RadiSys - Soft-Scope® |11 Debugger
User’'s Guide

RadiSys Corporation

5445 NE Dawson Creek Drive
Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150
www.radisys.com

07-0823-01

December 1999




EPC, iRMX, INtime, Inside Advantage, and Radi Sys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Soft-Scope is aregistered trademark of Concurrent Sciences, Inc.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
isatrademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.
Intel isaregistered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999
Copyright 0 1999 by RadiSys Corporation

All rights reserved.



Concurrent Sciences, inc.
P.O. Box 9666

Moscow, Idaho 83843
Phone: (208) 882-0445
FAX: (208) 882-9774

Target Microprocessors

Intel386 and Intel486

7

Soft-Scope Il
Debugger

IRMX®1I

N




© 1990 Concurrent Sciences, inc.
All rights reserved. Third revision, August, 1993.
Printed in the United States of America.

No part of this document may be copied or reproduced in any form without the prior
written consent of Concurrent Sciences, inc.

Concurrent Sciences, inc. makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. Concurrent Sciences assumes no responsibility for any
errors that may appear in this document and makes no commitment to update or
keep current the information contained in this document.

The Soft-Scope 111 debugger runs on any IBM or compatible PC with an Intel386 or
Intel486 processor and at least 4 MB of memory and a hard disk.

Soft-Scope 111 debugs protected-mode, single task loadable (STL) files built with
RadiSys tools.

Concurrent Sciences’ software products are copyrighted by and shall remain the
property of Concurrent Sciences. Use, duplication, or disclosure is subject to restric-
tions stated in Concurrent Sciences’ software license.

Soft-Scope is a registered trademark of Concurrent Sciences, inc.

IBM is a registered trademark of International Business Machines Corporation.
MS-DOS, Microsoft, and Codeview are registered trademarks of Microsoft Corporation.
iRMX is a registered trademarks of RadiSys Corporation.

Intel386 and Intel486 are trademarks of Intel Corporation.

Soft-Scope Il for iRMX 111



Contents

1 - INErOAUCTION ..o 1
SPECIAI FEATUIES ...t 2
Manual Organization ............coceiiiiii i 4
CONVENTIONS ..o 6

2 - GEttiNG STArted ......ooviiiee e 7
INSTAITALION ... 8
INVOKING SOt-SCOPE T ...oeiiii e 10
Load APPHICALIONS .....coeiiiieieie e 12
Editing FUNCLIONS ..ot 16
SOFt-SCOPE T HEIP ..o 17
LOG tO @ FIlE oo 18
Miscellaneous COMMEANTS ..o 20
System Debug CommaNndS..........ccoeiiiiieiiiie s 22
COMMANG SYNTAX ...tiiiiiiiiiieee e e 24
TroubleSNOOTING ......oooiiieie e 28

3 - Controlling EXECULION ........ccocviiiiiiiiiiiiic e 29
(D TES] o F= YA O o Lo 1< PSSR 30
Examine a Line of COE ... 34
R3] (=] 0] o 1 T PR S 36
GO bbbt 40
Assign Files to Module Names ..o, 43
BreakPOINTS ..ot 44
Disassemble COUE ........ccooiiiiiiii s 48
StaCK INFOrMALION ... s 50
Task Manipulation ..........ccooiiiiii e 52
Trapping IRMX EXCEPLIONS ....cc.oiiiiiiiie it 54
Suspend & ResUMe TasKS ..o 57

Soft-Scope Il for iRMX 111



4 - EXaMINING DAt .....ooiiieiiiecee e 59

Data RETEIENCES ...t 60
EVAlUALE DAla ......cceeoeieieeee et 64
Display Type INformation ... 65
RETEIENCE SCOPING «.veiieeiieii ettt 66
MEMOKY REFEIENCES .....c.eiieeieiee e 68
TYPE OVEITIAES ..ottt 70
DIUIMIPD ettt st b 74
Registers and CPU STrUCTUIES .........c.oocviieiiiieie e 76
BUIE-IN FUNCLIONS ..o 78
INUMDEIS .ottt nne s 80
(O] o<1 = 1 (o] £ I NSRS TSRS 82
R3] 1 TSP 84
RETErenCe SUMIMAIY ......coiiieiiee e 86
5 - Soft-Scope 11 Configuration..........ccccoooveeiiiiiee e 87
SELING OPLIONS ...eiiiiee e see s 88
SOFft-SCOPE 1T OPLIONS ...t 90
6 - SOTt-SCOPE T MACKOS ...t 93
CrEate IMACIOS ...ttt sttt saeesbee 94
Macros Control StatemMEeNts ........cccooeii i 96
MACIO FUNCLIONS ....oviiii e 97
MaCrO PAramEeters ..o 98
MACIO EXAMPIES ...eeiiiiie ittt 99
T = TOONS et 101
TOOIS INFOrMALION ... s 102
ASM286 aNd ASMBB6 ........coviviiiieieisere e 103
BND286 and BND386 .........cccceiviriiieieiiiniesie s 104
BLID386 ...t 105
1C-286 AN 1C-386 ......coiiiiiiiiieiieeeee e 106
PL/M-286 and PL/M-386 .........ccooiiiiiiiiiieieeeesee s 107

Soft-Scope Il for iRMX 111



FORTRAN-3806 ... 109

APPENIX A TaABIES ..o 111
DAtA TYPES -ttt 112
(O] 1] = 1 (0] ¢TSRSV UU RSP URT 114
General-PUurpose REQISTENS .......ccccveiiiieieieeiee e e 115
FIagS REGISTEN ...ttt 116
SEgMENT REGISIEIS ..ot 116
NPX REGISTEIS ...ttt seeene e 116
CONLIOl REGISTEIS ...t 117
Protected-Mode ReQISIEIS .......ccooiiiiiieiciee e 117
Descriptors and SUbfields ... 118
APPENdiX B ErrOr MESSAJES ......cccviiiiiieiieeisie e 123
APPENdiXx C SSKERNEL ... 145
Appendix D C Sample SESSION .......ccccviiiiiiiiieieeee e 149
Index

Soft-Scope Il for iRMX 111

Vii






Introduction

The Soft-Scope |1l debugger is an interactive, source-level, symbolic debugging tool
designed to accelerate software development. It is a true dynamic debugger for
multi-tasking applications. Soft-Scope |1l allows you to debug first-level jobs,
device drivers, multiple tasks, and jobs created and loaded by your application.
You can set software or hardware breakpoints on multiple tasks, and you can
monitor which tasks are at break and which tasks are not. Multi-user systems can
run up to seven Soft-Scope Il sessions at the same time.

Table of Contents

SPECIAI FEATUIES ... 2
Manual Organization ............ccoceiiiieie e 4
CONVENTIONS ..ot 6

1




Special Features

Assembly

Breakpoints

Display and modify
Application
Symbols

Soft-Scope |1l provides a complete array of functions that provide
the following features and more:

0 Step through and display high-level source statements or
assembly-level instructions

Set software and hardware breakpoints
Access and modify all application symbols
Debug multiple file types

Full support for iRMX tasking capabilities

View iIRMX system data structures

O o o o o d

Examine and modify CPU registers and 286, 386 and 486
protected-mode structures

O

No limit on size of files or number of symbols
Create custom commands

0 Trap faults in iRMX subsystems as well as in your application

All breakpoint and high-level stepping operations display the
original source code corresponding to the next statement to be
executed, and Soft-Scope IlI's built-in disassembler lets you
examine a target program at the assembly as well as the source
level. You can execute a program one source or assembly instruc-
tion at a time.

You can set up to 32 software breakpoints and 4 debug register
breakpoints by reference to a symbol name, line number, or
absolute address. Software breakpoints halt execution of your
program when the address they reference is reached. Debug-
register breakpoints halt execution when a given memory location
is written to or accessed.

Symbols include arrays, structures, static variables, based vari-
ables, and stack-based variables. Symbols are accessible by their
name as declared in your program. You can display the type and
scope of each symbol. You can also display memory contents with
absolute references or register-relative references.

Soft-Scope Il for IRMX 1l



Special Features

In addition to STL files, you can debug device drivers and files
loaded by your application through RQALOAD.

You can set breakpoints in multiple tasks, determine the status of
tasks other than the currently active task, and switch between
tasks. You can suspend and resume tasks. You can have multiple
users operating separate copies of Soft-Scope 11l simultaneously
on the same CPU. This is possible with multiple terminals or
multiple windows on a windowing display.

Use the System Debug Commands (SDB) to view iRMX data
structures, such as mailboxes, tasks, jobs, semaphores, segments
and regions.

Use Soft-Scope I1I's REG, and EVAL commands, to examine and
modify registers and CPU structures, including the IDT, GDT and
LDT.

There are no limits to the size of the listing files, number of lines,
or number of symbols in your program.

Soft-Scope Ill's macro facility lets you combine SSIII commands
and expressions to create custom commands specific to your
needs. Macros use C-like syntax and declarations, so you needn't
learn a special language to use them.

Even when you aren't using SSIlI to debug an application, the
Soft-Scope kernel will monitor your system and trap faults so they
don't interfere with system operation. This is especially handy for
multi-user systems, where a General Protection fault can cause the
entire system to stop.

Chapter 1, Introduction

Debug multiple file
types

Support for tasking
capabilities of IRMX

View iRMX
structures

Registers and CPU
structures

No size limits

Soft-Scope 11l
macros

Trap faults



Manual Organization

Your Soft-Scope Il manual contains the following chapters:

Introduction

This chapter describes the features of SSI1I and provides basic
information that will help you use this manual.

Getting Started

Read this chapter to learn how to install Soft-Scope Ill. It also
contains a description of the Load command so you can load your
first application, and a troubleshooting section that you can refer
to if you have problems getting SSIII to work. In additon, this
chapter contains general descriptions of Soft-Scope IlI's editing
functions and command syntax.

Controlling Execution

This is a reference chapter describing how to view and execute
your application. It describes, in detail, how to reference the
source code, single step, step to a specified location, use break-
points, and examine procedure call nesting. It also describes how
Soft-Scope Il lets you debug an application with multiple tasks.

Examining Data

Read this chapter and learn how to access data, as well as how to
use some of the more advanced features of Soft-Scope I1l. For
example, in this chapter you will learn how to directly reference
memory, how to use type overrides to display the most useful
information, and how to use SSIII’s built in functions.

4 Soft-Scope Il for iRMX 111



Manual Organization

Configuring Soft-Scope |11

Soft-Scope Il allows you to configure many of its functions and
commands to best fit your needs. This chapter provides informa-
tion about using options and a detailed description of each option
provided.

Macros

This chapter describes SSIII’s macro language, which is provided
S0 users can customize the debugger to their specific needs.

Tools

You might want to refer to this chapter before you start debugging
an application. It is a tool-by-tool explanation of what to watch for
when preparing applications for debugging.

Appendices

The appendices provide specific technical information about
several topics related to the use of SSIIl. Appendix A is a list of
error messages and what they mean. Appendix B contains tables
of supported data types, registers, and CPU structures. Appendix
C describes the Soft-Scope 111 Kernel, and Appendix Disa C
sample session that guides you through debugging an actual
application.

Chapter 1, Introduction



Conventions

The following format conventions have been adopted to help you
read and understand this manual.

LOAD Command line commands and key words
are all caps.

exec.wait Setfile options are bold.

SS.SET Files and pathnames are shown as small
capitals in the same font as the rest of the
text.

Data reference: Expressions, Soft-Scope |1l error mes-

sages, and examples are shown in this
font and are bold.

<Ctrl>, <Up>, Keyboard keys are shown enclosed
<Left>, <Right> in arrows.
Italics References to parts of this manual or

other publications, and parameters.

Italics are also used for comments, summaries, emphasis, and
when the actual content of an expression is unknown. For ex-
ample, you might see something like the following:

FILENAME. TMP

Where filename refers to the name of a file you need or are
referencing.

Soft-Scope Il for IRMX 1l



Getting Started 2

This chapter describes the Soft-Scope Il installation, loading, and invocation pro-
cesses, and what to look for if your SSI1I doesn't operate as described. It also ex-
plains the SSIII command line, and contains a comprehensive list of all SSIII com-
mands and their syntax.

Using SSIII requires the Soft-Scope 111 kernel, SSKERNEL, so be sure to read Invok-
ing Soft-Scope 111 before trying to debug.

After you have installed the software, and before you start debugging, we encour-
age you run the C sample session included on the distribution disks. For instruc-
tions describing how to load and run the sample session, see Appendix D, Sample
Session.

Table of Contents

INSTAITALION ... 8
INVOKING SOt-SCOPE T ... 10
Load APPHICAIONS .....ceiiiiiiieie e 12
Editing FUNCLIONS ..o s 16
SOFt-SCOPE T HEIP ..o 17
LOG tO @ FIlE oo 18
Miscellaneous COMMANTS ..o 20
System Debug CommandS..........ocooiiiiiiiiiiee e 22
COMMAN SYNTAX ..viiiiiiiiieiee et 24

TroubleSNOOTING ....c.ooiiiiece e 28



Installation

System To install and run Soft-Scope Il properly your computer must
requirements have a hard drive with at least 2 megabytes of free disk space.

If you purchased iRMX complete with a development kit, Soft-
Scope Il is installed automatically for you when you install
iIRMX. Simply choose the following product selection option
from the iRMX installation program:

AOTE! iIRMX for Windows Product with Development Tools

Then select the line below from the Development Tool Selection
Screen:

Soft-Scope Il for IRMX 1l

If you purchased Soft-Scope Il independently of iRMX, follow
the installation directions on the next page.

Soft-Scope Il files The Soft-Scope Il installation program is on disk 1. When this
program is invoked, it copies the executable and support files into
directories iRMX has already created. The Soft-Scope Il execut-
able and support files are placed in /UTIL386.

The sample program are copied to /RMX386/DEMO/SSCOPE in the
root directory of whatever device your current default working
directory is located on.

8 Soft-Scope Il for IRMX 1l



Installation

The information on the distribution disks may be installed with

the standard iRMX INSTALL utility.

1. Logon as SUPER for proper access rights.

2. For each of the disks, insert the disk and type:
INSTALL devicename

where devicename is a physical device. [See Table 2-1 below for
the correct physical device name.]

3. Log off.
System Device Diskette Density Format
type name size

MBI and WDFO 5.25 inch Low iRMX uniform

MBII
WQFO 5.25 inch High iRMX uniform
A 5.25-inch High iRMX uniform

PC-BUS

systems A 3.5-inch High iRMX uniform
B 5.25-inch Low iRMX uniform

Notice that the physical device name of the low density disk drive

is different from the name of the device for iRMXI and iRMXII

versions of the Soft-Scope |11 debugger.

Chapter 2, Getting Started

Installation
procedure

Table 2-1 Physical
device names for
installation disk
drives



Invoking Soft-Scope i

Invocation steps

SSKERNEL

10

T

The steps listed below describe how to invoke Soft-Scope lI:

1.

Before invoking Soft-Scope 111, SSKERNEL must be running as
a background job. It can be loaded when you invoke iRMX 111
by using a SYSLOAD command in your LOADINFO file after
the line that loads SDB job:

Soft-Scope kernel job
sysload /util386/sskernel

Or, load it manually before you invoke Soft-Scope Ill. At the
iIRMX prompt, enter the following:

BK SSKERNEL >:BB:
If you don’t type “>:BB:”, you will be prompted for a log file.
Invoke SSIII using the syntax shown below:

SS [filename]
SS [SYMBOLS filename]
SS [optionsfile.set]

If, for some reason, you want to restart with a fresh
SSKERNEL, you will need to kill the old one using the utility
SSABORT, not the iRMX KILL command.

Using a wild card kill such as KILL *, will kill all background
jobs, not just jobs asssociated with Soft-Scope Il1.

SSKERNEL creates a file called SSKERNEL.LOG in the direc-
tory which was the default directory when SSKERNEL was
invoked. This exists for diagnostic purposes only, but should
not be deleted while either SSKERNEL or Soft-Scope 11 are
active.

Your display should look similar to Figure 2-1 on the next
page. If it doesn't, read the section, Troubleshooting, in this
chapter.

To quit Soft-Scope 11, type EXIT and press <Enter>.

Soft-Scope Il for IRMX 1l




Invoking Soft-Scope i

Use the SS command to load your application at the same time
you invoke Soft-Scope IlI:

-ss /rmx386/demo/sscope/csamp

Soft-Scope Il (tm) debugger v1.0

Concurrent Sciences, inc. (C) 1989, 1990 All rights reserved
IRMXIII Version

Serial no. XXXX

[Connected to "Soft-Scope kernel v1.0 -- session #1"]

[Loading OMF-386 STL file, csamp]

The example in Figure 2-1 shows the message Soft-Scope IlI
displays confirming your application load.

If you enter an OPTIONFILE.SET file on the invocation line, the file
you specify is loaded after the default set file, SS.SET, and the
options values in the file you specify override the values in the
default file. This is handy if you need to use different options for
different applications:

-ss appl.set

Chapter 2, Getting Started

Load your
application when
you invoke SSllI

Figure 2-1 The Soft-
Scope Il intial
display

Load an options file

11



Load Applications

SS>
LOAD

Applications written
to run under the
Human interface

First-level jobs and
device drivers

12

Soft-Scope 11l can debug applications loaded in three different
ways:

0 Applications written to be run under the Human interface
(STL files).

O First-level jobs and device drivers in bootable files.

0 Programs loaded by your application through RQALOAD().
Use the LOAD command. LOAD syntax is shown below:
LOAD filename

LOAD [SYMBOLS filename]

Filename is the name of the application you want to debug, includ-
ing the path.

The following example loads the C sample program (STL file)
provided with this software:

ss> load /rmx386/demo/sscope/csamp

The LOAD command loads symbols, code and data into iRMX I11

free space, through the Application Loader. Including an applica-
tion name when you invoke Soft-Scope Il initiates this version of

the LOAD command.

Use LOAD SYMBOLS to load symbolic information for bootable
files, such as first-level jobs or device drivers embedded in the
iIRMX 11 boot file:

1. Prepare your application using the iRMX Interactive Configu-
ration Utility (ICU) and BLD386. (See Chapter 7, BLD386).

2. Modify the ICU builder file to include symbolics by replacing
the NODEBUG option with DEBUG and removing the
NOTYPE option.

Soft-Scope Il for IRMX 1l



Load Applications

3. Boot using the the new file, usually from the iSDM prompt
after a reset. For example, if the new boot file is BOOT32/
RMXTEST.386, type the following:

B boot32/rmxtest.386

Refer to your iRMX reference materials for boot instructions
specific to your system.

4. After the system is booted, invoke Soft-Scope IlI.
-SS

5. At the SSIIl prompt, load symbols using the syntax shown
here:

ss> load symbols /boot32/rmxtest.386

The following example shows the LOAD SYMBOLS command
used for our example program, RMXTEST.386, and SSIII's
confirmation of the load:

ss>load symbols /boot32/rmxtest.386

[Attaching OMF-386 bootable file “/boot32/rmxtest.386", Symbols only ]

If you issue the LOAD command a second time in a single SSIlII
session without the SYMBOLS qualifier, the results are unpre-
dictable.

When you need to reload your application, including data and
registers, exit Soft-Scope 11, reinvoke, and re-load your applica-
tion.

Chapter 2, Getting Started

13



Load Applications

Device driver
example

14

If RMXTEST.386 contained a device driver that you wanted to test,
you could do the following:

1. Write a Human Interface program that exercises the device
driver, e.g., DDTEST.

2. Follow the directions to build, boot, and load the device driver
symbols

3. Set abreakpoint in the device driver in an area you which
wish to debug.

3. Load your Human Interface test program:

ss> |oad ddtest

4. Perform execution with STEP or GO.

5. When the breakpoint is hit, return to the context of the device
driver by either using the TASK macro or loading
RMXTEST.386 symbols again.

6. Likewise to re-examine the context of the Human Interface
program DDTEST, use the TASK macro or load DDTEST's
symbols again.

Alternately, if you have two terminals available, do this:
1. Invoke ss ddtest  on one terminal.
2. Invoke ss symbols boot32\rmxtest.386 on the other.

This way, you wouldn’t have to switch back and forth with the
TASK macro.

Soft-Scope Il for IRMX 1l



Load Applications

Use the macro LOADSEGS to access and debug files loaded by
your application through the iRMX system call RQALOAD(). This
macro also loads the symbolic information for the file specified.

LOADSEGS [segtoken jobtoken filename]

See Table 2-2 Syntax Elements for a description of command
parameters.

To determine what segtoken should be, examine the number
returned to RQALOAD() via a mailbox. Jobtoken is the nember
returned directly by the RQECREATEIOJOB() system call, and
filename is the file passed to RQALOAD.

The following example prepares CSAMP for debugging:
LOADSEGS 5C18 4F00 :HOME:TEST/CSAMP

ss> loadsegs 5¢18 4f00 :home:test/camp
[ New definition added ]
[ Loading OMF-386 STL file “:home:csamp”, Symbols ]

Segtoken and jobtoken are saved by SSKERNEL, and, unless you
reboot your system, you can access the file a second time by
typing LOAD SYMBOLS filename, or by using the TASK macro to
select a task in that application.

LOADSEGS with no parameters lists those files which have
previously been loaded with LOADSEGS or which have been
loaded by Soft-Scope IlI (i.e., those files for which SSKERNEL is
storing the loader result segment).

Chapter 2, Getting Started

Files loaded by your
application

SS>
LOADSEGS

Example

Just change tasks
to load a file the
second time

15



Editing Functions

The command line Enter Soft-Scope Il commands one line at a time. Each line is
buffered (up to 80 characters) until you hit <Enter>. When you
press <Enter>, if the command is not syntactically correct, Soft-
Scope 11l generates an error message. An explanation of each Soft-
Scope Il error message is found in Appendix A.

The Soft-Scope 111 command line supports the editing functions
listed below.

Many of the following function keys perform specific functions
N7 E? when you are using the LIST command. See the Display Code
section of Chapter 3, Controlling Execution for more information.

Deleting Text

~F delete character under the cursor.
<Back Space>  delete character left of cursor.

A delete portion of line after cursor.
~X delete portion of line before cursor.
<Escape> delete an entire line.

Moving the Cursor

<Left Arrow> left one character.
<Right Arrow> right one character.

Command History

<Up Arrow> Pressed once: recalls history entry.
Pressed repetitively: scans back through
history.

<Down Arrow> Pressed once: recalls history entry. Pressed
repetitively: scans forward through history.

16 Soft-Scope Il for IRMX 1l



Soft-Scope Il Help

HELP provides on-line assistance with Soft-Scope |1l syntax and
usage. Each Soft-Scope 11l command has a HELP entry associated
with it.

HELP [topic]

HELP with no parameters displays the command syntax sum-
mary, as well as a list of other topics for which help text is avail-
able.

Soft-Scope Il finds the help information in the file SS.HLP, which
must be in the same directory as Soft-Scope Ill. If the information
to be displayed is more than will fit on one screen, you are
prompted with the following prompt:

[ More(sp, cr, 1..9) Quit ]

Your possible responses are:

Key Function

<spacebar> Display another full screen.

<carriage return> Display exactly one more line.

<Q> Return you to the Soft-Scope Il
prompt.

<1>-<9> Display that many more lines.

Chapter 2, Getting Started

SS>
HELP

17



Log to a File

SS>
LOG

Turn logging on and
off

18

Use LOG filename to create or open a file and begin copying most
Soft-Scope 1/0 to that file.

LOG [devicename | filename]
LOG ON | OFF

Begin logging Soft-Scope Il commands and displays to the file
SS_TRACE:

ss> log ss_trace

[ Log file “ss_trace” is on ]

If the file already exists, Soft-Scope warns you and asks if you
really want to overwrite the file or append output to the end of it:
ss>log  xxx

[ File exists — Append Overwrite Quit |

Use LOG with no parameters to see if you are logging:

ss> log

[ Log file “ss_trace” is on ]

Once a log file is established, you can turn logging ON and OFF
by issuing LOG ON and LOG OFF commands:

ss> log off
[ Log file “ss_trace” is off |

Resume logging to the current log device:

ss>log on
[ Log file “ss_trace” is on ]

LOG ON restarts logging to the previously-declared log device.

Soft-Scope Il for IRMX 1l



Log to a File

LOG will not record the prompts or messages that disappear
when the next command is issued. The exceptions to this are the
log prompts and messages:

O [Log file* logfile 7 is on]
O [Log file* logfile 7 is off ]

When you are using the LIST command, only the last screenful
of listing generated by any specific LIST command will be sent
to the log file.

To type a comment for the log file from the SS> promptin a

debugging session, begin the comment with /* and end it with */:

SS> /* This will appear in the current log file */

See alsoDisplay CodeChapter 3
Stepping Chapter 3

Chapter 2, Getting Started

LOG limitations

NOT E1

Put comments in
your log file

19



Miscellaneous Commands

SS>
CONSOLE

SS>
SYSTEM

20

Use the CONSOLE command to redirect Soft-Scope 111 output to a
second terminal.

CONSOLE [devicename [termtype]]

Termtype must be defined in the file :CONFIG:TERMCAP. Also, the
terminal identified by devicename must not be listed as one of the
user terminals in :CONFIG:TERMINALS. See your iRMX documen-
tation.

If no termtype is specified, Soft-Scope 11l assumes the second
terminal is the same type as the first.

CONSOLE with no parameters directs output back to the original
terminal.

The example below redirects Soft-Scope |11 output to device t1.
You are directed to press <Enter> on the t1 device to check the
connection:

ss>console t1
[ press return on "t1" within 60 seconds ]
[ Other terminal ("t1") now active ]

SYSTEM directs commands to the operating system. When a
given command is completed, the Soft-Scope 11l prompt is dis-
played.

SYSTEM program

The example below displays the contents of the current directory:

ss>system dir
cmain.c csamp.bnd  csamp.h cutils.c

Soft-Scope Il for IRMX 1l



Miscellaneous Commands

The VERSION command displays Soft-Scope IlI's version number
and information about the host operating system. Use the syntax
below:

VERSION

The following example demonstrates the VERSION command
display:

ss>version

Soft-Scope Il (tm) debugger, v1.0

Concurrent Sciences, inc. (C) 1989, 1990 All rights reserved
IRMX I Version

Serial No. Xxxx

You can exit Soft-Scope I11 with either the QUIT or EXIT com-
mands. They both return you to the system command level.
Syntax is shown below:

EXIT
QUIT

When you exit Soft-Scope 11, all of the debugger work files are
deleted except for a work file containing symbolic information
about the application you were debugging.

This file has the same file name as your application, but has the
extension, TMP. When you invoke Soft-Scope Il it looks for this
initialization information. The first time you load an application,
this information is not available, so Soft-Scope initializes the data
and builds the file. Because of this, subsequent loads are faster
than the first one.

If you want, and disk space is a consideration, you can erase the
initialization file after every session. The only penalty is slower
loads.

Chapter 3, Getting Started

SS>
VERSION

SS>
EXIT/QUIT

21



System Debug Commands

SDB commands
make the Macro
window an
additional command
menu

What do the SDB
commands do?

22

iIRMX 11l includes SDB commands that make it possible to view
iIRMX system information, including jobs, and tasks mailboxes,
and other iRMX objects. Soft-Scope Il supports SDB commands
through its macro feature.

The set option, cmd.macro, loads the SDB commands into the
Macro window by default when you invoke Soft-Scope 111, along
with some generic macros we include as examples for you to
examine and use.

The generic macros are in the file, SS.MAC, and the SDB com-
mands are in the file SDB.MAC. In your Options window, look for
the following assignment:

cmd.macro=ss.mac;sdb.mac

If you want to write your own macros, you can either add them to
SS.MAC, or you can start your own macros file and include it as
part of the options assignment. Simply separate file names with a
semi-colon.

If you would like, you can use the MACRO command and load
your macro file after SSIII is up and running. See Chapter 6, Soft-
Scope Il Macros for more information about writing and running
macros.

Syntax and usage for each SDB command is included in the iRMX
Operating System documentation and is the last manual in this
book.

To give you an idea which commands you should look up in the
reference manual when you need to, and to help you learn what
the SDB commands do, we have compiled Table 2-2, on the next

page.

Soft-Scope Il for IRMX 1l



System Debug Commands

Command

vb

\¢
vd
vf

vh
vj

vk
vmf
vmi
vmo
\Yo)
vr

Vs
vt
Job

Task
Mailbox

Semaphore
Region

Segment
Extension
Composite

vu

Description

Displays DUIB information for a physical device in the
system configuration. For example, the WMFO device

Displays system call information

Displays a job’s object directory

Displays number of Global Descriptor Table (GDB) slots
available

Lists the SDB commands with their parameters and short
descriptions

Displays the tokens in the job tree hierarchy beginning
with a specified job token

Displays the tokens for ready and sleeping tasks
Disables or enables timeout
Displays input messages
Displays output messages
Displays information about the objects in a job
Displays an IORS segment, which contains information
about the last 1/0 operation
Displays the number of stack elements or all of the stack
contents
Displays object information, depending on the type of
the object:
Including tasks associated with the job and memory
usage
Both interrupt and non-interrupt tasks
With no queue, with task queue, with object queue,
and with data queue
For semaphores with no queue and semaphores with
task queue
For regions with no queue and regions with task
queue
Including segment size and containing job
Including type, containing job, and deletion mailbox
Non-BIOS, BIOS user object, BIOS physical file
connection, BIOS stream file connection BIOS named
file connection, BIOS remote file connection, BIOS
EDOS file connection, Signal Protocol Port, and Data
Transport Protocol Port

Displays system calls in a task’s stack

Chapter 2, Getting Started

Table 2-2 SDB
command functions

23



Command Syntax

Entering Commands

24

Soft-Scope Il ignores tabs and extra spaces, so you can use them
freely in commands.

Although, for emphasis, command names and keywords are
shown in this manual in upper case, Soft-Scope Il recognizes
commands entered in either lower-case or upper-case characters.

If a syntax parameter is surrounded in square brackets (“[]”), it is
optional. The vertical bar (]) signifies that a command can include
one of two options, but not both.

For example, the syntax for the DISASM (Disassemble) command
is:

[count] DISASM [ALL] [NOLINES] [coderef] [TO coderef]

DISASM is the command word. ALL, NOLINES, and TO are
keywords. Coderef and count are optional parameters.

Soft-Scope Il syntax elements are shown in Table 2-3.

Soft-Scope Il for iRMX 111



Command Syntax

TO

count

dataref

coderef

memref

lineref

address
modname
linenum

codesym
datasym
devicename
filename
macroname
tasktoken

Segtoken
Jobtoken
token
termtype
loadresult

optionname
optionvalue
keyword
hexnumber16
decnumber

Functions execute from the reference back. For
example, LIST TO reference places the reference at the
bottom of the display and fills the upper part of the
screen with what comes before the reference

An integer in the range 1 to 32,767, function is
command specific

coderef
memref
lineref

address
[:modname]#linenum
[:modname.]codesym

address
lineref
[:modname.][codesym.]datasym

‘modname
[:modname]#linenum
[:modname.]codesym

A logical, physical, or linear address
A module name

A line number found in the current module or in
modname

The name of a procedure or label

The name of a symbol

A module name

A system-dependent identifier for a disk file

The name of a macro from the currently loaded macros

A task identifier, hexnumber16
dataref

A 16-bit hexadecimal number
A 16-bit hexadecimal number
dataref

The physical type of a terminal

A 16-bit selector. Load structure is found at
loadresult:0000

The name of a Soft-Scope |1l set option
The value of a Soft-Scope |1 set option
A word to use for a Help search

A 16-bit hexadecimal number

A 32-bit unsigned integer

Chapter 2, Getting Started

Table 2-3 Syntax
elements

25



Command Syntax

Table 2-4 Command
Syntax Summary

26

Use the syntax shown in Table 2-4 on the command line and in
macros. For your convenience, we have included a page number
where you can read more about each command.

Command Page

BPSCOPE [ TASK | JOB | GLOBAL ] 44

BPTIMEOUT [decnumber32] 103

BREAKPT [-] [coderef] [ TASK | JOB | GLOBAL ] 44

BREAKPT [-] WRITE ] ACCESS memref [ TASK | JOB | GLOBAL ]

CONSOLE [devicename [termtype]] 20
[count] DISASM [ALL] [NOLINES] [coderef] [TO coderef] 48
[count] DUMP [ BYTE | WORD | DWORD ] [memref] 74

DUMP [ BYTE | WORD | DWORD ] memref [TO memref]

EVAL [memref | coderef] 64

EXIT 21

GO [WRITE | ACCESS] memref 40

GO coderef

GO RETURN

HELP [topic] 17

LINE [coderef] 34
[count] LIST [lineref | TO lineref] 30

LIST lineref TO lineref

LOAD filename 12

LOAD [SYMBOLS filename]

LOADSEGS segtoken jobtoken filename 15

LOG [devicename | filename] 18

LOG ON | OFF

Soft-Scope Il for iRMX 111



Command Syntax

Command Page
MACRO [LIST] 94
MACRO LOAD filename
MACRO DELETE [macroname]
MACRO STEP [macroname]
MODULE [:modname = filename] 43
QUIT 21
REG[ALL] 76
RESUME 57
SET [optionname [= optionvalue]] 88
[count] STACK [TRACE] [LINES] 50
STACK USAGE | RESET
[count] STEP [ASM] [INTO] 36
SUSPEND tasktoken 58
SYSTEM program 20
TASK [tasktoken] | [ALL] 52
TYPE [memref | coderef] 65
VERSION 21

Chapter 2, Getting Started

27



Troubleshooting

Installation
problems

Memory problems

28

You need to read this section if:

O Youcan’t run Soft-Scope IlI.

O Soft-Scope Il runs, but you can’t load an application.

Symptom:

Probable Causes:

Symptom:

Probable Causes:

When you tried to load your application
Soft-Scope |1l wasn’t invoked and you did
not get the Soft-Scope Il prompt (ss>).

Your system is not pathed to Soft-Scope Il
or your application. Try typing the path
name with the invocation.

Soft-Scope Il wasn't installed properly.
Make sure the file, SS, is in /UTIL386. If
you can't locate the problem, call the RadiSys
technical support number supplied with
your iRMX development set.

Soft-Scope Il is unable to load itself (or the
application) and errors are generated.

Soft-Scope Il requires almost 690k even
before the application is loaded, 530k for
Soft-Scope Il itself, and 160k for the Soft-
Scope 111 kernel (SSKERNEL).

The "Unable to communicate with
SSKERNEL" message may mean your stack
size is too small. Try increasing the stack
size with the SEGSIZE control.

SSKERNEL will fail if you try to load an
80286 application compiled in SMALL
model.

Soft-Scope Il for IRMX 1l



Controlling
Execution 3

With Soft-Scope Ill you can monitor your code while executing at the source or
assembly level. You can execute one line at a time, or to a pre-determined location,
and you can set hardware and software breakpoints on a single task, a group of
tasks in one or more jobs, or globally.

Table of Contents

DiSPlay COAE ...t 30
Examine a Line of COde ..o 34
R3] (=] 0] o 1 T PSR 36
GO bbb 40
Assign Files to Module Names ... 43
BreakPOINTS ..o 44
Disassemble COde ..o 48
Stack INFOrMALION .....ccooiiiiii e 50
Task ManipUIALION ......c.cviiiiiiiee e 52
Trapping iIRMX EXCEPLIONS ....ccuoiiiieieiieiiee e e 54

Suspend & ReSUME taSKS ..o 57



Display Code

Use LIST to display source lines from a module’s listing, or find a
SS=> specified string in a source file. Soft-Scope Il uses the lines from
LIST the compiler-generated listing file, or in the case of iC-286 the

source file. Every source line has a line number associated with
it that can be used as a lineref for a LIST command.

[count] LIST [lineref | TO lineref]
LIST lineref TO lineref

List specified lines The abbreviation for LIST is "L".

Specify a starting and ending line reference to list all lines be-
tween two points:

ss> list #18 to #25

List to a reference LIST TO lineref displays as much of the source listing as can fit
on one screen. The line specified by lineref is the last line listed:

ss> list to :cmain.count_task#2807

Specify the number Use the count parameter to tell Soft-Scope I1l to list a specified
of lines to list number of lines:
ss> 10 list

When you use a form of the LIST command that doesn’t use up
the entire display, the area of the screen used for the listing
display becomes a listing window. You can scroll within this

window.
The list command Any form of the LIST command puts you into an interactive list
line mode. After the last line listed, you will see a command line in

the following format:

[ location :modname (  keys ) Mode -Find quit ]

LIST functions are described in Table 3-1.

30 Soft-Scope Il for iRMX IlI



Display Code

If source file lines are greater than 80 columns wide, Soft-Scope
I11 truncates the displayed listing. You see the first 79 columns,
and an exclamation point (!) in column 80, signifying that Soft-
Scope Il truncated the rest of the line. The Find facility will,
however, search for strings that go past column 79.

If you are logging output to a file or device when you use the
LIST command, only the last screen display will be recorded. If
you do want to log multiple screens of listing, issue multiple
LIST commands, exiting after each full display.

Chapter 3, Controlling Execution

NOT E1

31



Display Code

Table 3-1
Interactive LIST
function
descriptions

32

Possible

Field Displays Description

location  Top of

End of

All of

Module:

:modname

keys cr

1.9

Sp

You are at the top of the module, and the
module contains more lines than can be
displayed. You can list only downward.

You are at the bottom of the module, and the
module contains more lines than can be
displayed. You can list only upward.

The entire module is displayed.

You are in the middle of the module, and the
module contains more lines than can be
displayed. You can list upward or down-
ward.

This is the name of the module you are
listing. To list another module, exit this LIST
command and type “LIST :module” using the
new module name.

Press <Enter> to display the next listing line.

Display one to nine more lines of the listing
by pressing 1 through 9.

Press <Spacebar> to display downward one
screen’s worth of listing.

This key is active when the listing window is
smaller than the screen size. Pressing + ex-
pands the window by one line and displays
downward the next listing line.

Soft-Scope Il for iRMX IlI



Display Code

Field

Possible

Displays Description

Mode

Find

-Find

quit

Quit

Quit(sp)

Press M to display the mode that the FIND and
-FIND options use for string searches, Case or
NOCASE. Case differentiates between upper-
and lower-case letters. Nocase ignores this
difference. The option shown in all capital
letters is the current default. Press <Spacebar>
or <Esc> to keep the existing value, C to change
from Nocase to Case, and N to change from
Case to Nocase.

This is the search option. Pressing F places a
highlight bar over the first listing line displayed
and prompts: [ String “”’]. Enter the string you
are searching for. The last 10 search strings
issued are buffered. The last search string used
is pre-stuffed into the string field. Press <Up
Arrow> to scroll back through previous search
strings. Press <Esc> or <Down Arrow> to clear
the search string. Press <Enter> to start the
forward (downward) search through the
module.

Pressing - places a highlight bar over the last
listing line displayed, and searches backward
(upward) through the module. Except for
direction, forward and backward searches
function identically.

Pressing Q exits the interactive LIST mode and
returns you to the Soft-Scope Il prompt.

You are at the end of a module, or the entire
module is displayed. Press Q or <Spacebar> to
exit interactive LIST mode and return to the
Soft-Scope Il prompt.

Chapter 3, Controlling Execution

Table 3-1 continued

33



Examine a Line of Code

SS>
LINE

Display the current
execution point

Use LINE with an
address

Use LINE with a line
number

34

LINE directs Soft-Scope 1l to display as much information as it
can about the code you reference. The display includes some or
all of the following:

line number

module name

procedure name

source line or assembly instruction

[y |

LINE [coderef]

LINE is the default command. You can invoke it by just pressing
<Enter>. This is equivalent to LINE $CS:$EIP, and displays the
current execution point.

If you don’t specify a coderef, Soft-Scope 11l opens the module that
contains the current execution point and displays that line:

ss> line

[ Inside :CUTILS.sample#88 ]
#88 return &emd_buffers [cmd_count++];

LINE with a code reference displays the line associated with the
reference. The following displays the line identified by the
current return address:

SS> return

000c:000e

ss> line 0Oc:0e

[ :CMAIN.MAIN#17 ]

#16 do {

#17 ¢ = sample ();

If you specify a module that hasn’t been opened, Soft-Scope IlI
opens it.

If you know the line you want to see, use LINE with a line number:
ss> line :cutils.sample#88

[ Inside :CUTILS.sample#88 ]
#88 return &emd_buffers [cmd_count++];

Soft-Scope Il for iRMX IlI



Examine a Line of Code

The output of the LINE command depends entirely on what Soft-
Scope Il can determine about the execution address. You may
see any one of the following types of displays :

0 If the address is exactly at the beginning of a line, LINE
displays the module name, the procedure name (if within a
procedure), and the listing line:

[ :-TESTIO.LINEOUT#135 ]
135: CALL CO(lower_block); /* Block of name. */

0 If the address is in the middle of a line, LINE displays the
message “Inside,” and the module name the procedure name
(if within a procedure), and the listing line.

[ Inside :TESTIO.LINEOUT#135 ]
135: CALL CO(lower_block); /* Block of name. */

O If Soft-Scope Il cannot find debug information for the
execution point or reference, only the address and the
disassembly are displayed:

[In Unknown Module]
5471:0134 mov ax,bx

If Soft-Scope I1I’s current context (given by the TASK command)
is a task which is not at a breakpoint, the values of all the regis-
ters are given as 0, since registers cannot be determined for a task
not at break. A side effect of this is that the following is dis-
played if the LINE command is given:

[ In unknown module (0000:00000000)
< Address 0000 -> GDT[0] - Segment not present >

This message does not indicate any problem with Soft-Scope 111
or the application. It simply means that the task you are examin-
ing is not at a breakpoint.

Chapter 3, Controlling Execution

LINE command
output

The LINE command

and running tasks

35



Stepping

SS>
STEP

Initiate STEPPING

mode

36

The STEP command executes source code one or more lines at a
time. If execution doesn’t start at the beginning of a line, the

“[ Inside 1” prompt displays, telling you that the first step began
in the middle of the assembly code generated for that line.

[count] STEP [ASM] [INTO]
Abbreviation: S

STEP Steps over all calls
STEP INTO Steps into all calls

STEP ASM steps in assembly-language increments and
displays disassembled instructions.

Use count STEP to execute a specific number of steps. This form
of STEP is useful in macros. For example, the following steps 10
times.

10 step

If Soft-Scope 11l encounters a breakpoint set with the BREAKPT
command before count steps are executed, execution stops.

When you issue STEP you initiate the default stepping mode. The
next line to be executed and a menu bar display on your monitor.
The menu bar gives you the options shown on the bottom of the
following example:

ss> step
#30 main ()
#31  {

[ Auto Into OVER(sp,1..9) Mode Quit Return ]

The string “(sp, 1..9)” next to the INTO or OVER prompt, and
either INTO or OVER displayed in all capital letters indicates the
stepping mode.

Table 3-2 contains a description of each element in the menu bar.

Soft-Scope Il for iRMX IlI



Stepping

Option Function

AUTO Press A to step continuously until any key is
pressed.

INTO Press | to execute the current line or instruction,
stepping into encountered procedure calls.

OVER Press O to execute the current line, stepping over
all calls in the line.

sp Press <spacebar> to step once.

1.9 Press 1 through 9 to step through that number of
statements.

MODE Press M to change stepping modes.

QUIT Press Q to exit to the command line.

RETURN Press R to go until execution returns from the

current procedu re.

Soft-Scope Il1 sets a temporary breakpoint each time you step
OVER a procedure call. If you step over a procedure call that
causes the current task to be suspended or be put to sleep (such
as RQSLEEP()), or that takes a long time to execute, you may
exceed the value of BPTIMEOUT. When this occurs Soft-Scope
I11 reports the following message and prints a running prompt:

<TASK running>
Iss>

You cannot continue stepping in the current task until the task
hits the breakpoint set by the STEP command.

Press M to change the default mode. Then press S or A to step in
source or assembly, and | or O to step into or over.

[ Auto INTO(sp,1..9) Over Mode Quit Return ] "M”
steps [Source ASSEMBLY] calls [INTO Over] "S”

#31 {

#32 struct cmd *c;
#33 for (;;) {

#34 init ();

Chapter 3, Controlling Execution

Table 3-2 Step
menu options

Change the default
stepping mode

37



Stepping

Override the default
stepping mode

Specify the defaults
when you invoke

38

The INTO and OVER options allow you to override the default
stepping mode. Selecting INTO when the default is over steps
into any procedures called by the line executed. Selecting OVER
when the default is into works the same way.

Ss> step into asm

#32 struct cmd *c;
#33 for (;;) {
#34 init ();

0200:00000006 call :CUTILS.init(); $+21
[ Auto INTO(sp,1..9) Over Mode Quit Return ] "O”
[ Returning inside :CMAIN.main#35 ]

#34  do{
#35 ¢ = sample ();
0200:00000020 push ebp

Soft-Scope 11 displays the first assembly instruction, a call to the
procedure init in the module cutils. Pressing O overrides the
default of stepping into all calls. The program executes until the
return to cmain is reached.

When you invoke STEP, the default is OVER and SOURCE unless
you specify otherwise using the keywords:

Ss> step into asm
#32 struct cmd *c;
#33 for (;;) {

Soft-Scope Il for iRMX IlI



Stepping

The following example uses the INTO keyword, and demon-

strates the spacebar and return features:

SS> step into

#30 main ()

#31  {

[ Auto INTO(sp,1..9) Over Mode Quit Return ] "spacebar”
#32 struct cmd *c;

#33 for (;;) {

#34 init ();

[ Auto INTO(sp,1..9) Over Mode Quit Return ] "spacebar”

[ Entering :CUTILS.init() ]

#43  void init ()

#44 |

[ Auto INTO(sp,1..9) Over Mode Quit Return ] "R”

[ Returning inside :CMAIN.main#35 ]
#45  do {
#46 ¢ = sample ();

[ Auto INTO(sp,1..9) Over Mode Quit Return ] "Q”

Pressing <Spacebar> executes line 31 (the entry to the procedure
main). Pressing it again executes line 34, the call into procedure
init. Pressing R caused the rest of the procedure to execute until

the return to main.

Chapter 3, Controlling Execution

Step in source
mode, INTO all calls

39



GO

SS>
GO

GO [reference] sets
a temporary
breakpoint and
executes to it

Go with no breaks
can go indefinitely

40

The GO command tells Soft-Scope 11l to transfer execution to
your application and run until it is stopped by a breakpoint. The
program starts executing at the current execution point. GO
syntax is as follows:

GO [WRITE | ACCESS memref]
GO [coderef]
GO [RETURN]

Use the abreviation G to initiate the GO command.

GO with a code or memory reference sets a temporary break-
point at the desired reference. The temporary breakpoint is
assigned the scope currently reported by BPSCOPE.

Execution then proceeds at full speed until that (or any other)
breakpoint is hit.

If the breakpoint stops execution at the start of a source line, the
line is displayed. If your breakpoint was set at an absolute
address, the breakpoint might stop at some point within a line of
code. When this happens, you will see something like the follow-
ing. To look at the line, use the DISASM command:

[Inside] :CMAIN.main#2679

If you specify GO without parameters, and there are no break-
points set with scope in the task you are executing, Soft-Scope Il1
displays the following message asking you if you want to go
anyway:

ss> go
[ No breakpoints are set, go anyway? (y/n) ] “N”

If you go without breakpoints that will stop your task a running
prompt (Iss>) is displayed when the BPTIMEOUT value is
reached. If you want to stop the task, you will need to set a
breakpoint at a location it will hit. By now, it may have executed
much farther than you intended!

Soft-Scope Il for iRMX IlI



GO

If you use a code reference with the go command, execution stops
when it reaches the referenced location:

ss> go fill

[ Break at :CUTILS.fill() (0288:000001b8) ]
#91

#92  static void fill (buf, val, count)

#93 unsigned char buf [J;

Use a line number and execution stops on the specified line. Since
the code reference specified isn’t in the currently open module, you
must give the module name along with the line number:

SS> go :cutils#61

[ Break at :CUTILS.init#61 (0288:00000080) ]
#61 c->dev_code =i % 5;

Start execution at the current execution point. Stop execution when
an instruction attempts to write to cmd_count.

ss> go write cmd_count
< Write break >

[ Break inside :CUTILS.sample#88 (0288:000001ab) ]
#88 return &cmd_buffers [cmd_count++];

Soft-Scope Il attempts to cover the whole length of cmd_count. This
means that if cmd_count is four bytes long, a write to the last byte
will trigger a breakpoint. See the section on Breakpoints in this
chapter for information about hardware breakpoints and the 80386
debug registers.

In this example, execution stops when sleep100 is accessed.

Ss> go access sleepl100
< Access break >

[ Break inside :CUTILS.1st (025f:00000fff) ]
#14  for (; sleepl00 >= 0; sleep100--)

Chapter 3, Controlling Execution

Goto a
specified
location in the
code

Go until a
memory
location is
written to or
accessed

41



GO

Return from
procedure calls

42

The next example starts execution at the current address of the
CS and EIP registers, and stops when the execution pointer is
pointing to the next to the latest return address found on the
stack (the “Return” seen in the STACK display below).

ss> stack

[ :CUTILSfill, current execution point. ]

[ Return 1 - :CUTILS.init#68 called fill ]

[ Return 2 - :CMAIN.main#33 called init ]

[ Return 3 - Unknown module called main ]
[ No return address available ]

SS> go return

[ Break at :CMAIN.main#35 (0288:0000000Db) ]
[ Module :CMAIN initializing, using “cmain.Ist” ]
#34 do {

#35 ¢ = sample ();

Notice the STACK command before the GO RETURN command.
Before, execution was nested three levels deep. The GO RE-
TURN(2) command caused the target to execute until it returned
from :cutils.fill and :cutils.init.

In some special cases, GO RETURN may not have the desired
effect. For instance, if somewhere in the executed code an
instruction jumps to the same address as the instruction follow-
ing the calling address (as might happen in a recursive algo-
rithm), execution will stop.

When you specify an absolute address with any execution
breakpoint, including GO, make sure that the address resolves
to the first byte of an instruction or the results will be unpredict-
able.

Soft-Scope Il for iRMX IlI



Assign Files to Module Names

The MODULE command displays and makes listing file assign-
ments.

MODULE [:modname = filename]

When Soft-Scope 111 creates listing file names, it appends the
following extension:

O Intel ASM 386 files .A38
O Intel iC-386, files .LST
O Intel PL/M files .LST
O Intel iC-286 files .C

You can tell Soft-Scope Il not to assign a file to a module by
assigning the module to the null device (specifying “”” or pressing
<Enter> when prompted for the filename).

The debugger doesn’t initialize a listing file until a breakpoint in
that module is encountered or you issue a command that dis-
plays the source lines in that module. If at that time Soft-Scope
I11 finds that the assigned filename is invalid (i.e., not a listing
file), it will generate an error.

To display a list of your current listing file assignments, type
MODULE with no parameters.

Display the current file assignments.

ss> module
Name---------------------- Assigned File
[Default] CMAIN . ......... “/cmain.Ist”
:CUTILS. . . ....... “[cutils.Ist”

The module cmain is the current default module.

To perform a list of assignments every time you load Soft-Scope I,
create a macro to automate the process (see Macros, Chapter 6 ).

Assign the file CMAIN.LST in subdirectory CSAMP as the listing
file for the module cmain.

ss> module :cmain = csamp/cmain.lst

Chapter 3, Controlling Execution

SS>
MODULE

Display the current
file assignments

NOT E1

Make a file
assignment

43



Breakpoints

SS>
BREAKPT

Display a list of
breakpoints

Breakpoint scope

SS>
BPSCOPE

44

Soft-Scope 111 supports two kinds of breakpoints:
0 Execution breakpoints

0 Hardware breakpoints

Execution breakpoints stop application execution at the beginning of
the line the breakpoint is set on--just before the line is executed.

Hardware breakpoints can be set to stop execution when a memory
location is written to or accessed.

BREAKPT [] [WRITE memref | ACCESS memref] [TASK | JOB | GLOBAL]]
BREAKPT [-] [[coderef J[TASK | JOB | GLOBAL]]

The abbreviation, BR, invokes this command. Breakpoints remain

until you delete them.

The breakpoint command without keywords or parameters prints a
list of all current breakpoints. The "*" means the breakpoint's scope
includes the current task:

ss> br

global *  Access (0015:ffffffa8)
global * CUTILS.fil#2051
task Write (0006:000fff78)

Breakpoint scope determines which tasks the breakpoint will stop.
You have the following choices:

TASK Halts exectution of only the task that is current when
the breakpoint is set

JOB Halts execution of all tasks in the current job

GLOBAL Halts execution of all tasks, in any job or session in the
system

By default, breakpoint scope is TASK. By using the syntax below
for the BPSCOPE command, or the keywords, TASK, JOB, or
GLOBAL with the BREAKPT command, you can specify breakpoint
scope:

BPSCOPE [TASK | JOB | GLOBAL]

Soft-Scope Il for iRMX IlI



Breakpoints

The BPSCOPE command specifies the scope of all breakpoints set
after the command is issued.

The following example displays the current breakpoint scope:

Sss> bpscope

Current breakpoint scope = task

The next example sets a breakpoint with scope JOB. If you
specify scope when setting a breakpoint, the scope applies only to
that breakpoint:

ss> br :cmain#18 job
job * :CMAIN#18 [Breakpoint added]

BPSCOPE is useful for debugging tasks which are created from
the same code, or which share common procedures with other
tasks.

For example a utility function that is called by several other tasks,
but you want to follow the execution path of just one of them.

Set the scope to task, activate the task you want to follow and set
a breakpoint in the utility function. Only the task that was
current when the break was set will stop on that breakpoint.

The BPTIMEOUT command allows you to specify how long you
want to wait for the target to reach a breakpoint before you get a
Soft-Scope Il prompt.

When the time specified by this command has elapsed, if no
breakpoint is hit, Soft-Scope Ill prints a, "<Task running>
message and displays the running prompt:

Iss>

You may enter commands at this prompt just as you do at the
regular prompt, but commands such as LINE or REG, which
require current register information, won't give accurate data
until the breakpoint is hit and the normal prompt returns.

Chapter 3, Controlling Execution

SS>

BPTIMEOUT

45



Breakpoints

Execution
breakpoints

Hardware
breakpoints

Delete breakpoints

46

Use Execution breakpoints when you want to stop execution at a
certain point in the program. The following example sets a
breakpoint with scope JOB at line 2051:

ss> br #2051 job
job *  CUTILS.fill#2051 [Breakpoint added]

This example sets an execution breakpoint on the procedure
c_data. Execution stops before the first executable line of the
procedure:

ss> br :cutils.c_data
task * CUTILS.C_DATA [Breakpoint added]

Use hardware breakpoints when you want to stop execution
when a certain memory location or variable is accessed or written
to.

Write breakpoints stop execution when a memory location is
written to. The following example sets a write breakpoint with
GLOBAL scope on the variable sleep:

ss> br write sleep

global * write (0015:ffffffa8) [Breakpoint added]

Access breakpoints stop execution when a memory location is
written to or read from:

ss> br access tally[3]

global * write (0015:ffffffa8) [Breakpoint added]

Breakpoints remain set until you delete them. The optional
hyphen deletes the referenced breakpoint--without a reference it
deletes all breakpoints:

sSs> br -
[All breakpoints removed]

Soft-Scope Il for iRMX IlI



Breakpoints

Hardware breakpoints make use of the four 80386 debug regis-
ters. Because of the way these registers work, one hardware
breakpoint can use more than one register, which limits the
number of hardware breakpoints you can set.

The number of registers used depends on the following:

1. Alignment of starting address
2. Length of variable referenced

A single register can cover any one of the following ranges:

Length Address

1 byte anywhere

2 bytes aligned on a 2-byte boundary (word aligned)
4 bytes aligned on a 4-byte boundary (dword aligned)

Breakpoints set on variables or memory that do not conform to
these conditions will use more than one register.

Assume you have an 11 element array, arrayx, declared as type
char, and that the first byte of the array begins at address 1007P:

ss> br access arrayx
Setting the above breakpoint would use all four registers, one for

the first byte from 1007P to 1008P, one for the next four bytes,
another for the next four bytes, and one for the two end bytes.

If you knew that all of arrayx was going to be accessed at the
same time, you could do the following and use only one register:

Ss> br access byte arrayx

Hardware breakpoints are not enabled until a GO or STEP
command is issued and they are disabled when any breakpoint
is hit. It is possible for breakpoints to be "missed."”

Chapter 3, Controlling Execution

The 80386, 80486
debug registers

47



Disassemble Code

DISASM disassembles the instructions found at the specified
SS=> address, and if the corresponding high-level lines can be deter-
DISASM mined, displays them. If you aren't in a source line, DISASM

with no parameters disassembles the code at the current execu-
tion point. The parameter coderef can be a source line number ,
address, code symbol, or module name defining where disassem-
bly should start.

DISASM [ALL] [NOLINES] [coderef] [TO coderef]

The first time you use DISASM in a Soft-Scope 111 session, if you
don't specify a coderef, DISASM starts at the location found in
the CS:EIP register pair.

If you are already in or at a source line, DISASM without a count
disassembles the current source line. Subsequent DISASM
commands start from the location of the last instruction dis-
played by a previous DISASM command, unless you execute the
target program or issue a line command.

You can disassemble an area of code by specifying a starting and
ending code reference. In the following example, NOLINES tells
Soft-Scope 11 not to include source lines in the display:

ss> disasm nolines 56 to 57

028b:00000030 mov [ebp-04H], 00000000H ; Imm=0
028b:00000037 cmp [ebp-04H], +30 ; Imm=3
028b:0000003b joe  #58 ; $+19
028b:0000003d mov  eax,[ebp-04H]

028h:00000040 mov [ffffffccH=4*eax],00000000H ; Imm=0
028b:0000004b inc  [ebp-04H] ; Dword
028b:0000004e jmp  00000037H ; $-25

48 Soft-Scope Il for iRMX IlI



Disassemble Code

The ALL keyword tells SSIlI to show op-codes:

ss> disasm all

#91

#92  Static void fill (buf, cal, count)
#93 unsigned char buf [J;

028b:000001b8 55 push ebp

028b:00000169 89 e5 mov ebp,esp

028hb:000001bb 83 ec04  sub esp,+04H;Imm=0
#94 int val;

#95 int count;

#96  {

#97 inti;

#98 for (i=0; i < count; i++)

028b:000001be c7 45 fc 00 00 00 00 mov [ebp-04H, 00000000H ;Imm=0

Chapter 3, Controlling Execution

49



Stack Information

Use the STACK command to display procedure call nesting, stack
SS=> usage, and information about which source lines made calls.
STACK

[count] STACK [LINES]
STACK USAGE | RESET

STACK with no keywords or parameters displays a trace of
procedure call nesting. It tells you what procedure called what
procedure, starting at the your current execution point and
proceeding backwards:

Ss> stack

[Inside :CUTILS.sample#88, current exectution point.]
[Return 1 -- :CMAIN.main#35 called sample]
[Return 2 -- Unknown module called main]

STACK LINES displays a trace of procedure calls along with the
source line that made each call:

ss> stack lines

[Inside :CUTILS.sample#88, current exectution point.]

[Return 1 -- :CMAIN.main#35 called sample]

#34 do {

#35 c=sample (); /*Get sample until no more */
[Return 2 -- Unknown module called main]

Display current STACK USAGE displays the following information:
information about 0 The defined stack area addresses
the stack.

0 The number of bytes free and percentage of the stack free at
the current stack pointer location

0 The number of bytes free and percentage of the stack free at
the deepest stack level yet reached

The following is an example STACK USAGE display:

ss> stack usage

Stack size & address : 4097 bytes. 0014:efff to 0014:ffff
current level : 4092 bytes free, 0% used.
lowest level : 3062 bytes free, 32% used.

50 Soft-Scope Il for iRMX IlI



Stack Information

STACK RESET clears the stack between the pointer and the
bottom of the stack--the currently unused portions of the stack.

To determine available stack resources, give the STACK RESET
command first. This makes it possible for STACK USAGE to
determine how much of the stack is used.

The following example shows a STACK USAGE display before
STACK RESET:

ss> stack usage

Stack size & address: 4096 bytes ¢450:00000000 to c450:00000fff
Current level: 4024 bytes free, 1% used

Lowest level: 0 byte free, 100% used

The next example shows the same display after STACK RESET is
invoked. Notice the difference in the lowest level resources:

ss> stack usage

Stack size & address: 4096 bytes ¢450:00000000 to c450:00000fff
Current level: 4024 bytes free, 1% used

Lowest level: 4024 byte free, 1% used

Chapter 3, Controlling Execution

51



Task Manipulation

SS>
TASK

Display tasks that
are at break

Change to a
different task

NOT E1

52

Use the TASK command to view the source code in tasks, change
the task context, and determine the status of tasks.

TASK [tasktoken] | [ALL]

ALL All tasks from all Soft-Scope Il sessions currently

running

TASK reports information on which tasks are at a breakpoint,
and prints source-level information about the breakpoint, if
possible. The task whose context Soft-Scope Il is currently using
is denoted by the asterisk ("*") in the left-most column:

ss> task
* 27e0 :CUTILS.display_lights()
2788 :CMAIN.process_ task()

To change the task context in which Soft-Scope Il is operating,
use TASK with the task token as an argument:

ss> task 2788
Current context: task= 2788 job= 4500
[ :CMAIN.process_task() ]

#2433
#2434  void far process_task ()
#2435 {

Soft-Scope 11 displays source information for the new task if it is
available.

Since iRMX tokens are dynamically allocated, their numbers
will change from one invocation of Soft-Scope Il to another.

Soft-Scope Il for iRMX IlI



Task Manipulation

If you want to see what tasks are at break in other Soft-Scope |11
sessions that are running, use the ALL keyword. Tasks from
other sessions have a question mark in the left-hand column:

ss> task all
* 27e0 :CUTILS.display_lights()
2788 :CMAIN.process_task()
? 4780 in :home:test/csamp (4500:00000055)

Tasks 27E0 and 2788 belong to our own current Soft-Scope 1lI
session for which we have access to symbolic information. The
qguestion mark (?) in front of task 4780 tells us it belongs to
another Soft-Scope |11 session and that its symbolic information is
not currently available: All we know is that it is inside of the file
:HOME:TEST/CSAMP.

Access the symbolic information for task 4780 with the command
TASK 4780:

ss> task 4780

[ Warning another session set this break |

[ Loading OMF-386 STL file “:home:test/csamp”, Symbols ]
[ In :CUTILS.delay#2670 ]

#2670 call delay_fine;

The symbolics for the file :HOME:TEST/CSAMP are loaded, the
load segment information for this file is retrieved from
SSKERNEL, and task 4780 is detached from another active Soft-
Scope Il session and becomes your current task.

Examine tasks from
other SSlll sessions

Before the task is detached, you are warned that this task
belongs to another Soft-Scope 11 session user. The other Soft-
Scope |11 user is not warned.

In some cases, a task will be listed by TASK ALL with a question
mark (?), and there is no other Soft-Scope Il session active. This
can happen if some other application encounters some kind of a

fault, such as a General Protection or Stack fault. It is possible to
change execution context to that task by using TASK tasktoken.

Chapter 3, Controlling Execution

53



Trapping iRMX Exceptions

The Soft-Scope 111
exception handler

Find the code that
caused an exception

54

During initialization and loading, Soft-Scope Il defines a job-
wide default exception handler designed to trap any iRMX
exception encountered by your application, and to return control
to Soft-Scope Ill. This handler is set for mode 3. Both environ-
mental (0 -7FFFH) and programmer (8000H- FFFFH) exceptions
are trapped.

When the debugger detects an exception, it takes control away
from your executing application before it returns from the except-
ing system call. When this happens, an iRMX Exception Handler
message displays. See Figure 4-7.

If you type "Help Exception” Soft-Scope 111 Help displays an on-
line version of the following:

Soft-Scope I1I’s exception handler has trapped an iRMX exception
caused by your application. If you already know what line or
module caused the exception, and you are sure that continuing
will not immediately cause more exceptions, you may continue
program execution from this point with GO or STEP.

If you don't know what line or module caused the exception,
follow the directions below to get back to your own source code:

1. If atask other than the current one caused the exception,
switch to the task displayed in the Exception Handler mes-
sage.

2. Step through the exception handler assembly code using the
STEP command until you find yourself in familiar code. This
typically requires 20 steps and about four return instructions.

3. The line that caused the exception is the one just before the
line you return to in your code. Use the LIST command to
display that line.

Soft-Scope Il for IRMX for Windows



Trapping iRMX Exceptions

Your application has encountered an iRMX exception:
0006: ESEXIST (parameter #2),

Exception occurred in task bc80

[For more information - enter 'Help Exception']

Exception Handler message contents:

Line 1 Notice that your application has caused an iRMX
Exception

Line 2 iRMX error message describing the error that
caused the exception

Line 3 Task that contains the code that caused the
exception

For a given model of compilation, the number of steps to return to
your source is always the same. If you know what that number is
from previous experience, use a count to return to your code with

a single command:

20 step

If you want to disable this feature completely, so Soft-Scope Il1
doesn't handle exceptions, set the option rmxload.excep=off, and
all exception handling will be in-line. The option defaults to on.

See Define your own exception handler on the next page to learn how
you can selectively handle iRMX exceptions.

Chapter 4, Controlling Execution

Figure 3-1,
Exception Handler
message

Continued from
previous page

Turn exception
handling OFF

55



Trapping iRMX Exceptions

Define your own
exception handler

Figure 4-8, Disable
Soft-Scope Ill's
exception handler

56

Because Soft-Scope Il saves your application’s current exception
handler at each and every breakpoint, and restores it just before
beginning program execution again, you have the option of
redefining the exception handler to one of your own.

The example in Figure 4-8 shown below illustrates how you can
disable Soft-Scope I11’s exception handler temporarily so you can
handle exceptions in-line.

Keep in mind that the RQSETEXCEPTIONHANDLER system call
sets the exception handler for only the calling task. If you want
more than one task to have this new exception handler, you will
need to have each task set the exception handler for itself.

EXCEPTIONSTRUCT eh_handler;

/* Soft-Scope handler active */
rqgetexceptionhandler(&eh_handler,&status);
eh_handler.mode = 0;
rqsetexceptionhandler(&eh_handler,&status);

/* handle exceptions in-line */

eh_handler.mode= 3;
rqsetexceptionhandler(&eh_handler,&status);

/* Soft-Scope handler active */

More information on RQSETEXCEPTIONHANDLER and
RQGETEXCEPTIONHANDLER can be found in the iRMX System
Call Reference.

Soft-Scope Il for IRMX for Windows



Suspend & Resume Tasks

Use the SUSPEND and RESUME commands to suspend a task
and then restart it. This is useful when you are trying to debug a
task and its interaction with another task prevents you from
determining the problem. Suspend the second task while you find
the bug.

SUSPEND tasktoken
RESUME tasktoken

Suspend corresponds exactly to an iIRMX RQSUSPEND() system
call.

Resume is the same as the IRMX RQRESUME() system call, with
the following exception:

If you issue the resume command and specify the token of a
task that is not suspended, but is at break, Soft-Scope Il
removes the task from the task at break list and begins execu-
tion.

If the task is at break and suspended, you will need to issue
two RESUME commands, one to take it off break and one to
resume it.

Exert special care not to put Soft-Scope Il in the context of a
suspended task, since Soft-Scope 111 executes all of its tasking
commands in the context of the current task. This may cause Soft-
Scope 111 to hang waiting for a response from the task.

Ss> resume 4600
[Suspend successful]

If taskl is the name of a variable that contains a tasktoken, use
taskl to specify the task:

ss> suspend taskl
[Suspend successful]

Chapter 3, Controlling Execution

SS>
SUSPEND

SS>
RESUME

T

Resume Example

Use a data symbol
to specify which
task to suspend or
resume

57






Examining Data 4

This chapter tells you how to reference and change data, and how to use operators,
functions, and type overrides to view data in a format that will provide you with
maximum information. You can reference and view static symbols anywhere your
application can access them, and you can access many symbols outside the current
execution context.

In addition, you can reference, change, and dump memory, and access and change
registers and CPU structures.

Table of Contents

Data REFEIENCES .......ccuiiiiiicie s 60
EVAlUALE DA .......ocviviiiicceece e 64
Display Type INformation ...........ccccooeiiiiiieie e 65
RETEreNCE SCOPING ...oiviiiieieii et 66
MEMOKY REFEIENCES ....c.eiiiiiieeeeee e 68
TYPE OVEITIAES ...ttt ees 70
DIUMIP bbbttt b et e nae e 74
Registers and CPU STrUCTUIES ........coooiiiiiieece e 76
BUIIt-IN FUNCHIONS ... s 78
NUMDETS .. 80
(O] 011 = 1 (0] £ TR UR PP 82
R3] 1 TSR 84

REfErenCe SUMIMAIY ......ooiiiiiie e 86



Data References

With Soft-Scope 111 you can reference any variable your applica-
tion can access. Some examples are listed below:
O simple variables
arrays
structures
pointers
unions
bit fields

O Ooogoogd

Simple variables You can reference a variable by typing the variable’s name at the
prompt. If the variable isn’t a structure or array, SSIII deter-
mines the variable’s type and displays the hex and decimal
values of the associated memory locations:

SS> pattern

PATTERN = 0x00000041 +65

Array references If the variable is an array, referencing it without qualification—
an index or subscript—implies you mean the entire array. You
can also display single elements of an array, or ranges of ele-
ments, by using the appropriate subscript. You can even use
integer variables as subscripts.

Display an entire To reference an entire array, use the array name:

array ss> lights
LIGHTS[0]=0x2a 42 o
LIGHTS[1]=0x2d 45
LIGHTS[2]=0x2d 45
LIGHTS[3]=0x2a 42 o
LIGHTS[4]=0x2d 45
LIGHTS[5]=0x2d 45
LIGHTS[6]=0x2a 42 o
LIGHTS[7]=0x2a 42 o

60 Soft-Scope Il for iRMX IlI



Data References

To reference single elements of an array, use the array name with
a subscript:

ss> lights[2]
LIGHTS[2]=0x2d 45

To reference several array elements, use the array name with a
subscript range:

ss> lights[2..6]

LIGHTS[2]=0x2d 45 -
LIGHTS[3]=0x2a 42 ‘*’
LIGHTS[4]=0x2d 45 -
LIGHTS[5]=0x2d 45 -
LIGHTS[6]=0x2a 42 ‘*’

Use the open-ended operators to reference array elements from
or to a specific element:

ss> lights[2...]
ss> lights...6]
You can use an integer variable as a subscript. If the value of i is

3, the following example demonstrates the reference and the
resulting display:

ss> lightsi]
LIGHTS[3]=0x2a 42 *

(Continued on next page)

Chapter 4, Examining Data

Display a single

element of an array

Display a selected
number of array
elements

Variables as
subscripts

61



Data References

Structure
references

Reference unions

Reference bitfields

62

SSIII handles structure references similarly to arrays. To refer-
ence the entire structure named strucl, use its unqualified name:

Ss> strucl

To reference an individual element of a structure, type a period,
(), to separate the structure's name from the member's name:

ss> strucl.xint

Union reference syntax is based on structures, simply enter the
union's name:

ss> date

Union {
Struct {
unsigned char  day;
unsigned char month;

unsigned int year;
} today;
unsigned long days_since_year_0_ad;

} date;
Soft-Scope Il also handles bitfields like structures. To reference
a structure of bitfields, use the structure's name:

ss> enet_pkt

struct enet_pkt_type {

unsigned int crc:2;
unsigned int data:16;
unsigned int pkt_type:3;
unsigned int source_addr:4;
unsigned int dest_addr:4;
unsigned int preamble:3;

} enet_pkt;

Soft-Scope Il for iRMX IlI



Data References

To reference a single bitfield, separate the structure name from
the bitfield name with a period:

ss> enet_pkt.data

To reference the value of a pointer, use the pointer's name:

ss> oldcust

The pointer dereference operator (x) dereferences a pointer and
displays the type and values it points to:

ss> *oldcust

*:CUTILS.c_data.oldcust structure
name[0]. . 0x42 +66 ‘B’
name[l]. . 0x65 +101 ‘e’
name[2]. . 0x74 +116 ‘t'
name[3]. . 0x68 +104 ‘h’

When a pointer points to a structure, the pointer's name with the
structure pointer operator (->) references a single element of the
structure:

ss> oldcust->name

Chapter 4, Examining Data

Pointer references

Dereference a
pointer

Display a single
element of a
structure a pointer
points to

63



Evaluate Data

EVAL provides
more information
about some kinds

of references
SS>
EVAL
64

Use the EVAL command to display more specific information
about the following reference types:

Procedures Displays the module name, line number, starting
and ending address, and length

GDTI[X] Displays the descriptor base and limit, and the
access rights byte

Pointers Displays the physical address, the pointer's
value, the GDT associated with the pointer, the
requested privelege level, and the segment type
and access privleges

EVAL [memref | coderef]
Evaluate the procedure, fill:

ss> eval fill

Module :CUTILS (#93 to #101)
Code  028b:000001b8 to 028b:000001de (39 bytes)

When using EVAL to examine a pointer, it isn't necessary to
specify hexadecimal format, because hex is the default format
for pointers. The following example demonstrates the pointer
display, which is detailed in the paragraph below:

ss> eval ¢

ffffed2cH gdt[65] rpl=0 Data ED-R/W-AC (0001e2a0P)
ffffed2cH pointer's value

gdt[65] the GDT

rpl=0 requested privilege level. The privilege level is

reported as the privilege level of the current
module's code segement

ED-R/W-AC expand-down segment, with read, write and
access privileges

001le2a0P physical address

Soft-Scope Il for iRMX IlI



Display Type Information

TYPE displays a variable's data type, scope, and storage class.
You can look at the composition of large, complex data structures
without having to sort through their contents.

TYPE [memref | coderef]

Display type information to determine if a variable is stack-based
and only reachable from within the procedure where it is de-
clared.

The following example displays type information about the
structure, cmd_buffers:

ss>type cmd_buffers
array[0..3] of structure

board_id .............. long

dev_code .............. long

dev_name .............. pointer ->char
cmd_code .............. bitfield :2
cmd_buf ............... pointer ->union

Chapter 4, Examining Data

SS>
TYPE

65



Reference Scoping

Examples

66

You can access the same variables your application can access.

You can also reference many variables outside of your current
program context by using the following basic guidelines:

0 Putacolon in front of the module name.

0 Use periods to separate modules from procedures and
procedures from variables.

See the examples below to learn when to use the module name,
procedure name, colon, and period to define a reference.

To reference a global variable or a static variable in the current
module, use the variable's name:

SS>C

You can reference a static variable in a procedure other than the
current one by separating the procedure name from the variable
name with a period:

ss> c_data.i

Reference a variable declared in a module other than the current
one by putting a colon in front of the module name, and a period
between the module name and the variable name:

ss> :cultils.i

To reference a static variable defined in a procedure located in a
module other than the current one, put a period between the
module and the procedure and the procedure and the variable:

ss> :cutils.delay.i

Soft-Scope Il for iRMX IlI



Reference Scoping

By using the rules listed in Table 4-1 below, you can reference
any variable, located in any module or procedure, that is not
stack-based.

Where is the variable How should it be referenced?
declared?
Same procedure variablename
Global in scope variablename

In a different procedure, but | procname.variablename
the same module, static

In a different module, but not | :modname.variablename
in a procedure

In a different module and in a | :modname.procname.variablename
procedure, static

Because stack-based variables are stored on the stack, they are
only accessible when the execution pointer is in the procedure
where they are located. Trying to reference these variables
from outside the procedure they are defined in results in the
error message:

< No address associated with reference >

If you try to examine a stack-based variable before it has been
initialized, a value may be displayed, but it will probably be
the wrong value.

There will be a question mark next to the reference in the
display because you have to step at least once in a procedure to
initialize the stack for that procedure.

Also, before you examine variables that aren’t initialized until
the program accesses them, you should execute to a point at
least one line beyond the one that assigns a value to them.

See also: Memory References, Chapter 4
Reference Summary, Chapter 4

Chapter 4, Examining Data

Table 4-1 Reference
Scoping

Reference stack-
based variables

67



Memory References

Memory references With Soft-Scope Il1, you can reference memory with any
are more than just address, symbol name, or expression that resolves to a memory
addresses location. You can even use data types to dictate formatting.

O You can use a code reference as a memory reference,
because code is stored in memory:

symbolname

O A logical address consists of a selector and an offset,
separated by a colon:

selector:offset

O A linear address is an address that has not been passed
through the 80386 paging tables. Use the syntax below:

hexnumber L

0 A physical address is the address as it appears on the data
bus, and is identical to a linear address if paging is not
enabled. Use the following syntax:

hexnumber P

0 You can use operators and values in any combination:

symbolname operator hexnumber

0 Data references aren't necessarily stored in memory, so you
can't use them as memory references unless you know they
resolve to a memory address:

variablename

68 Soft-Scope 11l for IRMX 1l



Memory References

Use a code reference when you are referencing a program
symbol:

ss> display_lights

Use logical references when you know the selector of the memory
you want to view. The following example displays memory at
offset 0f200 in the segment given by selector 203 in the format of
structx:

ss> structx at 203:0f200

If you know the name of the symbol you want to reference, but
not the logical address, use the addressof operator (&). This
example displays memory at structy in the format of structx:

Ss> structx at &structy

Use a physical reference to view memory without regard to the
segment that contains it. In the example below, we have set a
hardware breakpoint on the first byte of a variable that begins at
physical address 20P:

ss> br write byte at 20P

By using an expression as a memory reference, you can define
memory locations that you might not know the physical or
logical address for. The expression in the example below refer-
ences a location 10 hex below the base pointer register:

ss> $ss:$ebp-0x10

See also: Type Overrides, Chapter 4
Data Types, Appendix A

Chapter 4, Examining Data

Code references

Most of the time,
you can use logical
addresses

Physical references
work well if you're
not sure what
selector to use

Use operators and
numbers to create
an expression

69



Type Overrides

Definition of type
overrides

Apply a type
override to a
variable

Apply a type
override to an
address

70

Using type overrides, you can cause a variable to be displayed as
though it were a type other than that declared in your application.
Type overrides don’t perform a conversion on the variable, they
merely overlay a new type at the variable’s address.

This is especially helpful for logical, linear, or physical references,
since they have no types assigned to them, and for symbols that
have been compiled without type information.

Type overrides have two basic forms:
type override variable

type override at address

The following can be used as types for overrides:

0 Any data type listed in Table 1, Data types for use in type
overrides, in Appendix A at the back of this book.

O Any user-defined variable that is currently accessible by your
application and Soft-Scope Il (stack-based variables must be
on the stack).

The simplest of the above forms is to specify a type before a
variable:

ss>long n

Use the second form to apply type overrides to addresses,
including registers, selectors, and pointers. Remember to use the
at operator. Here are a few examples.

The following example displays the contents of the specified
logical address in pointer format:

ss> pointer at 200:Offff

The next example displays the contents of the memory specified
by the logical reference in the format of a double:

ss> double at $ss:$ebp

Soft-Scope Il for iRMX IlI



Type Overrides

If you had just pushed the contents of the flags register and
needed to know what had been pushed, try the following, which
would display the data on the stack in flag format:

ss> fltype at $ss:$esp

fltype at 0040:000000d0 = 0x03e8 1000
[nt iopl=0 of df IF TF SF ZF af pf cf]

At works with TSS overrides:

ss> TSS386 at $tr

You can use the addressof operator (&) to specify an address for
use with the at operator.

You can also override the address of a symbolic reference to
superimpose the type of one reference over the address of
another. Suppose you had two structures--structx and structy.
You can display structy in the format of structx:

Ss> structx at &structy
Or you can use an address to designate the location you want
overlayed with a new format:

ss> structx at 200:ffOf

Using the at operator and an address, user-declared variables can
be type overrides. The following example displays memory at
$ss:$ebp - 0x10 in the data-type format of the variable n.

ss> n at ($ss:$ebp - 0x10)

Chapter 4, Examining Data

Use a variable to
superimpose its
data type over the
address of another
variable

User declared
variables can be
used to define a
type override

71



Type Overrides

How much memory
do you want to
display?

Expressions in type
overrides do
mathematical
operations

Assign values using
type overrides

72

The length operator will help you specify how much memory
you want SSIII to display.

This example displays 10 words beginning at the location of n:

ss> word n length 10

The next example dumps ten bytes beginning at the address
specified:

ss> dump byte at 200:1df length 10

You can use expressions in type overrides.

The example below causes SSlIII to apply the type override to the
contents of the memory location of n, add 2 to the value in that
location, and display the result:

ss>long n + 2

0x00000004 +4

The next example displays one word beginning at a stack
memory location 10 (hex) less than the base pointer:

ss> word at ($ss:$ebp - 0x10)

You can assign a value to a variable using a type override.

The following example assigns a real value of 3.0 to the memory
location associated with the variable speed. The data type—float
in this example—and the value must be of the same type:

ss> float speed = 3.0

Soft-Scope Il for iRMX IlI



Type Overrides

If you want to examine the new value in the format of the
override’s type, be sure to reference the variable using the
appropriate basic form:

ss> float speed

Use type overrides to manipulate the way data is displayed so
you can see the information you need in a format that is easy to
understand. Here are a couple of examples.

Assume a C pointer called dev_names, declared as pointing to
char (e.g., char *dev_names):

ss> *dev_names
The example above only displays a single byte, because of the
declared type. If you knew that the pointer was pointing to a

string of characters, you could override the default display and
display the entire string:

ss> string *dev_names

‘DISK\O’ 5

Use a variable defined as an array along with the at operator to
display a section of memory in array format:

ss> arrayl at 400:6

There are other ways to do the same thing. For example, if
arrayl in the example above is a 3 element array of longs, the
following will create the same display:

ss> long at 400:6 length 3

See also: Dump, Chapter 4
Table 1, Appendix A

Chapter 4, Examining Data

Display data in its
most useful format

73



Dump

SS>
DUMP

74

Use DUMP to display target memory in a formatted list. You can
specify any data reference or memory location.

The first time you use DUMP, if you don’t specify an address,
SSIII assumes you want to start dumping at physical address
00000000P. The next time you DUMP, if you don't give param-
eters, Soft-Scope 11 assumes you want to start where the last
DUMP left off.

DUMP [BYTE | WORD | DWORD] memref [TO memref ]

The default is BYTE.

BYTE Displays in byte format, byte order=1,2,3,4
WORD Displays in word format, byte order=2,1,4,3
DWORD Displays in dword format, byte order=4,3,2,1

DUMP displays blocks of memory with a hexadecimal display on
the left and the corresponding ASCII field on the right. WORD
and DWORD formats are displayed in reverse format with the
high byte first.

Soft-Scope 11l automatically determines the correct size for
dumps that you specify using a variable reference. For example,
if you issued DUMP ARRAYX, Soft-Scope 1l would compute the
size of ARRAYX and dump that many bytes of memory.

Some processor boards hang if you attempt to access non-
existent memory. This depends on how your processsor board
is jumpered.

Soft-Scope Il for iRMX IlI




Dump

The following example demonstrates the byte order when
dumping in byte format:

ss> 5 dump word name_init[1]

0123456789 abce 0123456789abcde
33e0:00000076 9d 00 00 00 €O

The next example shows the byte order when NAME_INIT is
dumped in word format:

ss> 5 dump word name_init[1]

0 2 4 6 8 a c e
33e0:00000076 009d 0000 33e0 00a6 0000

The last example shows the same dump in dword format:

ss> 5 dump word name_init[1]

2 6 a e
33e0:00000076 0000009d 00a633e0 33e000000
33e0:00000082 000000af 00b733e0

Chapter 4, Examining Data

75



Registers and CPU Structures

SS>
REG

SS>
EVAL

EVAL shows the
descriptor table
element's base and
limit

Display registers

76

Display registers and CPU structures using the REG or EVAL
commands.

Use the following syntax:

REG [ALL | FLOAT]
EVAL memref |coderef

ALL Show system registers
FLOAT Show NPX registers

You can access individual descriptors by treating the GDT, IDT,
and LDT as if they were arrays of structures without using the
EVAL command. The following example accesses the ninth entry
of the global descriptor table:

ss> gdt[8]
Code RD-AC Offsets 00000000..00001ca200ff DPL=0

However, if you use EVAL, the display includes descriptor base
and limit and selected fields of the segment descriptor:

ss> eval gdt[8]

Code RD-AC ffff4a58L LIM=01cazh DPL=0 gbP av

REG displays the contents of the CPU registers:
ss> reg

eax=00000005 cs=2201 eip=000002f0

ebx=fffffff4 ss=0015 esp=ffffffac ebp=fffffff8
ecx=00000000 ds=2209 edi=001aabf8 gs=0000
edx=001b32dc es=2209 edi=001aabf8 gs=0000
efl=00000246 [vm rf nt iopl=0 of df if tf SF zf af pf cf]

Soft-Scope Il for iRMX IlI



Registers and CPU Structures

When running in protected mode, REG ALL displays user and
system registers:

ss>reg all

eax=00000005 cs=2201 eip=000002f0

ebx=fffffff4 ss=0015 esp=ffffffac ebp=fffffff8
ecx=00000000 ds=2209 edi=001aabf8 gs=0000
edx=001b32dc es=2209 edi=001aabf8 gs=0000
efl=00000246 [vm rf nt iopl=0 of df if tf SF zf af pf cf]

cro=7ffffffb [pg ET TS em MP PE] Idtr=2778 tr=0228
€r2=00000000 [pfla=00000000] gdb=00100000  gdi=ded7
cr3=00000000 [pbdr=00000] idb=0010ded8  idI=03ff

To access a single register, put a dollar sign in front of the regis-
ter name:

ss>$eax=2H

[ was ] 00000001H

The Registers display is different for different applications. For
example, 32-bit 80386 applications support different registers
than 16-bit 80286 applications. All register subfield displays have
certain conventions in common:

0 Subfields displayed with an equal sign and a value (pri=0)
are made up of more than one bit. See your processor
reference manual to determine how many bits.

0 Subfields displayed in upper-case letters are in the on (1)
state.

O Subfields displayed in lower-case letters are in the off (0)
state.

0 Subfields are displayed right-to-left, with the lower-most bit
on the right and the upper-most bit on the left.

0 Subfields that will not change or that do not apply to your
processor are not displayed.
0 Subfield names are taken from Intel reference manuals.

See also: Appendix A: Tables

Chapter 4, Examining Data

The REG ALL
display includes
system registers

Reference or
change single
registers

Registers display
description

77



Built-in Functions

Function
descriptions

Determine
addresses

Use Return as a
memory reference

78

Soft-Scope Il provides six functions that allow you to perform
specialized operations. They can be used in any valid expression
(the parentheses are optional):

LENGTHOF (x) Returns the number of array elements
associated with a reference.

OFFSETOF (x) Returns the offset portion of a pointer.

PORT (x) Performs target hardware 1/0. Only

Byte-, Word-, or Dword-sized type
overrides are allowed with this function.

RETURN or Returns the expected return address of

RETURN (n) the current procedure. Return(n), where
n is an integer parameter, will calculate
the return address for the nth nested call.

SELECTOROF (x) Returns the selector portion of a pointer.
SIZEOF (x) Returns the parameter size in bytes.

Offsetof, Selectorof, and Return all help you determine ad-
dresses. Use the addressof operator (&) with the first two
functions:

ss> offsetof &lights

Return can be used to find an expected return address, or in
combination with Soft-Scope 11l commands to define a memory
reference. The following example causes SSIII to execute until
the expected return address of the current procedure is reached:

SS> go return

Using the return function with GO is exactly the same as select-
ing the return button on the bottom of the Code window.

Soft-Scope Il for iRMX IlI



Built-in Functions

Lengthof is useful if you need to determine how many ele-
ments are in an array. If the reference doesn’t represent an
array, lengthof will return a '1'. The following example shows
a reference to the array, lights, and the resulting display:

ss>lengthof lights

0x00000008 8

You can read from or write to 1/0 port addresses. Valid port
addresses are from 0 to OffffH.

Be careful about inspecting what you have just written to an
I/0 address by reading from it. With some devices doing a
read may change the state of the device, and may not return
the value written.

Also, it is important that you reference the correct number of
bytes when reading to or writing from a port. For example, if
you read 32 bits from a 16-bit port 3, Soft-Scope 111 will read all
of port 3 and 16 bits of port 4 (assuming port 4 is at least 16
bits).

If you write a byte to a word-length port, your target could
hang while waiting for an expected second byte of data.

To view the value of a port, reference the port in the data
dialog box:

ss> port 3

The following example writes a byte-length value to port
number 3:

ss> port 3 = 04H

The next example reads 32 bits from port number 2:

ss> dword port 2

Chapter 4, Examining Data

Determine how many
elements make up an
array

Read and write to
Port
addresses

79



Numbers

Supported number
bases and formats

Set the default base

80

Soft-Scope Il supports the following number formats and bases:

O

Binary numbers consist of the digits 0 and 1 and are desig-
nated by the suffix, Y.

Decimal numbers are made up of the digits 0..9 and are
designated by the suffix, T.

Hexadecimal numbers can be designated by the prefix 0x, or
with the suffix, H. They may contain the digits 0..9 and the
characters A..F. Hex numbers must start with a digit to
distinguish them from symbol names:

e000ffa9H must be represented as, 0e000ffa9H

Floating-point numbers contain a decimal point and an
optional fraction. They must begin with a digit (0..9) rather
than a decimal to differentiate them from symbol names:

.132 must be represented as 0.132
Exponential numbers use standard exponential format:

mantissa may have an optional + or -
must start with characters 0..9
must contain a decimal point followed by
some combination of characters 0..9

exponent must begin with an E
may have an optional + or - followed by
some combination of characters 0..9

The following example demonstrates an exponential number:
-1.098567E+4

If a number does not have a suffix or prefix, its base is deter-
mined from the base option, which can be added to your set file
or edited using the SET command.

This option may be set to 2, 8, 10, or 16. If the option is not set,
numbers default to base = 10.

Some number bases are not determined by the base option. See
Table 4-3 for a list of number types and their default bases.

Soft-Scope Il for iRMX IlI



Numbers

Number type

Default Base

b800:04ac Parts of a pointer aways default to hex
#123 Line numbers are always assumed to
‘module#123 be decimal

123 <Spacebar>

Counts are always decimal

byte at arrayx

Length counts are aways assumed to

length 123 be decimal

array[123], Array subscripts are always assumed

array[2..6] to be decimal

8..20 Ranges of numbers default to decimal

OX1fff >> x Operand for shift operations (x)
default to decimal

port 7f Ports default to hex

return (12)

Return counts default to decimal

selectorof

Selector overrides default to hex

-4.000000045E+5

Exponential format defaults to decimal

See also: Soft-Scope 111 Options, Chapter 5

Chapter 4, Examining Data

Table 4-3 Default

number bases

81



Operators

Operator types

Symbolic operator
examples

Arithmetic
operators will return
a solution

Logical operator
examples

Operator
precedence

82

With Soft-Scope I11, you can make use of three classes of opera-
tors:

Symbolic operators provide quick access to data references

Arithmetic operators provide standardized arithmetic expres-

sions

Logical operators provide standard, C-based true/false

operations

Symbolic operators are used as short cuts to access data refer-
ences. Examples include pointer dereferencing, ranges, and
address overrides:

*table_pointer
array_1[1..24], array_1[1...] and array_1]...24]
ss> long at $ss:ebp

Arithmetic operators are C-based arithmetic statements, such as
the increment operator and the modulus operator:

++i

%3

Logical operators are those used in true/false C-based opera-
tions. Examples include the logical and operator and the not
equal operators:

i&&Yy
il=1

Soft-Scope Il operator precedence is the same as C operator
precedence. In Table 4-4 operators on the same line have the
same precedence, and rows are in decreasing order of prece-
dence.

Table 4-5 lists Soft-Scope |11 specific operators and their relation-
ship to the ‘C’ operators in Table 4-4.

Soft-Scope Il for iRMX IlI



Operators

Operators

o o -

! ~ ++ - +
* / %

+ -

<< >>

< <= > >=

== 1=

&

N

|

&&

1|

= += = *= /=

Operators and Functions
# (:module#23)
Type overrides
offsetof
selectorof
lengthof

length

at

port

return

sizeof

# (#123)

: (module name)
. (.symbol name)
1 (1234:5678)

.. (array[1..2])

... (array[...3])

... (array[4..])

%= &= N= I =

Table 5-4 C operators

Associativity
left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right

<<= >>= rightto left

Relationship

same as ->

same as ++

same as ++

same as ++

same as ++

same as ++

same as ++

same as ++

same as ++

same as ++

same as ++

same as ++

same as ++

between ++ and multiply
between add and <<
between add and <<
between add and <<

Table 5-5 Soft-Scope 111 specific operators and functions

See also: Operators, Appendix A

Chapter 4, Examining Data

83



Strings

Escape sequences

84

NOT E1

You can enter data in string format, delimited by either single or
double quotes and containing any printable ASCII character.

The only difference between single and double quotes is that
Soft-Scope Il includes a terminating null character within the
double-quoted string.

If you type SSIH will create

“frogs” frogs\0

‘frog\’s’ frog’s

Escape sequences in strings perform pre-defined functions.
Escape sequences start with the escape sequence delimiter,
backslash (\).

Escape sequences create a problem which we solve the same
way C does. If you actually want a backslash in a string, you
must use two of them (\\). For example, if you want to define
a string that contains a DOS subdirectory pathname, you must
use the following format: “C:SUB_DIRI\\SUB_2”. This is not
an issue when Soft-Scope Ill prompts for a file name.

The escape sequences listed in Table 4-6 are supported within
strings. They are case-sensitive.

Soft-Scope Il for iRMX IlI



Strings

Escape Sequence | Description Hex Value
\0 Null character 0x00
\b Backspace 0x08
\t Tab 0x09
\n Newline 0x0a
\r Return oxod
" Double Quote 0x22
' Single Quote 0x27
\\ Backslash 0x5¢
\f Form Feed 0x0c
\a Audible Bell 0x07
\v Vertical Tab 0x0b
\xnn nn is hex value
\nnn nnn is octal value

Chapter 4, Examining Data

Table 4-6 String
escape sequences

85



Reference Summary

The following list is a summary of some of the possible ways to reference a data element or

memory address:

variable

typeoverride variable

:module.variable

:module.proc.variable

#linenumber
:module#linenumber

arrayl

array1[1..3]

structurename
structurename.elementname
pointername

*pointername

pointername->elementname

string at 200:0ffff
structx at 200:0ffff

$register
word at $ss:$esp
1234.:0ffff

12345678L
12345678P

86

refers to a variable in your program

refers to a memory location where variable is stored displayed
as the type specified by typeoverride

refers to a variable whose scope is in another module

refers to a variable whose scope is in another procedure in
another module

refers to a line number in the current module

refers to a line in a module other than the current one
refers to an unqualified array

refers to a range of elements in an array

refers to an unqualified structure reference

refers to a single element of a structure

refers to the value of a pointer

refers to the area of memory where a pointer points

refers to a single element of the structure where a pointer
points

refers to a string at the given memory location

refers to the display of the contents of the given address in the
format defined by the data type of structx

refers to one of the target processor’s registers
refers to the word at the top of the current stack

refers to a logical address. Note the “0” before the first “f.” All
numbers that start with a character other than a numeric digit
must be prefaced with a “0”

refers to a linear address

refers to a physical address

Soft-Scope Il for iRMX IlI



Soft-Scope Il
Configuration

Soft-Scope 11 uses an options file containing a list of parameters and their values to
configure many of its features. Throughout this manual, these options are explained
in the context of the features they control. However, for clarity and convenience,
this chapter contains a description of each of the available options, and how to
modify, add, or delete individual options in your FILENAME.SET file.

Table of Contents

SEtNG OPLIONS ..ot seeeneas 88
SOTt-SCOPE T OPLIONS ..o 90

5




Setting Options

Soft-Scope 11l
configuration
options

SS>
SET

88

Soft-Scope 11l maintains a list of options for the Soft-Scope I
environment and their associated values. Soft-Scope Il loads
SS.SET found in the same directory as the Soft-Scope |1l executable,

by default.

You may also specify a set file (FILENAME.SET) on the command
line when you execute SSlII. This set file, for example, could be
used to set options specific to an application. While you are using
Soft-Scope 11, you can use the SET command to set or override

any option:

SET [optionname [= optionvalue]]

Soft-Scope |11 uses these options for specific operations but only
looks at a value when it is needed, so it’s possible to specify an
invalid option and not generate an error until that option is used
by some other Soft-Scope Il command.

The following options are available:

Option Description

base Define the number base

cmd.history Number of commands available to recall.

cmd.initial Initial command or macro to execute
when Soft-Scope 111 is invoked.

cmd.macro Initial macro file(s) to load.

cmd.prompt Soft-Scope Il prompt to use.

cmd.silent Disable the bell.

rmxload.excep
src.path.ext
src.path
src.tab
sym.case
sym.descriptor
sym.pointer
tmp.path

Turn exception handling off
Pathname for source-file searches.
Pathname for all file searches.
Tab equivalence for any files.
Consider case in searches.
Descriptor Type Override type.
Type of FAR pointer to use.

Define the directory where temporary
files are stored.

These options are explained in detail in the next pages.

Soft-Scope Il for IRMX 1l



Setting Options

[ Options currently set |

sym.case. .. ... “off”
sym.pointer . . . . “ptr32”
sym.descriptor. . . “desc386”
src.path.a3s. . .. “$:”
src.path.Ist. . . . “:$:";/src/lst/”

srctab...... “4”

cmd.history . . .. “10”

cmd.macro. . ... “ss.mac;your.mac”
cmd.prompt. . . . . “ss>"

cmd.initial . . . . “init”

These settings were established by the SS.SET file, and define the

following:

O o o g

O

Symbol searches ignore the case of the symbol.
Pointer type overrides are 48-bit Far pointers.

Descriptor type overrides are in 386 format.

ASM386 source files are found in the current directory.

Listing files are found in the current directory or in
/src/lst.

Tabs for listing files are set at every 4 characters.
The history keys store the last 10 commands.

The initially loaded macro files are SS.MAC and
YOUR.MAC.

The Soft-Scope 1l prompt appears as “ss>".

The macro INIT, defined in SS.MAC or YOUR.MAC,

automatically executes when you invoke Soft-Scope IlI.

Chapter 5, Soft-Scope Ill Configuration

Example option
values

89



Soft-Scope IIl Options

Control the default
number base

Set the number of
history entries to
store

Define an initial
command

Run an initial macro

Change the Soft-
Scope Il prompt

Turn off the bell

90

base=10]16

Set the SSlII option base to the decimal value of the number base
you want to use when inputting numbers (i.e., base=16 sets it to

hexadecimal). Your choices are 10 or 16 and the default value is

decimal (base=10).

See Numbers in Chapter 4, Examining Data

cmd.history = 0..255

This option sets the number of previous commands that can be
scrolled through using the command history keys <Up Arrow>
and <Down Arrow>. This must be set to a decimal value between
0 and 255.

cmd.initial= command
This option can be set to any Soft-Scope 111 command.

When SSlI1 is invoked it automatically loads the initial macro file
as defined by the option cmd.macro. Then it performs the com-
mand specified by this option.

cmd.macro= macro filename;filenameZ,...

This option lets you define the initial macro file SSI1I loads as
described above. The macro filename must include a complete

path. If it doesn’t, the macro file must be in the current working
directory. By default, this option loads the RadiSys SDB commands.

cmd.prompt = string
This option sets the Soft-Scope Il prompt. To change the prompt
from SS> to Soft-Scope, for example, type this:

cmd.prompt=Soft-Scope

cmd.silent = ON | OFF
This options disables the bell when it is turned on (except at the
end of a load). The default is OFF.

Soft-Scope Il for IRMX 1l



Soft-Scope IIl Options

rmxload.excep=on | off

Use this option to tell Soft-Scope 111 not to trap iIRMX exceptions.
When set to on, any exceptions your application causes will stop
execution. On is the default. See Trapping iRMX Exceptions, in
Chapter 4, Controlling Execution.

src.tab= value

This changes the number of blank characters for each tab character
in a source file. When SSIII encounters a tab character in the
source file, it inserts value blanks at that point. SSII determines
the default for this number from the language of your application.

src.path = d:/directory/...

src.path.ext = d:/directory/../.ext

These options control searches for listing/source files. The .ext
extension is replaced with the extension of the file type you will be
searching for. For example, src.path.Ist is used to search for Intel
iC-386 or PL/M listing files. src.path.c is used for iC-286 source
files.

If all of your C files use the extension .C00 and are in the directory
/CSRC, src.path.c = /csrc/.c00 would both set the default directory
and default filename extension.

If src.path.ext isn’t defined, src.path is next in priority. The path
is composed of a series of specifiers that modify the known
filename. In the simplest case it works like the search path
defined in an environment except that a semicolon (;) is used as a
delimiter between specifiers:

src.path= " /dirl/;/dir2/

The path given when you invoke Soft-Scope is appended to the
existing src.path entries. If your set file doesn’t contain a src.path
entry, it is created and the path is assigned to it.

Chapter 5, Soft-Scope Ill Configuration

Turn iRMX
exception handling
off

Define Tabs

Define a path to
your application
files

91



Soft-Scope IIl Options

Make SSllIl case
sensitive

Define Pointer type-
override display

Define the
descriptor type
override

Tell Soft-Scope Il
where to store
temporary files

92

sym.case=on | off

Setting this option to on causes SSlII to use the case of symbols
you type on the command line when searching for a symbol in the
symbol table. By default, SSllI is case-insensitive (sym.case=0off).

sym.pointer= value

When you use pointer as a type override, SSIlI can interpret it
four different ways. This must be set if you use a pointer override.
To control this interpretation, set sym.pointer to one of four
possible values:

OFF16 16-bit offset
OFF32 32-bit offset
PTR16 32-bit pointer
PTR32 48-bit pointer

sym.descriptor = desc286 | desc386

When you use a descriptor type override, Soft-Scope 111 uses this
option to define it. If you use a descriptor type override when this
option isn't set, or if it is set to anything but the two values shown
below, Soft-Scope Il prints an error message.

tmp.path= D:\directory \subdirectory \...

The first time you debug an application, SSIII creates a temporary
file that contains the initialization information needed to load that
application. This option defines where that temporary file is
stored.

The file has the same filename as the application, except the
extension is TMP, and the next time you invoke SSIII and ask it to
load the application, it looks for the temporary file containing the
already-built data. If it finds the temporary file, and the applica-
tion hasn’t been modified, SSIII uses it to load the application
instead of rebuilding initialization information.

This option defaults to the directory where the application you are
trying to debug is located.

Soft-Scope Il for IRMX 1l



Soft-Scope Ill Macros

Soft-Scope I1I’'s macro facility lets you create your own macros. You can create
macros to:

[0 Rename a SSIIl command
[0 Create pseudo-command files of commands

[0 Create new SSlII pseudo-commands

Table of Contents

(OF =T | (=00 1/ =Tl (0 < T 94
Macros Control StAtEMENTS .......ocvveeiiiee e 96
MACIO FUNCLIONS ....eveeeiitiie ettt 97
|V = Tl o T T =1 (=1 (] 98

MaCro EXaMPIES ...c.ooiiiieece e 99



Create Macros

SS>
MACRO

NOT E1

94

Soft-Scope 11I’'s macro facility lets you create your own macros.
You can create macros to:

0 Rename a Soft-Scope Il command.
O Create pseudo-command files of commands.
O Create new Soft-Scope Ill pseudo-commands.

MACRO [LIST]

MACRO LOAD filename
MACRO DELETE [macroname]
MACRO STEP [macroname]

Adding a macro to Soft-Scope Il consists of the following steps:

1. Create a file containing the macro using a program editor, or
use the program editor to add the macro to an existing macro
file.

Although you can add macros to the macro file SS.MAC supplied
with Soft-Scope I, it is not advised. You run the risk of corrupt-
ing macros that Soft-Scope 111 needs to fully function.

You can load multiple initial macro files by specifying them with
the cmmd.macro option. For example the following loads the
macro file SS.MAC, then YOURS.MAC:

set cmd.macro:ss.mac;yours.mac

2. Load this macro file into Soft-Scope Ill using the MACRO
LOAD command.

3. Invoke the macro like a regular Soft-Scope 11l command.

Loaded macros are stored internally, and are not affected by
changes to their source until that source file is loaded again.

Soft-Scope Il for IRMX 1l




Create Macros

There can be any number of macro definitions in a macro source
file. Each declaration must look similar to a C-procedure declara-
tion, except that the keyword “macro” should be used where the
C-procedure return type would be, and there can be no type
declarations for the parameters. You can use control statements
and function calls to built-in procedures within the declaration.

Almost any Soft-Scope Il command or expression can be used in a

macro. Two exceptions are the MACRO STEP command and the
built-in function RETURN used by itself. GO RETURN(2) will
work, while RETURN on a line by itself to display the current
return address won’t work because RETURN by itself is a Soft-
Scope macro control statement.

When using the Soft-Scope 111 STEP command (not the MACRO
STEP command), remember to use the form count STEP if you
don’t want to go into interactive STEP mode (i.e., 2 STEP to step
twice then continue macro execution).

Chapter 6, Soft-Scope Il Macros

Macro Source Files

Soft-Scope 11l
Commands in
Macros

95



Macro Control Statements

Control Statements

96

The macro language supports the following control statements:

abort
break
if/else
return

O0oo0oaoo

while

Each statement is explained below:

Abort

Break

If (condition) {...} Else {...}

Return

While (condition) {...}

Abort returns execution to the command
line. Typically it is used when a severe
error occurs in a macro and you want to
stop execution.

Break functions the same as the C-
language break: it exits the current block.

The if/else control statement functions
similar to its C-language counterpart.
Condition can be any Soft-Scope I11
expression that evaluates to a number. If
it evaluates to any number except 0, the
statements after the if are executed. If it
evaluates to 0, the statements after the
else are executed.

Return functions like its C-language
counterpart, returning execution to the
place where it was called.

While functions similarly to its C-lan-
guage counterpart. Condition can be any
Soft-Scope 11l expression that evaluates to
a number. If condition evaluates to any
number except 0, the statements within
the brackets will be executed. If it evalu-
ates to 0, control passes to the next
command after the loop. To create an
endless loop, simply make the condition
1. (e.g., while (1) {...}.)

Soft-Scope Il for IRMX 1l



Macro Functions

There are two built-in functions: echo and print.

Echo ON | OFF

Echo ON is a switch informing the Soft-Scope 111 command
interpreter to send all command output to the console. Echo OFF
is a switch that does the reverse. All command output is executed
quietly, not echoing to the console.

The default echo condition is Echo ON.

Print (string)

Print sends a string to the Soft-Scope Il output device. The string
must be enclosed in parenthesis, and can contain the following
escape characters:

Escape

Character Function

\a ring bell

\n new line

\r carriage return
\” double quote

Chapter 6, Soft-Scope Il Macros

Macro Functions

97



Macro Parameters

Parameters

98

Macro parameters on the command line are parsed as literals. In
the macro source file, a parameter is recognized by a percent-sign
preceding the parameter:

this is a Y%oparameterl reference

When you invoke a macro, include the string you want substi-
tuted. The literal strings are parsed and inserted in the appropri-
ate places. For example, if the macro used in the above example is
named macrox, the invocation below would cause the statement to
be interpreted as “this is a text reference”:

macrox text

Keep in mind that literals are strings of non-blank characters. The
statement “MACROX 3+4” passes the single string “3+4” to
MACROX, while “MACROX 3 + 4” passes three strings: “3”,
“+” and “4”.

If you want to pass blank characters in a parameter, place the
parameter in quotation marks:

The number of parameters passed to the macro can’t exceed the
number of parameters that the macro expects. If a macro expects
one parameter, the macro can be invoked with no parameters, and
will pass a null string, but it can’t be invoked with two or more
parameters.

Soft-Scope Il for IRMX 1l



Macro Examples

/

/

/* gowrval */
/* SYNTAX: gowrval dataref value */
/* EXAMPLE: gowrval xbyte 10h */
/* OVERVIEW: Runs target until dataref is */
/* written with the given value.  */
* *
/* Each time the target stops the value of the *
/* dataref is printed out. */
/ /
macro gowrval (dataref, value)
{
echo off
br write %dataref
while (1) {
go
echo on
%dataref
echo off
if (Yodataref == %value){
break
}
br - write %dataref
print (“%s = %s”, %dataref, %ovalue)
}
/ /
/* Isym *
/¥ SYNTAX: Isym filename */
/* EXAMPLE: Isym /fs/hello */
/* OVERVIEW: Loads symbols for a specified  */
I* filename. This macro could have */
I explicitly specified a filename */
I* to decrease the amount of *
* typing(of course there would */
I* have to be *
I* a different macro for each *
* filename loaded). */
/ /
macro Isym (filename)
{
load symbols %filename
}

Chapter 6, Soft-Scope Il Macros

Example Macros

99






Tools

This chapter provides minimal information designed to help ensure Soft-Scope il
compatibility with your application. If you need to learn more about the tools SSIII
supports, consult the appropriate reference guide.

Table of Contents

TOOIS INFOrMALION ..oveeeieeee e 102
ASM286 AN ASIMBBE ...ttt 103
BND286 aNd BNDS386 .........ocivieiiieeiie ettt st 104
BLID386 ...ttt e e e et e e san s 105
1C286 AN IC380 ...ttt st st e s a e st e e sraeeerae e 106
PLZM 286 aNd PLZM 386 .....c.eveiiiiriiie ittt 107

FORTRAN-3806 ....eciieiiieees s 109



Tools Information

Example files

Table 7-1
Supported Tools

102

You can use any of the tools listed in Table 7-1 to build your
applications.

To make sure you have all of the information you need, we have
included complete samples of batch and make files with the
sample program on the distribution disks.

The sample program is located under this directory:

/RMX386/DEMO/SSCOPE

386 Tools 286 Tools
ASM386 ASM286
BND386 BND286
FORTRAN-386 iC-286
iC-386 PL/M-286
PL/M-386

Soft-Scope Il for IRMX 1l



ASM286 and ASM386

At least the following controls are required:

DEBUG
0 TYPE

NAME program linkage directive (inside assemby source
files)

0 PROC & ENDP directives (inside assembly source files)

Soft-Scope 11l reads source information from the original source
file for ASM286, usually filename.A28. ASM386 creates a listing
file, filename.LST, which provides symbolic information to Soft-
Scope IlI.

ASM286 does not supply sufficient symbolic information to
support source-level stepping in Soft-Scope lll.

Version 3.0 of ASM386 does not support source-level stepping.
However, versions 4.0 and later do.

asm386 asmsamp.a38 debug type

Chapter 7, Tools

Controls

Source information

Notes

Example invocation

103



BND286 and BND386

Controls

Notes

Example invocation

104

Use at least the following controls:

0 RCONFIGURE

The RCONFIGURE control makes your application loadable by
the Human Interface and sets lower and upper memory bound-
aries.

We use a control file to specify bind information, so our invoca-
tion line specifies only the control file:

bnd386 controlfile(csamp.bnd)

For an up-to-date copy of CSAMP.BND, look in the directory
specified in the Tools Information section of this chapter.

Soft-Scope Il for IRMX 1l



BLD386

The controls for BLD386 are specified in the .CF file created by
ICU386.

In this file, replace the NODEBUG option with DEBUG, and
remove the NOTYPE directive each time new files are generated
through 1CU386.

This is an example created from a user definition file,
TESTRMX.DEF. The TESTRMX.CF file generated by ICU386 is used
for the BLD386 invocation as the final step in regenerating the
operating system:

NUCLS.LNK &
, IRMX386/SDM/DASM.LNK &
, M3.LNK &
, SDB.LNK &
, IOS.LNK &
, EIOS.LNK &
, LOADR.LNK &
, HLLNK &
, CLLLNK &
, UDLLNK &
, XNETINT.LNK &
, RMXNET.LNK &
, USERJOB.LNK &
OBJECT (/BOOT32/TESTRMX.386 ) DEBUG &
BUILDFILE(TE =~ STRMX.BLD)

This example is for a Multibus | system. Consult your iRMX
manuals for boot directions on different systems.

Chapter 7, Tools

Example .CF file

NOT E1

105



IC-286 and iC-386

Controls

Source information

Notes

Sample invocation

106

Use at least the DEBUG control.
Do not use the following controls:

NODEBUG
NOTYPE

NOOBJECT

OPTIMIZE(2) or OPTIMIZE(3)
NOLIST

NOPRINT

O o o o o d

Version 4.5 of iC-386 has a new switch, NOSRCLINES, that
reduces the size of the load file. 1t removes the source lines
section of the OMF, which Soft-Scope |11 doesn't use.

Soft-Scope 111 uses source files for source information with iC-286.
The default extension is .C.

For iC-386 source information, SSIII uses the listing file produced
by the compiler. The default extension is .LST.

Because it does not support an OMF386 register type, iC-286
produces no symbolic records for register variables.

Soft-Scope 11l generates a message warning you that there is a
missing line in your source file. This is because iC-386 creates a
line record for the EOF marker. You can safely ignore this mes-
sage.

ic386 cmain.c compact debug

Soft-Scope Il for IRMX 1l



PL/M 286 and PL/M 386

Use at least the following control:

0 DEBUG

Do not use these controls:

NODEBUG
NOTYPE

NOOBJECT

OPTIMIZE(2) or OPTIMIZE(3)
NOLIST

O o o o o d

NOPRINT

Soft-Scope 11l takes source information from the listing file pro-
duced by the compiler. These files default to SOURCEFILE.LST.

plm386 putils.p38 debug optimize(0) large

PL/M pointers do not indicate what variable type they point to, so
Soft-Scope Il displays a byte value when you dereference them.
To work around this, preface pointer references with a type
override to display them in pointer format. See Type Overrides, in
Chapter 4, Examining Data for more information.

SSII1 does understand based variables. If, for example, the
following symbols were declared in your target software,

declare customer_ptr pointer,

customer based customer_ptr structure(
name (5) byte,
linkfor pointer);

Chapter 7, Tools

Controls

Source information

Example invocation

Useful tip

107



PL/M 286 and PL/M 386

The example below shows what using the pointer dereferencing
operator (*), in the Data dialog box or the Command line dialog
box would display:

Data reference: *customer_ptr

*customer_ptr = 0x53 83 'S’

The next example fully dereferences customer_ptr and displays
the entire structure:

Data reference: customer

CUSTOMER structure
NAME]0] ...0x53 83 ‘S’
NAME[1] ...0x74 116 ‘t’
NAME[2] .. .0x65 101 ‘e’
NAMEJ3] ...0x76 118 v
NAME[4] .. .0x65 101 ‘e’
LINKFOR ...0290:000186€9

To reference a pointer that doesn’t have a based declaration, use a
type override. Given the following declaration for a linked list:

declare customer_entry structure (
name(5) byte,
linkfor pointer);

If you wanted to see what the pointer customer_entry.linkfor
pointed to you could use the example below, which displays the
structure shown in greyscale:

customer_entry at customer_entry.linkfor

CUSTOMER_ENTRY structure

NAME[O0] ...0x53 83 5]
NAME[1] ...0x74 116 ‘T

NAME[2] .. .0x65 101 ‘e’
NAME[3] ...0x76 118 A%
NAME[4] .. .0x65 101 ‘e’
LINKFOR .. .0290:000186€9

108 Soft-Scope Il for IRMX 1l



FORTRAN-386

Use at least the following controls:

O DEBUG

O TYPE

Do not use these controls:
O NODEBUG

O NOTYPE

O NOOBIJECT

O OPTIMIZE(2) or OPTIMIZE(3)
O NOPRINT

O NOLIST

Soft-Scope 111 uses the listing file created by the compiler for
source information. The default extension for these files is
SOURCEFILE.LST.

ftn386 ftnsamp debug

Unlike C, FORTRAN does not have a one-to-one correspondence
between source files and executable program modules. Each
subroutine, function, block data, or program declaration creates a
different module.

However, after one FORTRAN block in a listing file is opened,
SSII automatically initializes all the other blocks declared in that
listing.

Because Soft-Scope 11 uses the listing, it is important that you do
not specify the NOLIST switch in any of the block declarations.

Chapter 7, Tools

Controls

Source information

Example invocation

109



FORTRAN-386

When you open a FORTRAN module, LIST only shows one
subroutine or function at a time, making it appear as if you had

compiled each subroutine and function as a separate source
module.

To make sure SSIII has the imformation it needs, give names to
program and block data declarations. The following declarations
in a FORTRAN source file generate four modules; fmain, subl,
sub2, functa:

$large debug
program fmain

subroutine subl
subroutine sub?2

function functa

110 Soft-Scope Il for IRMX 1l



Appendix A Tables A

This appendix contains tables of data types for use in type overrides, a table of SSIlII

operators with short descriptions, and figures of registers for the Intel386 and
Intel486 processors.

For more information describing how to use or access these items in Soft-Scope I,

see Chapter 4, Examining Data.

For more detailed information about the registers, see your Intel386 or Intel486
Programmer's Reference Manual.

Table of Contents

DT = B Y 01 SO P PO UP RS 112
(O] o<1 = 1 (0] ¢S PP P TP OPPTRPRTOPROTN 114
General-Purpose REJISTEIS .......ccv i 115
FIags REGISTET ..ot 116
SEGMENT REGISTEIS ...t 116
NPX REGISTEIS ...ttt st eneas 116
(70 a1 1 (o] I S {=To T E] (=] OSSR 117
Protected-Mode REQISLErS .......c.cccoiiiiiiiiieeee e 117

Descriptors and SUBbfields ...........ccoooiiiiiii 118



Data Types

The following table lists data types that can be used with Soft-Scope |11 type over-
rides. Some of the types have subfields, which can be identified in the Registers
tables later in this appendix.

Table 1 Data types for use in type overrides

Data Type Description CPU/NPX
BCD NPX data type, 10-byte BCD 87/187/287/387/486
integer
BITO - BIT31 These overrides provide access to | All
individual bits in the specified
reference
BOOLEAN 1-byte boolean (00H=false, All
otherwise true)
BYTE 8-bit unsigned integer All
CHAR 8-bit signed character All
DESC286 286 descriptor (6 bytes) 286/376/386/486
DESC386 386 descriptor (8 bytes 286/376/386/486
DESCRIPTOR 2867386 descriptor (determined by | 286/376/386/486
set file option, sym.descriptor)
DOUBLE 64-bit real All
DWORD Double-length unsigned integer, All
bit length sym.wordsize * 2
EXTINT 64-bit signed integer All
FLOAT 32-bit real All
INT Signed integer, bit length is All
sym.wordsize
LONG 32-bit signed integer All
112 Soft-Scope Il for iRMX 111



Data Types

Table 1 Data types for use in type overrides (continued)

Data Type Description CPU/NPX
OFF16 Near 16-bit offset pointer 386/486
OFF32 Near 32-bit offset pointer 386/486
POINTER Far pointer. Real mode: offset = 16 | 286/376/386/486
bits. Protected mode: offset can =
16 or 32 bits. Defaults to 32 bits.
See the set file option, sym.pointer.
PTR16 Far 16-bit offset pointer All
PTR32 Far 32-bit offset pointer 386/376/486
SELECTOR 16-bit selector All
SHORT 8-bit signed integer All
STRING Zero-terminated string (max 255 All
characters
TEMPREAL 80-bit real All
TSS286 286 Task State Segment 286/386/486
TSS386 386 Task State Segment 376/386/486
WORD 16-bit unsigned integer All

Appendix A, Tables

113



Operators

In addition to the Soft-Scope Il operators described in the table below, you can use all C
operators except the conditional expression operators (?, 3).

Table 2 Soft-Scope |11 operators

Operator | Description Example

* Displays the symbolic reference pointed to by the pointer *Xyz

> Digplays a single element of the structure pointed to by the | structname->
pointer
Creates a numeric range for accessing arrays array[1..9]
Specifies a range, starting at the first address of the array array/...5]

array/[5...]

& Obtains the address of a symbolic reference &xyz

Identifies a module name Xyz

Constructs a pointer from a selector value and a 16- or 32-bit | 1234:1234
offset

Prefixes a program symbol name to prevent confusion with | .load
SSIII commands. For example, a variable named load

Separates module names from variable names :abc.xyz

Accesses members of a structure or variables within a abc.xyz
procedure (or named block)

length | Specifies how much memory beyond the referenced location | byte at

to include in an operation 1234.456
length 5
# Converts an unsigned integer to a line-number #89
Xyz#89
at Converts an address into a null-type symbolic reference at 0000:0000
at Dereferences the following address byte at &abc
$ Identifies register and CPU structure names $GDT
$ Designates macro symbols and parameters Sy

See also: Operators, Chapter 5
Your C reference manual

114 Soft-Scope Il for IRMX for Windows



General-Purpose Registers

31 15

$ax $ah $al
$eax $ax

$bx $bh $bl
$ebx $bx

$ex $ch $cl
$ecx $ex

$dx $dh $dl
$edx $dx

$ebp $bp

$edi $di

$esi $si

$esp $sp

$eip $ip

Appendix A, Tables

Figure A-1 General-purpose registers

115



NPX Registers

31 15 0

$efl $fl
alvlr| [nlignilold]i[t]s]z] [a| [p] [c
subfields clmifl [t]"PYE elelele] |7 LT |f

] Reserved

Figure A-2 Flags register

15 0 15 0
$cs $fs
$ds $gs
$es $ss

Figure A-3 Segment registers

$cw rc | pc

3T
3c
3o
3N
Sa
3

%

$sw |b|C toﬁ c

tag |tag |tag |tag |tag |tag |tag |tag
sw [0[RP

7978 64 63 0
sign | exponent mantissa

$st0-$st7
(80 bits each)

Figure A-4 NPX registers

116 Soft-Scope Il for IRMX for Windows



Protected-Mode Registers

$cro

$crl
$cr2

$cr3

$gdb

$gdl

$idb

$idl

$ldtr

31 15
P eltjiem
g t|s|mip
$msw
pfla--32 bits
pdb--20 bits

] Reserved

Figure A-5 Control registers

31 15

Figure A-6 Protected-mode registers

Appendix A, Tables

117



Descriptors and Subfields

Table 3 386 protected-mode variables

Structure Description

$GDT An array reference that spans the current global descriptor
table. Use $GDT[n] to access a specific element. Use
$GDT[n..m] to specify a range of elements. Use EVAL
$GDT[n] to view the G, B, P, and AV bits and the actual limit
value in the descriptor.

$IDT An array reference that spans the current interrupt descriptor
table. It can be referenced the same way as GDT.

$LDT An array reference that spans the current local descriptor
table.

$PAGEDIR An array representation of the current 386 page table
directory.

Table 4 Page/Table directory subfields

Name Description Starting Bit Size(bits) CPU
frame Page frame address 12 20 386/486
avail Available for use 9 3 386/486
d Dirty 6 1 386/486
a Accessed 5 1 386/486
ped Page cache disable 4 1 486
pwt Page write transparent | 3 1 486

us User/Supervisor 2 1 386/486
w Read/Write 1 1 386/486
p Present 0 1 386/486

118 Soft-Scope Il for iRMX for Windows



Descriptors and Subfields

Table 5 Descriptor subfields

Name Description Starting Bit Size(bits)

base Segment base 56,16 8,24
Granularity 55 1
Big 54 1

d Default 54 1

av Available 52 1

lim Segment limit 48.0 4,16

limit Segment limit 48.0 4,16

offset Offset in segment 48.0 16,16

p Present 47 1

dpl Descriptor privelege | 45 2
level

type Segment type 40 5

dt Descriptor type 44 1

code or data Code or data 43 1

ed or cfm Expand down or 42 1
conforming

wr or rd Write or read 41 1

ac Accessed 40 1

count Dword count 32 5

seg Segment selector 16 16

sel Segment selector 16 16

Appendix A, Tables

119



Descriptors and Subfields

Table 6 TSS386 subfields

Name Description Starting Byte Size (Bits)
i0_map I/O map offset from start of TSS | 102 16
Idtr Register image 96 16
gs Register image 92 16
fs Register image 88 16
ds Register image 84 16
ss Register image 80 16
cs Register image 76 16
es Register image 72 16
edi Register image 68 32
esi Register image 64 32
ebp Register image 60 32
esp Register image 56 32
ebx Register image 52 32
edx Register image 48 32
ecx Register image 44 32
eax Register image 40 32
efl Register image 36 32
eip Register image 32 32
cr3 Regester image 28 32
ss2 Level 2 stack segment 24 16
esp2 Level 2 stack pointer 20 32

120 Soft-Scope Il for iRMX for Windows



Descriptors and Subfields

Table 7 TSS386 subfields--continued

Name Description Starting Byte Size (Bits)
ssl Level 1 stack segment 16 16
espl Level 1 stack pointer 12 32
ssO Level 0 stack segment 8 16
esp0 Level 0 stack pointer 4 32
link Backlink 0 16

Appendix A, Tables

121






Appendix B
Error Messages

The Soft-Scope 11l debugger generates exception messages when it cannot
execute a command.

Many of the error messages are displayed in conjunction with a line of carets
(Anann) displayed beneath some part of the command you issued. These
carets show the field of the command that SSIII ran into problems executing.

When possible, error messages are discussed in the following format:
1. <error message >
2. Explanation describing why the error message was displayed

3. What to do to eliminate the error message or avoid it in the future

For your convenience, address error messages are arranged in
alphanumerical order in Table B-1.



Error Messages

Address error messages take the following form:

< Address - Message >

Message
GDT limit violation

Non-addressable
segment type

Segment is not present

Initial TSS not in initial
GDT

Initial TSS selector
invalid

Selector outside of
GDT limits

Segment limit exceeded

Stack frame not set up

Invalid descriptor type
Self-defined LDT
Not LDT descriptor

Memory bounds
exceeded

124

Description

SSIII trapped a reference outside the bounds defined by the GDL
register (the GDT limit)

The descriptor specified does not have an addressable segment
associated with it

The descriptor specified in Address indicates the segment is not
present in memory

The loader has found an initial TSS that is not defined within the
initial GDT

The initial TSS selector is invalid (Warning only)

The address specified is outside the defined GDT limits
(Warning only)

The address specified is outside the segment limit

The referenced symbol is in a procedure that is not in the current
scope and doesn't have an address. You can still inspect its type

The descriptor shown is invalid for the desired operation
For some reason the LDTR contains an LDT selector
The LDTR register points to a non-LDT segment

The memory location which Soft-Scope is trying to access is out
of range

Table B-1, Address Error Messages

Soft-Scope 11l for IRMX 1l



Error Messages

< filename linenum/column - msg >

Soft-Scope 11l encountered an invalid set option specification while executing the
specified line of file, filename. The message is SSIII’s explanation of what caused
the error.

Check your options file, usually SS.SET, for options that are not defined as speci-
fied in Chapter 5, Soft-Scope I11 Configuration.
< Array is too complex >

Soft-Scope 11l supports up to 10 dimensions in an array.

< Attempted division by zero >

The specified expression resolves to a division by zero.

< Bad type for increment/decrement >

An increment or decrement operator (i.e., i++, —i) exists with a variable that has
an invalid data type for that operation. For example: “GDT[5]++".

Increment and decrement operators only work on integer variables.

< Breakpoint already set >
The referenced memory location or data area already has a breakpoint set for it.

Use the BREAKPT command to see a list of existing breakpoints. Perhaps you
will have to delete one and replace it with a new type. For example, delete a
hardware breakpoint so you can replace it with an execution breakpoint.

< Breakpoint has not been set >
There is no breakpoint at the referenced location.

Use the BREAKPT command to see a list of existing breakpoints.

Appendix B, Error Messages 125



Error Messages

< Can't step in current environment>
There is no task current.

Attach to a task using the TASK command, as described in the section titled Task
Manipulation.

< Command name expected >
Soft-Scope 11l doesn’t recognize the first string on the command line.

Check to make sure the string is a count or a valid command. A list of commands
and their syntax can be found in Chapter 2, Getting Started.

< modnamecontains no lines >
The specified module contains no line numbers.

Possibly the module is empty or is an assembly-language module.

< Corrupted help file: “ filename ">
Soft-Scope Il attempted to access its help file and found unreadable data.

Copy the file SS.HLP from distribution disk 1 to the directory, /UTIL386.

< Ctrl-C break > or < Ctrl/C Abort >

< Ctrl-C > aborted the executing command.

< Expected quoted string >
SSIII was expecting a quoted string to be entered.

Please check that you are using the correct syntax for the macro Print() command.
The Print() command is discussed in Chapter 6, Macros.

< Expression is too complex >

You are attempting to evaluate an expression which has more than 10 pending
operators. For example, A+(B+(C+(D+...))).

Simplify the expression.

126 Soft-Scope 11l for IRMX 1l



Error Messages

< Failed to remove breakpoint >
Soft-Scope 11l attempted to remove the breakpoint you specified but couldn't.

Make sure you have correctly referenced the breakpoint.

<< Fatal error: Serial number >>
The serial number has been corrupted.

Re-install Soft-Scope Il11.

<< Fatal exception: msg >>
SSI11 encountered a severe error and aborted execution.

Please restart Soft-Scope Ill and reload your application.

< Fatal exception - Abortto O.S. >
Soft-Scope 11l encountered a severe, unrecoverable error, and aborted to the OS.

Please restart Soft-Scope Ill and reload your application.

< Hardware breakpoint already set at this address address >
There is already a data breakpoint set on address.

Use the BREAKPT command to see a complete list of currently set breakpoints.

< Initial task register is an Idt selector >

The initial task register was defined so that a selector in a local descriptor table
was selected.

Redefine the initial task register.

< Initial task register is outside gdt limit >
The initial task register was defined outside the limits of the initial GDT.

Redefine the initial task register.

Appendix B, Error Messages 127



Error Messages

< Initial TR->non-TSS type descriptor >

The GDT entry that the initial task register pointed to is not a 286 or 386 task state
segment descriptor.

< Initial TSS is busy >

The initial task state segment is flagged as busy in the GDT.

< Internal error - filename_linenumber [- message] >

SSIII has encountered either data or a situation which was thought to never occur
but has in this particular case.

Please report this error to Concurrent Sciences, inc. along with as much informa-
tion as possible on why this error might have occurred.

< Invalid character in option setting >

The entered character cannot be used within a set option.

Verify that you do not have a control character within the option value.

< Invalid escape character - line ###, col ### >
While parsing a string, Soft-Scope Il has detected an invalid escape sequence.

See Strings in Chapter 4 of this manual for a list of valid escape characters.

< Invalid field near ###H#HHHHE filename ">

A bad symbolic record was found in the load file, filename, at offset ####H#H##H.

You may have to recompile and rebuild your application. This usually means the
application file is corrupted.

< Invalid macro compiler version >

The macro compiler and Soft-Scope Il you are using are not the same version.

Copy the file, SSMACRO from distribution disk 1 to the directory
/UTIL386.

128 Soft-Scope 11l for IRMX 1l



Error Messages

< Invalid macro object file >

The macro compiler produced bad object code, or some other process corrupted
its output.

Try erasing the FILENAME.MOB file so the macro compiler recompiles your
macros.
< Invalid macro opcode >

While executing a macro, SSIII has encountered an unknown macro command in
the macro object file.

Look in your macro file for typographical errors. If you can't find any mistakes,
you might want to review the macro commands given in Chapter 6, Macros.

< Invalid number format >

Soft-Scope 11l can't understand the specified number (i.e., X = 1234Q5H).

This usually means the number or variable has an invalid base attribute. Valid
bases are T = base 10, H = base 16. See Numbers, in Chapter 4.

< Invalid override >

Either the attempted override is a bitxx override of a reference that does not
contain bitxx (i.e., bit20 $al), or the override contains two data types that do not
produce a meaningful type (i.e., swtype tss386 is not meaningful, but

signed byte is).

Look in Appendix A, Tables, for a list of data types supported for use in type
overrides.

< Invalid scope >

The breakpoint scope which you have specified with the BPSCOPE command is
not valid.

Valid breakpoint scopes are TASK, JOB, and GLOBAL.

Appendix B, Error Messages 129



Error Messages

< Invalid size for I/O port >

Overrides for the I/0 port must be 1-, 2-, or 4-bytes long. The specified type
doesn’t match the processor port sizes (i.e., TEMPREAL PORT 0, which attempts
to specify a 10-byte type to port 0).

Look in Appendix A for a table of supported data types and their descriptions.

< Invalid value for parameter >

You are using the built-in function RETURN and are specifying an invalid pa-
rameter.

Please specify an integer value.

< Line number out of range (### to ##) >

The line number specified isn’t within the range of line numbers for the module
or procedure you're currently in or for the module/procedure specified (i.e., LIST
55 when the module ends at line number 40).

< Line number out of range (### to ###) >

The line number you’ve specified isn’t within the range of line numbers for the
module or procedure you’re currently in or for the module/procedure you’ve
specified (i.e., LIST 55 when the module ends at line number 40).

< Listing file invalid: Improper listing end >

SSII doesn’t recognize a file you’ve specified as a listing file. Possibly the file
isn’t a listing file, or at least some character within the file isn’t recognized by
SSIII (i.e., you’re using a version of some language that SSIII doesn’t yet under-
stand).

Please review the information in Chapter 7, Tools to see what versions of tools Soft-
Scope Il supports.

130 Soft-Scope 11l for IRMX 1l



Error Messages

< Listing file invalid: Improper listing header >

SSII doesn’t recognize a file specified as a listing file. Possibly the file isn’t a
listing file, or at least some character within the file isn’t recognized by SSIII (i.e.,
it was prepared using a version of some language that SSIII doesn’t yet under-
stand).

Please review the information in Chapter 7, Tools to see what versions of tools Soft-
Scope Il supports.

< Macro execution halted - current macro has been deleted >

A macro deleted the macro that called it, making it impossible to return.

The original macro file stored on your disk is not erased when this happens. Edit
the called macro so it doesn't delete the calling macro, reload the macro file into
SSIII, and try again.

< Macro name expected >
SSIII is expecting a valid macro name.

Use the MACRO command to see which macros are loaded.

< Macro nesting too deep >
Macro execution has executed too many nested macros.

Only ten macros may be nested.

< Macro terminated abnormally >
An abort was encountered in a macro.

This happens when a macro contains an ABORT statement, or you pressed <Q>
while performing a MACRO STEP command.

< Mismatched ()’s >
SSIII is expecting another right parenthesis.

Make sure your macro has the correct number of right and left parentheses.

Appendix B, Error Messages 131



Error Messages

< Mismatched []'s >
You’ve forgotten a right bracket (“]””) or have used too many left brackets (“[*).

Make sure your macro has the correct number of right and left brackets.

< Module not found >
SSIII cannot find the specified module name.

Make sure the module name doesn't contain typographical errors. If it doesn't,
make sure it is located in the current application.

< More parameters given than the macro defined >

You’ve tried to invoke a macro, and specified more parameters than the macro
needs.

Retype the macro invocation. You may have to shell out to a text editor to exam-
ine the macro file and refresh your memory.

< No address associated with reference >
The expression entered has no address associated with it.

This is usually a typographical error. If you can't find an error, Use the LIST
command to view your source and refresh your memory of symbol spellings.

< No initial TSS is defined >

During loading, the TR (Task Register) value was set to 0 (Warning only).

< No modules loaded >

The given command requires a default module, and there are no modules found
in SSIHI’'s symbolic database.

Use the LOAD command to load an application.

132 Soft-Scope 11l for IRMX 1l



Error Messages

< No return address available >

The specified return address isn’t resolvable (i.e., RETURN()).

Review the specifications given in Chapter 7, Tools, to make sure your application
is properly built.

< No symbolic information loaded > or < No symbols loaded >

SSIII can’t find any symbols loaded.

Possibly you haven’t yet loaded an application, or your application is loaded but
not built for debugging. See Chapter 7, Tools for information on building an
application for debugging.

< Not valid for processor >

The CPU doesn’t contain the register you’ve specified.

See Appendix A, Tables for applicable registers.

< Option hame expected >
The SET TO command requires that an option name be specified.

See SET command syntax in Chapter 5, Soft-Scope 111 Configuration.

<Option  opt_name - Must be defined >

The option opt_name isn’t defined in your SS.SET file, and is required for the
operation you’ve just attempted.

See Chapter 5, Soft-Scope |11 Configuration for a description of the needed option.

< Option “src.tab” - Must be 1 to 16 >

In your SS.SET file, the entry for tab stops is set to something other than the
integers 1 through 16.

See Chapter 5, Soft-Scope I11 Configuration.

Appendix B, Error Messages 133



Error Messages

< Option “sym.case” - Must be ON or OFF >
In your SS.SET file, the entry sym.case is set to something other than on or off.

See Chapter 5, Soft-Scope I11 Configuration.

< Option “sym.descriptor” - Must be DESC286 or DESC386 >

In your SS.SET file, The DESCRIPTOR type override must be set to one of the
specified values.

Use the SET command to redefine this option.

<Option “sym.pointer”- Must be PTR16, PTR32, OFF16, or OFF32>

In your SS.SET file, The sym.pointer option must be set to one of the specified
values.

Use the SET command to redefine this option.

< Options “cmd.history” - Must be 0 to 255 >

The cmd.history option must be set to a value between 0 and 255.

< Options - Out of storage space >

Too many options are defined. The total length of all option names and values
cannot exceed 1024 bytes.

Perhaps there are some options you can eliminate from your set file. See Chapter
5, Configuring Soft-Scope I11 for descriptions of all the available options.

< Out of hardware breaks >
The 386 debug registers are full.

For information explaining the registers and how to use them efficiently, see
Hardware Breakpoints, in Chapter 3.

134 Soft-Scope 11l for IRMX 1l



Error Messages

< Override not permitted on non byte-aligned bitfield >

SSIII trapped an attempted bitfield type override.

Possibly the override is not a supported data type, or there is a typographical
error in the specification.

< Port addresses must be 0 to OffffH >

The specified port address is not between 0 and OffffH.

Retype the specification with an acceptable port address.

< Read-only register GDB/IDB >

The GDB and IDB can only be changed as a result of an application load.

<Received'  ?? not‘\r >

Soft-Scope has not received a carriage return from the second terminal within 60
seconds. The terminal is dead, the serial line is dead, or the key you think is the
carriage return key isn’t.

< Register doesn’t contain this flag >

The register specified doesn’t contain the flag specified.

See Appendix A, Tables, to see what register flags SSIlI supports.

< sskernel error: description >

SSKERNEL has reported the error given in description.

< String too long >

The string type override was applied to memory starting at the specified address.
Soft-Scope Il didn't find a terminating null character (\O) within the first 255
characters.

Use the char type override and specify the number of bytes to view as characters
using the length operator. For example, char at 1000p length 5.

Appendix B, Error Messages 135



Error Messages

< Subscript ranges on pointers are not supported >
SSIII only recognizes a single reference (i.e., PTR[5]) for pointers.

You can do this with arrays (i.e., array1[5..20]).

< Subscripts must be integers or ranges of integers >

The specified subscript or range is invalid.

Possibly the subscript isn’t an integer, or there is a typographical error in the
range operator. See Data References in Chapter 4.

< Symbol not found >

Soft-Scope 11l has no record of the specified symbol.

Make sure the symbol is in the module you are currently executing in, that you
have specified the correct module with a colon (:), as described in Reference
Scoping in Chapter 4, or the symbol is public.

< Symbol without base — Invalid field >

There is an invalid field in the OMF file.

Please verify that you have correctly built your application using the information
presented in Chapter 7, Tools. Contact Concurrent Sciences, inc., if you cannot
eliminate this problem.

< Symbolic name exceeds 40 characters >

You’ve specified a symbol with more than 40 characters in it’s name, and OMF
can only recognize up to 40 characters.

< Symbolic name expected >

The parameter above the carets is not a symbolic name.

Use the LIST command toview your source and see what the symbol names are.

136 Soft-Scope 11l for IRMX 1l



Error Messages

< Syntax error >

The specified command is an invalid command or an invalid form of a valid
command.

A complete list of command syntax is located in Chapter 2, Soft-Scope 111 Basics.

< target/task running >

A task is executing, and you cannot execute any Soft-Scope command that as-
sumes the task is stopped.

< These addresses are not compatible >

Soft-Scope 11l cannot perform the specified operation because the addresses given
have different types.

When subtracting two addresses, they must be of the same type (logical, linear, or
physical), and logical addresses must have the same selector.

< These are in the wrong order >
The two parameters above the carets are in the wrong order.

Try the command again, switching the placement of these two parameters.

< These are not comparable >

The two parameters above the carets are of incomparable data types.

< These are not in the same module >

You’ve attempted to list across modules.

< This command does not support repeat counts >

You’ve tried to use a count field on a command that doesn’t use repeat counts.

Appendix B, Error Messages 137



Error Messages

< This does not evaluate to an address >
You’ve specified an invalid address.

Possibly you're trying to use a symbolic reference, but the symbol specified can’t
be evaluated as an address (i.e., BYTE AT X where X is a string instead of a
pointer).

< This is not a code reference >

The parameter above the carets does not refer to executable code, and the com-
mand you attempted expected this parameter to reference executable code.

Use the LIST command to see application symbols. Also, see Code References, in
Chapter 3, Controlling Execution.

< This is not a logical address expression >

The parameter above the carets must evaluate to a logical address.

See Memory References in Chapter 4, Examining Data.

< This is not a memory reference >
The parameter above the carets must evaluate to a memory location or address.

See Memory References in Chapter 4, Examining Data.

< This is not a module reference >
The parameter above the carets must evaluate to a module.

Possibly you’ve misspelled the module name, or forgotten to preface the name
with a colon (i.e., :cmain). Also, see Reference Scoping, in Chapter 4, Examining
Data.

< This is not a numeric expression >

SSIII is expecting a number, and the parameter above the carets doesn’t resolve to
one.

See Numbers, in Chapter 4, Examining Data.

138 Soft-Scope 11l for IRMX 1l



Error Messages

< This is not a pointer >

The parameter above the carets is not a pointer.

Find out the type of the variable by placing it in the Data window and switching
to types mode.

< This is not a pointer or address >

The parameter above the carets is not a pointer or a memory address.

Find the variable's type using the TYPE command.

< This is not a register name >

You've tried to reference a variable as a register name (by typing a $ before the
name).

See Appendix A for tables of supported registers.

< This is not a symbolic reference >

The reference is not a symbol or variable.

Soft-Scope 11l defines a symbolic reference as something you can assign a value
to. For example, i is a symbolic reference, while 5 is not.

< This is not an array or fixed-length scalar type >

The length override you’re specifying isn’t an integer value.

< This is not an array or pointer >

The parameter above the carets is not an array.

Perhaps you have provided subscripts on a variable which does not require
subscripts. See Data References, in Chapter 4, Examining Data.

< This is not an integer expression >

The given expression does not evaluate to an integer.

Try checking the types of variables in the expression by using the TYPE com-
mand.

Appendix B, Error Messages 139



Error Messages

< This module was not compiled for debugging >

The module name above the carets contained no debugging information, and
SSII only knows that it’'s a module and it has no debug information.

Make sure the application was prepared using the specifications given in
Chapter 7, Tools.

< This reference contains no lines >

The referenced source file contains no source lines.

Make sure the application was prepared using the specifications given in Chapter
7, Tools.

< This subscript indexes to before the array >

The subscript above the carets evaluates to a number less than the first element in
that array.

Try using the EVAL command to view any variables you have used in the index
to make sure their values are what you thought they were.

< This type cannot have members >
The specified type doesn’t support subfields.

See Data References in Chapter 4, Examining Data.

< Too many breakpoints are set >
You have too many breakpoints set at this time.

If possible, delete some of your breakpoints.

< Too many parameters >

You’re trying to specify a nested RETURN value, and the value is too large (i.e.,
RETURN(55) where returns aren’t nested 55 deep).

140 Soft-Scope 11l for IRMX 1l



Error Messages

< Unable to run macro compiler >

Soft-Scope attempted to run the macro compiler, but the compiler didn’t run or
ran and produced no output.

< Unexpected response from sskernel: description >

Soft-Scope 111 has received an unexpected response from SSKERNEL. The descrip-
tion explains what Soft-Scope 11l had expected to receive from the kernel. This
information is provided so that it may be reported to Concurrent Sciences, inc.
Technical Support in the event that you should receive this error message.

< Unknown member of record >

The member above the carets doesn’t exist for that structure. Possibly you’ve
misspelled the member name or you’re referencing the wrong structure.

< Unsupported assignment operation >

The parameter above the carets cannot be assigned to the value you’ve attempted
to give it (i.e., GDT[5]=GDT[0] or $ax="abcde”).

< Use [n][m] for multiple subscripts >

You’re trying to specify too many subscripts in an array. Soft-Scope |1l only
recognizes single subscripts within a set of brackets. Use ARRAY[1][2], not
ARRAY[1,2].

<: name.. not found in “filename” >

The specified module name (:name) was not found in the filename specified.

Use the MODULE command to examine module name assignments.

Appendix B, Error Messages 141



Macro Compiler Error Messages

<Break is only valid inside while -“token” at line ###, col ###>

The macro compiler has encountered a break statement outside of a loop.

< Expected %%s - “token” at line ###, col ### >

While scanning the format string of a print statement, the macro compiler was
expecting a string format specifier and didn’t find one.

< Expected closing paren - “token” at line ###, col ### >

While parsing the current macro’s arguments or a WHILE or PRINT statement,
the compiler expected a closing parenthesis but got “token” instead.

< Expected comma - “token” at line ###, col ### >

Instead of a comma which delimits arguments in a list, the compiler found ““to-
ken.”

< Expected format string - “token” at line ###, col ### >

While parsing a PRINT statement, the compiler expected a string indication the
format but got “token” instead.

< Expected identifier - “token” at line ###, col ## >

The compiler has found *“token” instead of identifier.

< Expected “macro” keyword - “token” at line ###, col ### >

While compiling the macro file, the compiler was expecting the start of a macro
but got “token” instead.

< Expected macro name - “token” at line ###, col ### >

Instead of a macro name after the MACRO keyword, the compiler found “token.”

< Expected ON or OFF - “token” at line ###, col ### >

The token listed was encountered, instead of ON or OFF, while parsing an ECHO
statement.

142 Soft-Scope 11l for IRMX 1l



Macro Compiler Error Messages

< Expected opening brace - “token” at line ###, col ### >

The compiler expected a brace to start the macro but got “token” instead.

< Expected opening paren - “token” at line ###, col ### >

While parsing a new MACRO, PRINT, or WHILE statement, the compiler found
“token” instead of an opening parenthesis.

< Expected parameter - “token” at line ###, col ### >

Instead of a parameter, the compiler found “token.”

< Identifier already defined - “token” at line ###,col ### >

The macro compiler encountered a duplicate symbol declaration in the source file.

< Out of symbol space >

The macro compiler has exceeded its limit of 100 symbols (including keywords) in
a macro.

< Too many jump targets > or < Too many jumps >

The macro compiler has exceeded its internal limit of 100 jumps per macro.

< Undefined identifier - “token” at line ###, col ## >

The macro compiler has parsed an identifier that it can’t find in its symbol table.

< Unexpected end of line >

The macro compiler has unexpectedly encountered the end of a line while parsing
for a token.

< Unexpected end of file - “token” at line ###, col ### >

The macro compiler has unexpectedly encountered the end of file while parsing
for a token.

Appendix B, Error Messages 143






Appendix C
SSKERNEL

The Soft-Scope 111 Kernel, SSKERNEL, runs as an iRMX job and operates as a server
for the SS 11l program itself, SS. The kernel makes it possible for you to control and
access your application, and to debug multiple tasks.

All operations which cause program execution, require access to CPU registers, or

examine task states, are performed through communication to and from SSKERNEL.

This communication is managed via a private set of mailboxes between Soft-Scope
111 and SSKERNEL. SSKERNEL manages all breakpoints and protection faults,
sending internal messages to Soft-Scope |1l when they occur. By invoking
SSKERNEL as a background job, it’s functions are made available to any user on the
system, including the initial user.

C




The Soft-Scope Il Kernel

Trapping Faults with
“SSKERNEL ON”

146

In its default operation, SSKERNEL traps protection faults such as
the General Protection Fault (INT 13), and the Stack Fault (INT
12), only if there is an active Soft-Scope 11l session. When there is
no active Soft-Scope Il session, SSKERNEL, in its default mode, is
inactive.

When a protection fault occurs, the iISDM monitor displays a
message indicating the type of fault, followed by the *..” prompt.
This can be troublesome for multi-user systems, because if a user
encounters a General Protection Fault, and there is no Soft-Scope
I11 session active, all the users in the system come to a screeching
halt when the ‘.. prompt appears at the system terminal.

We created a special mode for SSKERNEL to solve this problem.
By adding the keyword, ON, to the SSKERNEL invocation,
SSKERNEL will remain actively handling all protection faults,
even if no Soft-Scope 11 session is active:

bk sskernel on

The advantage is that when a protection fault occurs, the operat-
ing system continues to function, and users other than the user
encountering the fault are not stopped. When a fault occurs the
kernel will print a message to the terminal on which SSKERNEL
was invoked. The message is hon-interactive, but will give
information about the fault.

The message will list the type of the fault and the task token for
the task containing the fault. It will also report if the fault oc-
curred in an iRMX subsystem, such as the Nucleus, BIOS, EIOS,
Application Loader, or Human Interface.

For example, if a General Protection fault were encountered in a
task not being debugged by a Soft-Scope Il session, a message
similar to Figure C-1 would be output to the terminal that origi-
nally invoked SSKERNEL.

If you have a second terminal, you can invoke SSIIl and debug the
task that caused the fault. You won't have symbolics, but you can
step at the assembly level and issue all other SSII1 commands.

Soft-Scope Il for IRMX 1l



The Soft-Scope 1l Kernel

[Unsolicited break in task 4020: (INT 13) General Protection ]

* NOTE: This is a non-interactive message generated by sskernel b

* If you have a free terminal, invoke Soft-Scope, enter ‘task xxx"
* where xxx is the task token you see in the break message above b
* Other-wise, you may be able to abort the errant application with ~ **

* Control/C.

*k

Figure C-1 Fault message example

If you use SSKERNEL ON, you must be sure not to use the iRMX
KILL command to abort the kernel. You must use the utility,
SSABORT (see below).

If you are using SSKERNEL as a fault handler (SSKERNEL ON),
and you need to remove SSKERNEL from the system, always use
SSABORT. SSKERNEL will clean-up its work files and restore
SDB as the fault handler.

Using the iRMX KILL command to kill the background
SSKERNEL job will delete the SSKERNEL job, but the interrupt
descriptors identifying SSKERNEL as the handler will remain in
place, causing severe problems if a fault should occur.

Attempting to KILL other background jobs with a wild card, as in
KILL*, will have the same effect.

If a protection fault occurs within either SSKERNEL or Soft-Scope
111 itself, SSKERNEL reports a message on the iRMX side similar
to that given when you use the kernel as a fault handler outside of
Soft-Scope Il. It will list the address and type of fault. If the fault
is in Soft-Scope 11, the message will look like the one shown in
Figure C-2, or it will look like the error message shown below:

<< Internal break in sskernel >>

Appendix C, SSKERNEL

NOT E1

Using SSABORT

Internal faults in
Soft-Scope Il and
SSKERNEL

147



The Soft-Scope 1l Kernel

NOT E1

148

<<Internal break in Soft-Scope session #1 (7250:00002145)>>
[ Unsolicited break in task 4020: (INT 13) General Protection ]

* NOTE: This is a non-interactive message generated by sskernel. b

* If you have a free terminal, invoke Soft-Scope, then enter e

* ‘task xxx’ where xxx is the task token you see in the break message ok

* above. Other wise, you may be able to abort the errant application ok

* with Control/C. **

Figure C-2 Fault in SSIII example

If you see the messages above, use cut and paste or a pencil and
paper to record the information listed below:

0 Task token, where token is taken from the break message
O Contents of the Task window

0 Disassembled view of the code that caused the fault (approxi-
mately 10 assembly lines beginning with the line the execution
pointer is on).

Contents of the Registers window
Output of vt $cs
Output of vt $ds
Output of vt $ss

O 0o ogod

This information will help us find the problem when you call
technical support.

SSKERNEL will trap Soft-Scope Il faults whether the kernel is
invoked with BK SSKERNEL ON or OFF.

Soft-Scope Il for IRMX 1l




Appendix D
Sample Session

This section provides direction and commentary for the sample session you can
run with the Soft-Scope 11l debugger.



Sample Session

This session consists of an introduction followed by a series of pages
showing the screen-image on the left page and commentary on the right
page. If more than one example is on a page, horizontal lines will separate
them.

ss>command 1

ss>command 2

Page 3

Page 2

150 Soft-Scope Il for IRMX 1l



Sample Session

STEP 1. Attach to the directory /RMX386/DEMO/SSCOPE to make it the
default directory. If you haven’t done so yet, load SSKERNEL as a
background job by typing BK SSKERNEL > :BB:.

STEP 2. Verify you have the following files:
csamp Loadable sample program file
cmain.c C source file for main module
cutils.c C source file for procedure module
cmain.lst C listing file for main module
cutils.lIst C listing file for procedure module
STEP 3. Begin the session.

Feel free to stop and start the session at your convenience. The
program is written to loop endlessly, and the sample session only
takes you through a few iterations.

The program consists of three tasks. A main task creates two other
tasks (PROCESS_TASK and COUNT_TASK), which send informa-
tion back and forth via mailboxes.

The screen image is on the left and commentary is on the right.

At times Soft-Scope 111 will display a prompt showing you possible
responses. Once you respond, the prompt disappears from the
screen. To help you follow the sample sessions, the prompts are
shaded. The desired response to each prompt follows in quotation
marks.

Be sure you don’t miss the last section of this session. It contains
the most pertinent and complete discussion of data references for
C.

Appendix D, Sample Session 151



Sample Session

- §S csamp

Soft-Scope Il (tm) debugger, v1.0

Concurrent Sciences, inc. (C) 1989, 1990 All rights reserved
iIRMX IIl Version

Serial No. Xxxx

[ Connected to “Soft-Scope kernel vX.Y - session #1” ]

load csamp

[ Loading OMF-386 STL file, “csamp”, Symbols ]

[ Loading macro file “ss.mac” ]
ss>

ss> list

#1 |/ /

#2 CSAMP Sample Program */

#3 |/ /

#4

#5 #include <stdarg.h>

#31  #include <stdlib.h>

#158  #include <stdio.h>

#417  #include <string.h>

#521  #include <ctype.h>

#586  #include <rmxc.h>

#2636  #include “cutils.h”

#2639

#2640 #define UINT_8  unsigned char

#2641 #define UINT_16 unsigned short

#2642 #define UINT_32 unsigned long

#2643 #define FALSE 0

#2644  #define TRUE 1

#2645

#2646 #define COUNT_PRIORITY 200 /* Priority of count task !
#2647 #define PROCESS_PRIORITY 200 /* Priority of process task !
#2648 #define BUFF_LEN 125 /* Length of buffer in MSG_S!

[ Top of :CMAIN (cr1..9 sp) Mode -Find Quit ] “‘Q”

152 Soft-Scope Il for IRMX 1l



Sample Session

The Soft-Scope 11l debugger is loaded by the operating system, displaying its sign-
on, which includes the version number and your serial number.

Soft-Scope Il reads options from the initial environmental options file SS.SET and
sets the initial options.

Next, Scope-Scope Il loads your application, then the macro file, SS.MAC. (See
Macros, Chapter 6 for more information on creating and using macros.)

You are prompted to enter a command.

The LIST command lists one screenful of source code from the module CMAIN
then displays a prompt listing your possible responses:

F Initiates a forward search for a string

- Initiates a backwards search

M Toggles the search between case-sensitive and caseless
Q Returns you to Scope-Scope Il prompt.

Soft-Scope Ill automatically opened the first module (CMAIN) it finds in your
application.

Try out the Find option forward and backwards if you like. Scope-Scope Il will
highlight the line containing the searched-for string.

When you are done, press “Q” to return you to the Scope-Scope Ill prompt.

Note: Do not type the quotation marks.

Appendix D, Sample Session 153



Sample Session

ss> breakpt main

global * :CMAIN.main() [ Breakpoint added ]

ss> br process_task

global * :CMAIN.process_task() [ Breakpoint added ]

ss> br count_task

global * :CMAIN.count_task() [ Breakpoint added ]

Ss> go

[ Break at :CMAIN.main() ]

#2655
#2656
#2657
#2658
#2659
#2660
#2661
#2662
#2663
#2664
#2665
#2666

154

typedef struct {

short count;

unsigned char fillchar;

unsigned char buffer[BUFF_LEN];

} MSG_STRUC;

TOKEN count_token; /* Token for count task !
TOKEN process_token; /* Token for process task !
int counter; [* count_task’s counter !

void far main()

{

Soft-Scope Il for IRMX 1l



Sample Session

Set a breakpoint on the start of MAIN. The breakpoint is assigned a scope of
GLOBAL.

Set a breakpoint on the start of PROCESS_TASK. The abbreviation for BREAKPT
is BR.

Set a breakpoint at the start of COUNT_TASK.

Begin execution. Execution stops when the breakpoint set at the entrance to
MAIN is hit.

Appendix D, Sample Session 155



Sample Session

ss> task

*6980 :CMAIN.main()

SS> go #2721

[ Break at :CMAIN.main#2722 |
#2721 while(1) {
#2722 msg fillchar = *’;

ss> step

#2721 while(1) {

#2722 msg fillchar = *’;
[Auto Into OVER(sp,1..9) Mode Quit Return |
#2723 if (msg_count >= MAX_COUNT)

[Auto Into OVER(sp,1..9) Mode Quit Return |

Q"

ss> task

* 6980 :CMAIN.main#2723
69b8 :CMAIN.count_task()
5630 :CMAIN.process_task()

ss> task 69b8

Current context: task = 69b8 job = 7620
[ Break at :CMAIN.count_task() ]

#2799

#2800 void far count_task ()

#2801 {

156

Soft-Scope Il for IRMX 1l



Sample Session

Scope-Scope Il reports that MAIN task is at break, and that its task token is 6980.
The task token you see will be different because tokens are dynamically assigned.

This command produces the same results as the combination of BR #2721 and GO
commands. However, the breakpoint set at line #2721 is removed after it is en-
countered.

STEP displays all lines of source code that have the current address, and then the
prompt “[ Auto Into OVER(sp,1..9) Mode Quit Return ]7, listing your possible
responses.

Press the <spacebar> to execute a source line in the procedure MAIN and display
the next executable line.

Press “Q” to stop stepping.

All three tasks are at break. The asterisk denotes the current task context. Only
tasks that are at break are displayed.

Change the context to COUNT_TASK by specifying its token. The current execu-
tion point in this task is reported.

Note: Type the token for COUNT_TASK as reported by the TASK command. It
will be unique to this debugging session.

Appendix D, Sample Session 157



Sample Session

ss> step

#2799

#2800 void far count_task ()

#2801 {

[Auto Into OVER(sp,1..9) Mode Quit Return |

#2802 WORD exception; /* Status code returned from system !

#2803

#2804 counter = 0;

[Auto Into OVER(sp,1..9) Mode Quit Return |
#2805

#2806 while (1) {

#2807 counter++;
[Auto Into OVER(sp,1..9) Mode Quit Return |
#2808 delay (1000);

[ Auto Into OVER(sp,1..9) Mode Quit Return |
[ Entering :CUTILS.delay() ]

[ Module :CUTILS initializing, using “cutils.Ist” ]
#2718

#2719

#2720 void delay (msecs)

#2721 int msecs;

#2722 {

[ Auto Into OVER(sp,1..9) Mode Quit Return |

158

Q"

Soft-Scope Il for IRMX 1l



Sample Session

Begin stepping again. Press the <spacebar> three times until the call to the proce-
dure DELAY. At the next prompt press “I” to step into DELAY.

Press “Q” to quit stepping.

Appendix D, Sample Session 159



Sample Session

ss> [ist

#2722 {

#2723 int sleepl00; /* Each unit of “sleep100” is 100 m!
#2724

#2725 sleep100 = msecs / 100;

#2726

#2727 for (; sleep100 >= O; sleep100--)

#2728  delay_fine (10); /* delay_fine(10) delays for 100 ms!
#2729 }

#2730

#2731

#2732 static void delay_fine (count)

#2733 int count;

#2734 {

#2735 WORD exception;

#2736

#2737 if (count !=0) {

#2738 rgsleep (1, &exception); /* One rgsleep unit is 10 msecs!

#2739 delay_fine (--count); /* Call self recursively!

#2740 }

#2741}

[ Module :CUTILS (cr 1..9 sp) Mode -Find Quit] "Q"

160 Soft-Scope Il for IRMX 1l



Sample Session

List one screenful of the module CUTILS. You can scroll through the listing by
using the following keys:

P Display a screenful, moving up the module

<Up Arrow> Display one more line, moving up the module
<Down Arrow> Display one more line, moving down the module
<carriage return> Display one more line

<spacebar> Display one more screenful

1-9 Display 1 to 9 more lines, moving down the module

When you have viewed enough source code, press “Q” to quit.

Appendix D, Sample Session 161



Sample Session

ss> step

#2718

#2719

#2720 void delay (msecs)

#2721 int msecs;

#2722 {

[Auto Into OVER(sp,1..9) Mode Quit Return ]
steps [ SOURCE Assembly ] calls [Into OVER ]
7840:000004f0 push ebp

[ Auto Into OVER(sp,1..9) Mode Quit Return ]
7840:000004f1 mov ebp,esp

[Auto Into OVER(sp,1..9) Mode Quit Return |
steps [ SOURCE Assembly ] calls [Into OVER ]
[ Inside ]

#2718

#2719

#2720 void delay (msecs)

#2721  int msecs;

#2722 {

[Auto Into OVER(sp,1..9) Mode Quit Return |
[ Returning to :CMAIN.count_task#2809 ]

#2809 c_data ();

[Auto Into OVER(sp,1..9) Mode Quit Return |

e
npn

e
ngn

ey

Q"

ss> task process_token

Current context: task = 5630 job = 7620
[ :CMAIN.process_task() ]

#2744

#2745

#2746

#2747  void far process_task ()

#2748 {

Ss> br -

[ All breakpoints removed ]

162

Soft-Scope Il for IRMX 1l



Sample Session

Start stepping again. At the first prompt, type “M” then “A” to change to assem-
bly level stepping. Press the <spacebar> to execute one instruction.

Press “M” then *“S” to change the stepping mode back to source level.

Press “R” to return to the calling procedure. Press “Q” to quit.

Switch to the context of PROCESS_TASK. You can refer to a task by its token
name as well as number. It is a good practice to make the tokens of tasks you
want to control global variables so that you can reference them from anywhere in
your application without needing to remember their numeric values.

Remove all breakpoints.

Appendix D, Sample Session 163



Sample Session

Ss> br #2785

global * :CMAIN.process_task#2785 [ Breakpoint added ]

Ss> go

< Task running >

Iss> task

*5630 [ Not currently at a breakpoint ]
6980 :CMAIN.main#2723
69b8 :CMAIN.count_task#2809

Iss> task 6980

Current context: task = 6980 job = 7620
[ :CMAIN.main#2723 ]
#2723 if (msg_count >= MAX_COUNT)

Ss> go

[ Break at :CMAIN.process_task#2785 |

#2778 (BYTE *)&msg,

#2779 Oxffff,

#2780 &exception);

#2781

#2782 *

#2783 * Take action on the received message (fill msg.buffer)
#2784 */

#2785  for (i=0; i < BUFF_LEN; i++) {

164

Soft-Scope Il for IRMX 1l



Sample Session

Set a breakpoint at line #2785.

Begin the execution of PROCESS_TASK.

The TASK command reports that PROCESS_TASK has not hit the breakpoint set
above. This is because MAIN task is not running.

Change to MAIN task.

Start MAIN task again. The breakpoint set in PROCESS_TASK is now hit.

Appendix D, Sample Session 165



Sample Session

Ss> br -

[ All breakpoints removed ]

ss> go write msg.buffer[25]

< Write break >
[ Break at :CMAIN.process_task#2787 |
#2787 }

ss> msg.buffer

[0.25]........ 2aH 42 ¥
[26.124]....... 00OH 0’
ss> br delay

global * :CUTILS.delay() [ Breakpoint added ]

Ss> go

[ Break at :CUTILS.delay() ]

#2718

#2719

#2720 void delay (msecs)
#2721 int msecs;

#2722 {

ss> task

69b8 :CMAIN.count_task#2809
*5630 :CUTILS.delay()

166

Soft-Scope Il for IRMX 1l



Sample Session

Remove all breakpoints.

Set a breakpoint at the data reference MSG.BUFFER[25]. You can set up to 4
WRITE or ACCESS breakpoints. In this example, Scope-Scope Il will break when
MSG.BUFFER[25] is written to.

To display the contents of a variable, just type its name at the prompt. Here we
confirm that the 25th element of MSG.BUFFERS was written to.

Set a breakpoint at the entry to the procedure DELAY. This procedure is called
from both COUNT_TASK and PROCESS_TASK.

Go until that breakpoint is hit.

The TASK command shows that both PROCESS TASK and COUNT_TASK have
hit a breakpoint. The asterisk indicates which task is current.

Appendix D, Sample Session 167



Sample Session

ss> task count_token

Current context: task = 69b8 job = 7620
[ :CMAIN.count_task#2809 ]
#2809 c_data();

Ss> go

[ Break at :CUTILS.delay() ]
#2718

#2719

#2720 void delay (msecs)
#2721 int msecs;
#2722 {

ss> task

* 69b8 :CUTILS.delay()
5630 :CUTILS.delay()

ss> br - delay

global * :CUTILS.delay() [ Breakpoint removed ]

ss> br :cmain#2807

global * :CMAIN.count_task#2807 [ Breakpoint added ]

SS> counter

00000002H +2

168 Soft-Scope Il for IRMX 1l



Sample Session

Change the context to COUNT_TASK.

Go again.

Once again both tasks are reported broken at the shared procedure, DELAY(), but
COUNT_TASK is reported as the current task.

Remove the breakpoint at the procedure DELAY().

Set a breakpoint at line #2807, where the variable COUNTER is incremented.
Because this line is not in the current module, you must precede it with a colon
and its containing module’s name.

Examine the value of COUNTER

Appendix D, Sample Session 169



Sample Session

Ss> go

[ Break at :CMAIN.count_task#2807 ]
#2805

#2806 while (1) {

#2807 counter++;

Ss> go

[ Break at :CMAIN.count_task#2807 ]
#2805

#2806 while (1) {

#2807 counter++;

Ss> go

[ Break at :CMAIN.count_task#2807 ]
#2805

#2806 while (1) {

#2807 counter++;

SS> counter

00000004H +4

Ss> br -

[ All breakpoints removed ]

170

Soft-Scope Il for IRMX 1l



Begin execution.

Sample Session

Go a second time.

Go a third time.

Counter has been incremented.

Remove all breakpoints.

Appendix D, Sample Session

171



Sample Session

Ss> go

[ No breakpoints are set, go anyway? (y/n) ] “Y”
< Task running >

Iss> counter

00000009H +9

Iss> counter

0000000bH +11

Iss> suspend count_token

[ Suspend successful ]

Iss> counter

00000010H +16

Iss> counter

00000010H +16

172 Soft-Scope Il for IRMX 1l



Sample Session

Begin execution again. Because there are no breakpoints set you are asked if this
is really what you want to do. Answer “Y”. You are returned to the “running”
prompt, designated by the exclamation point, “!I”. This means that Soft-Scope III’s
current task is not at a breakpoint.

You can examine a variable while your application is running. Look at the value
of COUNTER.

Look at it again. Its value has changed.

Suspend the task COUNT_TASK which increments COUNTER.

Look at counter twice more.

Its value doesn't change because COUNT_TASK is suspended.

Appendix D, Sample Session 173



Sample Session

Iss> vt count_token

Object type =2 Task

Static pri c8 Dynamic pri c8 Task state susp
Suspend depth 01 Delay req 0000 Last exchange 0000
Except handler 5d30:0000610f Except mode 00 Task flags 00

K-saved SS:SP  3340:00000f28 Containing job 7620 Interrupt task  no

Iss> vk

Ready tasks: 63e8 30e0 0268

Sleeping tasks:

0e28 1538 18c0 0f00 Oea8 0Oee8 1268 1290
12b8 12e0 1308 1330 1358 1380 13a8 13d0
13f8 1420 1448 1470 0ed8 14e8 1240 17a0
0e80 3120 3280 3290 4500 1a98 4980 1060
1528 30a8 2498 1f80 1lef8 2fb8 4488 4970
Ofe8 0Off8 73f8 1fe0 28a0 2aa0 23a8 5718
4390 6130 1828 1110 6378 1758 0e68 6980
5630 2bf0  2c78

Iss> resume count_token

[ Resume successful |

174 Soft-Scope Il for IRMX 1l



Sample Session

Use the System Debugger (SDB) view token command to confirm that
COUNT_TASK has been suspended. All of the SDB commands are supported as
Soft-Scope Il macros.

VK displays a list of the tokens for the currently ready and sleeping tasks. Note
that these tokens vary from session to session.

Resume COUNT_TASK.

Appendix D, Sample Session 175



Sample Session

Iss> counter

00000016H +22

Iss> counter

00000017H +23

Iss> go :cutils.delay_fine

[ Break at :CUTILS.delay_fine() ]
#2730

#2731

#2732  static void delay_fine (count)
#2733 int count;

#2734  {

SS> macro

reads writes read write
clearline stackview vu VS

vf vr VO vmo

vmi vmf vk vj

vt vh vd vC

vb 0s loadsegs bpscope
suspend resume task bptimeout

set_base_10 set_base 16

176

Soft-Scope Il for IRMX 1l



Sample Session

Examine COUNTER again.

COUNTER has begun incrementing again.

Go to the entry of the procedure DELAY_FINE. Because it is not in the currently
open module, you must precede its name with a colon and its containing module
name. Notice that the next Soft-Scope Il prompt has no “!”’, indicating we are
again at a breakpoint.

The MACRO command lists currently loaded macros. These command extensions
to the Soft-Scope 111 command set allow you to suspend and resume tasks (SUS-
PEND, RESUME), as well as look at iRMX objects (VT, etc.).

Appendix D, Sample Session 177



Sample

Session

ss> stackview 2

0 2 4 6 8 a c e

3340:00000f48 055f 0000

ss> go delay_fine

[ Break at :CUTILS.delay_fine() ]

#2730
#2731
#2732
#2733
#2734

static void delay_fine (count)
int count;

{

ss> stack trace

[:CUTILS.delay_fine(), Current execution point. ]

[Return 1 -:
[ Return 2 -:
[ Return 3 -:
[ Return 4 - :
[ Return 5 -:
[ Return 6 - :
[ Return 7 -:
[ Return 8 - :
[ Return 9 -:

[ Return 10 -
[ Return 11 - :CQ__TSTART._task_start called count_task() ]

178

CUTILS.delay_fine#2739 called delay_fine() ]
CUTILS.delay_fine#2739 called delay_fine() ]
CUTILS.delay_fine#2739 called delay_fine() ]
CUTILS.delay_fine#2739 called delay_fine() ]
CUTILS.delay_fine#2739 called delay_fine() ]
CUTILS.delay_fine#2739 called delay_fine() ]
CUTILS.delay_fine#2739 called delay_fine() ]
CUTILS.delay_fine#2739 called delay_fine() ]
CUTILS.delay#2728 called delay_fine() ]
:CMAIN.count_task#2808 called delay() ]

Soft-Scope Il for IRMX 1l



Sample Session

STACKVIEW is a simple Scope-Scope Il macro. It dumps a specified number of
entries from the top of the program stack.

See Macros, Chapter 6, for more information.

Start execution and break again on DELAY_FINE. The procedure has been recur-
sively entered.

STACK TRACE displays the current source location and traces backwards, a level
at a time, showing each previous caller. You may see DELAY_FINE() called a
different number of times for your session.

Appendix D, Sample Session 179



Sample Session

ss> stack trace lines

[ :CUTILS.delay_fine(), Current execution point. ]

[ Return 1 - :CUTILS.delay_fine#2739 called delay_fine() ]
#2739 delay fine (--count); /* Call self recursively. !
[ Return 2 - :CUTILS.delay_fine#2739 called delay_fine() ]
#2739 delay fine (--count); /* Call self recursively. !
[ Return 3 - :CUTILS.delay_fine#2739 called delay_fine() ]
#2739 delay fine (--count); /* Call self recursively. !
[ Return 4 - :CUTILS.delay_fine#2739 called delay_fine() ]
#2739 delay fine (--count); /* Call self recursively. !
[ Return 5 - :CUTILS.delay_fine#2739 called delay_fine() ]
#2739 delay fine (--count); /* Call self recursively. !
[ Return 6 - :CUTILS.delay_fine#2739 called delay_fine() ]
#2739 delay fine (--count); /* Call self recursively. !
[ Return 7 - :CUTILS.delay_fine#2739 called delay_fine() ]
#2739 delay fine (--count); /* Call self recursively. !
[ Return 8 - :CUTILS.delay_fine#2739 called delay_fine() ]
#2739 delay fine (--count); /* Call self recursively. !
[ Return 9 - :CUTILS.delay#2728 called delay_fine() ]
#2728 delay_fine (10); /* delay_fine(10) delays for 100 ms!
[ Return 10 - :CMAIN.count_task#2808 called delay() ]
#2808 delay (1000);

[Return 11 - :CQ__ TSTART._task_start called count_task() ]
[ Module :CQ__ TSTART initializing ]

ss> go return(10)

[ Break at :CMAIN.count_task#2809 ]
#2809 c_data ();

180 Soft-Scope Il for IRMX 1l



Sample Session

Scope-Scope 111 displays the source line corresponding to the caller at each level.

Find the number of the last return before the return to your start up code. In this
case it is 10.

Type GO RETURN(X), where X is the number of the last return before the return
to your start up code. For this sample session, that is the 10th return. It may be a
different number for your sample session.

Soft-Scope Il executes until it returns to 10th most recent caller, COUNT_TASK.
GO RETURN would have returned one level to the DELAY_FINE procedure.

Appendix D, Sample Session 181



Sample Session

Ss> go

[ No breakpoints are set, go anyway? (y/n) ] "y
< Monitor breakpoint >

[ Break in Unknown module (0000:00000000) ]

< Address 0000 -> GDT[0] - Segment not present >

ss> task

*69b8 [ Not currently at a breakpoint ]
5630 :CUTILS.delay()

ss> task process_token

Current context: task = 5630 job = 7620
[ :CUTILS.delay() ]

#2718

#2719

#2720 void delay (msecs)

#2721  int msecs;

#2722 {

ss> bpscope

Current bpscope is ‘global’

ss> bpscope task

Current bpscope is ‘task’

182 Soft-Scope Il for IRMX 1l



Sample Session

Attempt to begin execution again. Notice what Soft-Scope Il reports. This is
because COUNT_TASK is already running, i.e., not at break and correct register
values cannot be determined for a task not at a break.

The TASK command confirms that COUNT_TASK is not currently at a break-
point, and therefore cannot be entered with Soft-Scope I1l. At this point, you
could cause COUNT_TASK to break by setting a breakpoint at a place you knew
COUNT _TASK would execute.

Change the current context to PROCESS_TASK.

Display the current breakpoint scope. This is the default scope which is assigned
to each breakpoint set. Currently, the default mode for the breakpoint scope is
GLOBAL. Any task that executes code where a breakpoint is set will report a
break.

Change the default scope to TASK. Now breakpoints set can only be triggered by
the current task. Any other task executing code where a breakpoint is set will be
allowed to continue.

Appendix D, Sample Session 183



Sample Session

ss> br delay

task *:CUTILS.delay() [ Breakpoint added ]

Ss> go

[ Break at :CUTILS.delay() ]
#2718

#2719

#2720 void delay (msecs)
#2721  int msecs;
#2722 {

ss> task

*5630 :CUTILS.delay()

ss> bpscope global

Current bpscope is ‘global’

ss> br delay_fine task

task *:CUTILS.delay_fine() [ Breakpoint added ]

ss> br

task *:CUTILS.delay_fine()
task *:CUTILS.delay()

184 Soft-Scope Il for IRMX 1l



Sample Session

Set a breakpoint at the entrance to DELAY.

Begin execution again.

TASK reports that only PROCESS_TASK hit the breakpoint set at the entrance to
the procedure DELAY, although COUNT_TASK also calls this procedure.

Change the default scope back to GLOBAL.

You can override the default scope by specifying a scope with the BREAKPT
command.

List all currently set breakpoints. Notice that the scope of the breakpoint at
DELAY did not change to GLOBAL when we changed the default scope to GLO-
BAL above.

Appendix D, Sample Session 185



Sample Session

ss> br delay global
NANNNNNNNN

< Breakpoint already set >

ss> br - delay

task *:CUTILS.delay() [ Breakpoint removed ]

ss> br delay

global * :CUTILS.delay() [ Breakpoint added ]

ss> br

global *:CUTILS.delay()
task  *:CUTILS.delay_fine()

Ss> go

[ Break at :CUTILS.delay_fine() ]

#2730

#2731

#2732 static void delay_fine (count)
#2733 int count;

#2734 {

ss> br -

[ All breakpoints removed ]

186

Soft-Scope Il for IRMX 1l



Sample Session

You cannot change a current breakpoint's scope by respecifying a different scope
with the breakpoint command.

You must explicitly remove the breakpoint.

And reset it.

Now the breakpoint set at DELAY has the current default scope.

Begin execution again.

Remove all breakpoints.

Appendix D, Sample Session 187



Sample Session

ss> disasm #2727

[ :CUTILS.delay#2727 ]

#2726

#2727 for (; sleep100 >= 0O; sleep100—)
7840:00000507 jmp 00000513H ; $+7
7840:0000050c mov eax,[ebp-04H]
7840:0000050f dec eax
7840:00000510 mov [ebp-04H],eax
7840:00000513 cmp [ebp-04H],+00H ;Imm =0
7840:00000517 js #2729 ; $+15

ss> br 7840:510

global * Inside :CUTILS.delay#2727 (7840:00000510) [ Breakpoint added ]

Ss> go

[ Break inside :CUTILS.delay#2727 (7840:00000510) ]
#2726
#2727 for (; sleep100 >= O; sleep100--)

ss> $cs:$eip

7840:00000510

SS> br -

[ All breakpoints removed. ]

188 Soft-Scope Il for IRMX 1l



Sample Session

Soft-Scope Il disassembles line #2727. Note that the selectors displayed for your
debugging session will be different than the ones displayed here. If you have
rebuilt the sample program, the offsets may also be different.

Set a breakpoint at the absolute address of the second MOV instruction.

Execute until the breakpoint we just set.

A look at the instruction pointer comfirms that execution stopped where we set
the breakpoint. Note that register symbol names must be preceded by a dollar
Sign ||$||.

Remove the breakpoint at the absolute address. BREAKPT - without any param-
eters romoves all currently set breakpoints.

Appendix D, Sample Session 189



Sample Session

ss> reg

eax=00000009 cs=7840 eip=00000510

ebx=00000e9a ss=33f8 esp=00000f38 ebp=00000f3c
ecx=00000000 ds=7600 esi=00005d30 fs=09e8
edx=000000c2 es=7600 edi=00007600 gs=0fb8
efl=00000206 [vm rf nt iopl=0 of df IF tf sf zf af PF cf]

ss> reg all

eax=00000009 €s=7840 €ip=00000510

ebx=00000e9a $5=33f8 esp=00000f38 ebp=00000f3c
ecx=00000000 ds=7600 esi=00005d30 fs=09e8

edx=000000c2 es=7600 edi=00007600 gs=0fb8

efl=00000206 [vm rf nt iopl=0 of df IF tf sf zf af PF cf]

cro=Tfffffeb [pg et TS em MP PE] Idtr=02a0 tr=0278
cr2=00000000 [pfla=00000000] gdb=00008000 gdI=7cff
cr3=00000000 [pdbr=00000] idb=0000fd00 idI=07ff

ss> $esi = 20

[ Was ] 00005d30H 23856

ss> $esi

00000014H 20

ss> task count_token

Current context: task = 69b8 job = 7620

190 Soft-Scope Il for IRMX 1l



Sample Session

Look at the registers.

This displays all of the registers including those associated with the processor
data structures GDT and IDT.

You can change the value of any register.

Yes, it has been changed.

Switch tasks to COUNT_TASK.

Appendix D, Sample Session 191



Sample Session

ss> help

Command Syntax:

BPSCOPE [ TASK | JOB | GLOBAL ]
BPTIMEOUT [decnumber32]
BREAKPT [-] [coderef] [ TASK | JOB | GLOBAL ]
BREAKPT [-] WRITE|JACCESS memref [ TASK | JOB | GLOBAL ]
CONSOLE [devicename [termtype]]
[count] DISASM [ALL] [NOLINES] [coderef] [TO coderef]
[count] DUMP [ BYTE | WORD | DWORD ] [memref]
DUMP [ BYTE | WORD | DWORD ] memref [TO memref]
EVAL [memref | coderef]
EXIT
GO [WRITE | ACCESS] memref
GO coderef
GO RETURN
HELP [topic]
LINE [coderef]
[count] LIST [lineref| TO lineref]
LIST lineref TO lineref
LOAD filename
LOAD [SYMBOLS filename]
LOADSEGS segtoken jobtoken filename
LOG [devicename | filename]

[ Q"

Ss>go c_data

[ Break at :CUTILS.c_data() ]

#521  #include <ctype.h>

#586  #include <rmxc.h>

#2636

#2637 [* Forward declarations */

#2638 extern void delay_fine();

#2639 extern void delay();

#2640

#2641 |/ !
#2642 [* !

#2643 [+ C_DATA !
#2644 [* !

#2645 | !
#2646

#2647 void c_data()

#2648 {

192 Soft-Scope Il for IRMX 1l



Sample Session

If you cannot remember the syntax for a particular command, or just want more
information about it, use the HELP command.

HELP alone will give you a list of commands and the syntax for each.

About 230k of information is available through this utility, All searches are quick
because the help file (SS.HLP) is indexed internally.

At the end of a screenful, enter "Q" at the prompt.

Soft-Scope Il executes until it encounters the entry to the procedure C_DATA.

Appendix D, Sample Session 193



Sample Session

SS> name_init

Or.......... 760000000094H 7600:00000094
[.......... 76000000009dH 7600:0000009d
[21.......... 7600000000a6H 7600:000000a6

SS> name_init[2]

7600000000a6H 7600:000000a6

ss> name_init[1..2]

[.......... 76000000009dH 7600:0000009d
[21.......... 7600000000a6H 7600:000000a6

ss> string at name_init[1]

‘Steve \0'9

ss> string at name_init[1] = “jessica”

[Was] ‘Steve ‘8

194

Soft-Scope Il for IRMX 1l



Sample Session

You can display an entire array.

You can also look at one element of an array.

Or a range of elements.

By using the string override and the AT operator, you can display the string that
NAME_INIT[1] points to.

You can alter the contents of a string variable by following its name wth an equal
sign and a new string.

Instead of typing this command, press the <up arrow> key. The command you
previously entered is displayed at the prompt. Soft-Scope Il maintains a history
of commands you enter, which is accessible with the arrow keys.

Appendix D, Sample Session 195



Sample Session

ss> dump name_init

0123456789 abocdetf 0123456789abcdef
7600:00000070 94 00 00 00 00 76 9d 00 00 00 00 76 a6 00 00 00 ..V....V.....
7600:00000080 00 76 A%

ss> 2 dump word name_init

0 2 4 6 8 a c e
7600:00000070 0094 0000

ss> dump string at name_init[1]

0123456789 abocdeHf 0123456789abcdef
7600:00000000 6a 65 73 jes
7600:000000a0 73 69 63 61 00 sica.

SS> go #2714

[ Break at :CUTILS.c_data#2714 ]
#2714 if (oldcust = NULL)

ss> type arrayl

array[0..11] of char [ local, stack-based ]

196 Soft-Scope Il for IRMX 1l



Sample Session

Soft-Scope 11l determines the length of NAME_INIT and displays that many bytes,
with a hex display on the left and the corresponding ASCII field on the right.
Because its display is more compact, the DUMP command is useful for references
to variables which would create a long display.

You can specify a count with DUMP, or dump in WORD or DWORD format.

Soft-Scope Il dumps the string that the pointer NAME_INIT[1] points to.

Soft-Scope Il executes until line #2714, past the initialization of several data
structures.

The TYPE command will display typing information about a variable. Here we
see that ARRAY1 is a local, stack-based array of char containing 12 elements.

Appendix D, Sample Session 197



Sample Session

ss> arrayl
o].......... 20H +32 *
m.......... 21H +33 '
2.......... 22H +34
] 23H +35 #
4].......... 24H +36 ‘¢
) 25H +37 ‘%’
6].......... 26H +38 ‘&
74 27H +39
Bl.......... 28H +40 ‘('
O.......... 29H +41 Yy
[0] ......... 2aH +42 *
[y ......... 2bH  +43 ‘+

Ss> type strucl

structure [ local, stack-based ]
xchar......... char
xshort. ........ int
Xint.......... long
xunint. . ....... dword

ss> strucl

structure
xchar......... 21H +33
xshort. ........ fffeH  -10
xint.......... 00000001H +1
xunint. . ....... 00000006H 6

ss> strucl.xchar

21H +33 "

198

Soft-Scope Il for IRMX 1l



Sample Session

Here you see each of the 12 elements of ARRAY1, displayed in character format,
showing hex and ASCII.

Display typing information about the structure STRUCL.

Display the value of the structure STRUCT1.

You can qualify a structure to look at one element.

Appendix D, Sample Session 199



Sample Session

ss> type enet_pkt

structure [ local, stack-based ]
CrC.......... bitfield :2
data.......... word
pkt type........ bitfield :3
source_addr . ..... bitfield :4
dest addr....... bitfield :4
preamble. ... .... bitfield :3

ss> enet_pkt

structure
Crc.......... 1H 1
data.......... 1000H 4096
pkt type........ 3H 3
source_addr . ..... 2H 2
dest addr....... cH 12
preamble. ... .... H 7

ss> dword enet_pkt = Offffffffh

[ Was ]1f94c4001H 4182523905

ss> enet_pkt

structure
CIC vreerne 3H 3
data .......... 3fffH 16383
pkt_type  ....... 7H 7
source_addr ... fH 15
dest_addr ... fH 15
preamble ....... 7H 7

200 Soft-Scope Il for IRMX 1l



Sample Session

Soft-Scope 11l understands bit fields.

Any display of one of these fields will represent only the number of bits assigned
to the field, and any assignment will be correspondingly limited. For instance, the
maximum value you see for ENET_PKT.PKT_TYPE is 7 (111B).

Display the contents of ENET_PKT.

Modify the contents of the entire structure at once, using an overriding type of
Dword (32-bit unsigned). This sets all 32 bits of ENET_PKT to 1.

Note: Since all hexidecimal numbers must begin with a digit, you need to type a
zero at the beginning of the value.

Confirm that ENET_PKT was modified.

Appendix D, Sample Session 201



Sample Session

ss> type customerlist

array[0..2] of structure [ local, stack-based ]
name.......... array[0..7] of char
phone......... array[0..6] of char
linkfor........ pointer -> structure

SS> type *customer

structure
name.......... array[0..7] of char
phone......... array[0..6] of char
linkfor........ pointer -> structure

SS> go #2714

[ Break at :CUTILS.c_data#2714 ]
#2714 if (oldcust = NULL)

ss> oldcust->name

o.......... 42H +66 'B'

[M.......... 65H +101 'e'

2l.......... 74H +116 't

Bl.......... 68H +104 'h'

[4.7] ........ 20H +32 '
ss> oldcust

334000000f70H 3340:00000f70

202

Soft-Scope Il for IRMX 1l



Sample Session

Although CUSTOMERLIST is an array, we will use it as a linked list to demon-
strate Soft-Scope IlI's data referencing features.

You can display type information about a variable by dereferencing its pointer.

Loop once through the initialization of CUSTOMERLIST.

Using C-like syntax, you can dereference the element NAME of the structure
CUSTOMERLIST.

Let's confirm that this dereferencing is correct by looking at the value of
OLDCUST.

Appendix D, Sample Session 203



Sample Session

ss> &customerlist[0]

3340:00000f70

ss> *oldcust

structure
name
O.......... 42H +66 ‘B’
[ay.......... 65H +101 ‘e’
2 .......... 74H +116 ‘'t
Bl.......... 68H +104 ‘h’
[a.7 ........ 20H +32 “°
phone
[0.2] ........ 35H +53 ‘%
Bl...ooooot 31H +49 ‘v
[4.......... 32H +50 2
Bl.......... 33H +51 ‘¥
6r.......... 34H +52 ‘4
linkfor . ....... 000000000000H 0000:00000000

ss> type c_data

procedure

ss> lengthof customerlist

00000003H 3

ss> sjzeof customerlist

00000048H 72

204 Soft-Scope Il for IRMX 1l



Sample Session

The address of CUSTOMERLIST[O0] is the value of the pointer OLDCUST. The
ampersand (&) is an address operator.

You can display the entire structure that OLDCUST points to.

You can also use the TYPE command to obtain information about procedures. If
C_DATA returned a value, the TYPE command would display the type of the
return value.

Soft-Scope Il has several built-in functions that can be used in any valid expres-
sion. LENGTHOF returns the length of the array CUSTOMERLIST.

CUSTOMERLIST uses 72 bytes.

Appendix D, Sample Session 205



Sample Session

ss> eval customerlist

[O] structure

name
O].......... 42H +66 ‘B’
[ay.......... 65H +101 ‘e’
2.......... 74H +116
Bl..coont 68H +104 ‘W
4.7 ........ 20H +32 ‘¢
phone
[0.2] ........ 35H +53 ‘5’
Bl..cooot s 31H +49 ‘v
4 .......... 32H +50 2’
Bl.......... 33H +51 ‘¥
6].......... 34H +52 ‘4
linkfor . ....... 000000000000H 0000:00000000

Address 0000->GDTI[0] - Segment not present
[1] structure

name
O].......... 6aH +106
[ay.......... 65H +101 ‘e’
[2.3] ........ 73H +115 ‘s’
4 .......... 69H +105
Bl.......... 63H +99 ‘¢’
6].......... 61H +97 ‘@

[ More(sp,cr,1..9) Quit ] "Q"

ss> eval ¢_data

Module :CUTILS (#1 to #2717)
Code 7840:00000370 to 7840:000004ee (383 bytes)

ss> eval selectorof oldcust

3340H gdt[1640] rpl=0 Offsets 00000000..00000fff

206

Soft-Scope Il for IRMX 1l



Sample Session

EVAL displays a variable in bases other than those normally displayed. If the
variable is a pointer, its associated descriptor entry is displayed.

Procedures can also be evaluated. EVAL displays the location of the code, its
length, and the corresponding high level lines.

You can use the EVAL command together with the SELECTOROF built-in func-
tion to display information about the descriptor entry for the pointer OLDCUST.
The legal range of offsets and the requestor's privilege level are displayed.

Appendix D, Sample Session 207



Sample Session

ss> eval gdt[1640]

Data R/W-AC 00lebdaOL Lim=00fffH DPL=0 gBaP

ss> gdt
0]  Empty
[1] Data R/W-AC Offsets 0000..7cff  DPL=0
[2] Data R/W-AC Offsets 0000..07ff  DPL=0
[3] Data R/W-AC  Offsets 00000000..ffffffff DPL=0
[4] Code RD Offsets 00000000. ffffffff DPL=0
[5] Code RD-AC  Offsets 00000000..00006263 DPL=0
[6] Data R/W-AC Offsets 00000000..0000111a DPL=0
[7 Data R/W-AC Offsets 0000..1fff DPL=0
[8] Code RD-AC  Offsets 00000000..000015a2 DPL=0
[9] Data R/W-AC Offsets 00000000..0000065b DPL=0
[10] 386 Call gate 0028:00002efc Count=2  DPL=0
[11] 386 Call gate 0028:00000a4c Count=12 DPL=0
[12] 386 Call gate 0028:0000307c Count=0  DPL=0
[13] Avail 386 TSS Offsets 0000..0067 DPL=0
[14] Avail 386 TSS Offsets 0000..0067 DPL=0
[15] Empty
[16] Avail 386 TSS Offsets 0000..0067 DPL=0
[17] Avail 386 TSS Offsets 0000..0067 DPL=0
[18] Avail 386 TSS Offsets 0000..0067 DPL=0
[19] Avail 386 TSS Offsets 0000..0067 DPL=0
[20]  Empty
[21] Avail 386 TSS Offsets 0000..0067 DPL=0
[22] Empty

[ More(sp,cr,1..9) Quit ] “‘Q”

208

Soft-Scope Il for IRMX 1l



Sample Session

Evaluating the descriptor itself displays its base and limit, access rights and which
of the miscellaneous bits (such as for granularity) are set.

You can access 80386 built-in data structures. Press "Q" at the prompt to quit the
display. You can also access a single entry, as in GDT[1640].

Appendix D, Sample Session 209



Sample Session

Ss> set

[ Options currently set ]
targ.dev. .. ... “sskernel”
base........ “10”

ss> set cmd.prompt = “SSIII> “

SSll>

SSlIl> quit

210 Soft-Scope Il for IRMX 1l



Sample Session

SET without parameters lists the current options environment.

This changes the command prompt. The SET command enables you to alter many
aspects of the Soft-Scope Ill environment.

Exit Soft-Scope I1I.

Appendix D, Sample Session 211






Symbols

I, Running prompt indicator 45
I, Truncated line indicator 31
&, addressof operator 71

* pointer dereference operator 63

->, structure pointer operator 63
., Symbol operator 66

.., subscript range operators 61
...X, open-ended operators 61

:, module operator 66
?,indisplays 67

?,in task displays 53

A
Abort macros 96
Addresses

In type overrides 70
Applications

File types supported 3
Arrays, examining 60
ASM286 and ASM386 103
at, (operator) 71

B

Base (set option)
Default value 80
Description 90

Binary numbers 80

Index

Bitfields, referencing 62
BLD386 105

BND286 and BND386 104
BPSCOPE command 44
BPTIMEOUT command 45
Break, in macros 96
Breakpoints

Debug registers limitations 47
Displaying 44
Execution 46
Hardware 46

Missed 47

Number possible 2
Scope 44

BREAKPT command 44
Built-in functions 78

C

Calls

Displaying 50
Stepping into or over 36
Change task context 52
Character strings 84
cmd.history (option)
Description 90
cmd.initial (option)
Description 90
cmd.macro (option)
Description 90




Index

cmd.prompt (option)
Description 90
cmd.silent (option)
Description 90
Commands

BPSCOPE 44
BPTIMEOUT 45
BREAKPT 44
CONSOLE 20

DISASM 48

DUMP 74

EVAL 64, 76
EXIT/QUIT 21

GO 40

HELP 17

LINE 34

LIST 30

LOAD 12

LOADSEGS 15

LOG 18

MACRO 94

MODULE 43

REG 76

RESUME 57

SET 88

SS 10

STACK 50

STEP 36

SUSPEND 57

Syntax elements 25
Syntax summary 26
SYSTEM 20

TASK 52

TYPE 65

VERSION 21
CONSOLE command 20
Context (task), changing 52
Control registers, table of 117
Control statements, macro 96
CPU structures, examining 76

214

D

Data Types, table of 112
Debug registers 47
Decimal numbers 80
Default command, LINE 34
Descriptors, examining 76
Device drivers, debugging 12
DISASM command 48
Display, initial 11
Displaying
Assembly code 48
Breakpoints 44
Code 30
Code symbols 34
Descriptors 76
Help 17
Listing file assignments 43
Memory 74
Procedure calls 50
Registers 76
Tasks at break 52
Tasks from other SSIlI sessions 53
The current execution point 34
DUMP command 74

E

Echo on/off, in macros 97
Editing functions
Command history 16
Deleting text 16
Moving the cursor 16
Editorial conventions 6
Error messages
General 125
Escape sequences, string 84
Table of 85
EVAL command 64, 76
Evaluate data 64
Execution
Stepping 36

Soft-Scope Il for iRMX 111



Index

Execution breakpoints 46 Procedure 9

EXIT/QUIT commands 21 Requirements 8

Exponential numbers 80 Interactive list mode 30
Interactive list mode, table of functions 32

F Invoke SSIII 10

Faults, trapping 146 iIRMX Kill command, warning 10

Files K

Assignments, listing files 43

Extensions 43 Kill command, iRMX 10

Macro source 95

Soft-Scope 11l 8 L

SS.HLF_’ 17 LDT 76

Flags_reglstgrs, table of 116 LENGTHOFE 78

Floating-point numbers 80 LINE command 34

FORTRAN-386 109

Line length 31
LIST command 30
In macros 97 LOAD command 12
SSIl built-in - 78 LOADSEGS command 15
G LOG command 18
Logical addresses, as references 69

Functions

GDT 76
General purpose registers, table of 115 M

gg cRoE?rSgr&ld 4420 MACRO command 94
Macros

GO, with no breaks 40 Control statements 96

H Error messages 142
Examples 99

Hardware breakpoints 46 Functions 97

HELP command 17 Loading 94

Hexadecimal numbers 80 Parameters 98

Human interface applications 12 Source files 95

Memory references 68
I Missed Breakpoints 47
MODULE command 43

I/0 port 78

iC-286 and iC-386 106 N

IDT 76

If/Else, in macros 96 NPX registers, table of 116
Initial display 11 Numbers

Installation Default bases, table of 81

Optional methods 8

Index 215



Index

O

OFFSETOF 78
Operators

Arithmetic 82

Logical 82
Precedence, tables of 83
Symbolic 82

Table of 114

Options

base 90

cmd.history 90
cmd.initial 90
cmd.macro 90
cmd.prompt 90
cmd.silent 90
rmxload.excep 91
src.path 91
src.tab 91
sym.case 92
sym.descriptor 92
sym.pointer 92
tmp.path 92

P

Parameters, macro 98
Physical addresses, as references 69
PL/M 286 and PL/M 386 107
Pointers
Dereferencing 63
Examining 63
PORT 78
Print, in macros 97
Protected-mode registers, table of 117

Q

QUIT command 21
R

Reference scoping 66
Reference summary 86

216

Reference variables 60
Referencing Structures
Arrays of structures 62
Individual elements 62
REG command 76
Registers
Control, table of 117
Display, described 77
Examining 76
Flags, table of 116
General purpose, table of 115
Modifying 77
NPX, table of 116
Protected-mode, table of 117
Segment, table of 116
RESUME command 57
Resume tasks 57
RETURN 78
Return, in macros 96
Return, with the GO command 42
rmxload.excp 91
RQALOAD, system call 15

S

Sample programs
Directory located 8
Scoping, references 66
SDB commands 22
Segment registers, table of 116
SELECTOROF 78
SET command 88
SIZEOF 78
src.path (option)
Description 91
src.tab (option)
Description 91
SScommand 10
SSABORT 10, 147
SSKERNEL 146
Invocation 10
limitations 10

Soft-Scope Il for iRMX 111



STACK command 50
Stack-based variables, referencing 67
STEP command 36
Stepping
Change modes 37
Default mode 38
In assembly mode 36
Into and Over calls 36
Table of options 37
String escape sequences 84
Table of 85
Strings 84
Structures, referencing 62
SUSPEND command 57
Suspend tasks 57
Suspending tasks 57
Switching tasks 52
sym.case (option)
Description 92
sym.descriptor (option)
Description 92
sym.pointer (option)
Description 92
SYSTEM command 20
System Debug commands (SDB) 22
Loading with cmd.macro 22
Table of 23

T

TASK command 52

Tasks

Changing context 52
Displaying 52
Suspending 57
tmp.path 92

Tools

ASM286 and ASM386 103
BLD386 105

BND286 and BND386 104
Fortran-386 109

iC-286 and iC-386 106

Index

PL/M 286 and PL/M 386 107
Trapping faults 146
Troubleshooting 28
TYPE command 65
Type overrides

Definition and usage 70

Table of 112

U
Unions, referencing 60
Vv

Variables

Examining 60
Stack based 67
VERSION command 21

W

While statement, in macros 96

Index

217






	Soft Scope® III Debugger User’s Guide
	Contents
	Chapter 1: Introduction
	Chapter 2: Getting Started
	Chapter 3: Controlling Execution
	Chapter 4: Examining Data
	Chapter 5: Soft-Scope III Configuration
	Chapter 6: Soft-Scope III Macros
	Chapter 7: Tools
	Appendix A: Tables
	Appendix B: Error Messages
	Appendix C: SSKERNEL
	Appendix D: Sample Session
	Index

