
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

iRMX®

System Debugger
Reference

07-0581-01
December 1999



ii

EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
is a trademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft Corporation.

Intel is a registered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright  1999 by RadiSys Corporation

All rights reserved.



System Debugger Reference iii

Quick Contents

Chapter 1. Overview of Debugging Tools

Chapter 2. System Debugger (SDB) Commands

Chapter 3. System Debug Monitor (SDM) Commands

Appendix A. Console I/O Calls

Appendix B. Related Publications

Index



iv

Notational Conventions
Most of the references to system calls in the text and graphics use C syntax instead of
PL/M (for example, the system call send_message instead of send$message). If you
are working in C, you must use the C header files, rmx_c.h, udi_c.h and rmx_err.h.
If you are working in PL/M, you must use dollar signs ($) and use the rmxplm.ext and
error.lit header files.

This manual uses the following conventions:

• Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

• All numbers are decimal in text and hexadecimal in commands, unless otherwise
stated. Hexadecimal numbers include the H radix character (for example, 0FFH).
Binary numbers include the B radix character (for example, 11011000B).
Decimal numbers in commands include the T radix character (for example, 10T).

• Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

• Data structures and syntax strings appear in this font.

• System call names and command names appear in this font.

• PL/M data types such as BYTE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C data types are lower case except
those that represent data structures.

• The following OS layer abbreviations are used. The Nucleus layer is
unabbreviated.

AL Application Loader
BIOS Basic I/O System
EIOS Extended I/O System
HI Human Interface
UDI Universal Development Interface

• Whenever this manual describes I/O operations, it assumes that tasks use BIOS
calls (such as rq_a_read, rq_a_write, and rq_a_special). Although not
mentioned, tasks can also use the equivalent EIOS calls (such as rq_s_read,
rq_s_write, and rq_s_special) or UDI calls (dq_read or dq_write) to do the
same operations.



System Debugger Reference Contents v

Contents

1 Overview of Debugging Tools
Debugging Tools ............................................................................................. 1
Hardware and Software Requirements ............................................................ 2
Starting SDM and SDB ................................................................................... 3
Using SDB Commands.................................................................................... 4

Command Syntax ..................................................................................... 4
Using Tokens as Command Parameters ................................................... 6
Entering Commands ................................................................................. 6

Leaving the Monitor ........................................................................................ 7
Warm-Starting a System (iRMX III OS and iRMX for PCs Only) .......... 7
CLI-Restarting a System .......................................................................... 7

Returning to your Application ......................................................................... 7

2 System Debugger (SDB) Commands
vb..................................................................................................................... 11
vc ..................................................................................................................... 15
vd..................................................................................................................... 18
vf ..................................................................................................................... 20
vh..................................................................................................................... 21
vj ..................................................................................................................... 22
vk..................................................................................................................... 25
vmf .................................................................................................................. 26
vmi................................................................................................................... 27
vmo.................................................................................................................. 30
vo..................................................................................................................... 33
vr ..................................................................................................................... 35
vs ..................................................................................................................... 39
vt ..................................................................................................................... 45

Job Display............................................................................................... 46
Task Display............................................................................................. 48
Mailbox Display ....................................................................................... 51
Semaphore Display................................................................................... 53



vi Contents

Region Display......................................................................................... 54
Segment Display ...................................................................................... 55
Extension Object Display ......................................................................... 55
Composite Object Display........................................................................ 56

Display of Composite Objects Other Than BIOS or EDOS.............. 56
Display of BIOS Composite User Object.......................................... 57
Display of BIOS Physical File Connection ....................................... 57
Display of BIOS Stream File Connection ......................................... 62
Display of BIOS Named File Connection ......................................... 62
Display of BIOS Remote File Connection ........................................ 65
Display of BIOS EDOS File Connection .......................................... 65
Display of Service Object ................................................................. 66
Display of a Generic Port .................................................................. 67
Display of a Signal Port (Nucleus Communications Service only) ... 69
Display of a Data Port (Nucleus Communications Service only) With

Messages Queued .......................................................................... 70
Heap Display............................................................................................ 72
Buffer Pool Display.................................................................................. 72

vu..................................................................................................................... 74

3 System Debug Monitor (SDM) Commands
Command Structure......................................................................................... 80
Entering Commands ........................................................................................ 81

Command Line Conventions .................................................................... 81
Command-Editing Keys ........................................................................... 81
Command Line History ............................................................................ 81
Multiple Commands on a Single Line ...................................................... 82

Combining Commands...................................................................... 82
Repeating Commands ....................................................................... 82
Continuing Commands...................................................................... 82

Command Parameters...................................................................................... 84
Byte, Halfword and Word Parameters...................................................... 84
Term Parameters ...................................................................................... 85
Expression Parameters ............................................................................. 86
Address Parameter ................................................................................... 86
Numeric Parameters ................................................................................. 87

NPX Integers..................................................................................... 88
NPX Real Numbers........................................................................... 89
Packed Binary Coded Decimal (BCD) Numbers .............................. 89
NPX Number Format ........................................................................ 90
Decimal Values ................................................................................. 91
Nonnumeric Values........................................................................... 91



System Debugger Reference Manual Contents vii

Special-Case Numeric Values ........................................................... 92
Error Messages ................................................................................................ 93
bc ..................................................................................................................... 94
bs ..................................................................................................................... 96

Reason Codes ........................................................................................... 98
No Breaks Available................................................................................. 98

Software Breakpoints ........................................................................ 98
Hardware Breakpoints....................................................................... 99

Execution Breakpoints.............................................................................. 99
Data Breakpoints and I/O Access Breakpoints ......................................... 99

Breakpoint Display............................................................................ 100
c ..................................................................................................................... 102
d ..................................................................................................................... 103
f ..................................................................................................................... 107
g ..................................................................................................................... 108
i ..................................................................................................................... 110
m ..................................................................................................................... 112
n ..................................................................................................................... 113
o ..................................................................................................................... 115
pdbr.................................................................................................................. 117
pdd................................................................................................................... 118
pdp................................................................................................................... 120
pdt.................................................................................................................... 121
psd ................................................................................................................... 123
pst .................................................................................................................... 124
s ..................................................................................................................... 125
x ..................................................................................................................... 130

A Console I/O Calls
Using the Console I/O Calls ............................................................................ 137
ci ..................................................................................................................... 138
co ..................................................................................................................... 139
csts................................................................................................................... 141

B Related Publications ............................................................... 143

Index ................................................................................................................... 145



viii Contents

Tables
Table 2-1. SDB Commands .......................................................................................... 9
Table 3-1. SDM Commands ......................................................................................... 79
Table 3-2. CPU Registers (Protected Mode)................................................................. 85
Table 3-3. NPX Registers ............................................................................................. 87
Table 3-4. NPX Data Types.......................................................................................... 88
Table 3-5. NPX Integer Types ...................................................................................... 88
Table 3-6. NPX Real Types.......................................................................................... 89
Table 3-7. Error Messages ............................................................................................ 93
Table 3-8. Descriptor Components and Types.............................................................. 105
Table 3-9. Descriptor Types ......................................................................................... 105
Table 3-10. NPX Registers ........................................................................................... 133
Table 3-11. Task State Segment ................................................................................... 134
Table A-1. Console I/O Calls........................................................................................ 137



System Debugger Reference Chapter 1 1

Overview of Debugging Tools 1
The iRMX Operating System provides tools for debugging iRMX applications and
systems programs. This manual is a reference for using the System Debugger (SDB)
and System Debug Monitor (SDM). SDB is an extension of SDM.

This manual is for system programmers who are implementing iRMX applications,
device drivers, object managers, and operating system extensions. To use and
understand SDB commands, you should be familiar with the concepts and
terminology of the iRMX Nucleus. To use SDM commands, you should be familiar
with the registers and addressing modes of the microprocessor.

See also: System Concepts
Debugging example, Programming Techniques

Debugging Tools
The iRMX development environment includes these debugging tools:

System Debug Monitor (SDM)
A hardware debug monitor. Use SDM to disassemble code, set and
execute breakpoints, display or change microprocessor registers, and
display or change the contents of memory. SDM is installed along with
the OS. It is a 32-bit protected mode monitor that supports the
Intel386™, Intel486™, and Pentium® microprocessors.

See also: SDM Commands, Chapter 3

iRMX System Debugger (SDB)
A system job that operates on top of SDM to retrieve information about
iRMX objects such as jobs, tasks, and mailboxes. Use SDB to interpret
data structures maintained by the OS; for example, iRMX system calls
and stacks, the Global Descriptor Table (GDT), and messages sent
across the backplane in Multibus II systems. To use SDB, first start
SDM, then enter SDB commands at the SDM prompt.

See also: SDB commands, Chapter 2



2 Chapter 1 Overview of Debugging Tools

Soft-Scope
The Soft-Scope debugger is a multitasking industry-standard debugger
that features source-level and symbolic debugging of your iRMX
applications. Use the Soft-Scope debugger for higher-level debugging
tasks. SoftScope provides access to SDB commands, but you cannot
enter SDM commands from SoftScope. It is a product of Concurrent
Sciences, inc., and is not described further in this manual.

See also: Soft-Scope Debugger User’s Guide

✏ Note
Previous releases of the iRMX OS described an interface to the iM
III Monitor, a low-level interface to the system hardware. The
functionality of the iM III Monitor has been moved into SDM. For
example, SDM now has a bs command to set breakpoints. For that
reason, this manual no longer includes an appendix describing iM
III Monitor commands.

Hardware and Software Requirements
You need the following hardware, firmware, and software to support SDM and SDB:

• A system connected to an Intel386, Intel486, or Pentium processor board

• A terminal connected directly to the processor board

• The iRMX OS

The DOSRMX and iRMX for PCs OSs include SDM by default. You can load SDB
as a loadable system job. In the iRMX III OS, you can configure SDM and SDB by
using the Interactive Configuration Utility (ICU).

See also: sdb.job, System Configuration and Administration
SUB, SDB, and SDM screens, ICU User's Guide and Quick Reference



System Debugger Reference Chapter 1 3

Starting SDM and SDB
Since SDB is an extension of SDM, you must first start SDM, which displays a ..
prompt. If you have loaded the SDB job, you can then enter either SDB commands
or SDM commands at this prompt.

In the DOSRMX or iRMX for PCs OS, invoke SDM in one of these ways:

• Use the Human Interface debug command to load an application program into
main memory and transfer control to SDM.

• Insert an Int3 instruction in your code at the point where you want to break to
SDM.

• (DOSRMX only) While iRMX owns the system console, enter <Ctrl–Alt–
Break>. If you are at the DOS prompt instead of the iRMX prompt, first press
<Alt-Sys-Req> to toggle from DOS to the iRMX OS.

In the iRMX III OS, invoke SDM with one of the first two methods described above
or with these techniques:

• Use the front panel interrupt button on your Multibus II system. This is a
hardware switch physically connected to the Interrupt 3 level that invokes SDM.
Activating this switch halts the application system, saves the system's context,
and passes control to SDM.

• Load the OS using the Bootstrap Loader with the debug option. Once the
system is loaded and the Nucleus has finished initializing, SDM begins
execution. At this point you can use only SDM commands, since SDB has not
been initialized. SDB is a first-level job that initializes right after the Nucleus.

See also: Booting with debugging, iRMX Bootstrap Loader Reference
Manual

When you invoke SDM with any of the above methods, the application system stops
running and all system activity freezes. You can enter commands to set breakpoints,
step through a program, view memory, inspect system objects, change system call
parameters and register values, and test changes.

See also: SDM Commands, Chapter 3
SDB Commands, Chapter 2

When your application is running, control passes to SDM when there is a breakpoint
at an address and CS:EIP (code segment and instruction pointer registers) reaches the
breakpoint. Use SDM’s g (go) command to restart your application and set some
initial breakpoints in your code. You can use the output from MAP386 to identify
where to set breakpoints.



4 Chapter 1 Overview of Debugging Tools

For example, to invoke the g command and set two breakpoints, at the SDM prompt
(..) enter:

.. g, 7fa, 1f0:e20

The application begins executing at the current CS:EIP. SDM is again invoked when
CS:EIP reaches the first breakpoint.

See also: MAP utility, Intel386 Family Utilities

Using SDB Commands
There are four kinds of SDB commands:

• Commands that display iRMX data structures and objects

• Commands that disassemble code by recognizing and displaying iRMX calls

• Commands that display features of the Message Passing Coprocessor (MPC)

• A command that provides help with short descriptions of all the SDB commands

SDB commands either display information as hexadecimal numbers or try to interpret
the information. If SDB cannot interpret the information, it displays the actual
hexadecimal value, followed by two question marks.

See also: Debugging example, Programming Techniques

Command Syntax
All SDB commands begin with a v followed by one or more characters that represent
the command name and parameters. Enter any command or parameter in upper or
lower case. Spaces are optional between the command name and parameters.
Include any punctuation as shown below except brackets ([ ]), ellipses (...), and the
vertical bar (|).

command substitute [optional] [choice= item1|item2]
[repeated [item] [, repeated [item]]...]

command
Enter any item printed like this exactly as it is shown.

substitute
For variable items, enter the appropriate information, such as a token for an object.

[optional]
Items surrounded by brackets indicate an optional parameter. If you enter this
parameter do not include the brackets.



System Debugger Reference Chapter 1 5

[choice= item1|item2]
For items separated with a vertical bar, enter only one of the items. You may enter
choice= item1 or choice= item2, but not both.

[repeated [item] [, repeated [item]]...]
Items followed by an ellipsis (...) indicate that the item may be repeated more times
than it is shown. For this example, any of these would be valid entries:

repeated
repeated item
repeated, repeated, repeated
repeated item, repeated, repeated item
etc.

A few commands with many parameters have an additional syntax diagram. The
parameters are listed along a track, as shown below. Enter the track at the top left
and follow it through to the exit. Mandatory parameters are shown in line with the
track. Optional parameters are shown below the track. You can follow the main
track or follow the path through the option and return to the main track. Where you
have a choice of parameters, the track branches through them.

W-3098

(start) command A

B

C
D

E

F

G

In this example:

• A is a required parameter and you must enter it immediately after the command.

• Either B or C is required. Whichever parameter you enter must follow A.

• D, E, and F are all optional. You may select only one. If you select one of these
parameters, enter it before or after G.



6 Chapter 1 Overview of Debugging Tools

Using Tokens as Command Parameters
Many SDB commands use iRMX tokens as parameters or display tokens as part of
the command output. The iRMX OS maintains tokens in doubly linked lists. SDB
checks a token's forward and backward links to determine the token's validity.

A token is invalid if one or more of these is true:

• Both token links are bad

• The token belongs to an object being deleted

• An incorrect token is entered as a system call parameter

• A token is deleted or unused

SDB displays this message for an invalid token:

*** INVALID TOKEN ***

These are displays for forward and backward link errors:

Forward link ERROR: 4108-->4E88 4108<--4E88-->4158 ?FFFF<--4158

Backward link ERROR: 4108-->410F? 4108<--4E88-->4158 4E88<--4158

The token you entered appears as the center value in each line of the token display.
Left arrows indicate backward links; right arrows indicate forward links. A question
mark before a value indicates a forward link error; a question mark after a value
indicates a backward link error.

A link error can happen when a task overwrites a token's data structure or when you
use the Non-Maskable Interrupt (NMI) and the Nucleus is interrupted while setting
up the links.

See also: NMI, in the hardware reference manual for your microprocessor

Entering Commands
Enter commands from a console attached to your target system. The command line
examples in this chapter do not show spaces as elements, but you may include one or
more spaces between the command and parameter. For example, these command
lines are both valid; the space between vr and xxxx is optional:

..vr xxxx

..vrxxxx

To repeat an earlier SDB or SDM command without retyping it, enter <Ctrl-B>
repeatedly to scroll back through previous commands. Enter <Ctrl-F> to scroll
forward in the list. On a PC keyboard, you can also use the <UpArrow> and
<DownArrow> keys for this purpose.



System Debugger Reference Chapter 1 7

Leaving the Monitor
You can leave SDM/SDB without resetting your system by warm-starting or
CLI-restarting your system. You also leave SDM when your application terminates
normally.

Warm-Starting a System (iRMX III OS and iRMX for PCs Only)
The warm-start feature starts a system without reloading it from secondary storage.
Warm-start reinitializes the system, but does not initialize memory. It begins
executing the application system at the same point where the Bootstrap Loader passes
control to the system.

To warm-start a system from the SDM prompt, enter:

..g 284:e

If no system code or data segments were corrupted, the system reinitializes. If
segment corruption has occurred, the application system will not run; you must
reboot the system. This command does not work in DOSRMX.

CLI-Restarting a System
If your system contains a Command Line Interpreter (CLI) and running your
application program causes an exception that breaks to the monitor (for example, a
General Protection exception), enter this command to CLI-restart the system from
SDM:

..g 284:1c

This command causes the system to attempt to delete the job subtree associated with
the running task. If the running task is part of the application's job (not a subsystem
task running for the job) control returns to the CLI. Otherwise, you must reboot the
system.

Returning to your Application
Use SDM's g command to resume execution of the application in these cases:

• When you finish debugging your application system with SDB

• To test the changes you made to the application code



8 Chapter 1 Overview of Debugging Tools

■■   ■■   ■■



System Debugger Reference Chapter 2 9

System Debugger (SDB) Commands 2
This chapter is a reference to the iRMX SDB commands, which appear in
alphabetical order. Table 2-1 lists the SDB commands.

Table 2-1. SDB Commands

Command Description

vb Displays DUIB information

vc Displays system call information

vd Displays a job's object directory

vf Displays number of GDT free slots

vh Displays help information

vj Displays job tree

vk Displays tokens of ready and sleeping tasks

vmf Enables or disables MPC fail-safe timeout

vmi Displays input messages

vmo Displays output messages

vo Displays job objects

vr Displays BIOS or EIOS IORS segment

vs Displays stack and system call information

vt Displays iRMX object information

vu Displays system calls in a task's stack



10 Chapter 2 System Debugger Commands

This chapter uses these conventions:

• CS:EIP is the code segment and the instruction pointer to the next instruction to
be executed.

• SS:ESP is the stack segment and stack pointer to the current stack location.

• Entering 0 as a value for an optional parameter omits the parameter, unless a
default parameter value is used.

• When executing SDB commands from SDM, the input prompt is the SDM
prompt (..).

• When executing SDB commands from the Soft-Scope debugger, the input
prompt is the Soft-Scope prompt (ss>). SDM is not active.



Display DUIB Information vb

System Debugger Reference Chapter 2 11

vb
Displays the DUIB information for a physical device in the system configuration.

Syntax

vb device-name

Parameter
device-name

Name of a physical device in the system configuration, for example, the c_rmx3
device.

Additional Information

See also: DUIBs, Driver Programming Concepts

This is the format of the DUIB display:

Device name: <physical device name>

Functs: xx DUIB address xxxx:xxxxxxxx

Dev$gran xxxx Max$buffers xx

Dev$size xxxxxxxx Device xx

Unit xx Dev$unit xxxx

Device$info$p xxxx:xxxxxxxx Unit$info$p xxxx:xxxxxxxx

Update$timeout xxxx Num$buffers xxxx

Priority xx Fixed$update xx

Init$io xxxx:xxxxxxxx Finish$io xxxx:xxxxxxxx

Queue$io xxxx:xxxxxxxx Cancel$io xxxx:xxxxxxxx

Flags: xx Valid xxxx

Density xxxxxx Sides xxxxxx

Size x Format xxxxxxxx

File driver: xxxx Named xxxx

Physical xxxx Stream xxxx

EDOS xxxx

DOS xxxx

The fields displayed are:

<physical device name>
The physical device name for which you are displaying information.

Functs A byte that indicates the I/O function for this physical device.



vb Display DUIB Information

12 Chapter 2 System Debugger Commands

DUIB address
The starting address in memory of the specified DUIB.

Dev$gran A 16-bit word that specifies the device granularity. Device granularity
is the minimum number of bytes of information the device reads or
writes in one operation. This parameter applies to random access
devices and to some common devices, such as tape drives.

Max$buffers
The maximum number of buffers that the EIOS can allocate for a
connection to this physical device when the connection is opened by an
s_open EIOS system call.

Dev$size The number of bytes the physical device can store.

Device The physical device number.

Unit The unit number that distinguishes the unit from other units in the
device.

Dev$unit The physical device unit number that distinguishes the unit from other
device units in the hardware system.

Device$info$p
The pointer to the Device Information Table for the device unit.
Common, random, and terminal device drivers require a Device
Information Table for each device.

Unit$info$p
The pointer to a Unit Information Table for the device. Common,
random, and terminal device drivers require this Unit Information Table
for each device.

Update$timeout
The number of system time units the I/O System must wait before
writing a partial sector and after processing a write request for a disk
device.

Num$buffers
The number of buffers allocated for the device by the I/O System.

Priority The device's service task priority set by the I/O System.

Fixed$update
Indicates whether the fixed update option was selected for this physical
device when the application system was configured.

Init$io The offset address of the Initialize I/O procedure associated with this
unit.

Finish$io The offset address of the Finish I/O procedure associated with this unit.



Display DUIB Information vb

System Debugger Reference Chapter 2 13

Queue$io The offset address of the Queue I/O procedure associated with this unit.

Cancel$io The offset address of the Cancel I/O procedure associated with this unit.

Flags Specifies the characteristics of diskette devices.

Valid Indicates whether the Flags field is Valid or Not Valid for this
device.

Density Device density. If the Flags field is Not Valid, this field is marked
N/A.

Sides The number of media sides to which the device can write. If the Flags
field is Not Valid, this field is marked N/A.

Size The physical size of the device. If the Flags field is Not Valid, this
field is marked N/A.

Format Indicates whether track 0 of a disk is to be formatted as a standard
diskette (128 bytes/sector) or as a uniform diskette (all sectors
formatted as specified). This parameter applies only to flexible
diskettes. Hard disks are always specified as uniform. If the Flags
field is Not Valid, this field is marked N/A.

File driver
A 16-bit word that indicates the BIOS file driver to which this
connection is attached.

Named TRUE or FALSE. Indicates whether this device is configured to use the
Named file driver.

Physical TRUE or FALSE. Indicates whether this device is configured to use the
Physical file driver.

Stream TRUE or FALSE. Indicates whether this device is configured to use the
Stream file driver.

EDOS TRUE or FALSE. Indicates whether this device is configured to use the
EDOS file driver.

DOS TRUE or FALSE. Indicates whether this device is configured to use the
DOS file driver.



vb Display DUIB Information

14 Chapter 2 System Debugger Commands

Error Messages
Syntax Error

You made an error entering the command.

VB not supported
The command cannot find the byte bucket DUIB entry in the BIOS code segment. If
no DUIB entry for the byte bucket exists, vb is unsupported.

If the BIOS has not been configured into the system, or if the BIOS code segment has
execute-only attributes, this error message returns.

DUIB not found
The command returns this error message under these conditions:

• The DUIB is not configured into the system.

• The DUIB entry for the specified device is located before the byte bucket DUIB
entry.

• You entered the physical device name incorrectly.



Display System Call Information vc

System Debugger Reference Chapter 2 15

vc
Displays information for an iRMX system call.

Syntax

vc [pointer]

Parameter
pointer

A selector:offset pair that is the address of a CALL instruction. The address has this
form:

ssss:oooooooo

The four-digit hexadecimal value ssss indicates the address selector. The eight-digit
hexadecimal value oooooooo indicates the address offset.

If you do not supply a pointer or you specify 0, this parameter defaults to the current
CS:EIP. If you specify an EIP value (one eight-digit hexadecimal number) but not a
CS value, the default is the current CS.

Additional Information

If the CALL instruction is for an iRMX system call, information is displayed about
the system call. If the CALL instruction is not an iRMX system call or the
instruction is not a CALL instruction, a message is displayed to this effect.

This is the format of the iRMX system call information display:

gate #NNNN

(subsystem) system call

The fields are:

gate #NNNN Gate number for the iRMX system call

(subsystem) iRMX OS layer of the system call

system call iRMX system call name

The gate number determines if the CALL instruction is for an iRMX system call or a
C Library call. Information for iRMX system calls is usually displayed, but
occasionally information for a non-system call may be displayed.



vc Display System Call Information

16 Chapter 2 System Debugger Commands

Examples

Suppose you disassembled this code:

18a0:0000006d 50 push ax

18a0:0000006e e8ad1e call a = 1f1e ;$+7856

18a0:00000071 e8dd03 call a = 0451 ;$+992

18a0:00000074 b80000 mov ax,0

18a0:00000077 50 push ax

18a0:00000078 8d060600 lea ax,word prt 006

18a0:0000007c 1e push ds

18a0:0000007d 50 push ax

18a0:0000007e e8411e call a = 1ec2 ;$+7748

18a0:00000081 a30000 mov word ptr 0000h,ax

Use the vc command on the CALL instruction at address 18A0:0000006E by entering
this command:

..vc 18A0:6E

This displays the iRMX system call name as:

gate #0468

(Nucleus) set exception handler

The iRMX system call is the Nucleus system call set_exception_handler with the
gate number 0468.

To see if the CALL instruction at 18A0:00000071 is a system call, enter:

..vc 18A0:71

This message indicates the call was not an iRMX system call:

Not a system CALL

To see if the instruction at 18A0:00000074 is a CALL instruction, enter:

..vc 18A0:74

This message indicates the instruction was not a CALL instruction:

Not a CALL instruction



Display System Call Information vc

System Debugger Reference Chapter 2 17

Error Messages
Syntax Error

You made an error entering the command.

Not a system CALL
The specified parameter points to a CALL instruction that is not an iRMX system
call.

Not a CALL instruction
The CS:EIP does not point to a CALL instruction.



vd Display a Job's Object Directory

18 Chapter 2 System Debugger Commands

vd
Displays the object directory for a job.

Syntax

vd job-token

Parameter
job-token

The token for a job you want information about. Use the vj command to obtain this
token.

Additional Information

This is the format of the object directory display:

Directory size: xxxx Entries used: xxxx

name1 token1

name2 tasks waiting token2...tokeni

. .

. .

. .

namej tokenj

namek tokenk

. .

. .

. .

namen tokenn

The display shows these fields:

Directory size
The maximum number of entries this job can have in its object
directory.

Entries used
The number of entries in the directory.

name1...namen
The names under which objects are cataloged. These names were
assigned at the time the objects were cataloged with the Nucleus system
call catalog_object.



Display a Job's Object Directory vd

System Debugger Reference Chapter 2 19

token1...tokenn
The tokens for the cataloged objects.

tasks waiting
Signifies that one or more tasks have done a Nucleus system call
lookup_object on an object not cataloged. The tokens following this
field identify the tasks still waiting for the object to be cataloged.

See also: Object directories, Introducing the iRMX Operating Systems and System
Concepts

Example

For example, to look at the object directory of job 2280, enter:

..vd 2280

The object directory display is:

Directory size: 000A Entries used: 0003

$ 2228

R?IOUSER 2200

RQGLOBAL 2280

In this display, the symbols $, R?IOUSER, and RQGLOBAL are the object names in the
job's object directory for the respective tokens 2228, 2200, and 2280.

Error Messages
Syntax Error

No parameter was specified for the command, or you made an error entering the
command.

TOKEN is not a Job
You entered a token that is not a job token.

*** INVALID TOKEN ***
You entered a value that is not a valid token.

See also: Using tokens as command parameters, Chapter 1



vf Display Number of Free Slots

20 Chapter 2 System Debugger Commands

vf
Displays the number of free Global Descriptor Table (GDT) slots available.

Syntax

vf

Additional Information

This is the format of the vf command display:

Number of free slots = xxxxxxxx

Error Messages
Syntax Error

You made an error entering the command.



Display Help Information vh

System Debugger Reference Chapter 2 21

vh
Lists the SDB commands with their parameters and descriptions.

Syntax

vh

Additional Information

In this example of the help display, angle brackets (< >) surround required variable
fields; square and angle brackets ([< >]) surround optional fields.

iRMX III System Debugger, Vx.y

Copyright xxxx Intel Corporation

vb <Dev Name > Displays DUIB for physical device.

vc [<POINTER>] Display system call.

vd <Job TOKEN> Display job's object directory.

vf Displays number of free slots available to user.

vh Display help information.

vj [<Job TOKEN>] Display job hierarchy from specified level.

vk Display ready and sleeping tasks.

vo <Job TOKEN> Display list of objects for specified job.

vr <Seg TOKEN> Display I/O Request/Result Segment.

vs [<count>] Display stack and system call information.

vt <TOKEN> Display iRMX object.

vu <task TOKEN> Unwind task stack, displaying system calls.

vmi [<msg #>] [,] Display the MPC input message buffer.

vmo [<msg #>] [,] Display the MPC output message buffer.

vmf Toggle the MPC fail-safe timeout.

The system uses default values if you specify 0 for any of the optional parameters.
Using 0 for required parameters causes the system to display a syntax error message.

Error Message
Syntax Error

You made an error entering the command.



vj Display Job Tree

22 Chapter 2 System Debugger Commands

vj
Displays the tokens in the job tree hierarchy beginning with a specified job token.

Syntax

vj [job-token]

Parameter
job-token

The token of the job from which you want to begin displaying the job tree hierarchy.
If you omit this parameter or specify 0, the job tree display begins with the root job.

Additional Information

The tokens for descendant jobs in the job tree are indented to show their position in
the tree hierarchy.

If the job tree has more than 44 descendant jobs, tokens are displayed up to the 44th
entry and an error message is displayed.

This is the format of the job tree display:

iRMX Job Tree

token1 (Root Job)
token2 (Human Interface)

token3 (Command Line Interpreter)
token4 (Application)

token5 (EIOS)
token6 (iRMX-NET)
token7 (BIOS)

The fields in the job tree display are:

token1 The token you specified as job token; the root job token is the
default.

token2...token7
The tokens for the descendant jobs of token1.

The layer names in parentheses are not shown in the actual job tree display. There
are comments added to show the layers for the default job tree.



Display Job Tree vj

System Debugger Reference Chapter 2 23

The Human Interface, EIOS, and BIOS Jobs are indented three spaces indicating they
are children of the Root Job. The Command Line Interpreter Job is the child of the
Human Interface Job as are all first level user jobs. The Application Job is the child
of the Command Line Interpreter Job.

Examples

To examine the hierarchy of the root job, enter:

..vj

This is an example job tree display:

iRMX Job Tree

0258

0f38

1670

2460

0e88

0e00

If you want to display the descendant jobs of 0e88, enter:

..vj 0e88

This displays the job tree information:

iRMX Job Tree

0e88

0e00

0f38

1670

2460

The tokens for all jobs at the same level as the specified token (0e00 and 0f38), and
their descendants (1670 and 2460), are also displayed.



vj Display Job Tree

24 Chapter 2 System Debugger Commands

Error Messages
SDB job nest limit exceeded

The job has more than 44 job descendants.

Syntax Error
You made an error entering the command.

TOKEN is not a Job
You entered a token that is not a job token.

*** INVALID TOKEN ***
You entered a value that is not a valid token.

See also: Using tokens as command parameters, Chapter 1



Display Tokens vk

System Debugger Reference Chapter 2 25

vk
Display the tokens for ready and sleeping tasks.

Syntax

vk

Additional Information

This is the format of the vk display of token information:

Ready tasks: xxxx xxxx ...

Sleeping tasks: xxxx xxxx ...

The fields show:

Ready tasks
The tokens for all tasks in the ready state. The first token in this list
represents the running task.

Sleeping tasks
The tokens for all tasks in the sleeping state.

Error Messages
Syntax Error

You made an error entering the command.

Ready tasks: Can't locate
The system is corrupted.

Sleeping tasks: Can't locate
Usually indicates the Nucleus is uninitialized. To recover from this error, reinitialize
the system.



vmf Enable/Disable Timeout

26 Chapter 2 System Debugger Commands

vmf
Enables or disables the Message Passing Coprocessor (MPC) fail-safe timeout
feature. This command applies to Multibus II systems only.

Syntax

vmf

Additional Information

When the fail-safe timer is enabled, this command disables it. When the fail-safe
timer is disabled, this command enables it.

When debugging a message passing application, disable the fail-safe timer. This
allows stopping a host while debugging commands are executing. When finished
debugging, enable the fail-safe timer before starting your application. Otherwise, the
application may not function properly.

The MPC fail-safe timer limits how long the MPC waits between sending a buffer
request message and receiving a buffer grant or buffer reject message. The wait is
about two seconds on an iSBC 386/116 or iSBC 386/120 board. This ensures that the
MPC will not wait forever when communicating with another host.

This command is available for preconfigured systems. On configurable systems,
specify at least one trace message in the Number of Trace Messages option in the
ICU's Nucleus Communication Service screen.

See also: NTM, ICU User's Guide and Quick Reference

Example

If you invoke the vmf command when the fail-safe timer is enabled, the fail-safe
timer is disabled and this message is displayed:

MPC Failsafe Timer Is Disabled

If you invoke the vmf command when the fail-safe timer is disabled, the fail-safe
timer is enabled and this message is displayed:

MPC Failsafe Timer Is Enabled

Error Messages
Syntax Error

You made an error entering the command.



Display Input Messages vmi

System Debugger Reference Chapter 2 27

vmi
Displays the most recent messages received from the Message Passing Coprocessor
(MPC). This command applies to Multibus II systems only.

Syntax

vmi [message#][,]

Parameters
message#

Message number to display. If omitted, the most recent message is displayed. When
the comma (,) parameter is entered, this specifies the first message to display.

, (comma)
Requests viewing more than one message in the input message buffer. The most
recent message and a dash (-) at the end of the line are displayed. Repeat this process
by entering another comma or end the command by entering a <CR> at the dash.
The comma parameter is not supported when this command is entered from the Soft-
Scope debugger.

Additional Information

This command is available for preconfigured systems. On configurable systems,
specify at least one trace message in the Number of Trace Messages option in the
ICU's Nucleus Communication Service screen.

The number of messages you can display depends on the number of trace messages
configured in the system. For example, if the Number of Trace Messages is set to
five you can display the five most recent messages.

See also: Number of trace messages, ICU User's Guide and Quick Reference

This command displays the field values associated with the input messages received
from the MPC input message buffer. These fields are used by the iRMX Nucleus
Communication Service, an implementation of the Multibus II Transport Protocol.
This section briefly describes each field.

See also: Message fields, Multibus II Transport Protocol Specification and
Designer's Guide



vmi Display Input Messages

28 Chapter 2 System Debugger Commands

This is the format of the vmi display:

## <message type> req$id: xx src$hid: xx dest$hid: xx len: xxxxxx

<trans control> trans$id: xx src$pid: xxxx dest$pid: xxxx xmit$c: xx

len: xxxxxxxx

The first line of the display contains hardware-level information about the message.
The fields on this line are:

## The message number.

<message type>
The type of message (hardware-level protocol). Possible values are
Unsolicited, Broadcast, Buf Request, and Unknown Type.

req$id Request ID. This ID defines a particular message transfer.

src$hid Host ID of the sender of the message.

dest$hid Host ID of the receiver of the message.

len The length of the requested transfer, in bytes. This field is only
displayed for buffer request messages; otherwise this field is blank.

The second line of the display contains software protocol information about the
message. If the protocol of the message is not the data transport protocol, this is
displayed:

Unknown Protocol

If the protocol being used is the data transport protocol, these fields are displayed:

<trans control>
Indicates the type of request or response message. If the message is not
a request or response message, this field is blank. These are the
possible values:

Resp/EOT Response message, end-of-transaction (EOT).
This is the last fragment of a reply.

Resp/Not EOT Response message, not end-of-transaction
(EOT). More fragments of the reply will follow.

Resp/Cancel Response message with cancellation. The server
sending the reply is canceling the transaction.

Resp/Reserved Reserved type.
Req/Frag Off Request message with fragmentation disallowed.

The request cannot be sent in fragments.
Req/Frag On Request message with fragmentation allowed.

The request can be sent in fragments, if
necessary.



Display Input Messages vmi

System Debugger Reference Chapter 2 29

Req/Send Frag Request message, send next fragment. The next
fragment of a fragmented transfer can be sent.

Req/Next Frag Request message containing the next fragment of
a fragmented transfer.

trans$id A number that identifies the transaction ID. This field is 0 for
transactionless messages (unsolicited or solicited messages with no
reply expected).

src$pid The port ID of the sender of the message.

dest$pid The port ID of the receiver of the message.

xmit$c Transmission control. The high-order two bits of this field indicate the
protection level of the message. Level 0 is the most privileged level
and level 3 is the least.

len The length of the requested fragment, in bytes.

If the trans control field indicates that the message is a Req/Send
Frag message, the third line of the display contains this field.
Otherwise, the third line shows the user data portion of the control
message in hexadecimal words. If the message type or software
protocol are unknown, the entire message is displayed in hexadecimal
words, beginning on the third line.

You cannot use the vmi command to view the contents of short-circuit messages.
Short-circuit messages are messages passed between tasks that run on the same
board.

Error Messages
Syntax Error

You made an error entering the command.

Message Information Is Not Available
The system is not a Multibus II system or no trace messages are specified in the
system configuration.



vmo Display Output Messages

30 Chapter 2 System Debugger Commands

vmo
Displays the most recent output messages sent by the Message Passing Coprocessor
(MPC). This command can be used only in a Multibus II system.

Syntax

vmo [message#][,]

Parameters
message#

Message number to display. If omitted, the most recent message is displayed. When
the comma (,) parameter is entered, this specifies the first message to display.

, (comma)
Requests viewing more than one message in the input message buffer. The most
recent message and a dash (-) at the end of the line are displayed. Repeat this process
by entering another comma or end the command by entering a <CR> at the dash.
The comma parameter is not supported by the Soft-Scope debugger.

Additional Information

This command is available for preconfigured systems. On configurable systems,
specify at least one trace message in the NTM option in the ICU's NCOM screen.

The number of messages you can display depends on the number of trace messages
configured in the system. For example, if the NTM is set to five you can display the
five most recent messages.

See also: NTM, ICU User's Guide and Quick Reference

This command displays the field values associated with the output messages sent by
the MPC. These fields are used by the iRMX Nucleus Communication Service, an
implementation of the Multibus II Transport Protocol. This section briefly describes
each field.

See also: Message fields, Multibus II Transport Protocol Specification and
Designer's Guide

The format of the vmo output depends on the type of message. These are the
possible fields for the output display:

## <message type> req$id: xx src$hid: xx dest$hid: xx YYYYYYY

<trans control> trans$id: xx src$pid: xxxx dest$pid: xxxx xmit$c: xx

len: xxxxxxxx



Display Output Messages vmo

System Debugger Reference Chapter 2 31

The first line of the display contains hardware-level information about the message.
The fields on this line are:

## The message number.

<message type>
The type of message (hardware-level protocol). Possible values are
Unsolicited, Broadcast, Buf Request, Buf Grant, Buf Reject,
and Unknown Type.

req$id Request ID. This ID defines a particular message transfer.

src$hid Host ID of the sender of the message.

dest$hid Host ID of the receiver of the message.

YYYYYYY Only this part of the first line is displayed for buffer request, buffer
grant, and buffer reject messages. It can consist of one of two fields.
For buffer request messages, this field is displayed:

len The length of the requested transfer, in bytes.

For buffer grant and buffer reject messages, this field is displayed.

l$id Liaison ID. This ID binds a buffer grant or buffer reject
message to a buffer request message.

The second line of the display contains software protocol information about the
message. If the protocol of the message is not the data transport protocol, this
message is displayed:

Unknown Protocol

If the protocol being used is the data transport protocol, these fields are displayed:

<trans control>
Indicates the type of request or response message. If the message is not
a request or response message, this field is blank. These are the
possible values for this field:

Resp/EOT Response message, end-of-transaction (EOT).
The last fragment of a reply.

Resp/Not EOT Response message, not end-of-transaction
(EOT). More fragments of the reply will follow.

Resp/Cancel Response message with cancellation. The
sender of the reply (the server) is canceling the
transaction.

Resp/Reserved Reserved type.



vmo Display Output Messages

32 Chapter 2 System Debugger Commands

Req/Frag Off Request message with fragmentation disallowed.
The request cannot be sent in fragments.

Req/Frag On Request message with fragmentation allowed.
The request can be sent in fragments, if
necessary.

Req/Send Frag Request message, send next fragment. The next
fragment of a fragmented transfer can be sent.

Req/Next Frag Request message containing the next fragment
of a fragmented transfer.

trans$id Transaction ID. A number that uniquely identifies a transaction. This
field is 0 for transactionless messages (unsolicited or solicited messages
with no reply expected).

src$pid The port ID of the sender of the message.

dest$pid The port ID of the receiver of the message.

xmit$c Transmission control. The high-order two bits of this field indicate the
protection level of the message. Level 0 is the most privileged level
and level 3 is the least.

len The length of the requested fragment, in bytes.

If the trans control field indicates that the message is a Req/Send
Frag message, the third line of the display contains this field.
Otherwise, the third line shows the user data portion of the control
message in hexadecimal words. If the message type or software
protocol are unknown, the entire message is displayed in hexadecimal
words, beginning on the third line.

You cannot use the vmo command to view the contents of short-circuit messages.
Short-circuit messages are messages passed between tasks that run on the same
board.

Error Messages
Syntax Error

You made an error entering the command.

Message Information Is Not Available
The system is not a Multibus II system or no trace messages were specified during
configuration.



Display Job Object vo

System Debugger Reference Chapter 2 33

vo
Displays information about the objects in a job.

Syntax

vo job-token

Parameter
job-token

The token of the job for which you want to display object information.

Additional Information

This command lists the tokens for a job's child jobs, tasks, mailboxes, semaphores,
regions, segments, extensions, composites, and buffer pools.

The format of the vo command is:

Child Jobs: xxxx xxxx xxxx ...

Tasks: xxxx xxxx xxxx ...

Mailboxes: xxxx xxxx xxxx ...

Semaphores: xxxx xxxx xxxx ...

Regions: xxxx xxxx xxxx ...

Segments: xxxx xxxx xxxx ...

Extensions: xxxx xxxx xxxx ...

Composites: xxxx xxxx xxxx ...

Buffer Pools: xxxx xxxx xxxx ...

The fields in the display are:

Child Jobs
The tokens for the child jobs.

Tasks The tokens for the tasks in the job.

Mailboxes The tokens for the mailboxes in the job. An o following a mailbox
token means that one or more objects are queued at the mailbox. A t

following a mailbox token means that one or more tasks are queued at
the mailbox.

Semaphores
The tokens for the semaphores in the job. A t following a semaphore
token means that one or more tasks are queued at the semaphore.

Regions The tokens for the regions in the job. A b (busy) following a region
token means that a task has access to information guarded by the region.



vo Display Job Objects

34 Chapter 2 System Debugger Commands

Segments The tokens for the segments in the job.

Extensions
The tokens for the extensions in the job.

Composites
The tokens for the composites in the job. An s following a composite
signifies a port with a signal waiting. An m signifies a port with a
message waiting. A t signifies a port with a task waiting.

Buffer Pools
The tokens for the buffer pools in the job.

Example

To look at the objects in the job having the token 1670, enter:

..vo 1670

This displays:

Child Jobs: 2460

Tasks: 1688 1778 17b8 1940 1950 2ff8

Mailboxes: 1720 1728 1738 t 1740 t 1760 t 1768 t

Semaphores: 17a0 17a8 t

Regions:

Segments: 16d8 1750 1958 1960 2fe8 2fc8

Extensions:

Composites: 1690 16f0 1710 1828 1848 1980

Buffer Pools:

This display shows the job's tokens and that tasks are waiting at four mailboxes and
one semaphore.

Error Messages
Syntax Error

You did not specify a parameter for the command or you made an error entering the
command.

TOKEN is not a Job
You entered a token that is not a job token.

*** INVALID TOKEN ***
You entered a value that is not a valid token.

See also: Using Tokens as Command Parameters, Chapter 1



Display IORS Information vr

System Debugger Reference Chapter 2 35

vr
Displays information about the BIOS and EIOS I/O Request/Result Segment (IORS)
for a segment token.

Syntax

vr segment-token

Parameter
segment-token

The segment token for the IORS you want to display.

Additional Information

The IORS contains information about the most recent I/O operation.

If you do not enter a valid segment token for the IORS, the vr command returns
invalid information. Use the vo command to obtain a list of the valid segment tokens
in a job.

See also: IORS, System Concepts and Driver Programming Concepts

The display format for the IORS information is:

I/O Request Result Segment

Status xxxx Unit status xxxx

Device xxxx Unit xx

Function xxxxxxx Subfunction xxxxxxx

Count xxxxxxxx Actual xxxxxxxx

Device location xxxxxxxx Buffer pointer xxxx:xxxxxxxx

Resp mailbox xxxx Aux pointer xxxx:xxxxxxxx

Link forward xxxx:xxxxxxxx Link backward xxxx:xxxxxxxx

Done xxxx Cancel ID xxxx

Connection token xxxx

The fields in the display are:

Status The condition code for the I/O operation.

Unit status
Additional status information. The contents of this field are significant
only when the Status field is set to the E$IO condition (002BH). If
the Status field is not set to E$IO, the Unit status field displays
N/A.



vr Display IORS Information

36 Chapter 2 System Debugger Commands

Device The number of the device for which this I/O request is intended.

Unit The number of the unit for which this I/O request is intended.

Function The operation done by the BIOS. The possible functions are:

Function System Call
Read a_read
Write a_write
Seek a_seek
Special a_special
Att Dev a_physical_attach_device
Det Dev a_physical_detach_device
Open a_open
Close a_close

If this field contains an invalid value, the actual value is displayed
followed by a space and two question marks.

Subfunction
An added specification of the function that applies only when the
Function field contains Special from the BIOS a_special or EIOS
s_special system calls. These are the possible subfunctions and their
descriptions:

Subfunction Description
For/Que Format or Query
Satisfy Stream file satisfy function
Notify Notify function
Device char Device characteristics
Get Term Attr Get terminal attributes
Set Term Attr Set terminal attributes
Signal Signal function
Rewind Rewind tape
Read File Mark Read file mark on tape
Write File Mark Write file mark on tape
Retention Tape Take up slack on tape
Set Font Set character font
Set Bad Info Set bad track/sector information
Get Bad Info Get bad track/sector information
Get term status Get terminal status
Cancel I/O Cancel terminal I/O
Resume I/O Resume terminal I/O



Display IORS Information vr

System Debugger Reference Chapter 2 37

If the Function field does not contain Special, then this field
contains N/A. If this field contains an invalid value, the field value is
displayed followed by a space and two question marks.

Count The number of bytes of data called for in the I/O request.

Actual The number of bytes of data transferred in response to the request.

Device location
The eight-digit hexadecimal address of the byte or logical block where
the I/O operation began on the specified device.

Buffer pointer
The address of the buffer the BIOS read from, or wrote to, in response
to the request.

Resp mailbox
A token for the response mailbox to which the device sent the IORS
after the operation.

Aux pointer
The pointer to the location of auxiliary data, if any. This field is
significant only when the Function field contains Special.

Link forward
The address of the next IORS in the queue where the IORS waited to be
processed.

Link backward
The address of the previous IORS in the queue where the IORS waited
to be processed.

Done TRUE (0FFH) or FALSE (00H). This field indicates whether the I/O
operation has been completed.

Cancel ID A word used by device drivers to identify I/O requests that need to be
canceled. A value of 0 indicates a request that cannot be canceled.

Connection token
The token for the file connection used to issue the request for the I/O
operation.



vr Display IORS Information

38 Chapter 2 System Debugger Commands

Error Messages
Syntax Error

You did not specify a parameter for the command or you made an error entering the
command.

TOKEN is not a SEGMENT
You entered a token that is not a segment token.

*** INVALID TOKEN ***
You entered a value that is not a valid token.

See also: Using Tokens as Command Parameters, Chapter 1

SEGMENT wrong size - not an IORS
The specified segment is not between 54 and 70 bytes long, so it is not an I/O
Request/Result Segment.



Display Stack Information vs

System Debugger Reference Chapter 2 39

vs
Displays current information about the stack and system calls on the stack.

Syntax

vs [count]

Parameter

count A decimal or hexadecimal value for the number of words from the stack to display.
A suffix of T, as in 16T, means decimal. No suffix or a suffix of H indicates
hexadecimal.

By default, the number of words in the display depends on the number of parameters
for the system call at the CS:EIP. When CS:EIP is not pointing to a system call, the
entire contents of the stack are displayed.

Additional Information

If the stack does not contain a system call, the display is either the number of stack
elements you specify or all the stack contents, whichever is least. If a parameter is a
string, the string is displayed.

The current SS:ESP registers are used to display the current stack values. The
current CS:EIP is used for system call and parameter information. To change the
CS:EIP value, use the monitor's g or x command. For Soft-Scope, use the go or reg
command.

If the current instruction is not a CALL instruction, the contents of the stack are
displayed without a message. If the instruction is a CALL but not a system call, the
stack contents are displayed with a message that the call is not a system call.

The gate number is displayed if the call is a C Library call.

This is the display format for system call information:

gate #NNNN

xxxx:xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx

xxxx:xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx

xxxx:xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx

(subsystem) system call



vs Display Stack Information

40 Chapter 2 System Debugger Commands

|parameters|

The fields in the display are:

gate #NNNN The gate number associated with the system call.

xxxx:xxxxxxxx
The contents of the SS:ESP (stack memory addresses).

xxxxxxxx Values now on the stack. The number of stack values varies with the
number of system call parameters and whether the code being debugged
is 16- or 32-bits.

(subsystem)
The iRMX OS layer for the system call.

system call
The name of the iRMX system call.

parameters
The parameter names that correspond to the stack values directly above
them. The maximum parameters displayed are 24.

Examples

1. To display stack information, enter:

..vs

This display is for a 16-bit application:

gate #0360

1908:07ca 0b08 1980 1ea8 1980 1980 0000 0b00 1908

1908:07da 19a0 0b20 0580 1ea8 1ea0 1ee8 0000 0000

(Nucleus) delete mailbox

|..excep$p..|.mbox.|

In this display, the CALL instruction has a stack address 1908:07CA.



Display Stack Information vs

System Debugger Reference Chapter 2 41

This display is for a 32-bit application:

gate #0360

1908:000007ca 00000b08 00001980 00001ea8 00001980 00001980 00000000

1908:000007e4 00000b00 00001908 000019a0 00000b20 00000580 00001ea8

1908:000007fd 00001ea0 00001ee8 00000000 00000000 00000000 00000000

(Nucleus) delete mailbox

|.....excep$p.....|..mbox..|

In this display, the CALL instruction has a stack address 1908:000007CA. The
parameter names identify the stack values directly above them. That is, the
excep$p parameter name signifies that the first two words represent a pointer
(1980:00000B08) to the exception code. Similarly, the mbox parameter
signifies that the third word (1EA8) is the token for the mailbox being deleted.

2. For system calls that are not iRMX system calls, SDB displays a stack display
and a message that the CALL instruction is not for an iRMX system call.

This display is for a 16-bit application:

2908:07d0 2980 2980 0000 0600 2908 29a0 0020 1580

2908:07e0 27c8 27c8 25c8 25c8 25c8 25c8 25c8 25c8

Not a system CALL

This display is for a 32-bit application:

2908:000007d0 00002980 00002980 00000000 00000600 00002908 000029a0

2908:000007e8 00000020 00001580 000027c8 000027c8 000025c8 000025c8

2908:00000800 000025c8 000025c8 000025c8 000025c8 00000000 00000000

Not a system CALL

3. If a call has more parameters than will fit on one line of the display, SDB
automatically displays multiple lines of stack values. Corresponding multiple
lines of parameter descriptions are displayed directly below the stack values.



vs Display Stack Information

42 Chapter 2 System Debugger Commands

This display is stack information for the Nucleus system call create_job in a
16-bit application:

gate #0310

27c8:0f9a 0158 20c8 0000 20c8 20c8 0000 0600 17c8

27c8:0faa 20e8 0028 0000 0000 20c8 00e0 2ff8 2ff8

27c8:0fd4 2608 1a58 1af8 2608 0000 0000 0000 0000

(Nucleus) create job

|...excep$p...|t$flgs|stksze|..sp..|..ss..|..ds..|..ip..|

|..cs..|..pri.|j$flgs|..exp$info$p.|maxpri|maxtsk|maxobj|

|poolmx|poolmn|param.|dirsiz|

This display is stack information for the Nucleus system call create_job in a 32-
bit application:

gate #0310

27c8:00000f9a 00000158 000020c8 00000000 000020c8 000020c8 00000000

27c8:00000fb4 00000600 000017c8 000020e8 00000028 00000000 00000000

27c8:00000fca 000020c8 000000e0 00002ff8 00002ff8 00002608 00001a58

27c8:00000fd4 00001af8 000000c8 00000000 00000000 00000000 00000000

(Nucleus) create job

|....excep$p......|.t$flgs.|.stksze.|...sp...|...ss...|

|...ds...|...ip...|...cs...|...pri..|.j$flgs.|.exp$in-

fo$p....|.maxpri.|.maxtsk.|.maxobj.|.poolmx.|.poolmn.|

|.param..|.dirsiz.|

This display indicates that the CALL instruction is a Nucleus system call
create_job with 18 parameters. The names of these parameters are shown
between the vertical bars (|). The words on the stack correspond to the
parameters directly below them.

4. This display shows that the CALL instruction is a BIOS system call
a_attach_file with five parameters. The subpath$p parameter points to a
string seven characters long: the word 'example'.



Display Stack Information vs

System Debugger Reference Chapter 2 43

This display is for a 16-bit application:

gate #0500

27c8:0f4e 0f88 17c8 25f8 0000 2600 29a0 0000 2600

27c8:0f5e 2608 1c10 2600 1320 26d0 0f78 0df8 2ff8

(BIOS) attach file

|...excep$p...|.mbox.|..subpath$p..|prefix|.user.|

subpath--> 07'example'

This display is for a 32-bit application:

gate #0500

27c8:00000f4e 00000f88 000017c8 000025f8 00000000 00002600 000029a0

27c8:00000f66 00000000 00002600 00002608 00001c10 00002600 00001320

27c8:00000f7e 000026d0 00000f78 00000df8 00002ff8 00000000 00000000

(BIOS) attach file

|.....excep$p.....|..mbox..|....subpath$p....|.prefix.|

|..user..|

subpath--> 07'example'

5. This display is for a 32-bit flat-model application calling the Nucleus
lookup_object system call. Notice that the pointer parameters (except$p and
name$p) are only 32 bits long, unlike pointers in the previous 32-bit examples.
All pointers in a flat-model application are near, or offset only.

gate #01b0

679b:00446e1c 00446fde 0000000a 004202a7 00000000 00010001 4d00001d

679b:00446e34 61737365 74206567 6c206f6f 00676e6f 746f7250 6c6f636f

679b:00446e4c 6f727720 7420676e 53415405 4f52324b 6b634552 42007465

(Nucleus) lookup object

|except$p|..time..|.name$p.|..job...|

name--> 04'TEST'

Error Messages
Syntax Error

You made an error entering the command.

Not a system CALL
The CS:EIP is pointing to a CALL instruction that is not an iRMX system call.



vs Display Stack Information

44 Chapter 2 System Debugger Commands

Unknown entry code
Indicates SDB has mistaken an instruction operand for a FAR CALL instruction or
that a software link from user code into iRMX code has been corrupted. To recover
from system corruption, reboot the system.



Display System Object vt

System Debugger Reference Chapter 2 45

vt
Displays information about an iRMX object.

Syntax

vt token

Parameter

token The token of the object for which you want to display information.

Additional Information

The vt command determines the type of iRMX object represented by the token and
displays information about that object. The information and the format in which
SDB displays the information depends on the type of object.

These sections are divided into display groups illustrating the display format for these
iRMX objects:

• Jobs

• Tasks

• Mailboxes

• Semaphores

• Regions

• Segments

• Extensions

• Composite objects

• Buffer Pools



vt Display System Object

46 Chapter 2 System Debugger Commands

Job Display
If the parameter you specify is a valid job token, SDB displays information about the
job having that token, as the sample display shows:

Object type = 1 Job

Current tasks xxxx Max tasks xxxx Max priority xx

Current objects xxxx Max objects xxxx Parameter obj xxxx

Directory size xxxx Entries used xxxx Job flags xxxx

Except handler xxxx:xxxxxxxx Except mode xx Parent job xxxx

Pool min xxxxxxxx Pool max xxxxxxxx Initial size xxxxxxxx

Borrowed xxxxxxxx

JOB name xxxxxxx

Byte range | Number chunks | Largest chunk | Total memory

------------------------------------------------------------------

22-44H | xxxxxxxx | xxxxxxxx | xxxxxxxx

44-84H | xxxxxxxx | xxxxxxxx | xxxxxxxx

84-200H | xxxxxxxx | xxxxxxxx | xxxxxxxx

200H-1K | xxxxxxxx | xxxxxxxx | xxxxxxxx

1K-2K | xxxxxxxx | xxxxxxxx | xxxxxxxx

2K-4K | xxxxxxxx | xxxxxxxx | xxxxxxxx

4K-8K | xxxxxxxx | xxxxxxxx | xxxxxxxx

8K-32K | xxxxxxxx | xxxxxxxx | xxxxxxxx

+ 32K | xxxxxxxx | xxxxxxxx | xxxxxxxx

The table in the lower half of the display is the Free Space Table.

The display fields from left to right are:

Current tasks
The number of tasks currently existing in the job. If the Max tasks is
not 0FFFFH (no limit), the number of Current tasks is equal to the
Current tasks of this job plus all its children Max tasks.

Max tasks The maximum number of tasks that can exist in the job simultaneously.
This value was set when the job was created.

Max priority
The maximum (numerically lowest) priority allowed for any one task in
the job. This value was set when the job was created.

Current objects
The number of objects currently existing in the job.

Max objects
The maximum number of objects that can exist in the job
simultaneously. This value was set when the job was created.



Display System Object vt

System Debugger Reference Chapter 2 47

Parameter obj
The token for the object that the parent job passed to this job. This
value was set when the job was created.

Directory size
The maximum number of entries the job can have in its object
directory. This value was set when the job was created with the
Nucleus system call create_job or rqe_create_job.

Entries used
The number of objects now cataloged in the job's object directory.

Job flags The job flags parameter value that was set when the job was created.
A value of 0 indicates the Nucleus does parameter checking for system
calls made from the job. The value 2H indicates parameter checking is
not done unless a parent job has parameter checking set.

Except handler
The start address of the job's exception handler. This address was set
when the job was created.

Except mode
Indicates when control is to be passed to the new job's exception
handler. This value was set when the job was created.

Value When Control Passes
0 Never
1 On programmer errors
2 On environmental conditions
3 On all exceptions

Parent job
The token for the specified job's parent.

Pool min The minimum size of the job's memory pool, in 16-byte paragraphs.
This value was set when the job was created.

Pool max The maximum size of the job's memory pool, in 16-byte paragraphs.
This value was set when the job was created.

Initial size
The initial size of the job's memory pool, in 16-byte paragraphs.

Borrowed The current amount of memory that the job has borrowed from its
ancestor(s), in 16-byte paragraphs.

Job name The name of the job as contained in the jobs object directory cataloged
as R?H$C$NAME. If the object does not exist, has a length of zero, or
is a null token, this field is not displayed.



vt Display System Object

48 Chapter 2 System Debugger Commands

Free Space
A table that displays the amount of free memory in a job's memory
pool. Column one of the free space table shows the byte ranges for
contiguous free memory. Column two shows the number of chunks or
free memory units in a specific byte range. Column three displays the
largest chunk or free memory unit in a specific byte range. Column
four shows the total amount of free space in a specific byte range.

Task Display
SDB displays information about tasks in different ways for interrupt tasks and for
non-interrupt tasks.

This sample shows the display for non-interrupt tasks:

Object type = 2 Task

Static pri xx Dynamic pri xx Task state xxxxxxxxx

Suspend depth xx Delay req xxxx Last exchange xxxx

Except handler xxxx:xxxxxxxx Except mode xx Task flags xx

K-saved SS:SP xxxx:xxxxxxxx Containing job xxxx Interrupt task no

The display for interrupt tasks is the same as for non-interrupt tasks but with this
added:

Int level xx Master mask xx Slave mask xx

Pending int xx Max interrupts xx

These are the fields for both interrupt and non-interrupt displays, from left to right:

Static pri
The maximum priority value of the task. This value was set by the max
priority parameter when the task's containing job was created with
the Nucleus system calls create_job or rqe_create_job.

Dynamic pri
A temporary priority that the Nucleus assigns to the task when it
controls a region and a higher priority task wants control.

Task state
The state of the task. These are the twelve possible states, as they are
displayed:

State Description
ready Task is ready for execution
asleep Task is asleep
susp Task is suspended
aslp/susp Task is asleep and suspended
deleted Task is being deleted



Display System Object vt

System Debugger Reference Chapter 2 49

State Description
on exch Q Task is waiting at an exchange
aslp/exch Task is asleep waiting at an exchange
sl/xc/susp Task is asleep and suspended waiting at an

exchange
on port Q Task is queued at a port
aslp/port Task is asleep waiting at a port
on trans Q Task is queued at a port on transaction queue
aslp/trans Task is asleep and queued at a port on the

transaction queue

If this field contains an invalid value, the value followed by a space and
two question marks is displayed.

Suspend depth
The number of suspend_task Nucleus system calls that have been
applied to this task without a corresponding resume_task Nucleus
system call.

Delay req The number of sleep units the task requested when it last specified a
delay at a mailbox or semaphore, or when it last called the sleep
Nucleus system call. If the task has not done any of these, this field
contains zeros.

Last exchange
The token for the mailbox, region, or semaphore at which the task most
recently began to wait.

Except handler
The start address of the job's default exception handler. This value was
set either with the Nucleus system calls create_task, create_job,
rqe_create_job, or set_exception_handler.

Except mode
The value that indicates the exceptional conditions under which control
is to be passed to the new task's exception handler. This value was set
with the Nucleus system calls create_task, create_job,
rqe_create_job, or set_exception_handler.

Task flags
The task flags parameter used when the task was created with the
Nucleus system call create_task. The value 1H indicates the task
contains floating-point instructions; the value 0 indicates it does not.

K-saved SS:SP
The contents of the SS:SP registers when the task last left the ready
state.



vt Display System Object

50 Chapter 2 System Debugger Commands

Containing job
The token of the job to which this task belongs.

Interrupt task
Indicates whether this task is an interrupt task.

No signifies that the task is not an interrupt task. If so, this is the last
field in the display. See the sample display for non-interrupt tasks.

Yes signifies that the task is an interrupt task. In this case, additional
fields appear in the display. See the sample display for interrupt tasks.

Int level The level that the interrupt task services. This level was set when this
task called the Nucleus system call set_interrupt.

Master mask
The value associated with the interrupt mask for the master interrupt
controller. This value represents the master interrupt levels disabled by
the interrupt level that the task services.

For example, if the task services master interrupt level 68H, master
levels 6 and 7 are disabled, so the master mask field is 11000000B
(0C0H).

See also: Interrupt levels, System Concepts

Slave mask
The value associated with the interrupt mask for a slave interrupt
controller. This value represents the slave interrupt levels disabled by
the level that the task services.

For example, if the task services slave interrupt level 62H, then slave
levels 2 through 7 are disabled, so the slave level field is 11111100B
(0FCH).

Pending int
The number of signal_interrupt Nucleus system calls pending for the
interrupt level.

Max interrupts
The maximum number of signal_interrupt Nucleus system calls that
can be pending for the interrupt level.



Display System Object vt

System Debugger Reference Chapter 2 51

Mailbox Display
SDB displays information about mailboxes in four ways:

• When nothing is queued at the mailbox

• When tasks are queued at the mailbox

• When objects are queued at the mailbox

• When data messages are queued at the mailbox

This is the format of the display when nothing is queued at the mailbox:

Object type = 3 Mailbox

Mailbox type xxxxxx Task queue head xxxx

Queue discipline xxxx Object queue head 0000

Containing job xxxx Object cache depth xx

When there are tasks queued at the mailbox, this line is added:

Task queue zzzz xxxx ...

When there are objects queued at the mailbox, this line is added:

Object cache queue zzzz xxxx ...

Object overflow queue xxxx xxxx ...

When there are data messages queued at the mailbox, this line is added:

Data message queue xxxx:xxxxxxxx xxxx:xxxxxxxx xxxx:xxxxxxxx

xxxx:xxxxxxxx xxxx:xxxxxxxx ...

The field descriptions follow:

Mailbox type
The type of mailbox: object or data. This is defined when the mailbox
is created.

Task queue head
The token for the task at the head of the queue. If the task queue for
this mailbox is empty, this field contains the mailbox token.

Object queue head
The token for the object at the head of the queue. If the object queue
for this mailbox is empty, this field contains 0000. If the mailbox type
is Data, this field contains N/A.

Data queue head
The pointer for the first data message at the head of the message queue.

Queue discipline
Indicates how tasks are queued at the mailbox. Tasks are queued as



vt Display System Object

52 Chapter 2 System Debugger Commands

FIFO (first-in-first-out) or by PRI (priority). This is specified when a
mailbox is created with the Nucleus system call create_mailbox. If the
field cannot be interpreted, the actual value is displayed followed by a
space and two question marks.

Containing job
The token for the job that contains this mailbox.

Object cache depth
The size of the high-performance cache portion of the object queue
associated with the mailbox. This size was specified when the mailbox
was created. If the mailbox type is Data, this field contains N/A.

Data message queue
Pointers for the data messages residing at the mailbox.

Task queue
A list of tokens for the tasks queued at the mailbox in the order they are
queued. If there are no tasks in the task queue, this field is not
displayed.

Object cache queue
A list of tokens for the objects queued in the object cache queue. The
tokens are listed in the order they are queued. If there are no objects in
the object cache queue or the mailbox type is Data, this field is not
displayed.

Object overflow queue
A list of tokens for the objects queued in the object overflow queue.
The tokens are listed in the order they are queued. If there are no
objects in the object overflow queue or the mailbox type is Data, this
field is not displayed.



Display System Object vt

System Debugger Reference Chapter 2 53

Semaphore Display
Semaphore information is displayed either when no tasks are queued or when tasks
are queued.

This is the format of the display when no tasks are queued:

Object type = 4 Semaphore

Task queue head xxxx Queue discipline xxxx

Current value xxxx Maximum value xxxx

Containing job xxxx

When no tasks are queued, this line is added:

Task queue xxxx xxxx ...

The field descriptions follow:

Task queue head
The token for the task at the head of the queue. If the task queue is
empty, this field contains zeros.

Queue discipline
Indicates how tasks are queued at the semaphore. Tasks are queued as
FIFO (first-in-first-out) or by PRI (priority), depending on how the
semaphore was specified when it was created with the Nucleus system
call create_semaphore.

Current value
The number of units currently held by the semaphore.

Maximum value
The maximum number of units the semaphore can hold. This number
was specified when the semaphore was created.

Containing job
The token for the job to which the semaphore belongs.

Task queue
A list of tokens for the tasks queued at the semaphore, in the order they
are queued. If no tasks are queued, this list does not appear.



vt Display System Object

54 Chapter 2 System Debugger Commands

Region Display
If the token parameter is a valid token for a region, information about the region is
displayed with or without a task queue.

This is the format for the display of a region with no task queue:

Object type = 5 Region

Entered task xxxx Queue discipline xxxx

Containing job xxxx

When a region that has a task queue, this line is added:

Task queue xxxx xxxx ...

The field descriptions follow:

Entered task
The token for the task currently accessing information guarded by the
region.

Queue discipline
Indicates how tasks are queued at the region. Tasks are queued as FIFO
(first-in-first-out) or by PRI (priority), depending on how the region
was specified when it was created with the Nucleus system call
create_region.

Containing job
The token for the job to which the region belongs.

Task queue
Tokens for the tasks waiting to gain access to data guarded by the
region. This line is displayed only if a task is already in the region and
another task is waiting.



Display System Object vt

System Debugger Reference Chapter 2 55

Segment Display
If the parameter that you supply is a valid token for a segment, this information is
displayed:

Object type = 6 Segment

Segment size xxxxxxxx Containing job xxxx

The fields are:

Segment size
The number of bytes in this segment. The size of the segment was
specified when the segment was created with the Nucleus system call
create_segment.

Containing job
The token for the job to which the segment belongs.

Extension Object Display
If the vt parameter is a valid token for an extension, this information is displayed:

Object type = 7 Extension

Extension type xxxx Deletion mailbox xxxx

Containing job xxxx

The fields are:

Extension type
The type code associated with composite objects licensed by this
extension. This code was specified when the extension type was
created with the Nucleus system call create_extension.

See also: Extension types, System Concepts

Deletion mailbox
The token for the deletion mailbox associated with this extension. This
mailbox was specified when the extension type was created.

Containing job
The token for the job to which the extension belongs.



vt Display System Object

56 Chapter 2 System Debugger Commands

Composite Object Display
The vt command displays these kinds of composite information:

• All composites except those defined in the Basic I/O System (BIOS) and the port
connection

• BIOS user objects

• BIOS physical file, stream file, named file, and remote file connections

• Port connection

See also: EDOS file driver, Driver Programming Concepts

Display of Composite Objects Other Than BIOS or EDOS

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx

Containing job xxxx Num of entries xxxx

Component list xxxx xxxx xxxx xxxx ...

The field descriptions follow:

Extension type
The code for the extension type of the extension object used to create
this composite. This code was specified when the extension object was
created with the Nucleus system call create_extension.

Extension obj
The token for the extension object used to create this composite object.

Deletion mbox
The token for the mailbox the composite goes to when the composite is
to be deleted. This mailbox was specified when the extension was
created with the Nucleus system call create_extension.

Containing job
The token for the job to which the composite object belongs.

Num of entries
The number of component entries in the composite object.

Component list
The list of tokens for the components of the composite.



Display System Object vt

System Debugger Reference Chapter 2 57

Display of BIOS Composite User Object

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx

Containing job xxxx Num of entries xxxx

BIOS USER OBJECT:

User segment xxxx Number of IDs xxxx

User ID list xxxx xxxx ...

In addition to the fields in the non-BIOS composite display, this display contains
these fields:

User segment
The token for the segment containing the user IDs for the user object.

Number of IDs
The number of user IDs associated with the user object.

User ID list
List of the user IDs associated with the user object.

Display of BIOS Physical File Connection

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx

Containing job xxxx Num of entries xxxx

T$CONNECTION OBJECT:

File driver Physical Conn flags xx Access xxxx

Open mode xxxxxx Open share xxxxxx File pointer

xxxxxxxx

IORS cache xxxx File node xxxx Device desc xxxx

DUIB pointer xxxx:xxxxxxxx Dynamic DUIB xxxxx Num conns xxxx

Num readers xxxx Num writers xxxx File share

xxxxxxx

File drivers xxxx Device gran xxxx Device size

xxxxxxxx

Device name xx Device functs xxxx Num dev conn xxxx



vt Display System Object

58 Chapter 2 System Debugger Commands

This display contains these fields in addition to those in the non-BIOS composite
display:

File driver
The file driver to which this connection is attached. The five possible
values are Physical, Stream, Named, EDOS, DOS, and Remote. If
this field contains an invalid value, the value is displayed followed by a
space and two question marks.

Conn flags
The flags for the connection. To determine how the flag is set, convert
the hexadecimal value to binary. This description shows the connection
state when a bit (0 is the rightmost bit) is set to 1:

Bit Condition When Set
5-7 Reserved
4 The connection was forcibly detached
3 Reserved
2 This is a device connection
1 The connection is active and can be opened
0 The connection is being detached

Access The access rights for this connection. This display uses a single
character to represent each access right. If the connection has the
access right, the character appears. If the connection does not have an
access right, a dash (-) appears in the character position. The iRMX
access rights and the characters that represent them are:

Character Directory File Access
D Delete
L List
A Add
C Change

Character Data File Access
D Delete
R Read
A Append
U Update

The DOS file access rights are limited to two options: read-only (R)
and full access (DRAU). For directories, DOS automatically grants full
access (DLAC).



Display System Object vt

System Debugger Reference Chapter 2 59

Open mode The mode established when this connection was opened. These are the
possible modes:

Open Mode Description
Closed Connection is closed
Read Connection is open for reading
Write Connection is open for writing (not valid for

DOS/EDOS)
R/W Connection is open for reading and writing

If this field contains an invalid value, the value is displayed followed by
a space and two question marks.

Open share
The sharing status established for this connection when it was opened.
The sharing status for a connection is a subset of the sharing status of
the file (see the File share field). These are the possible modes for
iRMX:

Share Mode Description
Private File cannot be shared
Readers File can be shared with readers
Writers File can be shared with writers
ALL File can be shared with all users
0 Connection is not open

These are the possible modes for DOS/EDOS:

Share Mode Description
Readers File can be shared with readers
ALL File can be shared with all users
0 Connection is not open

If this field contains an invalid value, the value is displayed followed by
a space and two question marks. This probably indicates that the
connection data structure has been corrupted.

File pointer
The current location of the file pointer for this connection.

IORS cache
The token for the segment at the head of the BIOS IORS list. These
IORSs are being saved for the BIOS system call wait_io to use again.
This list is empty if zeros appear in this field.

File node The token for a segment that the operating system uses to maintain
information about the connection. The information in this segment
appears in the next two fields.



vt Display System Object

60 Chapter 2 System Debugger Commands

Device desc
The token for the segment that contains the device descriptor. The
operating system uses the device descriptor to maintain information
about connections to a device.

DUIB pointer
The address of the DUIB for the device unit containing the file.

See also: DUIBs, Driver Programming Concepts

Dynamic DUIB
Indicates whether a DUIB was created dynamically when the device
associated with this connection was attached.

Num of conns
The number of connections to the file.

Num of readers
The number of connections now open for reading.

Num of writers
The number of connections now open for writing.

File share
The share mode of the file. This parameter defines how other
connections to the file can be opened. The share mode of a file is a
superset of the sharing status of each of the connections to the file. See
the Open share field description. These are the possible modes for
iRMX:

Share Mode Description
Private File cannot be shared
Readers File can be shared with readers
Writers File can be shared with writers
All File can be shared with all users

Only Readers and All modes are available for DOS/EDOS.

If this field contains an invalid value, the value is displayed followed by
a space and two question marks. This probably means the file's internal
data structure or fnode is corrupted.

See also: Sharing Modes for Files and Connections, System
Concepts



Display System Object vt

System Debugger Reference Chapter 2 61

File drivers
The file drivers that connect the file. If the file can be connected to a
given file driver, the bit in the display is set to 1. Bit 0 is the rightmost
bit.

Bit Driver
5 EDOS
4 Remote
3 Named
2 DOS
1 Stream
0 Physical

Device gran
The granularity of the device, in bytes. This is the minimum number of
bytes that can be written to or read from the device in a single physical
I/O operation.

Device name
The device name where this file is stored. The device name has a
maximum size of 14 characters.

Device size
The capacity of the device, in bytes.

Device functs
Describes the functions supported by the device where this file is
stored. Each bit in the low-order byte of the field corresponds to one of
the possible device functions. If that bit is set to 1, then the
corresponding function is supported by the device.

Bit Function
7 f_close
6 f_open
5 f_detach_dev
4 f_attach_dev
3 f_special
2 f_seek
1 f_write
0 f_read

Num dev conn
The number of connections to the device.



vt Display System Object

62 Chapter 2 System Debugger Commands

Display of BIOS Stream File Connection

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx

Containing job xxxx Num of entries xxxx

T$CONNECTION OBJECT:

File driver Physical Conn flags xx Access xxxx

Open mode xxxxxx Open share xxxxxxx File pointer

xxxxxxxx

IORS cache xxxx File node xxxx Device desc xxxx

DUIB pointer xxxx:xxxxxxxx Dynamic DUIB xxxxx Num conns xxxx

Num readers xxxx Num writers xxxx File share

xxxxxxx

File drivers xxxx Device gran xxxx Device size

xxxxxxxx

Device name Stream Device functs xxxx Num dev conn xxxx

Req queued xxxx Queued conn xxxx Open conn xxxx

This display contains these fields in addition to those in the BIOS physical file
connection display:

Req queued The number of requests queued at the stream file.

Queued conn The number of connections queued at the stream file.

Open conn The number of connections to the stream file open.

Display of BIOS Named File Connection

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx

Containing job xxxx Num of entries xxxx

T$CONNECTION OBJECT:

File driver Named Conn flags xx Access xxxx

Open mode xxxxxx Open share xxxxxxx File pointer

xxxxxxxx

IORS cache xxxx File node xxxx Device desc xxxx

DUIB pointer xxxx:xxxxxxxx Dynamic DUIB xxxx Num conns xxxx

Num readers xxxx Num writers xxxx File share xxxx

File drivers xxxx Device gran xxxx Device size

xxxxxxxx

Device name xxxxx Device functs xxxx Num dev conn xxxx

Num buffers xxxx Fixed update xxxx Upd timeout xxxx



Display System Object vt

System Debugger Reference Chapter 2 63

Fnode PTR(s) xxxx:xxxxxxxx Fnode number xxxx Fnode flags xxxx

Owner xxxx File type xxxxxxxxx File/Vol gran xxxx

Total blocks xxxxxxxx Total size xxxxxxxx This size

xxxxxxxx

Volume gran xxxx Volume size xxxxxxxx Volume name xxxxxx

This display contains these fields in addition to those in the BIOS physical file
connection display:

Num buffers
The number of buffers allocated for blocking and unblocking I/O
requests involving the device. A value of 0 indicates that the device is
not a random-access device.

Fixed update
TRUE or FALSE. Indicates whether the device uses the fixed update
timeout feature.

Upd timeout
The length of the time for the update timeout feature, measured in
system clock ticks.

See also: Update timeout and fixed updating, System Concepts

Fnode PTR(s)
The addresses of the fnode pointers.

Fnode number
The fnode number of this file.

See also: Fnodes, Command Reference

Fnode flags
A word containing flag bits. If a bit is set to 1, this description applies.
Otherwise, the description does not apply.

Bit Description
7-15 Reserved
6 This file is marked for deletion
5 This file has been modified
3-4 Reserved
2 Primary fnode
1 The file is a long file
0 This fnode is allocated

Owner The ID of the owner of the file. If this field has a value of 0FFFFH,
then the field is displayed as WORLD.

See also: File ownership, System Concepts



vt Display System Object

64 Chapter 2 System Debugger Commands

File type The type of named file. These are the possible values:

File type Description
DIR Directory file
DATA Data file
SPACEMAP Volume free space map file
FNODEMAP Free fnodes map file
BADBLOCKMAP Bad blocks file

If this field contains an invalid value, the value is displayed followed by
a space and two question marks.

File/Vol gran
The granularity of the file in volume granularity units.

Total blocks
The total number of volume blocks used for the file at present including
indirect blocks.

Total size
The total size of the file in bytes, including actual data only.

This size The total number of bytes allocated to the file for data.

Volume gran
The granularity of the volume, in bytes.

Volume size
The size of the volume, in bytes.

Volume name
The name of the volume.

See also: Fnodes, Command Reference



Display System Object vt

System Debugger Reference Chapter 2 65

Display of BIOS Remote File Connection

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx

Containing job xxxx Num of entries xxxx

T$CONNECTION OBJECT:

File driver Remote Conn flags xx Access xxxx

Open mode xxxxxx Open share xxxxxxx File pointer xxxxxxxx

IORS cache xxxx File node xxxx Device desc xxxx

DUIB pointer xxxx:xxxxxxxx Dynamic DUIB xxxxx Num conns xxxx

Num readers xxxx Num writers xxxx File share xxxxxxx

File drivers xxxx Device gran xxxx Device size xxxxxxxx

Device name xxxx Device functs xxxx Num dev conn xxxx

This display contains the same fields as those in the BIOS physical file connection
display except for the File driver field, which is Remote rather than Physical.

Display of BIOS EDOS File Connection

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx

Containing job xxxx Num of entries xxxx

T$CONNECTION OBJECT:

File driver EDOS Conn flags xx Access xxxx

Open mode xxxxxx Open share xxxxxxx File pointer xxxxxxxx

IORS cache xxxx File node xxxx Device desc xxxx

DUIB pointer xxxx:xxxxxxxx Dynamic DUIB xxxx Num conns xxxx

Num readers xxxx Num writers xxxx File share xxxx

File drivers xxxx Device gran xxxx Device size xxxxxxxx

Device name xxxxx Device functs xxxx Num dev conn xxxx

Num buffers xxxx Fixed update xxxx Upd timeout xxxx

Owner xxxx File type xxxxxxxxx File/Vol gran xxxx

Total blocks xxxxxxxx Total size xxxxxxxx This size xxxxxxxx

EDOS conn ID xxxxxx

The fields are the same as for a BIOS named file connection, except that information
about volumes is omitted and information about the EDOS connection ID is added.
The display for DOS is similar, but not exactly the same.



vt Display System Object

66 Chapter 2 System Debugger Commands

Display of Service Object

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx

Containing job xxxx Num of entries xxxx

T$SERVICE OBJECT:

Name: eth0

Service type: Generic Service flags: xxxx

Address size: xxxx Max control message size: xxxx

Port IDs: valid from 0001 to 8FFF, else if 0000 allocate from 9000 to 9FFF

Alloc/max control buffers: xxxx/xxxx Alloc/max transactions: xxxx/xxxx

Output queue: head=xxxx:xxxxxxxx tail=xxxx:xxxxxxxx count=xxxx

Input queue: head=xxxx:xxxxxxxx tail=xxxx:xxxxxxxx count=xxxx

Handler entry points:

Initialize: xxxx:xxxxxxxx GetAttribs: xxxx:xxxxxxxx CreatePort: xxxx:xxxxxxxx

SendMsg: xxxx:xxxxxxxx SetAttribs: xxxx:xxxxxxxx DeletePort: xxxx:xxxxxxxx

Update: xxxx:xxxxxxxx Validate: xxxx:xxxxxxxx Cancel: xxxx:xxxxxxxx

Service: xxxx:xxxxxxxx GetFrag: xxxx:xxxxxxxx Finish: xxxx:xxxxxxxx

xxxx ports:

xxxx yyyy

This display shows the fields of a service object

Name
The service name

Service type
This field shows the level of support provided by the Nucleus for this
service. This can include stubs for interrupt services and port services.

Service flags
This field shows the current service flags, indicating the support the
Nucleus provides for the service.

Address size
The size in bytes of a hardware address for this service

Max control message size
The maximum size allowed by this service for control messages

Port IDs
This shows how port IDs are validated and allocated for this service. In
the above example, a port ID in the range 1 to 07FFFh is valid for the
creation for a port with that ID. If a port ID of 0 is specified, then the
service allocates an ID from the range 09000h to 09FFFh, if available.



Display System Object vt

System Debugger Reference Chapter 2 67

Any other value specified when creating or binding a port will result ina
error.

Alloc/max control buffers
Shows the number of service control buffers currently allocated, and the
total available to the service

Alloc/max transactions
Shows the number of transaction buffers currently in use by the service,
and the total available to the service.

Input queue
Shows the address of the first and last transaction on the service input
queue, and the number of transactions on the queue. This might indicate
the number of input buffer requests pending at a hardware interface, for
example.

Output queue
Shows the address of the first and last transaction on the service output
queue, and the number of transactions on the queue. This might indicate
the number of transmit requests still pending for a given service, for
example.

Handler entry points
Each address shown is the address of one of the service handlers. If the
service does not support a given handler, that address is shown as
0000:00000000.

Ports
Shows the number of ports currently created for this service, and the
tokens for those ports.

Display of a Generic Port

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx

Containing job xxxx Num of entries xxxx

T$PORT OBJECT:
Service object: xxxx Name: xxxxxxxxxxxxxx
Queue discipline FIFO Buffer pool xxxx
Fragmentation xxx Max port transctns xx Sink port xxxx
Source port id xxxx Source address xx xx xx xx xx xx
Dest. port id xxxx Dest. address xx xx xx xx xx xx

Task queue xxxx xxxx ...



vt Display System Object

68 Chapter 2 System Debugger Commands

Message queue xxxx:xxxx xxxx:xxxx ...

Transaction id nn Task token xxxx
Transaction id nn+1 Task token xxxx
Transaction id nn+2 Task token xxxx
Transaction id nn+3 Task token xxxx
Transaction id nn+4 Task token xxxx
Transaction id nn+5 Task token xxxx
Transaction id nn+6 Task token xxxx
Transaction id nn+7 Task token xxxx
Transaction id nn+8 Task token xxxx
Transaction id nn+9 Task token xxxx

This display shows the fields of a generic (non-Nucleus Communications Service) port.

Service object
The token for the service where this port was created, or 0000 for a sink
port.

Name
The name of the service where the port was created, if not a sink port

Queue discipline
The queue discipline for the task queue on this port.

Fragmentation
The state of the allow-fragmentation flag on this port.

Max port transctns
The size of the transaction queue on this port.

Sink port
The token for the sink port for this port, if any.

Source port id
The port id for this port

Source address
For an addressed service, displays the address of this port.

Dest. port id
If the port has been connected, shows the destination port id.

Dest. address
If the port has been connected and the service processes addresses,
shows the destination address.

Task queue
A list of task tokens showing the tasks currently queued for messages.



Display System Object vt

System Debugger Reference Chapter 2 69

Message queue
A list of address of control messages currently queued on the port. Note
that either the task queue or the message queue will be displayed.

Transaction id
The transaction id of an outstanding RSVP transaction

Task token
The token of the task queued on this transaction.

Display of a Signal Port (Nucleus Communications Service only)

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx

Containing job xxxx Num of entries xxxx

T$PORT OBJECT:

Protocol type Signal Queue discipline xxxx Signal count xxxx

source id xxxx

Task queue xxxx xxxx ...

This format uses the composite display as a base and appends these fields:

Protocol type
The message protocol. This value is Signal to indicate signal service.
The type is determined when the port is created through the Nucleus
system call create_port.

Queue discipline
Indicates how tasks are queued at the port. Tasks are queued as FIFO
(first-in-first-out) or by PRI (priority), depending on how this was
specified with the Nucleus system call create_port. If this field is
uninterpretable, the actual byte value is displayed followed by a space
and two question marks.

Signal count
The number of signals now waiting to be received at the port.

Source id The board agent identification number for which this port was created
to send messages to or receive messages from. This identification
number matches the slot number of the remote board. The number is
specified in the message$id field using the Nucleus system call
create_port.

Task queue
The tokens for the list of tasks, if any, queued at the port.



vt Display System Object

70 Chapter 2 System Debugger Commands

Display of a Data Port (Nucleus Communications Service only)
With Messages Queued

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx

Containing job xxxx Num of entries xxxx

T$PORT OBJECT:

Protocol type Data T Queue discipline xxxx Buffer pool xxxx

Fragmentation xxx Max Port Transctns xxxx Sink port xxxx

Destination msg id xxxx Destination port id xxxx Source port id xxxx

Transaction id xxxx Task token xxxx

Transaction id xxxx Message pointer xxxx:xxxx

Message queue xxxx:xxxx xxxx:xxxx ...

The display format for a data port with tasks queued is the same as when messages are queued
with these differences:

Task queue xxxx xxxx

The preceding two port formats use the composite display as a base and append these
fields:

Protocol type
The message protocol. This value is Data T to indicate Data Transport
service. The type is determined when the port is created through the
Nucleus system call create_port.

Queue discipline
Indicates how tasks are queued at the port. Tasks are queued as FIFO
(first-in-first-out) or by PRI (priority), depending on how the port was
specified when it was created.

Buffer pool
The token of the attached buffer pool (if any). The Nucleus system call
attach_buffer_pool attaches a buffer pool to a port.

Fragmentation
Yes or No indicates whether the port can handle request message
fragmentation. This is defined when the port was created.

Max Port Transctns
The maximum number of simultaneous outstanding transactions for the
port. This limitation is defined when the port is created.

Sink port The token of the sink port (if any) associated with the port. Sink ports
are connected to ports through the Nucleus system call attach_port.



Display System Object vt

System Debugger Reference Chapter 2 71

Destination msg id
The host_id portion of the socket identifying the remote port to which
this port is connected. This value is established through the Nucleus
system call connect.

Destination port id
The port_id portion of the socket identifying the remote port to which
this port is connected. This value is established through the Nucleus
system call connect.

Source port id
The port ID number for this port. The number is established through
the port_id field when the port is created.

Transaction id
Outstanding transaction identification numbers at this port.

Task token
The token(s) of the task or tasks with outstanding transactions at this
port.

Message pointer
The pointer to the message(s) with outstanding transactions at this port.

Message queue
The list of pointers representing the messages queued at this port. This
field appears only if the port has queued messages.

Task queue
The list of pointers representing the tasks queued at this port. This field
appears only if the port has queued tasks.

In addition, the vt output for a data port can appear with these combinations of fields:

• Transaction information with no Message Queue or Task Queue information

• Message Queue information with no Transaction or Task Queue information

• Task Queue information with no Transaction or Message Queue information

• No Transaction, Message Queue, or Task Queue information



vt Display System Object

72 Chapter 2 System Debugger Commands

Heap Display

Object type = 10 Heap

Containing job xxxx Total size xxxxxxxx Kernel Pool xxxxxxxx
Pool size: xxxxxxxx Pool available: xxxxxxxx Pool largest area: xxxxxxxx

Process Mappings

Displays the features of a heap object.

Total size
The size of the segment containing the pool

Kernel pool
The token for the associated RMK pool

Pool size
The size of the RMK pool

Pool available
The memory currently available in the pool

Pool largest area
The largest remaining area in the pool.

Process mappings
If the paging job is enabled, then flat-model applications can map the
pool to their virtual segment in order to allocate buffers. The list of job
VSEG mappings is displayed here.

Buffer Pool Display
If the parameter that you supply is a valid token for a buffer pool, the information
about the buffer pool is:

Object type = 10 Buffer pool

Max buffers xxxx Total buffer count xxxx Total size count xx

Containing job xxxx Data Chaining xxx

Buffer pool contents:

Buffer size xxxx Buffer count xxxx

Buffer size xxxx Buffer count xxxx

.

.

.

The fields in the buffer pool display are:



Display System Object vt

System Debugger Reference Chapter 2 73

Max buffers
The total number of buffers allowed in this buffer pool. This maximum
value is determined when the buffer pool is created using the Nucleus
system call create_buffer_pool.

Total buffer count
The number of buffers now in the buffer pool. This number is
equivalent to the number of buffers released to the buffer pool using the
Nucleus system call release_buffer.

Total size count
The number of different buffer sizes in the buffer pool. The maximum
number of different buffer sizes is eight.

Containing job
The token for the job that created this buffer pool.

Data Chaining
YES or NO indicates whether this buffer pool supports data chaining.

Buffer size
The available buffer sizes for this buffer pool. These sizes are
determined when the individual buffers are created through the Nucleus
system call create_segment and released to the buffer pool.

Buffer count
The number of buffers that are of the buffer size displayed in the field
directly to the left.

Error Messages
Syntax Error

You did not specify a parameter for the command or you made an error entering the
command.

*** INVALID TOKEN ***
You entered a value that is not a valid token.

See also: Using Tokens as Command Parameters, Chapter 1



vu Display System Calls

74 Chapter 2 System Debugger Commands

vu
Displays the iRMX system calls in a task's stack.

Syntax

vu task-token

Parameter

task-token The token of the task whose stack will be searched for system calls.

Additional Information

This command searches a task's stack for iRMX system calls, starting at the top of
the stack. The task’s stack must be inside an iRMX segment. For each system call it
finds, vu displays:

• The return address for the call. This is the address of the next instruction to be
executed for the task after the system call has finished running.

• The parameters of the system call. They are shown as if the CALL instruction
for the system call were in the CS:EIP register and the displayed stack values
were at the top of the stack.

If no system calls are found on the stack, vu attempts to find possible return CS:EIP
values. There are two possible displays for this situation; the second can list one or
more possible return values:

No system calls on stack

Return cs:eip - xxx:xxx

or

No system calls on stack

Possible Return cs:eip(s) - xxx:xxx

xxx:xxx

xxx:xxx

The vu command uses internal iRMX data structures to get system call information.
The data structures are updated immediately after the system call at the top of the
task's stack completes. Since the monitor interrupt might come after the system call
is completed, but before the data structures are updated, some of the information may
be obsolete. Therefore, the first system call displayed may not be valid.



Display System Calls vu

System Debugger Reference Chapter 2 75

System calls can be nested, so some invocations of the vu command produce multiple
displays of the type shown here. This is the display format for the vu system call
information:

gate #NNNN

Return cs:eip - yyyy:yyyyyyyy

xxxx:xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx

xxxx:xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx

xxxx:xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx

(subsystem) system call

|parameters|

The fields are as follows:

gate #NNNN
The gate number associated with the system call.

Return cs:eip
The return address for the system call of this display
(yyyy:yyyyyyyy).

xxxx:xxxxxxxx
The address of the stack portion devoted to this call.

xxxxxxxx Values now on the stack.

(subsystem)
The iRMX OS layer containing the system call.

system call
The name of the iRMX system call.

parameters
The parameter names associated with the stack values. The parameters
correspond to the stack values directly above them. If one of the
parameters is a string, it displays the string contents below the
parameters.

Example

This example shows how the vu command responds when system calls are nested.
The task for the example has called the EIOS system call s_write_move.
S_write_move has called the BIOS system call a_write. A_write has called
Nucleus system call receive_message to wait for the data transfer to be completed.



vu Display System Calls

76 Chapter 2 System Debugger Commands

Suppose that before the message arrives signaling the completion of the transfer, you
enter SDB and invoke the vu command:

..vu 21c8

This display is for a 16-bit application:

gate #0430

Return cs:ip -09b8:576a

2168:01b2 01c8 2168 01c8 2168 ffff 1768 1760 1988

2168:01c2 1550 0000 2148 1ff8 1440 2558 2000 2050

(Nucleus) receive message

|...excep$p...|....resp$p...|.time.|.mbox.|

gate #05B0

Return cs:ip -09d8:08e7

2168:01d4 01e8 2168 1f58 0400 0000 20e8 2098 2088

2168:01e4 1430 2048 01f8 20f8 1400 0218 0000 01f8

(BIOS) write

|...excep$p...|.mbox.|.count|...buffer$p..|.conn.|

gate #0710

Return cs:ip -09f8:06fa

2168:0218 0020 19f0 0400 0030 19f0 2098 2080 2140

2168:0228 2058 0000 0000 20c8 20c8 20c8 20c8 20c8

(EIOS) write move

|...excep$p...|.count|..buffer$p...|.conn.|



Display System Calls vu

System Debugger Reference Chapter 2 77

This display is for a 32-bit application:

gate #0430

Return cs:eip -09b8:0000576a

2168:000001b2 000001c8 00002168 000001c8 00002168 0000ffff 00001768

2168:000001da 00001760 00001988 00001550 00000000 00002148 00001ff8

2168:000001e2 00001440 00002558 00002000 00002050 00000000 00000000

(Nucleus) receive message

|.....excep$p.....|......resp$p.....|..time..|..mbox..|

gate #05b0

Return cs:eip -09d8:000008e7

2168:000001d4 000001e8 00002168 00001f58 00000400 00000000 000020e8

2168:000001fa 00002098 00002088 00001430 00002048 000001f8 000020f8

2168:00000204 00001400 00000218 00000000 000001f8 00000000 00000000

(BIOS) write

|.....excep$p.....|...mbox.|..count.|.....buffer$p....|

|..conn..|

gate #0710

Return cs:eip -09f8:000006fa

2168:00000218 00000020 000019f0 00000400 00000030 000019f0 00002098

2168:00000230 00002080 00002140 00002058 00000000 00000000 000020c8

2168:00000248 000020c8 000020c8 000020c8 000020c8 00000000 00000000

(EIOS) write move

|.....excep$p.....|..count.|.....buffer$p....|..conn..|

✏ Note
For a flat-model application, the parameters to system calls are
displayed in reverse order. For example, if the rq_write_move
system call displayed above was made from a flat-model
application, the vu command would display the conn parameter
first and the excep$p parameter last.

This difference in displays occurs because of the way the interface
to the OS handles flat model applications. You do not invoke
system calls any differently from a flat-model application.



vu Display System Calls

78 Chapter 2 System Debugger Commands

✏ Note
For a flat-model application, the pointer parameters are only 32 bits
long, unlike pointers in the previous 32-bit examples. All pointers
in a flat-model application are near, or offset only.

Error Messages
Syntax Error

You made an error entering the command.

*** INVALID TASK TOKEN ***
You entered a value that is not a valid task token.

Stack not an iRMX segment
The stack of the task is not an iRMX segment, as is required.

TOKEN is not a TASK
You entered a value that is not a valid task token.

■■   ■■   ■■



System Debugger Reference Chapter 3 79

System Debug Monitor
(SDM) Commands

This chapter is a reference for SDM commands. It includes command descriptions,
parameter descriptions, and examples of commands. Most SDM commands have
command characters that suggest the function of the command. For example, the d
command displays information and the s command substitutes a value. Table 3-1
lists the SDM commands in alphabetical order.

Table 3-1. SDM Commands

Command Description

bc (breakpoint clear) Clears one or all breakpoints set previously with the bs command

bs (breakpoint set) Sets one or more software or hardware breakpoints, which remain
set until specifically cleared with the bc command

c (compare) Compares the contents of one block of memory with another block

d (display) Displays the contents of memory or a descriptor table

f (find) Searches the specified block of memory to find a sequence of
hexadecimal digits

g (go) Begins executing the application program, with the option of setting
one or more hardware breakpoints

i (input) Inputs and displays a byte, halfword or word from a port

n (step) Disassembles and executes one instruction at a time

m (memory copy) Copies the contents of one block of memory to another

o (output) Outputs a byte, halfword or word to a port

pd*(paging display) A group of commands that display information about the paging
subsystem

ps* (paging substitute) Two commands that display and let you modify fields in the page
directory and page tables

s (substitute) Displays and lets you modify memory locations or components of
the descriptor table entries

x (exchange) Displays and lets you modify contents of registers or fields in a task
state segment

3



80 Chapter 3 SDM Commands

Command Structure
This is the general structure of SDM commands:

[count] command [parameters]

Some commands have one or more parameters to indicate:

• Addresses

• Data

• Register names

• Punctuation symbols

• Numeric expressions

• Count

Though most parameters follow the command, the count parameters prefix the
command character. Count indicates how many times you want SDM to repeat the
command or how many consecutive bytes, halfwords, or words you want SDM to
access. In some commands you can use count to control how many instructions
SDM is to single step (go through line-by-line), which allows you to check your
application for problems in each instruction.



System Debugger Reference Chapter 3 81

Entering Commands
This section describes the conventions to use when you enter SDM commands. It
also describes the SDM line editing features.

Command Line Conventions
When entering SDM commands, follow these conventions:

• You can enter commands in either upper- or lowercase characters.

• You can include spaces anywhere in the command line except within terms.

• You can enter command lines up to 128 characters long. If you exceed this limit,
the terminal beeps and the command does not execute.

Command-Editing Keys
You can use these keys to edit the SDM command line:

Carriage Return
Tells SDM to read the command line and execute the instruction.

Rubout or Backspace
Deletes the character you entered most recently. It deletes the character
from both the command line and the display. If you attempt to rubout
the prompt, the terminal issues a beep.

<Ctrl-C> Aborts the current command and issues a prompt. However, if your
application is running and it is in a loop, <Ctrl-C> has no effect.

<Ctrl-S> Suspends SDM’s console output. SDM does not lose any output .

<Ctrl-Q> Resumes the console output suspended by <Ctrl-S>.

<Ctrl-X> Deletes the current command line.

Command Line History
To repeat an earlier command without retyping it, enter <Ctrl-B> repeatedly to scroll
back through previous commands. Enter <Ctrl-F> to scroll forward in the list. On a
PC keyboard, you can also use the <UpArrow> and <DownArrow> keys for this
purpose.

Once you have displayed an earlier command in this way, you can edit it if you
choose. Then execute the command by pressing <CR>.



82 Chapter 3 SDM Commands

Multiple Commands on a Single Line
There are three ways to designate multiple commands on a single line:

semicolon (;) A semicolon between commands lets you put more than one type
of command on a single line

n < command > A decimal number and angle brackets lets you specify n repetitions
of a single command on one line

comma (,) A comma at the end of a command line lets you repeat the
command line indefinitely

You can use one or a combination of these methods on a command line.

Combining Commands

Execute multiple commands on a single command line by separating them with
semicolons (;). For example:

..g cs:3b7 ; d ds:4a

This executes the g command followed by the d command.

Repeating Commands

Repeat a command by preceding the command with a decimal number and enclosing
the command in angle brackets. For example:

..12 <g, cs:3b7>

This executes the g command 12 times.

You can nest brackets up to three levels. By combining brackets with semicolons
you can repeatedly execute multiple commands. For example:

..5 <12 <g, cs:3b7> ; d ds:4a>

This repeats the g command 60 times and the d command 5 times. The order of the
commands is twelve g commands followed by one d command, then twelve more g
commands and one d command, and so on.

SDM interprets repeat factors (those entered at the beginning of a command) as
decimal numbers. This is the only case where you do not use a T suffix after a
decimal number.

Continuing Commands

To execute a command or group of commands more than once, include a comma
after the command or after the closing angle bracket in the command line. For
example:



System Debugger Reference Chapter 3 83

..10 <5 dw>,

SDM executes the d command 50 times and then displays the command followed by
a dash prompt (-):

..10 <5 dw> -

If you enter another comma, the command line is executed again. If you do not want
to execute the command line again, enter a <CR>.



84 Chapter 3 SDM Commands

Command Parameters
SDM commands have these parameter types:

• Byte, 16-bit halfword and 32-bit word parameters

• Term parameters

• Expression parameters

• Address parameters

• Numeric parameters

Byte, Halfword and Word Parameters
Byte parameters are 8-bit parameters, halfword parameters are 16-bit parameters, and
word parameters are 32-bit parameters. These parameters can be hexadecimal
numbers, decimal numbers, terms, expressions, registers, or ranges. SDM assumes
that all byte, halfword and word values are hexadecimal. Omit the H suffix from
hexadecimal values. To specify a decimal value, enter a T suffix immediately
following the number.

Byte values range from 00H to 0FFH. Halfword values range from 0000H to
0FFFFH. Word values range from 00000000H to 0FFFFFFFFH. For halfword or
word parameter values, enter the high byte first, then the low byte. For halfword and
word value displays, the high byte value appears first followed by the low byte value.
However, the system stores halfword and word values in memory with the low byte
followed by the high byte.

These examples show how SDM displays byte, halfword, and word values. For
example, the byte values C4, 26, F2, and 3D are in consecutive locations beginning at
the address 2468:26. SDM displays these locations in bytes:

2468:00000026 C4 26 F2 3D

SDM displays these same locations in halfwords:

2468:00000026 26C4 3DF2

SDM displays these same locations in words:

2468:00000026 3DF226C4



System Debugger Reference Chapter 3 85

Term Parameters
A term parameter is either a number or a register.

Where:

number A hexadecimal or decimal number. Valid values range from 0000 to
0FFFFFFFFH. For a decimal number, enter a T suffix.

register An abbreviation for any CPU register. Table 3-2 shows the registers for
the Intel386, Intel486, and Pentium microprocessors.

Table 3-2. CPU Registers (Protected Mode)

Register Name 32-bit
Abbreviation

16-bit 8-bit

General Registers EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL
EBP BP
ESI SI
EDI DI

Stack Pointer ESP SP

Segment Registers
Code CS
Data Segment DS
Stack Segment SS
Extra Data Segments ES

FS
GS

Flag Register EFL* FL*

Instruction Pointer EIP* IP*

Control Registers CR0* MSW*
CR2*
CR3*
CR4* †

* You cannot use these registers as terms. They are included here because you can use
them

in commands that use registers as parameters.
† Available only on the Pentium microprocessor



86 Chapter 3 SDM Commands

Expression Parameters
An expression is a combination of terms that includes one or more signed or unsigned
values.

expression term [+ | - term] [...]

Where:

term A number or a register.

Address Parameter
An address parameter consists of a segment selector (base) and an offset:

segment-selector:offset

Where:

segment-selector
Segment selector with a range from 0000H to 0FFFFH.

offset The offset into the selected segment with a range from 0000H to
0FFFFFFFFH.

If you do not include an address in a command that requires one, SDM usually uses
the contents of the data segment register (DS) as the selector and 0 as the offset.

See also: Detailed command descriptions for exceptions



System Debugger Reference Chapter 3 87

Numeric Parameters
You can use SDM to access the Numeric Processor Extension (NPX), which is either
a separate math coprocessor or a floating point unit built into the microprocessor.
You can access eight NPX stack registers, the status word, the control word, the tag
word, the instruction pointer, the data pointer, and the instruction opcode. Use the
abbreviations listed in Table 3-3 to reference an NPX register in a command.

Table 3-3. NPX Registers

Register Name Abbreviation Register Name Abbreviation

NPX State N Status Word SW

Control Word CW Tag Word TW

Instruction Pointer IP Data Pointer DP

Instruction Opcode OP Stack Register 0 ST(0)

Stack Register 1 ST(1) Stack Register 2 ST(2)

Stack Register 3 ST(3) Stack Register 4 ST(4)

Stack Register 5 ST(5) Stack Register 6 ST(6)

Stack Register 7 ST(7)

Numeric parameters are data types that the NPX supports. The three types of
numeric parameters are:

Integer An integer type with three subtypes called word integer, short integer,
and long integer.

Real A real type with three subtypes called short real, long real, and
temporary real.

BCD Packed binary coded decimal.

The suffixes that you use when you enter NPX data types are different from the
suffixes for byte, 16-bit halfword and 32-bit word parameters. If you do not enter a
suffix after an NPX data type, SDM assumes the number is decimal.



88 Chapter 3 SDM Commands

Table 3-4 lists the NPX data types and describes their characteristics. All numbers in
this table are listed in decimal form.

Table 3-4. NPX Data Types

Data Type
Explicit
Suffix Bits

Significant
Digits Approximate Range

Word Integer H 16 4 -32,768 < X < +32,767

Short Integer H 32 10 -2x109 < X < +2x109

Long Integer H 64 19 -9x1018 < X < +9x1018

Short real R 32 6-7 8.43x10-37 |X| 3.37x1038

Long real R 64 15-16 4.19x10-307 |X| 1.67x10308

Temporary real R 80 19 3.4x10-4929 |X| 1.2x104929

Packed Decimal
(BCD)

H 80 18 -99...99 < X < +99...99
(17 digits + sign digit)

See also: Programmer's Reference Manual or User’s Guide for your math
coprocessor or floating-point unit.

NPX Integers

An NPX integer is either a signed whole number or a hexadecimal number followed
by an H suffix that SDM can interpret as an integer. Table 3-5 lists the NPX integer
types.

Table 3-5. NPX Integer Types

Data type Example

signed whole number 12, -12

hexadecimal 4E2H

The numbers 1.375, -4.6, and 9.2E3 are not valid NPX integers.

If you enter a hexadecimal number with the trailing H, SDM places the number into
memory exactly as you entered it at the console.

SDM recognizes three types of integers: word, short, and long. Table 3-4 includes
the range of integer values.



System Debugger Reference Chapter 3 89

NPX Real Numbers

SDM recognizes three types of real numbers: short, long, and temporary. The
differences between these real number types are:

• The number of bits

• The number of significant decimal digits

• The range of decimal numbers

See also: Real numbers, Table 3-4

An NPX real number can be represented as a signed decimal number, a scientific
number, or a hexadecimal followed by an R suffix. Table 3-6 lists the NPX real
number types.

Table 3-6. NPX Real Types

Data type Example

signed decimal number 12.454, -12.454

scientific number 3E2 same as 300
4E-3 same as .0040

hexadecimal number 3FF2R

A scientific number consists of a signed decimal number's significant digits times
base 10 raised to an exponential power. Exponents range from -4930 to 4930. For
example, the decimal number 300 in scientific notation is 3.0x102. Enter this number
as 3E2 where E stands for exponent. Another example is the number .0040. Enter
this number as 4E-3.

Packed Binary Coded Decimal (BCD) Numbers

An NPX BCD number is either a signed decimal number or a hexadecimal number
followed by an H suffix. Table 3-4 includes the range of BCD numbers.



90 Chapter 3 SDM Commands

NPX Number Format

SDM displays NPX data types by showing, in this order:

1. The memory address of the data type

2. The data type in hexadecimal

3. The decimal equivalent of the data type, if it has one

For example, SDM displays the long integer 11223344 as:

1111:0 0000000000AB4130H 11223344

The long real number 11223344 is displayed as:

1111:0 4165682600000000R 11223344

The BCD number 11223344 is displayed as:

1111:0 00000000000011223344T 11223344

When SDM displays data types, the contents of the most significant byte of the
numeric memory location is in the left-most position of the hexadecimal display. The
rest of the bytes follow in order of decreasing significance. SDM displays the least
significant byte in the right-most position of the hexadecimal display.

When you enter NPX data types, in either hexadecimal or decimal form, enter the
most significant digit first and the rest of the digits in order of decreasing
significance. If you enter a number that has a smaller number of significant digits
than that of the NPX data type's, SDM appends leading zeroes.



System Debugger Reference Chapter 3 91

Decimal Values

SDM displays decimal values in four different ways depending on the number's range
and value.

• Decimal numbers that are exact integers and under 12 digits long are displayed
as integers with no trailing decimal point or additional zeroes. An example of a
long real number display is:

0080:00000000 4206FEE0E1A80000R 12345678901

• Decimal values that are within the field size and not exact integers, but close to
an integer, are displayed in the form XXXXX.0. The suffix .0 indicates the value
is close to but not exactly an integer. An example of this type of display is:

0080:00000000 41D26580B4CCCCCDR 1234567891.0

• Decimal numbers with a magnitude greater than or equal to 0.1 and less than 1012

are displayed in the form XXXX.XXXX. An example of this type of display is:

0080:00000000 40FE240CA0275254R 123456.7891

• Very large and very small decimal numbers are displayed in scientific notation.
This format is X.XXXXEY where X.XXXX are the significant digits in the number,
E is a notation that means the number which follows (Y) is an exponent. An
example follows:

0080:00000000 492C2916217B84B7R 3.14E+44

Nonnumeric Values

If the value in memory is not numeric, SDM displays the memory address followed
by the hexadecimal form of the value, the sign of the number (+ or -), and either NAN
(Not-A-Number) or Infinity. These nonnumeric values appear in place of a
decimal equivalent of the value. Examples follow:

0080:00000000 FFFF000000000000R -NAN

0080:00000008 7FF0000000000000R +Infinity



92 Chapter 3 SDM Commands

Special-Case Numeric Values

SDM identifies these special-case numeric values:

• Pseudo-zero values such as negative zeroes and zero fractions with non-zero
exponents.

• Unnormalized numbers, which are numbers containing a 0 in the integer bit. The
integer bit is the most significant bit of the significand, and serves as the implicit
decimal point.

See also: Special computational situations, 80387 Programmer's Reference
Manual

SDM displays pseudo-zero values as -0 (negative zero) and in the form 0Eexp where
exp is the base 10 power equivalent of the binary exponent in the number.

SDM displays unnormalized numbers in NPX number format with a bit value rather
than a decimal equivalent. An unnormalized number has a 0 in the integer bit. The
NPX normalizes a number by converting it to scientific notation. This shifts the most
significant bit to the left until a 1 is in the integer bit, and decrements the exponent by
1 for each shift left. After the number is normalized, the integer bit is implicit and is
not actually stored. This is an example of a display using an unnormalized number:

0080:00000000 3FFF199999999999999AR .2 UNNORM 3 BITS

The 3 BITS field indicates that the unnormalized number must be shifted three bits
to the left to normalize it. The .2 field is the decimal value of the number if it were
normalized.



System Debugger Reference Chapter 3 93

Error Messages
SDM displays error messages if the command is invalid or impossible to execute. If
the command line that contains the errors consists of multiple commands, SDM
executes any valid commands prior to the command that caused the error. Table 3-7
lists SDM error messages.

Table 3-7. Error Messages

Error Message Explanation

Bad Command You entered an invalid command.

Invalid NPX
Number Format

You entered an NPX value incorrectly.

Mismatched < > You entered an opening angle bracket (<) but omitted
the closing angle bracket (>).

NPX Exponent is
Out of Range

The exponent of the NPX number you entered is not in
the range of -4930 exponent 4930.

NPX Not Available You tried to access an NPX value when the system
does not include a math coprocessor.

Syntax Error You entered a command incorrectly.

Too Many Digits
in NPX Number

You entered an NPX number (in decimal form) with
more than 19 digits.

Undefined Command
Extension

You issued the V extension command without initializing
SDB.

Illegal Selector An operation caused a reference to an invalid selector
value. For example, an attempt was made to display
registers with the TR register uninitialized.

No xxxx Component You specified a component in a register or descriptor
table entry that is invalid.

Outside Segment An operation exceeded the limit of a segment. For
example, an attempt was made to display a memory
location that is beyond segment bounds or a program
was executed with less than 12 bytes of level 0 stack
available to SDM.



bc Breakpoint Clear

94 Chapter 3 SDM Commands

bc
Clears one or all previously set hardware or software breakpoints. Use the bc
command to remove breakpoints set with the bs command.

Syntax

bc [address]

Parameters
address

The address of a specific breakpoint to clear. If you don’t specify an address, the bc
command clears all breakpoints. Use the linear or I/O address of a previously set
breakpoint. Physical addresses are not allowed. In non-flat model iRMX
applications linear addresses are always the same as physical addresses, but you must
use the character l after the address to specify that it is linear.

Additional Information

The bc command clears both hardware and software breakpoints. When clearing a
hardware breakpoint, it immediately updates the debug registers of the CPU. If you
clear all breakpoints, bc does not display any information. If you clear a single
breakpoint by specifying its address, bc displays the reason code assigned to that
breakpoint when it was set. The reason code is a 32-bit hexadecimal number in the
range of 200h-203h for hardware breakpoints or 1000h-101Fh for software
breakpoints.

See also: bs command for details about breakpoint types and reason codes

The bc command returns no output if you try to clear a single breakpoint using a
valid address that is not a breakpoint address. No breakpoints are cleared.

Clearing Redundant Breakpoints

You cannot set multiple software breakpoints at the same address. However, if you
have set more than one hardware breakpoint at the same address you must clear each
individually, or clear all breakpoints. Hardware breakpoints at the same address are
cleared from lowest to highest numbered reason code.

To individually clear hardware and software breakpoints set at the same address,
issue a bc address command for each breakpoint. SDM clears the software
breakpoint on the first command and clears the hardware breakpoint on the second.



Breakpoint Clear bc

System Debugger Reference Chapter 3 95

Examples

Suppose you have set a software breakpoint and a hardware breakpoint at the same
address. When you display breakpoints with the bs command, those breakpoints
might be listed as follows:

..bs

00000203 h 0000104e m b

00001000 s 0000104e

..

The first breakpoint is a hardware modify breakpoint with reason code 203H. The
second is a software execution breakpoint with reason code 1000H. To clear the
hardware breakpoint, you must first clear the software breakpoint.

When you issue the bc command for this address, SDM clears the software
breakpoint and returns the reason code followed by the prompt (..):

..bc 104e l

00001000

..

When you issue a second bc command for this address, SDM clears the hardware
breakpoint:

..bc 104e l

00000203

..



bs Breakpoint Set

96 Chapter 3 SDM Commands

bs
Sets new software or hardware breakpoints, or displays the current breakpoints. You
can set breakpoints in conventional memory or at an I/O address. To display current
breakpoints, issue the bs command without any parameters.

Syntax

bs [address]

bs address e

bs address m b|h|w

bs address w b|h|w

bs address i b|h

Parameters
address

An address for the breakpoint. If you do not follow the address with any other
parameters, bs sets a software execution breakpoint.

When you set a breakpoint in conventional memory (either a software breakpoint or a
hardware breakpoint using an e, m, or w parameter), you should typically specify a
segmented address such as cs:offset. You cannot specify a physical address for
conventional memory. You can specify a linear address by entering a hexadecimal
value followed by the character l. However, be aware that in a flat-model application
using virtual memory, a linear address is not the same as a physical address. In that
case, SDM will interpret the linear address using the page table mechanism to set the
breakpoint at the correct location.

When you set an I/O breakpoint with the i parameter, specify a hexadecimal physical
address in the range 0 - 0FFFFH. Do not follow the address with the letter h or l.

e Execution breakpoint: sets a hardware breakpoint to occur when the instruction at the
specified address is ready to be executed. The address must be on an instruction
boundary.

m Modify breakpoint: sets a hardware breakpoint to occur following a read or write at
the specified address.

w Write breakpoint: sets a hardware breakpoint to occur following a write at the
specified address.



Breakpoint Set bs

System Debugger Reference Chapter 3 97

i I/O breakpoint: sets a hardware breakpoint to occur following a read or write at the
specified port address.

b Specifies that the breakpoint applies to one byte.

h Specifies that the breakpoint applies to a halfword (16 bits). The address must be
aligned on the appropriate halfword boundary.

w Specifies that the breakpoint applies to a word (32 bits). The address must be aligned
on the appropriate word boundary.

Additional Information

A breakpoint is a condition that you set to return control to SDM. When you issue
the g (go) command, SDM returns execution to the program you are debugging. If
you have breakpoints set in the program, execution continues until the first
breakpoint is encountered, then control returns to SDM. At that point you can use
SDM commands to examine or change the state of the program (processor registers,
memory, etc.).

A software breakpoint is one that SDM manages itself by inserting an Interrupt 3 at a
specified address. When you execute code at that address, the interrupt returns
control to SDM, which then removes the interrupt and reinserts the original code.
You can set up to 32 software breakpoints with the bs command.

A hardware breakpoint is managed by one of the debug registers in the processor.
You can set a total of 4 hardware breakpoints, using a combination of the g and bs
commands:

• Any breakpoints that you enter on the g command line are automatically
hardware execution breakpoints. The breakpoints must be set in code to be
effective. When the g command executes to the point where the first breakpoint
is reached, control returns to SDM. At that point, SDM removes all breakpoints
you specified on the g command line, freeing them for further use.

• Hardware breakpoints that you set with the bs command can be in code
(execution breakpoints), data (modify or write breakpoints), or I/O space
(modify breakpoints at a port address). The only way you can clear breakpoints
set with the bs command is to use the bc command. This applies to both
software and hardware breakpoints.

You can set multiple hardware breakpoints at the same address, or set a software
breakpoint at the same address as a hardware breakpoint. However, you cannot set
multiple software breakpoints at the same address.



bs Breakpoint Set

98 Chapter 3 SDM Commands

✏ Note
If you intend to set breakpoints in the g command, you must limit
the hardware breakpoints set with bs to fewer than four. For
example, if you intend to set two breakpoints on the g command
line, you can only set two hardware breakpoints with bs. Then
when you issue the g command with two breakpoints, the total of
four hardware breakpoints is used. The n command with the p
option also uses a hardware breakpoint, so you can set a maximum
of three hardware breakpoints with bs before issuing an np or npr
command.

The breakpoints set with bs remain set until you specifically clear
them with bc. Breakpoints set on the g command line are cleared
the next time you enter SDM, regardless of how you enter. For
example, assume that you set one breakpoint with bs and two
others in a g command. It doesn’t matter which breakpoint causes
the break to SDM; at the next SDM prompt the breakpoint set with
bs will still be set, but the two set in the g command will be
cleared.

Reason Codes
SDM assigns a number to each breakpoint when the breakpoint is set. This number is
called a reason code. Software breakpoints are assigned reason codes 1000H -
101FH. Hardware breakpoints are numbered 200h through 203h. When you set a
breakpoint or display breakpoints, the bs command displays the reason code, which is
a 32-bit number in hexadecimal format. The bc command displays the same reason
code when you clear an individual breakpoint.

No Breaks Available
If all the available breakpoints of one type (hardware or software) are set and you
attempt to set another breakpoint of that type, SDM displays the message “No Breaks
Available.” You must clear a previous breakpoint with the bc command to be able to
set a new breakpoint.

Software Breakpoints

You can set as many as 32 software breakpoints. Software breakpoints are execution
breakpoints: a break occurs when the code executes to the specified address. The
instruction at the address is not executed.



Breakpoint Set bs

System Debugger Reference Chapter 3 99

▲▲! CAUTION
When setting a software breakpoint, make sure the address is the
first byte of an instruction, including prefixes. Software
breakpoints temporarily replace the byte at the specified address
with an interrupt instruction. If the address does not point to an
instruction boundary, the substituted instruction never causes a
break. Instead, your program contains a byte which is interpreted
as an unintended command or data. The result is unpredictable and
the program could crash.

Hardware Breakpoints

When you set a hardware breakpoint, the monitor changes the contents of the debug
registers in the processor. The registers affected are DR0, DR1, DR2, DR3, and
DR7. Register DR6 is set to 0 each time the monitor relinquishes control to your
program.

See also: Debug registers in the reference manual for your Intel386, Intel486, or
Pentium microprocessor

There are four different types of hardware breakpoints: execution, modify, write, and
I/O. You selected them with an e, m, w, or i parameter.

Execution Breakpoints
A break caused by an execution-type breakpoint (parameter e) occurs only when the
address on the command line is an instruction to be executed. The break occurs
before the instruction is executed.

It is important that you set the address correctly for an execution-type breakpoint. To
cause a break on an instruction, the specified address must point to the first byte of
the instruction, including any prefixes. If the address does not point to an instruction
boundary, the break never occurs.

Data Breakpoints and I/O Access Breakpoints
Breakpoint types modify, write, and I/O (parameters m, w, and i) cause breaks when a
location is accessed. These breaks occur immediately after the instruction causing
the access. A modify breakpoint causes a break whenever memory at the specified
address is written or read, but not when an instruction is fetched from memory. A
write breakpoint causes a break only when there is a write at the address. An I/O
breakpoint causes a break when an I/O port is read or written.



bs Breakpoint Set

100 Chapter 3 SDM Commands

The modify, write, and I/O breakpoints require that you specify a length parameter
following the m, w, or i on the command line. The choices of length parameter are
byte, halfword, and word. If you try to set these breakpoints without a length
parameter, SDM displays a syntax error message.

The length parameter determines the length of the breakpoint field, which begins at
the specified address. A break occurs when a memory access in your program
overlaps any part of the breakpoint field. For example, assume that you set a word
breakpoint of type m (modify) at address B000H, which defines a four-byte
breakpoint field beginning at B000H. A byte read or write of any address B000H
through B003H causes a break. Likewise, a word read or write at address B002H
causes a break, even though only two of the four bytes overlap the field you defined.

✏ Note
The address on the command line should be a multiple of the
specified length parameter (byte, halfword, or word). If you
specify a byte, use any address. If you specify a halfword, use an
address that is a multiple of two. If you specify a word, use an
address that is a multiple of four. If the address is not a multiple of
the length parameter, the program may break in unexpected places.

Breakpoint Display

When you issue the bs command without parameters, SDM displays the breakpoints
currently set. For each breakpoint the output is:

reason code The reason code assigned to the breakpoint

s or h Indicates a software or hardware breakpoint

address The breakpoint address, returned as a linear address

e, m, w, or i Execution, modify, write, or I/O (only for hardware breakpoints)

b, h, or w Byte, halfword, word (only for modify, write, or I/O breakpoints)

Displayed software breakpoints look like this:

00001000 s 00020af0



Breakpoint Set bs

System Debugger Reference Chapter 3 101

Displayed hardware breakpoints have two forms, either as below:

00000200 h 0000fffe e

or with a b, h, or w parameter:

00000201 h 000d1240 m h

Examples

Assume that you want your program to break when it reads or writes any memory
location from 1FF3h through 1FF7h. Set two hardware breakpoints:

..bs 1ff3 l m b

00000200

..bs 1ff4 l m w

00000201

..

The first breakpoint is a modify breakpoint covering one byte in memory. SDM
assigns it reason code 200h. The second breakpoint is a modify breakpoint covering
four bytes in memory. SDM assigns it reason code 201h. To display the breakpoints,
issue the bs command with no parameters:

..bs

00000200 h 00001ff3 m b

00000201 h 00001ff4 m w

..



c Compare

102 Chapter 3 SDM Commands

c
Compares the block of memory that begins at the source address with the block of
memory that begins at the destination address.

Syntax

[size] c source-address,destination-address

Parameters

size The decimal number of sequential bytes you want SDM to compare.

source-address
The beginning address of the source block of memory.

destination-address
The beginning address of the destination block of memory.

Additional Information

The size of the memory blocks must be at least as large as the number of bytes
entered with the size parameter. SDM displays any mismatched bytes in this
format:

aaaa:bbbb xx yy cccc:dddd

In this format, aaaa:bbbb and cccc:dddd are the addresses of the bytes that do not
match and xx and yy are the bytes themselves.

Example

To compare two blocks of memory, each of which is 16 bytes long, enter:

..16c cs:118, cs:1a4-5

SDM responds with these three mismatches:

0200:00000118 6E 28 0200:0000019F

0200:0000011A 67 4E 0200:000001A1

0200:00000123 3C 2D 0200:000001AA



Display Memory/Descriptor Tables d

System Debugger Reference Chapter 3 103

d
Displays either the contents of a specified block of memory (first syntax) or the
contents of a descriptor table (second syntax).

Syntax

[count] d [data-type] [source-address] [,]

[count] d table-type [(expression)[.component]]

Parameters

count The number of command repetitions, in decimal. Each successive repetition is
performed on successive items. For descriptor tables, count specifies how many
table entries to display, beginning at a specific entry. In this case, expression is a
required parameter. For example, 5dgdt(40t) displays 5 entries from the GDT
beginning at entry number 40.

If you don’t specify count, the default is to display a screenful of entries until you
type Q to quit. You can increment the display one screen at a time by typing
<Space>, or one line at a time by typing <CR>.

data-type
The format type for displaying the block of memory. The data types and display
formats are:

Enter This Data Type To Specify This Display Format
H Halfword (16 bits, hex)
W Word (32 bits, hex)
I Word integer (16 bits, hex & decimal)
LI Long integer (64 bits, hex & decimal)
LR Long real (64 bits, hex & decimal)
SI Short integer (32 bits, hex & decimal)
SR Short real (32 bits, hex & decimal)
T Binary coded decimal (10 bytes)
TR Temporary real (10 bytes)
X Disassembled instruction

If you omit this parameter, the block of memory is displayed in both byte and ASCII
characters. Refer to previous sections in this chapter for more detailed information
about data types.

source-address
The address in memory to display.



d Display Memory/Descriptor Tables

104 Chapter 3 SDM Commands

, (comma)
A comma at the end of the command line displays the block of memory you specified
and a dash (-) prompt. Entering another comma displays the next block of memory
that is equal in size to the one you specified in the original command. SDM then
issues another dash and waits for you to enter another comma, or to terminate the
command by entering a <CR>.

✏ Note
You cannot use continuation commas when you are displaying
descriptor tables.

table-type
The type of descriptor table you want SDM to display. The table types and the
descriptor tables they reference are as follows:

Enter This Data Type To Specify This Display Format
DT Generic descriptor table. If you use this table type,

include an "(expression)" parameter.
GDT Global descriptor table
IDT Interrupt descriptor table
LDT Local descriptor table

If you specify only the table type, SDM displays the entire table.

See also: Descriptor tables, Microprocessors Handbook and Introducing the
iRMX Operating System

(expression)
An expression enclosed in parentheses that references the descriptor table entry to
display.

If DT is your table-type, use a segment register mnemonic (for example, CS) or
selector enclosed in parentheses to designate the entry in the descriptor table to
display. SDM uses the selector to decide which descriptor table you are referencing.
Therefore, when you are debugging an application and you know the selector, you
can examine the entry in the corresponding descriptor table without knowing whether
it is a local or global descriptor table.

If GDT, LDT, or IDT is your table type, use sequential entry numbers with a T suffix to
specify the table entry.

.component
Component name of the descriptor table entry to display. Include a period (.) before
the component name so SDM can recognize the name. Table 3-8 lists the descriptor
components and the descriptor types that apply to each component. Table 3-9 lists
and describes the descriptor types. SDM uses these abbreviations when it displays
the descriptor types.



Display Memory/Descriptor Tables d

System Debugger Reference Chapter 3 105

Table 3-8. Descriptor Components and Types

Component Definition Descriptor Type

.base segment base dseg16, dseg32, eseg16, eseg32, tss286, dtable

.limit segment limit dseg16, dseg32, eseg16, eseg32, tss286, dtable

.wcnt word count callg286, callg386

.ssel segment selector callg286, callg386, trapg286, trapg386, intg286,
intg386, taskg, tss286

.soff segment offset callg286, callg386, trapg286, trapg386, intg286,
intg386

.dpl descriptor privilege
level

dseg 16, dseg32, eseg16, eseg32, callg286,
callg386, trapg286, trapg386, intg286, intg386,
taskg, tss286, tss386, dtable

.ed expand down dseg16, dseg32

.w writable dseg16, dseg32

.a accessed dseg16, dseg32, eseg16, eseg32

.c conforming eseg16, eseg32

.r readable eseg16, eseg32

.p present eseg16, eseg32

.b big dseg32

.g granularity dseg32, eseg32

Table 3-9. Descriptor Types

Descriptor Type 32-bit
Descriptor

16-bit
Descriptor

Data Segment dseg32 dseg16

Executable Segment eseg32 eseg16

Call Gate callg386 callg286

Trap Gate trapg386 trap286

Interrupt Gate intg386 intg286

Task Gate taskg

Task State Segment tss386 tss286

Descriptor Table dtable

See also: Descriptor types, Programmer's Reference Manual for your
microprocessor



d Display Memory/Descriptor Tables

106 Chapter 3 SDM Commands

Examples

1. For example, to display fourteen disassembled instructions at the CS:EIP, enter:

..14dx

The display is similar to:

0F00:0000012A 55 PUSH BP

0F00:0000012B 8BEC MOV BP, SP

0F00:0000012D 8BF5 MOV SI, BP

0F00:0000012F 83C608 ADD SI, 8

0F00:00000132 CDB8 INT 0B8H

0F00:00000134 85C9 TEST CX,CX

0F00:00000136 7403 JZ A = 013BH [destination offset of

0F00:00000138 E82700 CALL A = 0162H [near jump and call

0F00:0000013B C45E04 LES BX,[BP+04H]

0F00:0000013E 26890F MOVES:[BX],CX

0F00:00000141 5D POP BP

0F00:00000142 C20600 RET 6

0F00:00000145 C8 ?? [invalid opcode

The comments preceded by brackets ([) are not part of the display; they are
included to help you understand the display.

2. To display five word integers at DS:0, enter:

..5di

The display is similar to:

1000:00000000 1ABDH 6845 0929H 2345

1000:00000004 FFFFH -1 FBB6H -1098

1000:00000008 115CH 4444

3. To display the fourth entry in the global descriptor table, enter:

..dgdt(4t)

The display is similar to:

GDT (4T) ESEG32 BASE=00FFC240 LIMIT=36BB P=1 DPL=0 A=1 C=0 R=1 G=0

4. To display the descriptor table entry which corresponds to the selector in the DS
register, enter:

..ddt(ds)

The display is similar to:

LDT (5T) DSEG32 BASE=00000140 LIMIT=03FF P=1 DPL=0 ED=0 W=1 A=1 G=0



Find f

System Debugger Reference Chapter 3 107

f
Searches a specified block of memory to find a selected sequence of hexadecimal
numbers.

Syntax

[count] f source-address, data

Parameters

count The number of successive bytes in decimal for SDM to search.

source-address
The beginning address of the block of memory that you want SDM to search to find
the hexadecimal number you specify in the data parameter.

data The sequence of hexadecimal digits you want SDM to find. SDM can use from one
to 32 digits. SDM scans memory in byte units, with one byte being the smallest unit
for which it can search. Therefore, specify either an even number of digits or only a
single digit. For single digits, SDM adds a 0 before the digit. For example, you can
specify the digits 1, 12, and 54455354, but not 544 or 54455. The first digit in the
sequence is the least significant byte.

Additional Information

Each time SDM finds a match, it displays the address of the first matching byte.

Example

To have SDM find the number 54455354 in a memory block of 2000 bytes, starting
from address 0, enter:

..2000f cs:0, 54455354

SDM displays the addresses where it found the specified number:

0200:00000118

0200:000001A4

0200:00000212



g Execute Program

108 Chapter 3 SDM Commands

g
Executes your application program.

Syntax

g [start-address][, break-address][,break-address] [,break-
address]

Parameters
start-address

The address at which you want the application to begin executing. If you omit this
parameter, the application begins executing at the address specified by the code
segment (CS) and instruction pointer (EIP) registers.

break-address
An address at which a breakpoint is set. Specify up to three break addresses within
an application.

Additional Information

The g (go) command single-steps the first instruction and then executes all
succeeding instructions at normal speed.

Breakpoints set with the g command are hardware execution breakpoints. This
allows you to set breakpoints in ROM code.

When SDM hits a breakpoint, it displays the breakpoint information in this format:

break at xxxx:yyyyyyyy

This indicates the application stopped at the address xxxx:yyyyyyyy. After SDM
displays this information, it issues a prompt.

Once a breakpoint is hit, it and any other breakpoints set in that g command are
cleared.

A special situation arises when you specify a breakpoint address but not a starting
address. If the breakpoint is in an interrupt handler and the current CS:EIP points to
a software interrupt instruction (INT x, INTO, BOUND), SDM single-steps the
interrupt instruction and executes the interrupt handler code at full speed. This
bypasses the breakpoint. A workaround is to make sure the CS:EIP is pointing to an
instruction preceding the software interrupt instruction before executing the g
command.

See also: bc and bs commands for related breakpoint information



Execute Program g

System Debugger Reference Chapter 3 109

Example

This example tells SDM to go from the current CS:EIP and stop executing at
CS:000007FA or 1F0:00000E20, whichever comes first.

..g, 7FA, 1F0:E20



i Port Input

110 Chapter 3 SDM Commands

i
Obtains and displays a byte, 16-bit halfword, or 32-bit word from the port you
specify. The ii command accesses interconnect space on Multibus II systems.

Syntax

[count] i[h|w] port-address,expression

[count] ii [slot:]register

Parameters

count The number of bytes, 16-bit halfwords or 32-bit words in decimal that you want to
obtain from the port and display. If you omit this parameter, SDM assumes one byte
or word.

h Displays data from the port in halfword form. The data format defaults to bytes.

w Displays the port input in word form. Enter w immediately following the i command
character, as iw.

i Specifies that you want SDM to access interconnect space. Enter i immediately
following the command character i, as ii.

port-address
The address of the port from which you want to obtain data. Valid port addresses
range from 0000 to 0FFFFH. Do not use a base portion of the address in this
parameter.

slot: The decimal number of the slot containing the board whose interconnect register you
want to access. If you do not include this parameter, the slot defaults to the slot
containing the CPU board.

register
The interconnect register you want to access.



Port Input i

System Debugger Reference Chapter 3 111

Examples

1. To display five bytes from the port that has the address 2FA, enter:

..5i2fa

SDM responds with the five bytes you requested. The display on the specified
port is similar to:

FF

FF

FF

FF

FF

2. To display the first five interconnect registers of the board on which SDM is
running, enter:

..5ii 0

This example shows the contents of Register 0, the vendor ID of the CPU board.



m Move

112 Chapter 3 SDM Commands

m
Copies the contents of a block of memory to a memory address you specify.

Syntax

[count] m source-address,destination-address

Parameters

count The number of bytes in decimal that you want to copy from the source address in
memory. If you omit this parameter, SDM assumes one byte.

source-address
The beginning address of the block of memory from which you want SDM to copy
memory.

destination-address
The beginning address of the memory block to which you want SDM to copy.

Examples

This command tells SDM to copy 15 bytes of memory from a starting address of
CS:2CD to a starting address of 200:4A.

..15 m cs:2cd, 200:4a



Display and Execute Instruction n

System Debugger Reference Chapter 3 113

n
Displays single instructions in a disassembled form and then executes those
instructions.

Syntax

[count] n[p][r] [start-address][,]

Parameters

count The number of instructions you want SDM to single step, in decimal.

p Tells SDM to treat any CALL routines as a single instruction. SDM displays the
CALL instruction, executes the routine, and displays the next instruction. Specify the
p immediately after the n command character, as np.

r Tells SDM to continue single step execution of instructions until a call instruction is
encountered. If the r option is used, the count parameter is ignored. Specify the r
immediately after the previous character, as nrp or npr.

start-address
The address at which you want SDM to begin executing single instructions. If you do
not specify an address, SDM begins executing disassembled single instructions at the
current CS:EIP.

comma (,)
Adding a comma (,) at the end of this command causes SDM to display the
instruction you specified and a dash (-), at the end of the line. If you enter another
comma, SDM executes the instruction and then displays the next disassembled
instruction with another dash (-). SDM then waits for you to enter another comma or
to terminate the command with a <CR>.



n Display and Execute Instruction

114 Chapter 3 SDM Commands

Examples

1. If you enter this command, SDM displays the instructions in disassembled form
starting at the current CS:EIP and continuing until a CALL instruction. It then
displays the CALL instruction and the dash prompt while waiting for further
input.

..nr,

If you enter a continuation comma now, SDM continues to execute the displayed
instruction and display the next instruction in disassembled form until another
CALL instruction is encountered. If you enter additional commas, SDM repeats
this process.

2. If you enter this command, SDM displays and executes the first 23 instructions
beginning at CS:4. It then displays the 24th instruction and waits for additional
input from you.

..24n 4,

3. If your enter this command, SDM steps to the next call instruction, displays the
stack, and, for system calls, the parameters. The “p” insures that that SDM does
not step through a call instruction if it started from one.

..nrp; vs



Port Output o

System Debugger Reference Chapter 3 115

o
The first command form enters data at the console and sends it to a port. The second
command form (oi) accesses the interconnect space on a Multibus II system.

Syntax

[count] o[h|w] port-address,expression

[count] oi [slot:]register,expression[, expression] ...

Parameters

count The number of bytes, 16-bit halfwords, or 32-bit words in decimal you want SDM to
send to the port. The default count is one.

h Sends data to the port in halfword form. The data format defaults to bytes.

w Sends data to the port in word form. The data format defaults to bytes.

port-address
The address of the port to which you want to send data. Valid port addresses range
from 0000 to 0FFFFH. Do not use a base portion of the address in this parameter.

expression
The value to send to the port.

i Specifies that you want SDM to access interconnect space.

register
The interconnect register you want to access.

slot: The slot number in decimal containing the board whose interconnect register you
want to access. The default slot is the slot for the board executing SDM.



o Port Output

116 Chapter 3 SDM Commands

Examples

1. This command outputs the value of AX + 1B9 as a word to port number 4.

..ow 4, ax + 1b9

2. This command sends the value 1 as a byte value to port number 2CDE one
hundred times.

..100 o 2cde, 1

3. To write the value 40H to the interconnect register 0:25, the General Control
register of the CSM board in slot 0, enter:

..oi 0:25,40

The value 40H enables an agent that is not on the CPU board to interrupt the
CPU.

4. To write multiple values to respective consecutive interconnect registers, enter:

..oi 3:10,1,2,3

This writes to the interconnect registers for the board in slot 3, beginning at
register 10. It writes 01H to register 10, 02H to register 11, and 03H to register
12.



Display Page Directory Base Address pdbr

System Debugger Reference Chapter 3 117

pdbr
Displays the physical base address of the page directory, which is the highest-level
page table. This is the same as the contents of register CR3.

Syntax

pdbr



pdd Display Page Directory

118 Chapter 3 SDM Commands

pdd
Displays the page directory, which is a table containing entries about the secondary
page tables. See the description of the .component parameter for the meaning of
each entry in the display.

See also: Paging information in the user’s manual or programmer’s reference for
your microprocessor

Syntax

[count] pdd [(index) [.component]]

Parameters

count A decimal number specifying how many entries from the page directory to display.
If you don’t specify count or (index), the default is to display a screenful of
entries until you type Q to quit. You can increment the display one screen at a time
by typing <Space>, or one line at a time by typing <CR>. If you don’t specify
count but do specify (index), the default value for count is 1.

(index)
The index into the directory to begin the display. For example, to display 5 entries
beginning with entry 11 (index 10, since the index of page tables begins with 0),
enter:

5pdd(10t)

.component
To display only a single component of a specific directory entry, after the (index)
enter a period (.) followed by one of these component abbreviations:

ADDR Base address of the second-level page table
AV Available bits for use by the OS
S (Pentium-specific) Size bit: 0 means 4 KB page
A Accessed bit: 1 means read or write to page table
PCD Page-level Cache Disable bit: 1 means caching is disabled
PWT Page-level Writethrough bit: 1 is writethrough, 0 is writeback
U User/Supervisor bit: 1 is application code and data, 0 is OS memory
W Read/Write bit: 1 is read/write, 0 is read-only
P Present bit: 1 means the page table is present in memory



Display Page Directory pdd

System Debugger Reference Chapter 3 119

Examples

1. The following command displays entries about the first six page tables. See the
description of the component parameter above for the meaning of each field.
The fifth entry (index 4) is not present in memory.

..6pdd(0)

PDIR(0T) ADDR=00273000 AV=0 S=0 A=1 PCD=0 PWT=0 U=1 W=1 P=1

PDIR(1T) ADDR=00274000 AV=0 S=0 A=1 PCD=0 PWT=0 U=1 W=1 P=1

PDIR(2T) ADDR=00275000 AV=0 S=0 A=1 PCD=0 PWT=0 U=1 W=1 P=1

PDIR(3T) ADDR=00276000 AV=0 S=0 A=1 PCD=0 PWT=0 U=1 W=1 P=1

PDIR(4T) ffc01ffe Not Present

PDIR(5T) ADDR=006c1000 AV=0 S=0 A=1 PCD=0 PWT=0 U=1 W=1 P=1

2. The following command displays just the base address of the fourth page table.

..pdd(3).addr

ADDR=00276000



pdp Display Pointer for Paging

120 Chapter 3 SDM Commands

pdp
Given a pointer (segmented address), this command displays information about the
physical address and indicates which page table and page in memory hold the
address.

Syntax

pdp pointer

Parameters
pointer

A full pointer to memory, including a selector:offset.

Additional Information

A flat-model application’s code and data reside in a virtual segment managed by the
paging subsystem. The SDM ddt command does not display the actual physical
address for memory in a virtual segment. Use the pdp command to find the memory
location for addresses within virtual segments.

Examples

1. Assume that you issued an npr command to step to the next call instruction,
which is displayed as:

c71b:0041001c e8bf0b0000 call $+00000bc4 ;a=00410be0

The call is to address 00410be0 in segment c71b. To get the physical memory
location of the address being called, issue the following command. It shows that
this pointer is to physical address 006c6be0 and resides in the 6th page table
(index 5T), at the 17th memory page in that table (index 16T).

..pdp c71b:00410be0

LINEAR ADDRESS=01410be0 PHYSICAL ADDRESS=006c6be0

PDIR(5T) ADDR=006c1000 AV=0 S=0 A=1 PCD=0 PWT=0 U=1 W=1 P=1

PTBL(16T) ADDR=006c6000 AV=0 D=0 A=1 PCD=0 PWT=0 U=1 W=0 P=1

See the component parameter descriptions in the pdd and pdt commands for
the meaning of the fields displayed in the PDIR and PTBL lines above.



Display Page Table pdt

System Debugger Reference Chapter 3 121

pdt
Displays one or more entries from a page table, which points to memory pages
holding a flat-model application’s code and data. See the description of the
.component parameter for the meaning of each entry in the display.

See also: Paging information in the user’s manual or programmer’s reference for
your microprocessor

Syntax

[count] pdt [(index) [.component]] physical_base

Parameters

count A decimal number specifying how many entries from the page table to display. If
you don’t specify count or (index), the default is to display a screenful of entries
until you type Q to quit. You can increment the display one screen at a time by
typing <Space>, or one line at a time by typing <CR>. If you don’t specify count

but do specify (index), the default value for count is 1.

(index)
The index into the table to begin the display. For example, assume that the page
table’s base address is 25A000H. To display 5 entries beginning with entry 10, you
would enter:

5pdt(10t) 25a000

.component
To display only a single component of a specific table entry, after the (index) enter
a period (.) followed by one of these component abbreviations:

ADDR Base address of the page
AV Available bits for use by the OS
D Dirty bit: 1 means memory in the page has been written
A Accessed bit: 1 means read or write to the page
PCD Page-level Cache Disable bit: 1 means caching is disabled
PWT Page-level Writethrough bit: 1 is writethrough, 0 is writeback
U User/Supervisor bit: 1 is application code and data, 0 is OS memory
W Read/Write bit: 1 is read/write, 0 is read-only
P Present bit: 1 means the page is present in memory

physical_base
The base address of the page table, as displayed by the pdd command.



pdt Display Page Table

122 Chapter 3 SDM Commands

Examples

1. Assume that a pdd command displayed the base address of a page table as
00276000. To get information about the memory pages in that page table, use
the following command.

..pdt 276000

PTBL(0T) ADDR=00c00000 AV=0 D=0 A=0 PCD=0 PWT=0 U=1 W=1 P=1

PTBL(1T) ADDR=00c01000 AV=0 D=0 A=0 PCD=0 PWT=0 U=1 W=1 P=1

PTBL(2T) ADDR=00c02000 AV=0 D=0 A=0 PCD=0 PWT=0 U=1 W=1 P=1

PTBL(3T) ADDR=00c03000 AV=0 D=0 A=0 PCD=0 PWT=0 U=1 W=1 P=1

PTBL(4T) ADDR=00c04000 AV=0 D=0 A=0 PCD=0 PWT=0 U=1 W=1 P=1

PTBL(5T) ADDR=00c05000 AV=0 D=0 A=0 PCD=0 PWT=0 U=1 W=1 P=1

.

.

.

PTBL(21T) ADDR=00c15000 AV=0 D=0 A=0 PCD=0 PWT=0 U=1 W=1 P=1

Enter <Space> or <CR> or Quit -

2. To get just the base address of the 6th page (index 5) in that page table, use the
following command.

..pdt(5t).addr 276000

ADDR=00c05000



Substitute File in Page Directory psd

System Debugger Reference Chapter 3 123

psd
Displays and lets you modify a field from a page directory entry. Use the pdd
command to display one or more complete entries.

Syntax

psd (index).component

Parameters
(index)

The directory entry to modify. The first entry is index 0.

.component
The field in the entry to modify, from the following list:

ADDR Base address of the second-level page table
AV Available bits for use by the OS
S (Pentium-specific) Size bit: 0 means 4 KB page
A Accessed bit: 1 means read or write to page table
PCD Page-level Cache Disable bit: 1 means caching is disabled
PWT Page-level Writethrough bit: 1 is writethrough, 0 is writeback
U User/Supervisor bit: 1 is application code and data, 0 is OS memory
W Read/Write bit: 1 is read/write, 0 is read-only
P Present bit: 1 means the page table is present in memory

Examples

1. Use the following commands to display the sixth entry (index 5) of the page
directory and change the Accessed bit of that entry.

..pdd(5t)

PDIR(5T) ADDR=006c1000 AV=0 S=0 A=1 PCD=0 PWT=0 U=1 W=1 P=1

..psd(5t).a

1 - 0

..pdd(5t)

PDIR(5T) ADDR=006c1000 AV=0 S=0 A=0 PCD=0 PWT=0 U=1 W=1 P=1



pst Substitute File in Page Table

124 Chapter 3 SDM Commands

pst
Displays and lets you modify a field from a page table entry. Use the pdt command
to display one or more complete entries.

Syntax

pst (index).component physical_base

Parameters
(index)

The directory entry to modify. The first entry is index 0.

.component
To display only a single component of a specific table entry, after the (index) enter
a period (.) followed by one of these component abbreviations:

ADDR Base address of the page
AV Available bits for use by the OS
D Dirty bit: 1 means memory in the page has been written
A Accessed bit: 1 means read or write to the page
PCD Page-level Cache Disable bit: 1 means caching is disabled
PWT Page-level Writethrough bit: 1 is writethrough, 0 is writeback
U User/Supervisor bit: 1 is application code and data, 0 is OS memory
W Read/Write bit: 1 is read/write, 0 is read-only
P Present bit: 1 means the page is present in memory

physical_base
The base address of the page table, as displayed by the pdd command.

Examples

1. Use the following commands to display the second entry (index 1) of the page
table at address 00276000 and change the Read/Write bit of that entry.

..pdt(1) 276000

PTBL(1T) ADDR=00c01000 AV=0 D=0 A=0 PCD=0 PWT=0 U=1 W=1 P=1

..pst(1).w 276000

1 - 0

..pdt(1) 276000

PTBL(1T) ADDR=00c01000 AV=0 D=0 A=0 PCD=0 PWT=0 U=1 W=0 P=1



Substitute Memory/Descriptor Table Entry s

System Debugger Reference Chapter 3 125

s
The first command form displays or modifies memory locations. The second and
third command forms display or modify the components of descriptor table entries.

Syntax

[count] s [data-type][address][=expression][/expression] ...

s table-type (expression)=descriptor-type

s table-type (expression).component[=expression]

Parameters

count The number of times in decimal you want SDM to repeat the command.

data-type
The format in which you want SDM to display the memory locations you specify.
The data types and the display formats they specify are:

Enter This Data Type To Display This Format
H Halfword
I Word integer
L Long integer
LR Long real
S Short integer
SR Short real
T Binary coded decimal
TR Temporary real
W Word

If you omit the data-type parameter, SDM displays the memory locations in both
byte and ASCII characters.

See also: NPX data types, Table 3-4

address
The address of the memory location you want to display. If you omit this parameter,
SDM displays the memory locations beginning at the value corresponding to the
segment selector value in the DS register, with an offset of 0.



s Substitute Memory/Descriptor Table Entry

126 Chapter 3 SDM Commands

If you do not include any further parameters, SDM displays the contents of the
address followed by a dash (-). At this point, if you wish to change the contents of
the memory location, enter the new value followed by a <CR>. If you do not want to
change the contents, enter a <CR> or a continuation comma. If you enter a comma,
SDM displays the contents of the next location and prompts for more input.

=expression
The value with which you want to replace the value referenced by the address
parameter. The equal sign (=) preceding the expression parameter instructs SDM
to place the value indicated by the expression in memory.

/expression
The slash (/) preceding the second expression parameter separates any subsequent
expressions and indicates the values you want to substitute in memory. SDM places
these values in the locations immediately following the one you specified in the
address parameter.

You can use the s command to display and optionally modify descriptor table entries.
If you want to display descriptor table entries, use the second or third command form
with the parameters described in this section.

table-type
The descriptor table you want SDM to display. The table types and the descriptor
tables they reference are:

Enter This Table Type To Display This Descriptor Table
DT Generic descriptor table.
GDT Global descriptor table
IDT Interrupt descriptor table
LDT Local descriptor table

See also: Descriptor tables, Programmer's Reference Manual for your
microprocessor

(expression)
References the descriptor table entry you want to display.

If you chose DT, use a segment register mnemonic or a selector enclosed in
parentheses to designate the entry in the local or global descriptor table you wish to
display. SDM uses the selector to decide which descriptor table you are referencing.
Therefore, when you are debugging an application and you know the selector, you
can examine and modify the entry in the corresponding descriptor table without
knowing whether it is a local or global table.

If GDT, LDT, or IDT is your table type, use sequential entry numbers with a T suffix to
specify the table entry desired.



Substitute Memory/Descriptor Table Entry s

System Debugger Reference Chapter 3 127

=descriptor-type
The abbreviation for the type of descriptor you want to use in place of the entry in the
descriptor table referenced by the (expression) parameter. Place an equal sign (=)
before the descriptor-type parameter. This causes SDM to initialize the entry
you specified as the descriptor type. SDM then initializes all other fields of the
descriptor as 0. Table 3-8 lists the descriptor types and the abbreviations you enter
for them.

.component
The name of the of the descriptor table entry component you want to display. Include
a period (.) before the component name so SDM can recognize the name. Table 3-8
lists the components associated with each type of descriptor, and Table 3-9 lists the
descriptor types.

If you do not include any further parameters, SDM displays the contents of the
descriptor table entry indicated by the expression followed by a dash (-). At this
point, if you wish to change the contents of the descriptor table entry, enter the new
value followed by a <CR>. If you do not want to change the descriptor table entry
value, enter a <CR>.

See also: Descriptor types, Programmer's Reference Manual for your
microprocessor

=expression
An expression that corresponds to a value to use in place of the value referenced by
the .component parameter. The equal sign (=) preceding the expression
parameter instructs SDM to place in memory the value indicated by the expression.

Additional Information

The s command is actually two commands in one. You can use it to display and
(optionally) modify either the contents of memory or the contents of descriptor table
entries.

If you enter the s command without an equal sign (=), SDM displays a dash (-)
prompt. Then, it waits for you to enter either:

• A continuation comma instructing SDM to display the next memory location

• A single expression or a list of expressions separated by slashes (/). By entering
an expression (or expressions), you instruct SDM to substitute these values in
place of those already in the memory location you specified.

SDM continues to issue dash prompts until you enter a <CR>.



s Substitute Memory/Descriptor Table Entry

128 Chapter 3 SDM Commands

Examples

1. This example illustrates how to use the s command to display and then modify
contents of a memory location. Suppose you enter the s command by itself:

..s

SDM responds with the contents of the byte at DS:0:

0170:00000000 40 -

At this point, SDM issues a dash prompt and waits for you to enter an expression
or a comma. Suppose you enter:

0170:00000000 40 - 1/2/3, Five bytes are modified in

this example.

0170:00000003 20 - 4/15

SDM replaces the existing data in the memory locations with the expressions you
entered. It then displays the next memory location because you entered a
continuation comma. If you enter a <CR> after this substitution, you return to
the prompt and can enter any SDM command.

If you want to replace the data in a given memory location without checking to
see what it contains, you can enter:

..100sw ds:ax=ffff

2. This example shows how to display and modify the conforming bit component of
a descriptor table entry. The CS register indicates where the descriptor table is
located.

..sdt(cs).c

SDM responds with this line and waits for you to substitute an expression:

0 -

This line illustrates a similar example:

..sgdt(4t).base

SDM responds with the contents of the base component of the fourth global
descriptor table entry and waits for you to enter an expression:

123456 -

3. This example sets the 45th global descriptor table entry to a data segment
descriptor with all fields set to 0:

..sgdt(45t)=dseg32



Substitute Memory/Descriptor Table Entry s

System Debugger Reference Chapter 3 129

4. You can use register names to specify address selectors and offsets. For
example, to examine the word at an address with a selector value contained in
the AX register, enter:

..swax:0



x Examine/Modify Registers

130 Chapter 3 SDM Commands

x
Allows you to examine and optionally modify the contents of NPX and CPU registers
such as the task state segment.

Syntax

x [n]

x [[cpu-reg][.bitname][=expression]]

x [[npx-reg][=hex#|real#]]

x tss [(expression)][.reg[=expression]]

x

cpu-reg

= expression

n

npx-reg

hex#

real#

tss

expression

reg

expression

OM04148

bitname.

.

=

=

)(



Examine/Modify Registers x

System Debugger Reference Chapter 3 131

Parameters

If you use the x command with no parameters, SDM displays the current contents of
the CPU registers with respect to your application at the time the fault, trap, or break
occurred.

n The n option instructs SDM to display the contents of the NPX registers and NPX
stack registers.

cpu-reg
The abbreviation for the Intel386, Intel486, or Pentium microprocessor register that
you want to display or modify.

If you do not include any other parameters, SDM displays the contents of the register
or bit followed by a dash (-) prompt. At this point, to change the register or bit value,
enter the new value followed by a <CR>. If you do not want to change the value,
enter a <CR>.

The register abbreviations you can enter are listed below. Not all registers may be
accessible on your CPU. For example, CR4 is not defined on the Intel386
microprocessor.

Register Type 32-bit Abbreviation 16-bit 8-bit

General Registers EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL
EBP BP
ESI SI
EDI DI

Stack Pointer ESP SP

Code Segment CS
Data Segment DS
Stack Segment SS
Extra Data Segments ES

FS
GS

Flag Register EFL FL

Instruction Pointer EIP IP

Control Registers CR0 MSW
CR1
CR2
CR3
CR4



x Examine/Modify Registers

132 Chapter 3 SDM Commands

The FL, EFL, MSW, CR0, CR3, and CR4 registers are special registers containing
bit fields. SDM displays the contents of these registers first with the binary values
and a mnemonic for each bit field, then as a hexadecimal word value. For example,
the display of EFL might be as follows, where 0 or 1 as a mnemonic indicates a
reserved bit field:

ID VIP VIF AC VM RF 0 NT IOPL OF DF IF TF SF ZF 0 AF 0 PF 1 CF

0 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 0 1 1 0

00000246 -

The mnemonics for bit fields in the special registers are listed below

EFL & FL Bit Names CR0 & MSW Bit Names
AC Alignment Check AM Alignment Mask
AF * Auxiliary Carry Flag CD Cache Disable
CF * Carry Flag EM ** Emulation Mode (Coprocessor)
DF * Direction Flag ET ** Extension Type
IF * Interrupt Enable Flag MP ** Math Present (Monitor

Coprocessor)
ID Identification Flag NE Numerics Exception
IOPL * I/O Privilege Level (2

bits)
NW Not Write-Through

NT * Nested Task Flag PE ** Protection Enable
OF * Overflow Flag PG Paging Enable
PF * Parity Flag TS ** Task Switch
RF Resume Flag WP Write Protect
SF * Sign Flag CR3 Bit Names
TF * Trap Enable Flag PCD Page Cache Disable
VIF Virtual Interrupt Flag PWT Page Write-Through
VIP Virtual Interrupt

Pending
(no mnemonic) Physical base address of page

directory table in bits 12-31
VM Virtual 8086 Mode CR4 Bit Names
ZF * Zero Flag DE Debugging Extensions

MCE Machine Check Enable
PSE Page Size Extensions
PVI Protected Mode Virtual Interrupt
TSD Time Stamp Disable
VME Virtual 8086 Mode Extensions

* Bit fields in the Flags register (FL), which is a subset of EFL
** Bit fields in the Machine Status Word (MSW), which is a subset of CR0

.bitname
To display and change a single bit field from one of the special registers, follow the
cpu-reg name with a period (.) and the mnemonic for the bit field. For example, to
display only the Carry Flag from the Extended Flags register, you would enter:

x efl.cr



Examine/Modify Registers x

System Debugger Reference Chapter 3 133

=expression
An expression that corresponds to a value you want to place in the register or TSS
you specified. The equal sign (=) preceding the expression parameter instructs
SDM to place the value in the register.

npx-reg
The abbreviation for the math coprocessor (NPX) register you want to display and
optionally modify. Table 3-10 lists the NPX registers and the abbreviations known to
SDM.

Table 3-10. NPX Registers

Register Name Abbreviation Register Name Abbreviation

NPX State N Status Word SW

Control Word CW Tag Word TW

Instruction Pointer IP * Data Pointer DP *

Stack Register 0 ST(0) Stack Register 4 ST(4)

Stack Register 1 ST(1) Stack Register 5 ST(5)

Stack Register 2 ST(2) Stack Register 6 ST(6)

Stack Register 3 ST(3) Stack Register 7 ST(7)

* These registers cannot be modified.

If you do not include any further parameters, SDM displays the contents of the NPX
register followed by a dash (-) prompt.

At this point, to change the register value, you can enter a value. Enter stack register
values as real numbers; enter all other NPX registers values as words. You cannot
modify the IP and DP registers for the NPX. If you do not want to change the NPX
register value or display any further NPX register contents, enter a <CR>.

=hex#
The hexadecimal number you want to place in the NPX register you specified.

=real#
The real number you want to place in the NPX stack register you specified.



x Examine/Modify Registers

134 Chapter 3 SDM Commands

tss The task state segment (TSS) option instructs SDM to display the contents of the task
state segment. The contents of the TSS are listed in Table 3-11.

To access TSS registers, use this parameter. If you do not include any further
parameters, SDM displays the current contents of the TSS whose selector is in the TR
register.

Table 3-11. Task State Segment

Name Abbreviation

Local Descriptor Table Register LDTR

Interrupt Descriptor Table Register IDTR

Global Descriptor Table Register GDTR

Task Register TR

Link to Nested Task LINK

Level 0 Stack Segment SS0

Level 1 Stack Segment SS1

Level 2 Stack Segment SS2

Level 0 Stack Pointer ESP0

Level 1 Stack Pointer ESP1

Level 2 Stack Pointer ESP2

(expression)
A selector for a TSS.

If you do not include any further parameters, SDM displays the contents of the
indicated TSS.

.reg The name of the TSS component that you wish to display. Include a period (.) before
the component name so SDM can recognize the name.

If you do not include any further parameters, SDM displays the contents of the
register in the TSS followed by a dash (-) prompt.

At this point, to change the TSS component register value, enter the new value
followed by a <CR>. If you do not want to change the TSS contents, enter a <CR>.



Examine/Modify Registers x

System Debugger Reference Chapter 3 135

Additional Information

If you use the x command with both a register name and an expression, the
modification you specify takes place immediately and SDM does not display the new
value. If you redisplay the NPX state (after modification), SDM displays the results
of the change you made.

You can use the x command to set the registers or the TSS contents to any value. If
you use any invalid values, SDM reports them and does not execute the change.

Examples

1. This example shows the results of invoking the x command with no parameters
on an Intel386-based board:

..x

SDM responds with this display:

EAX=0000FFFF CS=1000 EIP=00000000 EFL=00000000 LDTR=2A0

EBX=0000FFFF SS=0000 ESP=00000428 BP=0000FFFF TR=278

ECX=0000FFFF DS=0000 ESI=0000FFFF FS=0000 MSW=FFF0

EDX=0000FFFF ES=0000 EDI=0000FFFF GS=0000

GDTR .BASE=00000000 .LIMIT=0000

IDTR .BASE=00000000 .LIMIT=0000



x Examine/Modify Registers

136 Chapter 3 SDM Commands

2. This example illustrates the results of invoking the x command with only the n
option as a parameter:

..xn

SDM responds:

CW: X X X IC R C P C IM X PM UM OM ZM DM IM

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 IP = 00000:0000

SW: B C3 T O P C2 C1 C0 IR X PE UE OE ZE DE IE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TW: T 7 T 6 T 5 T 4 T 3 T 2 T 1 T 0

0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 DP = 00000:0000

ST(0) ZERO 00000000000000000000R 0

ST(1) VALID 3FFF999999999999999AR 1.2

ST(2) VALID BFFF999999999999999AR -1.2

ST(3) SPECIAL FFFF0000000000000000R -Infinity

ST(4) SPECIAL 7FFFFF00000000000000R +NAN

ST(5) EMPTY 4000C90FDA9E46A7843ER 3.14159265

ST(6) VALID 4CF5F08B8D41AF800AC8R 1.23456E+999

ST(7) VALID 3FFF1800000000000000R .1875 UNNORM 3 BITS

See also: CW, SW, and TW output fields, in the hardware reference manual
for your microprocessor

3. This example instructs SDM to display the contents of the task state segment
whose selector is 068H:

..x tss(68)

SDM responds:

EAX=00001234 CS=0020 EIP=00000000 EFL=00000000 LDTR=02D0 LINK=0058

EBX=00001234 SS=0000 ESP=00000428 EBP=0000FFFF SS0=0020 ESP0=0000FFFE

ECX=00001234 DS=0000 ESI=0000FFFF FS=0000 SS1=0000 ESP1=00000000

EDX=00001234 ES=0000 EDI=0000FFFF GS=0000 SS2=0000 ESP2=00000000

■■   ■■   ■■



System Debugger Reference Appendix A 137

Console I/O Calls A
The console I/O calls are calls for reading from and writing to SDM’s console device.
A console device is a standalone terminal attached to a target system or a
development system. You can configure what I/O device SDM uses as a console in
the ICU, on the SDM screen under the SUB-(systems) screen.

Table A-1 lists the console I/O calls.

Table A-1. Console I/O Calls

Call Description

ci Reads a character from the console input device. Waits for an
available character.

co Writes a character to the console output device.

csts
Reads a character from the console input device. Does not wait
for an available character.

Using the Console I/O Calls
iRMX software contains interface libraries for the console I/O calls. For PL/M, the
library file is cico.lb3 and cico.lb2. This file contains the external declarations for the
ci, co, and csts calls. Include the library file in applications that use console I/O
calls.

The console I/O library supports only the LARGE segmentation model. To use this
library, include this statement in your program and make a far call:

$large(cico exports ci, co, csts)

See also: Segments and subsystems, Programming Techniques,
iC-386 Compiler User's Guide, and PL/M-386 Programmer's Guide

✏ Note
When you use C, subsystem declarations must be put in a separate
file and then included using the subsys directive.



ci

138 Appendix A Console I/O Calls

ci
Reads an ASCII character from the console input device and places it in the AL
register. It waits for character input.

Syntax

a$char = ci;

a_char = ci();

Parameter PL/M Data Type C Data Type
a_char BYTE UINT_8

Return Value

a_char A character entered at the console.

Additional Information

The parity (high) bit is stripped from any character entered at the console.

The ci call affects the AX and EAX registers and the CPU flags. After a ci call, the
CPU flag contents are undefined.

A ci call does not disable interrupts.

Examples

These PL/M program segments show how to use the ci call to retrieve a character
from the console:

CI:

PROCEDURES BYTE EXTERNAL;

END CI;

..._

..._

DECLARE CHAR BYTE;

..._

..._

DISABLE;

CHAR = CI;

ENABLE;



co

System Debugger Reference Manual Appendix A 139

co
Transfers a character from the low-order byte of the word on the top of the stack to
the console output device.

Syntax

call co(a$char);

co(a_char);

Parameter PL/M Data Type C Data Type
a_char BYTE UINT_8

Parameter

a_char An ASCII character to be output to the console.

Additional Information

If you have entered a <Ctrl-S> at the console, the call waits for you to enter <Ctrl-Q>
before transmitting the character.

The co call affects the AX and EAX registers, as well as the CPU flags. After using
the co routine, the flag contents are undefined.

The co call does not function properly if the parity (high) bit is set. The characters
must be in the range of 00H to 7FH.

See also: Editing characters, in this manual



co

140 Appendix A Console I/O Calls

Examples

These PL/M program segments show how to use the co call to transmit a character to
the console:

CO:

PROCEDURE (CHARACTER) EXTERNAL;

DECLARE CHARACTER BYTE;

END CO;

..._

..._

DECLARE CHAR BYTE:

..._

..._

CALL CO(CHAR);



csts

System Debugger Reference Manual Appendix A 141

csts
Reads an ASCII character from the console input device and places it in the AL
register. It does not wait for character input.

Syntax

a$char = csts;

a_char = csts();

Parameter PL/M Data Type C Data Type
a_char BYTE UINT_8

Return Value

a_char Receives a character from the console.

Description

The csts call does not wait for console input if a character is not available
immediately. Instead, it sends an ASCII null character (0) to the console or the
application, whichever makes the call. It then returns to the application and executes
the next instruction.

The parity (high) bit is stripped from any character entered at the console.

The csts call affects the AX and EAX registers and the CPU flags. After using the
csts call, the flag contents are undefined.

Examples

These PL/M program segments show how to use the csts call to retrieve a character
from the console:

CSTS:

PROCEDURE BYTE EXTERNAL;

END CSTS;

..._

..._

DECLARE CHAR BYTE;

..._

..._

CHAR = CSTS;

■■   ■■   ■■



142 Appendix A Console I/O Calls



System Debugger Reference Appendix B 143

Related Publications B
You may need to refer to one or more of the following manuals:

• 80387 Programmer's Reference Manual

• i386™ DX Hardware Reference Manual

• i386 Programmer's Reference Manual

• i386 System Software Writer's Guide

• i387™ DX Programmer's Reference Manual

• i486 Microprocessor Hardware Reference

• i486™ Programmer's Reference Manual

• Pentium Processor User's Manual

• iC-386 Compiler User's Guide

• Microprocessor Handbook

• PL/M-386 Programmer's Reference

■■   ■■   ■■



144 Related Publications



System Debugger Reference Index 145

Index

A
address parameter, definition, 86
AL register, 138
ASCII characters

reading, 138, 141
transferring, 139

AX register, 139, 141

B
backspace key, 81
bc SDM command, 94
Bootstrap Loader debug option, 3
breakpoint clear SDM command, 94
breakpoint set SDM command, 96
breakpoints

clearing, 94
displaying, 100
execution, 99
redundant, 94
setting, 4, 96

bs SDM command, 96
byte parameters, 84

C
c SDM command, 102
ci call, 138
clearing breakpoints, 94
CLI-restart, 7
co call, 139
combining SDM commands, 82
compare SDM command, 102
comparing memory blocks, 102
configuration, 2
console I/O calls

ci, 138
co, 139

csts, 141
summary, 137

contents of the stack, 39
continuation comma, 82
continuing SDM commands, 82
control keys, for editing, 81
conventions, 10
copying memory blocks, 112
CR3 register, 117
CS, definition, 108
CS:EIP

definition, 3
CS:EIP, definition, 10
csts call, 141
Ctrl-C keys, 81
Ctrl-Q keys, 81
Ctrl-S keys, 81
Ctrl-X keys, 81

D
d SDM command, 103
data types, 88
debug command (HI), 3
decimal values, 91
descriptor types, 104, 127
displaying memory descriptor tables, 103
displaying/executing instructions, 113
DUIB information, displaying, 11

E
editing SDM commands, 81
EIP, definition, 108
entering SDM commands, 81
error messages

SDM, 93
examining/modifying registers, 130
expression parameters, 86



146

F
f SDM command, 107
fail-safe timeout, 26
find SDM command, 107
flat model, 43, 96, 120, 121

displaying pointers, 120
front panel interrupt button, 3

G
g SDM command, 108
GDT slots, displaying free amount, 20
getting help, 21
go SDM command, 108

H
halfword parameters, 84
hardware/software requirements, 2
help, 21

I
i SDM command, 110
I/O Result Segment (IORS), 35
input SDM command, 110
instructions, displaying/executing, 113
Int3 instruction, 3
invocation, 3
IORS, displaying, 35
iSDM see SDM, 1

J
job tokens, displaying, 22

L
long integer data type, 88
long read data type, 88

M
m SDM command, 112
manuals, related, 143
memory blocks

comparing, 102
copying, 112
displaying, 103

memory descriptor tables, displaying, 103
Message Passing Coprocessor see MPC, 26
models of segmentation, 137
monitor

definition, 1
move SDM command, 112
MPC, 27, 30

input message queue, 27
MPC (Message Passing Coprocessor), 26
Multibus II, 26, 27, 30
multiple SDM commands on a single line, 82

N
n SDM command, 113
nonnumeric values, 91
NPX

data type, 88
integers, 88
number format, 90
real numbers, 89

NPX (numeric processor extension), 87
numeric parameters, 87
numeric processor extension, See NPX

O
o SDM command, 115
object directory, displaying, 18
objects, displaying, 33
offset, definition, 86
output SDM command, 115

P
packed binary coded decimal (BCD) numbers,

89
packed decimal data type, 88
page directory

base address of, 117
changing, 123, 124
displaying, 118

page table
displaying, 121



System Debugger Reference Index 147

pdbr SDM command, 117
pdd SDM command, 118
pdp SDM command, 120
pdt SDM command, 121
port input SDM command, 110
port output SDM command, 115
product overview, 1
prompts, description, 10
psd SDM command, 123
pst SDM command, 124

Q
quitting the debugger, 7

R
reading ASCII characters, 138, 141
reason codes

breakpoint, 98, 100
register, definition, 85
related publications, 143
repeating SDM commands, 82
requirements, hardware and software, 2
returning to your application, 7
rubout key, 81

S
s SDM command, 125
SDB commands, 4

overview, 4
summary, 9
syntax, 4
token validity in, 6
vb, 11
vc, 15
vd, 18
vf, 20
vh, 21
vj, 22
vk, 25
vmf, 26
vmi, 27
vmo, 30
vo, 33
vr, 35

vs, 39
vt, 45
vu, 74

SDB prompt, description, 10
SDM commands

bc, 94
breakpoint clear, 94
breakpoint set, 96
bs, 96
c, 102
combining, 82
compare, 102
continuing, 82
d, 103
display memory descriptor table, 103
editing, 81
entering, 81
f, 107
find, 107
g, 108
go, 108
i, 110
input, 110
line conventions, 81
m, 112
move, 112
n, 113
o, 115
output, 115
parameters, 84
pdbr, 117
pdd, 118
pdp, 120
pdt, 121
psd, 123
pst, 124
repeating, 82
s, 125
structure, 80
x, 130

SDM editing keys, 81
SDM error messages, 93
SDM parameters

address, 86
byte, 84
expression, 86
halfword, 84



148

numeric, 87
term, 85
types, 84
word, 84

segment selector, definition, 86
setting breakpoints, 4, 96
short integer data type, 88
short real data type, 88
single step, definition, 80
Soft-Scope, 2

prompt, description, 10
special-case numeric values, 92
SS:ESP

definition, 10
stack contents, 39
starting the debugger, 3
structure of SDM commands, 80
substituting memory/descriptor table entries, 125
susbsys directive, 137
syntax for debugger commands, 4
system call information, displaying, 15
system call parameters on the stack

displaying, 39
identifying, 39
interpreting, 39

system requirements, 2

T
task state segment, 134
task system calls, displaying, 74
task tokens, displaying, 25
temporary real data type, 88
term parameters, 85
tokens

displaying, 45
validity checking, 6

transferring ASCII characters, 139

V
vb SDB command, 11
vc SDB command, 15
vd SDB command, 18
vf SDB command, 20
vh SDB command, 21
vj SDB command, 22
vk SDB command, 25
vmf SDB command, 26
vmi SDB command, 27
vmo SDB command, 30
vo SDB command, 33
vr SDB command, 35
vs SDB command, 39
vt SDB command, 45

composite object display, 56
extension object display, 55
job display, 46
mailbox display, 51
region display, 54
segment display, 55
semaphore display, 53
task display, 48

vu SDB command, 74

W
warm-start, 7
word integer data type, 88
word parameters, 84

X
x SDM command, 130


	iRMX® System Debugger Reference
	Quick Contents
	Notational Conventions

	Contents
	Chapter 1: Overview of Debugging Tools
	Debugging Tools
	Hardware and Software Requirements
	Starting SDM and SDB
	Using SDB Commands
	Command Syntax
	Using Tokens as Command Parameters
	Entering Commands

	Leaving the Monitor
	Warm-Starting a System (iRMX III OS and iRMX for PCs Only)
	CLI-Restarting a System

	Returning to your Application

	Chapter 2: System Debugger (SDB) Commands
	vb
	vc
	vd
	vf
	vh
	vj
	vk
	vmf
	vmi
	vmo
	vo
	vr
	vs
	vt
	Job Display
	Task Display
	Mailbox Display
	Semaphore Display
	Region Display
	Segment Display
	Extension Object Display
	Composite Object Display
	Heap Display
	Buffer Pool Display

	vu

	Chapter 3: System Debug Monitor (SDM) Commands
	Command Structure
	Entering Commands
	Command Line Conventions
	Command-Editing Keys
	Command Line History
	Multiple Commands on a Single Line

	Command Parameters
	Byte, Halfword and Word Parameters
	Term Parameters
	Expression Parameters
	Address Parameter
	Numeric Parameters

	Error Messages
	bc
	bs
	Reason Codes
	No Breaks Available
	Execution Breakpoints
	Data Breakpoints and I/O Access Breakpoints

	c
	d
	f
	g
	i
	m
	n
	o
	pdbr
	pdd
	pdp
	pdt
	psd
	pst
	s
	x

	Appendix A: Console I/O Calls
	Using the Console I/O Calls
	ci
	co
	csts

	Appendix B: Related Publications
	Index

