax

#include <sys/types.h>
#include <sys/socket.h>

int listen(s, backlog)
int s, backlog;

Parameters

s An unconnected socket of type SOCK_STREAM, which has been
bound to a name with bind().

backlog The maximum number of incoming connection requests that can be
queued. If a connection request arrives with the queue full, the client
will receive an error with an indication of ECONNREFUSED.

✏ Note
This parameter is ignored.

Return Value

Zero if the call is successful or -1 if an error occurs.

Additional Information

For a server application to accept connections, it must first create a socket with
socket(), then specify a backlog for incoming connection requests with listen(). To
complete a connection, accept connection requests with accept().

A listen(s,0) call succeeds and sets a connection queue length of 0. This causes all
connect() attempts to the listening port to fail, with the error ECONNREFUSED. A
listen(s,1) call accepts only a single connection with no pending requests allowed.

See also: accept(), connect(), and socket() functions, in this chapter

listen Socket Library

Chapter 11 Library Functions118

Errors
[EBADF]

The argument s is not a valid descriptor.

[EIO] An ioctl of SETQUEUELENGTH has failed.

[ENOTSOCK]
The argument s is not a socket.

[EOPNOTSUPP]
The socket is not of a type that supports the operation listen().

[EUNATCH]
The TCP/IP kernel has not been loaded.

Socket Library recv

TCP/IP for the iRMX Operating System Chapter 11 119

recv
The recv(), recvfrom(), and recvmsg() functions receive a message from a socket.
You can use the recv() call only on a connected socket, while recvfrom() and
recvmsg() can receive data on a socket whether it is in a connected state or not.

Syntax

#include <sys/types.h>
#include <sys/socket.h>

int recv(s, buf, len, flags)
int s, len, flags;
char *buf;

int recvfrom(s, buf, len, flags, from, fromlen)
int s, len, flags;
char *buf;
struct sockaddr *from;
int *fromlen;

int recvmsg(s, msg, flags)
int s, flags;
struct msghdr msg[];

Parameters

s The socket to receive the message from.

buf A pointer to a buffer where the received message will be placed.

len The length in bytes of the buffer indicated by buf.

flags You may set flags to one of the following:

0 No special handling.

MSG_PEEK Peek at the incoming data present on the socket;
the data is returned but not consumed, so that
subsequent receive operation will see the same
data.

✏ Note
This parameter is ignored.

MSG_WAITALL Wait for all data requested.

recv Socket Library

Chapter 11 Library Functions120

✏ Note
This parameter is ignored.

from If from is non-zero, the source address of the message is filled in.

fromlen Initialize to the size of the buffer associated with from. Fromlen is
modified on return to indicate the actual size of the address stored there.

msg The recvmsg() call uses a msghdr structure to minimize the number of
directly supplied parameters. This structure has this form, as defined in
<sys/socket.h>:

struct msghdr {

caddr_t msg_name; /* optional address */

int msg_namelen; /* size of address */

struct iovec *msg_iov; /* scatter/gather array */

int msg_iovlen; /* # elements in msg_iov */

caddr_t msg_accrights; /* access rights sent/received */

int msg_accrightslen;

};

Here msg_name and msg_namelen specify the destination address if the socket is
unconnected; msg_name may be given as a null pointer if no names are desired or
required.

Return Value

The number of bytes received in the message, or -1 if an error occurs.

If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from. If no messages are
available at the socket, the receive call waits for a message to arrive, unless the
socket is non-blocking. In this case a value of -1 is returned with errno set to
EWOULDBLOCK.

See also: send() and socktout() functions, in this chapter

Errors
[EBADF]

The argument s is an invalid descriptor.

[EFAULT]
The data was specified to be received into a non-existent or protected part of the
process address space.

Socket Library recv

TCP/IP for the iRMX Operating System Chapter 11 121

[EINTR]
The receive was interrupted by delivery of a signal before any data was available for
the receive.

[EINVAL]
Invalid flags, len or fromlen parameters specified; the number of bytes allocated
for the incoming protocol address or options is not sufficient to store the information.

[ENOTSOCK]
The argument s is not a socket.

[EOPNOTSUPP]
This function is not supported by the underlying transport provider.

[EUNATCH]
The TCP/IP kernel has not been loaded.

[EWOULDBLOCK]
The socket is marked non-blocking and the receive operation would block.

send Socket Library

Chapter 11 Library Functions122

send
The send(), sendto(), and sendmsg() functions send a message from one socket to
another. Send() may be used only when the socket is in a connected state, while
sendto() and sendmsg() may be used at any time.

Syntax

#include <sys/types.h>
#include <sys/socket.h>

int send(s, buf, len, flags)
int s, len, flags;
char *buf;

int sendto(s, buf, len, flags, to, tolen)
int s, len, flags, tolen;
char *buf;
struct sockaddr *to;

int sendmsg(s, msg, flags)
int s, flags;
struct msghdr msg[];

Parameters

s The local socket.

buf Points to the buffer holding the message to be sent.

len The length of the message in bytes, for send() and sendto().

flags May be set to MSG_OOB, to send out-of-band data on sockets that
support this notion (for example, SOCK_STREAM). The underlying
protocol must also support out-of-band data. The BSD
MSG_DONTROUTE flag is not supported. You may set the flag to
one of the following:

0 No special handling.

MSG_OOB Process out of band data

to The address of the target socket.

tolen The length in bytes of the to argument.

msg Points to a structure holding the message and information about it.

Socket Library send

TCP/IP for the iRMX Operating System Chapter 11 123

The msghdr structure is as follows:

struct msghdr {

caddr_t msg_name; /* optional address */

int msg_namelen; /* size of address */

struct iovec *msg_iov; /* scatter/gather array */

int msg_iovlen; /* # elements in msg_iov */

caddr_t msg_accrights; /* access rights sent/received */

int msg_accrightslen;

};

Here msg_name and msg_namelen specify the destination address if the socket is
unconnected; msg_name may be given as a null pointer if no names are desired or
required.

Return Value

The number of characters sent, or -1 if an error occurs.

Additional Information

No indication of failure to deliver is implicit in a send(). Return values of -1
indicate some locally detected errors.

If no message space is available at the socket to hold the message to be transmitted,
send() normally blocks, unless the socket has been placed in non-blocking I/O mode.

Errors
[EBADF]

s is a invalid descriptor.

[EFAULT]
An invalid user space address was specified for a parameter.

[ENOTSOCK]
The argument s is not a socket.

[EOPNOTSUPP]
This function is not supported by the underlying transport provider.

[EUNATCH]
The TCP/IP kernel has not been loaded.

[EWOULDBLOCK]
The socket is marked non-blocking and the requested operation would block.

[EPIPE]
A broken connection exists or a peer has closed the connection.

shutdown Socket Library

Chapter 11 Library Functions124

shutdown
Shuts down all or part of a full-duplex connection.

Syntax

#include <sys/types.h>
#include <sys/socket.h>

int shutdown(s, how)
int s, how;

Parameters

s A connected socket.

how Specifies what part(s) of the connection to shut down:

Value Description
0 Disallow further receives (not currently implemented)
1 Disallow further sends (not currently implemented)
2 Disallow further receives and sends
job-ID Transfer the socket to the specified iRMX job.

Additional Information

This call closes the socket when you disallow both receive and send functions. This
can occur with a how of 2, or with subsequent calls specifying a how of 1 and a how
of 0.

There is an extension to this call which allows the transfer of a socket to another
iRMX job. If the how parameter is the job ID of a valid iRMX job, the connection
remains and is transferred along with the socket to the specified job. To inherit the
socket, the other job must specify SOCK_INHERIT as the type parameter in a
socket() call.

The task that bequeaths a socket (using the inherit-style shutdown) will block in the
shutdown() call until the task in job-ID inherits it (calls socket() with
SOCK_INHERIT). If the bequeathing task creates the inheriting task, it must do so
prior to calling shutdown().

See also: connect() and socket() functions, in this chapter

Return Value

Zero if the call is successful or -1 if an error occurs.

Socket Library shutdown

TCP/IP for the iRMX Operating System Chapter 11 125

Errors
[EBADF]

s is not a valid descriptor.

[EINVAL]
Invalid value specified for how.

[ENOTSOCK]
s is not a socket.

[EUNATCH]
The TCP/IP kernel has not been loaded.

socket Socket Library

Chapter 11 Library Functions126

socket
Creates an endpoint for communication.

Syntax

#include <sys/types.h>
#include <sys/socket.h>

int socket(af, type, protocol)
int af, type, protocol;

Parameters

af An address format for interpreting addresses specified in later
operations:

Value Format
AF_INET Internet addresses

type Specifies the semantics of communication; one of these:

Value Meaning
SOCK_STREAM The socket will be used for connections.
SOCK_DGRAM The socket will be used for datagrams.
SOCK_RAW The socket gives direct access to the IP layer.
SOCK_INHERIT This iRMX job blocks, waiting to inherit another

job's open socket

protocol The protocol to be used with the socket. For a socket of type
SOCK_STREAM or SOCK_DGRAM, specify 0 to get the default
protocol, IPPROTO_TCP and IPPROTO_UDP, respectively. A
SOCK_RAW socket can use IPPROTO_ICMP or IPPROTO_RAW.
Specify 0 for a SOCK_INHERIT socket. If you include <netinet/in.h>,
these values are defined:

Literal Value Meaning
IPPROTO_IP 0 dummy for IP
IPPROTO_ICMP 1 Internet control message protocol
IPPROTO_GGP 3 gateway-gateway protocol
IPPROTO_TCP 6 transmission control protocol
IPPROTO_EGP 8 exterior gateway protocol
IPPROTO_PUP 12 PARC universal packet protocol
IPPROTO_UDP 17 user datagram protocol
IPPROTO_IDP 22 Xerox XNS IDP
IPPROTO_RAW 255 raw IP packet

See also: services and protocols files, Chapter 9

Socket Library socket

TCP/IP for the iRMX Operating System Chapter 11 127

Return Value

A descriptor referencing the socket, or -1 if an error occurs.

Additional Information

Sockets of type SOCK_STREAM are sequenced, reliable, two-way connection-based
byte streams with an out-of-band data transmission mechanism. They are similar to
Unix pipes. A stream socket must be in a connected state before any data may be
sent or received on it. A connection to another socket is created with a connect()
call. Once connected, data may be transferred using some variant of the send() and
recv() calls. When a session has been completed a shutdown() must be performed.
Out-of-band data may also be transmitted and received.

The communications protocols used to implement a SOCK_STREAM ensure that
data is not lost or duplicated. If a piece of data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, the
connection is considered broken. Such calls indicate an error with -1 returns and with
ETIMEDOUT as the specific code in the global variable errno. The protocols
optionally keep sockets viable by forcing transmissions approximately every minute,
in the absence of other activity. An error is then indicated if no response can be
elicited on an otherwise idle connection for an extended period (e.g., five minutes).

SOCK_DGRAM sockets allow you to send and receive datagrams. A datagram is a
connectionless, unreliable message with a fixed maximum length, typically small.

See also: send() and recv() functions, in this chapter

A SOCK_RAW socket gives direct access to the IP layer.

If SOCK_INHERIT is specified as the type parameter, the current job will block in
the socket() call until another job closes a socket using the current job's ID number
as the how parameter to the shutdown() call. The result is that the job which
specifies SOCK_INHERIT in its socket() call actually inherits an open socket from
another iRMX job. This is a non-standard extension to the iRMX implementation of
TCP/IP.

See also: shutdown() function, in this chapter

All sockets are, by default, SO_LINGER. If the socket promises reliable delivery of
data, the system will block the process on a shutdown attempt until it is able to
transmit the data or until it decides it is unable to deliver the information.

socket Socket Library

Chapter 11 Library Functions128

Errors
[EAFNOSUPPORT]

The specified address family is not supported in this version of the system.

[EINVAL]
An unknown error occurred.

[EIO] TCP/IP is not configured into the iRMX system.

[ENOBUFS]
Unused.

[EPROTONOSUPPORT]
Unused.

[ESOCKTNOSUPPORT]
The specified socket type is not supported in this address family.

[EUNATCH]
The TCP/IP kernel has not been loaded.

Socket Library socktout

TCP/IP for the iRMX Operating System Chapter 11 75

socktout
Defines a maximum time to wait for completion of any subsequent calls on the
socket.

Syntax

#include <sys/types.h>
#include <sys/socket.h>

int socktout(s, val)
int s;
unsigned int val;

Parameters

s The socket.

val The timeout period in 10-ms units. Setting val to 0xffff disables the
timeouts.

Return Value

Zero if the call is successful or -1 if an error occurs.

Additional Information

After reaching the timeout limit, the timed-out socket call returns with the return
value -1, and errno is set to EWOULDBLOCK. The socktout() call is a
nonstandard extension to the iRMX implementation of TCP/IP. Since the iRMX
environment does not have the alarm function built into Unix, this call serves as a
substitute measure.

An example of using this function is when you want to receive a datagram. Since
UDP is unreliable service, the datagram might be sent but never received. If this
occurred, your recvfrom() call would block forever unless you had first issued a
socktout() call.

See also: accept(), connect(), recv(), and send() functions, in this chapter

socktout Socket Library

Chapter 11 Library Functions76

Errors
[E2BIG]

val is too big.

[EBADF]
s is not a valid descriptor.

[EUNATCH]
The TCP/IP kernel has not been loaded.

■■ ■■ ■■

TCP/IP for the iRMX Operating System Appendix A 77

Recommended Reading A
This appendix names a few of the many books available on TCP/IP, NFS, and related
subjects.

TCP/IP
D. E. Comer. Internetworking with TCP/IP: Principles, Protocols, and
Architectures. Volume I, second edition. Englewood Cliffs, NJ: Prentice-Hall, 1991.
This definitive textbook contains both introductory material and detailed reference
material on the TCP/IP protocol suite and applications.

M. T. Rose. The Simple Book: An Introduction to Management of TCP/IP-based
Internets. Englewood Cliffs, NJ: Prentice-Hall, 1991. Describes network
management of a TCP/IP internet based on the Simple Network Management
Protocol (SNMP).

A. S. Tannenbaum. "Network Protocols," ACM Computing Surveys. Volume 13,
Number 4, December 1981. This article discusses different types of protocols and
network architectures.

W. Richard Stevens. UNIX Network Programming. Englewood Cliffs, NJ: Prentice-
Hall, 1990. Thoroughly covers common implementations of TCP/IP networking and
related UNIX functions, complete with example code.

NFS
Douglas E. Comer. Internetworking with TCP/IP. Volumes I, II, and III.
Englewood Cliffs, NJ: Prentice-Hall, 1993. Volume I discusses the fundamental
concepts that permeate the Internet suite. Volume II describes how the Internet
technological infrastructure is realized. Volume III discusses how to architect and
build client/server applications.

Appendix A Recommended Reading78

Networks
R. Bowker. Racal InterLan on Interoperability. Boxborough, MA: Racal InterLan,
1989. A survey of interoperability that covers industry standards, operating systems,
Application Program Interfaces, network operating systems and architectures, and
local area networks. Bowker describes the current state of interoperability, and
where it is headed.

E. B. Brooner. The Local Area Network Book. Indianapolis, IN: Howard W. Sams &
Co., Inc., 1984. An introduction to local area networking written for readers with
minimal technical background.

J. H. Green. Local Area Networks. Glenview, IL: Scott, Foresman and Company,
1985. Discusses networking from the perspective of the business professional.

T. W. Madron. LANs: applications of IEEE/ANSI 802 standards. John Wiley &
Sons, Inc., 1989. A description of IEEE/ANSI 802 standards that includes a chapter
on TCP/IP internetworking.

J. S. Quarterman. The Matrix: Computer Networks and Conferencing Systems
Worldwide. Bedford, MA: Digital Press, 1990. A comprehensive discussion of
networks, protocols and conferencing systems used throughout the world. Part I
includes chapters on layers, protocols, network administration, and various standards
bodies in the U.S., Europe and Japan. Part II describes what Quarterman calls the
Matrix: the complex infrastructure of networks and conferencing systems.
Quarterman's book ends with an appendix that highlights some applications of law to
Computer Mediated Communication (CMC).

M. T. Rose. The Open Book: A Practical Perspective on OSI. Englewood Cliffs, NJ:
Prentice-Hall, 1991. A clear discussion of the OSI architecture and protocols, with
an emphasis on TCP/IP-to-OSI transition issues. Also includes implementation
examples.

A. S. Tannenbaum. Computer Networks. Englewood Cliffs, NJ: Prentice-Hall, 1981.
Tannenbaum discusses all aspects of computer networking.

■■ ■■ ■■

TCP/IP for the iRMX Operating System Glossary 79

Glossary

alias A symbolic name for a domain, host, or user.

ARP Address Resolution Protocol. An Internet protocol which runs on
Ethernets and Token Rings which maps Internet addresses to
MAC addresses.

ARPA Advanced Research Projects Agency. The former name of what
is now called DARPA.

ARPANET A wide area network developed in the 1960s by the Advanced
Research Projects Agency. The ARPANET links government,
commercial, and academic installations around the world.

BIOS The Basic I/O System layer of the iRMX OS. This is different
from the ROM BIOS stored in ROM on a DOS system.

bps Bits per second. A measure of data transmission speed.

broadcast A technique by which a single system on a network can send
information to all other systems on the network using a single
operation.

BSD Berkeley Software Distribution. An enhanced Unix operating
system that was designed at the University of California at
Berkeley. Local network support is one of the enhancements
provided by BSD-based systems.

canonical The standard or regular name or expression, not the alias.

client process A process activated by a user when issuing a networking
command. The client process sends a request for service to a
process on the remote host. If the request is honored, a
connection is established between the local client and the remote
server process.

connection The path between two protocol modules that provides reliable
stream delivery service. In TCP/IP Internet, a connection extends
from a TCP module on one machine to a TCP module on the
other.

Glossary80

connectionless service Characteristic of the packet delivery service offered by most
hardware and Internet Protocol (IP). The connectionless service
treats each packet or datagram as a separate entity that contains
source and destination addresses. Usually, connectionless service
can drop packets or deliver them out of sequence.

DARPA Department of Defense Advanced Research Projects Agency.
The government agency that funded the ARPANET and later
started the Internet.

datagram The unit transmitted between a pair of internet modules. The
Internet Protocol provides for transmitting blocks of data, called
datagrams, from sources to destinations. The Internet Protocol
does not provide a reliable communication facility. There are no
acknowledgments either end-to-end or hop-by-hop. There is no
error control for data, only a header checksum. There are no
retransmissions. There is no flow control. See IP.

DDN Defense Data Network. Comprises the MILNET and several
other networks.

decimal address See dotted decimal

default route A routing table entry which is used to direct any data addressed to
any network numbers not explicitly listed in the routing table.

domain A grouping of hosts according to affiliation. For example, most
universities belong to the EDU domain of educational institutions.

DNS The Domain Name System is a mechanism used in the Internet
for translating names of host computers into addresses. The DNS
also allows host computers not directly on the Internet to have
registered names in the same style.

dotted decimal An Internet address that uses the base-10 number system, with the
parts of the address separated by periods (dots).

EGP External Gateway Protocol. A protocol which distributes routing
information to the routers and gateways which interconnect
networks.

EIOS The Extended I/O System.

TCP/IP for the iRMX Operating System Glossary 81

Ethernet A network standard for the hardware and Data Link levels. There
are two types of Ethernet: Digital/Intel/Xerox (DIX) and IEEE
802.3.

frame A self-contained package of data at the link layer.

FTP File Transfer Protocol. A TCP/IP protocol used for transferring
files between hosts on the network.

gateway A special-purpose dedicated computer that attaches to two or
more networks and routes packets from one network to the other.
In particular, an Internet gateway routes IP datagrams among the
networks it connects. Gateways route packets to other gateways
until they can be delivered to the final destination directly across
one physical network. This definition is more commonly used in
TCP/IP literature for a gateway. However, a more strict
definition is that a gateway not only routes between networks but
can translate between network protocols as it routes.

globbing Determines how local filenames are processed by the shell in
FTP. With globbing disabled, names specified on the command
line are treated literally. With globbing enabled, each local file or
pathname is processed for the shell metacharacters
* ? [] ~ { }. Globbing is always enabled for references to remote
files.

header The portion of a packet, preceding the actual data, containing
source and destination addresses and error-checking fields.

host An individual computer on a network.

host name A text name that can be used to identify a network host.

host number The part of an internet address that designates which node on the
(sub)network is being addressed.

ICMP Internet Control Message Protocol. A protocol used by the
Internet Protocol to report errors, give limited routing advice, and
provide simple low-level services.

ICU Interactive Configuration Utility. A screen-oriented utility
provided by the iRMX III OS to help build the OS desired.

IEEE Institute of Electrical and Electronics Engineers.

Glossary82

IGP Interior Gateway Protocol. The generic term applied
to any protocol used to propagate how reachable a network is and

the routing information within an autonomous
system. Although there is no Internet standard IGP,
RIP is among the most popular.

internet Short for internetwork, meaning any connection of two or more
local or wide-area networks.

Internet The global collection of interconnected regional and wide-area
networks that use IP as the network layer protocol.

Internet address A unique address that identifies a host on a TCP/IP network. The
Internet address or IP address, consists of four decimal numbers
separated by periods (129.84.3.71, for example). Each number
has a value between 0 and 255 and represents eight bits of the
complete 32-bit address. The Internet address is independent of
the hardware to which it is assigned.

Internet Protocol (IP) The network layer protocol for the Internet. It is the datagram
protocol defined by RFC 791.

InterNIC An organization that provides network users with information
about services provided by the network. It is the primary
repository for RFCs and Internet drafts.

IP See Internet Protocol.

IP address The 32-bit address assigned to hosts that want to participate in the
Internet using TCP/IP.

IP datagram The basic unit of information passed across the Internet. An IP
datagram is to the Internet as a hardware packet is to a physical
network. It contains a source and destination address along with
data.

ISO International Standards Organization. It developed the OSI
(Open Systems Interconnection) reference model for networking.

LAN Local Area Network. A collection of computers, typically
connected by a single transmission cable, joined together for the
purpose of sharing resources and facilitating communication. A
LAN is limited to a small area such as a single building or a set of
closely grouped buildings.

TCP/IP for the iRMX Operating System Glossary 83

local host The computer from which the user originates a networking
command.

MAC Medium (or Media) Access Control. For broadcast networks, it is
the method which devices use to determine which device has
access to the line at any given time.

MAC address The hardware-level address, such as an Ethernet address.

MTU The maximum transfer unit for a given interface. This is the
largest number of bytes of data that can be transferred in a single
packet. For example, the maximum frame size for Ethernet is
1526 bytes, including header information. The MTU is 1500.

network number The part of an internet address that designates the network to
which the addressed node belongs.

NFS Network File Support. NFS enables hosts to share their local
resources with remote hosts (clients) in a manner that hides the
heterogeneous nature of a network. For example, a server
running the iRMX OS may share a specific directory with a client
machine running the Unix OS. The client can access the
directory using commands and calls that appear to be directed at
local resources.

nslookup A tool that queries a name server for information about hosts on
the network.

octet Eight bits. Since data is sent across the network as individual
bits, the logical 8-bit groups are sometimes called octets instead
of bytes.

octal address An Internet address that uses the base-8 number system.

out-of-band An urgent data message. TCP attempts to expedite out-of-band
data by notifying the application of its urgency. Normal
(in-band) data is received after any out-of-band data.

packet A single unit of data and control information that is transmitted
over the network. The length of a packet varies. A single
message may be transmitted in one packet or a series of packets.

point-to-point network A network configuration that consists of two computers
connected by a single communications line.

Glossary84

port A number associated with a particular service. The port number
is part of the address bound to a socket. As the Internet address
defines a particular host, the port (combined with the protocol)
defines the destination on that host. Certain well-known ports are
reserved for certain services; for example, 21 for FTP and 23 for
TELNET. In general, port numbers greater than 1024 are
available for definition by a local application. However, some
port numbers in this range have become standardized for certain
services through common usage.

POSIX Portable Operating System Interface. An operating system
procedure call interface, based on Unix.

protocol A formal description of message formats and the rules two
computers must follow to exchange those messages. Protocols
can describe low-level details of machine-to-machine interfaces
(e.g., the order in which bits and bytes are sent across a wire) or
high-level exchanges between allocation programs (e.g., the way
in which two programs transfer a file across the Internet).

RawEDL The raw External Data Link layer of iNA software. This
interface allows non-OSI protocols such as TCP/IP to use iNA.

RFC The Internet's Request for Comments documents series. The
RFCs are working notes of the Internet research and development
community. A document in this series may be on any topic
related to computer communication, and may be anything from a
meeting report to the specification of a standard.

router A computer that attaches to two or more networks and routes
packets from one network to the other. A router may understand
more than one address protocol but does not translate from one
protocol to another.

RPC Remote Procedure Call. A procedure-oriented interface to
remote services used to implement the client-server model of
distributed computing.

server A computer that shares its resources, such as printers and files,
with other computers on the network.

TCP/IP for the iRMX Operating System Glossary 85

server process The remote host process that services the request made by the
client process. The server is started up at network boot time as a
background process that listens for incoming service requests.
When it receives a request, it establishes a connection with the
requesting client, spawns a child process, and goes back to
listening for more incoming requests.

socket A communication endpoint. A socket is identified by an address
derived from a host's Internet address concatenated with a TCP
port number.

Streams This emulates the STREAMS mechanism on Unix systems. It
constructs a series of protocol drivers and code modules to
sequentially act on data passing through them. The series of
drivers is called a stream, and can act on data flowing in either
direction. Upstream is the stream head, put in place below a user
process. Downstream is the stream end, a device driver (interface
to a hardware device) or pseudo-device driver (interface to other
software rather than directly to hardware). With the stream in
place, a user process such as FTP makes use of the network
hardware without needing to be aware of the protocols managing
the data in between.

subnet A portion of a network, which may be a physically independent
network. A subnet shares a network address with other portions
of the network and is distinguished by a subnet number. A subnet
is to a network what a network is to an internet.

subnet number A part of the internet address which designates a subnet. It is
ignored for the purposes of internet routing, but is used for
intranet routing.

TCP Transmission Control Protocol. A transport layer protocol for the
Internet. It is a connection-oriented, stream protocol defined by
RFC 793.

TCP/IP Transmission Control Protocol/Internet Protocol. A set of
computer networking protocols and applications that enables two
or more hosts to communicate. TCP/IP includes a suite of
protocols besides TCP and IP; it has been widely adopted as a
networking standard.

TELNET A TCP/IP protocol used for remote login between hosts.

Glossary86

TFTP Trivial File Transfer Protocol. A Department of Defense
standard for transferring files between hosts. TFTP lacks the
error-checking and user-authentication facilities offered by FTP.

UDP User Datagram Protocol. A transport layer protocol for the
Internet, defined by RFC 768. It is a datagram protocol that adds
a level of reliability to IP datagrams.

■■ ■■ ■■

TCP/IP for the iRMX Operating System Index 87

Index

/dev/loop file, 70
/etc/hosts file

retrieving entries from, 98
/etc/networks file

retrieving entries from, 102
/etc/protocols file

retrieving entries from, 106
/etc/services file

retrieving entries from, 108
:config/

services file, 66
:config:ftpusers file, 41
:config:hosts file, 14, 41, 46, 60
:config:hosts.equiv file, 41
:config:inetinit.cf file, 41

verifying configuration of, 45
:config:networks file, 41
:config:nfsstart.csd file, 16
:config:nfsstop.csd file, 16
:config:protocols file, 41, 62
:config:r/init2.log file, 17
:config:services file, 41
:\config:tcpstart.csd file, 17
:config:tcpstart.csd file, 15
:config:tcpstop.csd file, 15
:home:netrc file, 64
:home:rhosts file, 41

A
accept(), 79, 88
accepting connections, 88
access permissions

controlling, 13
of netrc file, 65

active open, 78
address

broadcast, 7
host, 7, 60, 97
Internet, 6, 7, 9, 60
Internet, 8
InterNIC Registration Services, 8
network, 7
subnet, 7

address family, 70
Address Resolution Protocol, see ARP
administrative commands, 43
AF_INET, 70, 83, 90, 126
AF_UNIX, 82
ARP, 71
automatic FTP login, 35

B
bcmp(), 92
bcopy(), 92
Berkeley R-series commands, 4, 5
big-endian, 81
binary string operations, 92
bind(), 75, 78, 79, 80, 81
bits, set, 96
books

network, 78
TCP/IP, 77

broadcast address, 7
and UDP, 74

byte order, 81, 93, 106, 108
bzero(), 92

C
client, 1

process, 37
using sockets, 78

clonable device, 69
close(), 82

Index88

commands
TCP/IP administrative, 43

config:inetinit.cf file, 60
configuration

verifying network, 45
configuration files, 59

/
config/

services, 66
:config:hosts, 14, 60
:config:protocols, 62
netrc, 64

connect(), 78, 81, 94
connections

accepting, 88
closing, 124
inheriting, 82, 124, 127
queuing requests for, 117
requesting, 94
sharing by tasks, 82
to remote host, 24, 31
waiting for, 117

create_task call, 79

D
daemons and services, 37
datagram, 127

protocol, 74
socket calls, 79

domain name, 9, 60
domain name service (DNS), 9, 14
dot notation, 6, 115

E
endhostent(), 97
endnetent(), 102
endpoint, 78, 126
endprotoent(), 106
endservent(), 108
errno, 83

testing, 84
values, 84

errors
general-protection, 83

handling, 84
returned by network functions, 84

escape character
telnet, 23, 24

Ethernet
adapter card, see NIC

example programs, 83

F
ffs(), 96
file descriptors, 82
File Transfer Protocol, see FTP
ftp

automatic login, 64
FTP, 3

? command, 30
automatic login, 35
client, 37
commands, 30
commands, accessing on-line help, 30
connecting to hosts, 31
disabling, 38
file size limitations, 34
get command, 33
macros, 65
naming conventions when transferring files,

34
netrc file, 65
open command, 31
put command, 32
quitting, 35
remote connection, 31
server, 37, 38
starting, 30
transferring files, 32, 33
transferring large files, 34
using, 29

ftpd server, 37, 38
ftpusers file, 41
full-duplex, 124

G
gateway, 2
gethostbyaddr(), 97
gethostbyname(), 97

TCP/IP for the iRMX Operating System Index 89

gethostid(), 100
gethostname(), 101
getnetbyaddr(), 102
getnetbyname(), 102
getnetent(), 102
getpeername(), 75, 80, 104
getprotobyname(), 106
getprotobynumber(), 106
getprotoent(), 106
getservbyname(), 108
getservbyport(), 108
getservent(), 108
getsockname(), 75, 80, 110
getsockopt(), 112

H
hardware requirements, 13
host

address, 7, 97
byte order, 81, 93, 106
local, 1
local ID, 100
local name of, 98, 101
official name of, 1, 9
remote, 1

host name, 97, 101
mapping to Internet address, 60

hostid command, 3, 17
hostname command, 3, 17
hosts file, 14, 41, 60
hosts.equiv file, 41
htonl(), 93
htons(), 81, 93

I
ICMP (Internet Control Message Protocol), 6,

126
inet_addr(), 115
inet_lnaof(), 115
inet_makeaddr(), 115
inet_netof(), 115
inet_network(), 115
inet_ntoa(), 115
inheriting sockets, 82, 124, 127
interfaces

verifying functionality of, 46
Internet address, 6, 7, 9

classes of, 6, 7
converting formats of, 115
dot notation, 6
get or set local, 100
mapping to host name, 60
obtaining, 8
structure of, 80

InterNIC Registration Services, 8
IP, 71

address, see Internet address
IPPROTO_ICMP, 126
IPPROTO_RAW, 126
IPPROTO_TCP, 112, 126
IPPROTO_UDP, 126

J
job

inherits socket, 124
sharing connections, 82
TCP/IP kernel, 15

L
library functions, 77
listen(), 79, 117
little-endian, 81
logging in

to remote host, 24, 31, 35
loopback, 60

M
macro, defining in netrc file, 65
maximum transfer unit, see MTU
message

receiving, 119
sending, 122

MSG_DONTROUTE flag, 122
msghdr structure, 120, 123
MTU

checking, 46
multitasking, 82

Index90

N
name

domain, 9
host, 60

name server, 21, 29
net3c.lib library, 77
netrc file, 35, 41, 64
netstat command, 38, 43

-a option, 39, 44
-i option, 45

network
address, 7, 102
books about, 78
byte order, 81, 93, 108
configuration files, 41
daemons and servers

telnetd, 39
databases, 41
interface adapter (NIA), see NIC
library functions, 77
name, 102
services, 37
testing the TCP/IP, 43
verifying configuration of, 45
verifying TCP/IP services, 44

Network Information Center, 10
networks file, 41
NIC (network interface controller), 13
nslookup command, 21
ntohl(), 93
ntohs(), 93

O
options, for socket, 112
OVL286 (80286 overlay generator), 117

P
passive open, 78
password

restricting access to, 36, 65
ping command, 47, 72
port, 73, 74

changing byte order of, 81
numbers, 66, 108

well-known, 66
prompt

ftp, 30
telnet, 22

protocols, 1
family, 70
file, 41, 62
name and number, 106
name database, 62, 106
translating numbers to names, 62

pseudo-device, 70

Q
query commands

hostid, 3
hostname, 3

R
r?netrc file, 35, 64
raw

interface, 72
testing transport layer, 47

rcp command, 4
rcp, file size limitations, 34
recv(), 78, 79, 119
recvfrom(), 79, 119
recvmsg(), 119
remote copy, 4
remote login, 5, 24, 31, 35
remote shell, 4
remote Unix host for telnet, setting up, 17
Request for Comments, see RFC
RFC, 10

1060, Assigned Numbers, 62, 66
where to obtain, 10

rhosts file, 41
rlogin command, 5
rsh command, 4
ruptime command, 5
ruptime command, -a option, 5

S
security

controlling access to files, 13

TCP/IP for the iRMX Operating System Index 91

password information, 36, 65
select(), 82
send(), 78, 79, 122
sendmsg(), 122
sendto(), 79, 122
server, 1

process, 37
using sockets, 79

services and daemons, 37
services file, 41, 66, 108
set bits, 96
sethostent(), 97
sethostid(), 100
sethostname(), 101
setnetent(), 102
setprotoent(), 106
setservent(), 108
setsockopt(), 112
shutdown(), 78, 124
site commands, 34
slipd, 41
slipd.cf file, 41
SO_LINGER, 127
SOCK_DGRAM socket, 80, 94

creating, 126
SOCK_INHERIT type, 124, 126
SOCK_RAW socket

creating, 126
SOCK_STREAM socket, 78, 88, 94

creating, 126
sockaddr_in structure, 80, 83
socket, 5

calls made by client, 78, 84
calls made by server, 79
connection-oriented calls, 78, 79
creating, 126
datagram calls, 79
definition of, 78
descriptor, 82, 127
inheriting, 82, 124, 127
name of local, 110
name of remote, 104
naming, 90
nonstandard implementation, 82, 75
options for, 112

socket(), 78, 79, 126
socket3c.lib library, 76, 84

socketpair(), 82
socktout(), 82, 75
SOL_SOCKET level, 112
startup script, see tcpstart.csd
strings

binary, 92
subnet mask, 7
system calls, 5

T
task

deleting, 83
tcp driver, 73
TCP/IP, 73

books about, 77
configuring

sysloadable job, 14
installing, 11
kernel job, 37
protocols, 1
required hardware, 13
stopping, 15
testing, 45
testing setup, 16
troubleshooting, 16

tcplisten daemon, 37
tcpstart.csd file, 15, 17, 37, 38, 39
tcpstop.csd file, 15
telnet, 21, 39

close command, 27
command mode, 21, 22, 26, 28
commands, 27, 28
connecting to hosts, 24
disabling, 39
escape character, 23, 24
input mode, 21, 22
open command, 22
prompt, 22
quit command, 27
quitting a session, 24
remote connection, 24
remote Unix host, setting up, 17
status command, 27

TELNET, 3
telnetd server, 39
terminal

Index92

characteristics for user sessions, setting, 18
creating a definition for the PC console, 17
setting the type on Unix, 25

tests
network, 43

TFTP (Trivial File Transfer Protocol)
file size limitations, 34

timeout, 75
TLI, 5
Transmission Control Protocol, see TCP
troubleshooting, 16

U
UDP (User Datagram Protocol), 74

testing, 45
udp driver, 74
ulimit command, 34
User Datagram Protocol, see UDP

W
well-known ports, 66

	iRMX® TCP/IP for the iRMX OS
	Quick Contents
	Notational Conventions

	Contents
	Chapter 1: Overview of TCP/IP
	Connecting to Network Resources
	Using TCP/IP Programs and Utilities
	Administering TCP/IP
	Programming with TCP/IP
	Understanding Internet Addresses
	Subnet Addresses
	Obtaining an Internet Address
	Specifying Domain Names

	Request For Comment (RFC) Reports

	Chapter 2: Installing and Starting TCP/IP
	Before You Begin
	Software Required
	Hardware Required
	Overview of the Setup

	TCP/IP Configuration
	Editing the Hosts File
	Configuring TCP/IP as a Loadable Job
	Starting and Stopping TCP/IP
	Testing the TCP/IP Setup

	Troubleshooting
	General TCP/IP Debugging

	Setting Up a Remote Unix Host for Telnet
	Creating a Terminal Definition for the PC Console
	Setting Terminal Characteristics for User Sessions

	Chapter 3: Using Telnet
	Before You Begin
	Telnet Modes
	Starting TELNET
	Switching Telnet Modes

	Using TELNET for a Remote Session
	Connecting to the Remote Host
	Entering Commands During the Session
	Closing the Remote Connection

	Using Telnet for a Local Session
	Entering Commands in a Local Session
	Ending the Local Session

	Chapter 4: File Transfer Protocols
	Before You Begin
	File Transfer Protocol (FTP)
	FTP Help Information
	FTP File Transfer Session

	Chapter 5: Network Services and Daemons
	Ftpd Server
	Telnetd Server
	Configuring Pseudo-terminals for Telnetd

	Chapter 6: Configuring and Administering Network Files
	Restricting and Updating Network Databases and€Files

	Chapter 7: Commands for the Network Administrator
	Administrative Commands
	Performing Network Tests
	Verifying Network Services
	Verifying Network Configuration
	Verifying Interface Functionality

	Chapter 8: Tunable Parameters
	Determining When to Tune Parameters
	TCP/IP Parameters
	TCP Job Parameters
	UDP Job Parameters
	Raw IP Job Parameters
	IP Job Parameters
	DNS Configuration Parameters
	Network Interface Parameters
	Loopback Pseudo-driver Interface Parameters

	Chapter 9: Files
	hosts
	protocols
	netrc
	services

	Chapter 10: TCP/IP Components
	Protocol Jobs
	ip.job
	rip.job
	tcp.job
	udp.job

	Network Interface Controller (NIC) Jobs
	loopback.job
	edl.job
	eepro100.job
	ne.job
	Tulip.job

	Chapter 11: Library Functions
	Using Sockets
	Calling Sequence for Connection-oriented Applications
	Calling Sequence for Connectionless Applications
	Internet Socket Addresses
	Network and Host Byte Order
	Changes From the Standard Socket Interface
	Include Files
	Example Programs
	Compiling
	Handling Errors
	Errno Values for Network Functions

	Function Reference
	accept
	bind
	bstring
	byteorder
	connect
	ffs
	gethostent
	gethostid
	gethostname
	getnetent
	getpeername
	getprotoent
	getservent
	getsockname
	getsockopt
	inet
	listen
	recv
	send
	shutdown
	socket
	socktout

	Appendix A: Recommended Reading
	TCP/IP
	NFS
	Networks

	Glossary
	Index

