
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

iRMX® Programming
Concepts for DOS

07-0571-01
December 1999

ii

EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
is a trademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright 1999 by RadiSys Corporation

All rights reserved.

Programming Concepts for DOS iii

Quick Contents

Chapter 1. Introduction

Chapter 2. DOS Real-time Extension

Chapter 3. VM86 Protected Mode Extensions

Chapter 4. Making DOS and ROM BIOS System Calls

Chapter 5. General Information

Appendix A. Default Configuration

Index

iv

Notational Conventions
Most of the references to system calls in the text and graphics use C syntax instead of
PL/M (for example, the system call send_message instead of send$message). If you
are working in C, you must use the C header files, rmx_c.h, udi_c.h and rmx_err.h.
If you are working in PL/M, you must use dollar signs ($) and use the rmxplm.ext and
error.lit header files.

This manual uses the following conventions:

• Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

• All numbers are decimal unless otherwise stated. Hexadecimal numbers include
the H radix character (for example, 0FFH). Binary numbers include the B radix
character (for example, 11011000B).

• Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

• Data structures and syntax strings appear in this font.

• System call names and command names appear in this font.

• PL/M data types such as BYTE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C data types are lower case except
those that represent data structures.

• The following OS layer abbreviations are used. The Nucleus layer is
unabbreviated.

AL Application Loader
BIOS Basic I/O System
EIOS Extended I/O System
HI Human Interface
UDI Universal Development Interface

• Whenever this manual describes I/O operations, it assumes that tasks use BIOS
calls (such as rq_a_read, rq_a_write, and rq_a_special). Although not
mentioned, tasks can also use the equivalent EIOS calls (such as rq_s_read,
rq_s_write, and rq_s_special) or UDI calls (dq_read or dq_write) to do the
same operations.

Programming Concepts for DOS Contents v

Contents

1 Introduction
Understanding the Environments... 2
Running DOS and the iRMX® OS on the Same System 2

VM86 Dispatcher ... 3
VM86 Protected Mode Extensions ... 3

Real-time Extension .. 4
Making DOS/ROM BIOS System Calls from the iRMX OS 5
File Access .. 5

EDOS File Driver... 8
Networking... 8

File and Device Drivers... 10
Loadable File and Device Drivers .. 10

System Configuration .. 10

2 DOS Real-Time Extension
RTE System Calls.. 11

RQEGetRmxStatus Call ... 13
RTE Files ... 13

RTE Objects Limitation... 14
Making an RTE System Call ... 15

Using RTE Functions ... 16
DOS RTE Demonstration.. 16

Example: Running the Demonstration Program 18
Mailboxes (Objects) Functions.. 19
Mailboxes (Data) Functions .. 20
Semaphore Functions .. 21
PVAM Segment Functions.. 22
Descriptor Functions ... 23
Data Transfer Functions .. 24

3 VM86 Protected Mode Extensions
Installing VM86 Protected Mode Extensions .. 25

iRMX Interrupt Levels ... 25
Extension Procedure Operation: DOS Interrupt Handling....................... 27
Deletion Handler Operation.. 28

vi Contents

Extension System Call Restrictions.. 28
Extension Installation Examples .. 29

Installing an Extension from the iRMX Operating System 29
Initiating an Extension from DOS... 29

4 MakingDOSandROMBIOSSystemCalls
Making DOS and ROM BIOS Calls from an iRMX Application.................... 31

Example: Get Free Disk Space.. 32
Get Redirection List Entry Example .. 34

Setting the DOS Data Structure... 34

5 General Information
Interrupt Virtualization and Determinism.. 37
Real-time Fence... 38
iRMX-NET Access From a DOS Server... 38

6 DOSRMX Default Configuration
Sub-System Configuration... 40
Memory Configuration.. 40
Human Interface Configuration... 41
Application Loader Configuration... 41
Extended I/O System Configuration.. 42
Basic I/O System Configuration.. 42
Device Drivers Configuration.. 43
System Debug Monitor Configuration... 44
Nucleus Configuration... 44
Nucleus Communication Service Configuration ... 45
VM86 Dispatcher Reserved Interrupts Configuration 45

Index ... 47

Programming Concepts for DOS Contents vii

Tables
Table 1-1. Facilities for Supporting Various iRMX OS and Windows Configurations . 2
Table 2-1. RTE System Calls.. 12
Table 3-1. iRMX Interrupt Levels .. 26
Table A-1. Sub-Systems Options.. 40
Table A-2. Memory Options... 40
Table A-3. Human Interface Options.. 41
Table A-4. Application Loader Options.. 41
Table A-5. EIOS Options.. 42
Table A-6. BIOS Options ... 42
Table A-7. Device Drivers Options .. 43
Table A-8. System Debug Monitor Options ... 44
Table A-9. Nucleus Options.. 44
Table A-10. Nucleus Communication Service Options .. 45
Table A-11. DOS Extender Reserved Interrupts... 45

Figures
Figure 1-1. Making Nucleus System Calls with the DOS Real-time Extension............ 4
Figure 1-2. Making DOS and ROM BIOS Requests from an iRMX Application 5
Figure 1-3. Using Networking to Access Files on the iRMX File System.................... 7
Figure 1-4. Accessing DOS Files with the EDOS File Driver 8

viii Contents

iRMX Programming Concepts for DOS Chapter 1 1

Introduction 1
This manual discusses the programming concepts necessary to produce real-time
applications for an environment that includes DOS and the iRMX® OS.

This manual is for programmers who are familiar with:

• Applications programming in the DOS and Windows environment

• Terms and concepts for the iRMX OS

See also: Introducing the iRMX Operating Systems,
System Concepts

• C or PL/M programming language

See also: iC-386 Compiler User's Guide,
PL/M-386 Programmer's Guide

The DOSRMX OS provides a set of powerful extensions to DOS. With it you can
develop DOS applications that incorporate the preemptive, priority-based
multitasking and real-time response of the iRMX OS.

DOSRMX enables:

• MS-DOS or PC-DOS OSs to run concurrently with the iRMX OS on the same
microprocessor and to share the same console

• Existing DOS Real Mode application programs, including most off-the-shelf
applications, to run under DOS with no modification

• Existing iRMX application programs to run under DOSRMX with no
modification, while maintaining real-time performance

• DOS application programs to make iRMX Nucleus system calls and to
communicate directly with 32-bit Protected Mode iRMX application programs

• iRMX application programs to make DOS and ROM BIOS system calls from
within an iRMX task

• DOS programs to access iRMX files and iRMX programs to access DOS files

• Preconfigured and loadable file and device drivers and system jobs

• Simultaneous access to network services from DOS and the iRMX OS

2 Chapter 1 Introduction

Understanding the Environments
Some of the facilities discussed in this manual can be used in two environments. One
environment consists of DOSRMX and DOS within a single system. The other
environment consists of networked systems where one system can be any iRMX OS
communicating with a system running DOS/Windows.

These facilities include Remote File Access. Using the NetBIOS interface to the
OpenNET networking protocol and a standard DOS Network Redirector, DOS
applications can access the iRMX file systems on a local DOSRMX system or remote
systems running any iRMX OS.

✏ Note
When running DOS on a stand-alone system, the PCLINK2
Networking Adapter facilitates access to the OpenNET networking
protocol. This access is restricted to systems running only
Windows 3.1 or 3.11.

Table 1-1 shows the facilities required to perform certain operations between the
iRMX OS and Windows.

Table 1-1. Facilities for Supporting Various iRMX OS and Windows Configurations

Windows PC,
iRMX System,
TCP/IP network

Windows PC,
iRMX System,
ISO network

DOSRMX,
one PC

File
Access

NFS*, FTP* NetBIOS
(iRMX-NET)

NetBIOS
(iRMX-NET)

Virtual
Terminal
Support

Telnet*

*See also: TCP/IP and NFS for the iRMX Operating System

Running DOS and the iRMX® OS on the Same System
By itself, DOS does not use the advanced features of the Intel386� , Intel486� and
Pentium® microprocessors such as Protected Mode Addressing.

The iRMX OS exploits more of the features of these microprocessors, allowing tasks
to run concurrently and to reside in up to 4 Gbytes of memory. Under the iRMX OS,
these microprocessors also run in 32-bit Protected Mode.

iRMX Programming Concepts for DOS Chapter 1 3

DOSRMX encapsulates DOS as an iRMX task and runs that task in Virtual 86 Mode
(VM86). The encapsulated DOS task (DOS and its application programs) runs in the
first 1 Mbyte of memory, and the iRMX OS runs in the remaining memory.

A terminate and stay resident (TSR) program, rmxtsr.exe, provides a small buffer in
DOS memory which enables DOS and the iRMX OS to exchange data.

See also: Loadable system jobs, System Configuration and Administration,

VM86 Dispatcher
The VM86 Dispatcher enables DOS to run as a task under DOSRMX by:

• Switching the microprocessor addressing mode, depending on which OS is
running

• Ensuring that interrupts are handled by the appropriate OS

• Providing file sharing between the OSs

• Preventing hardware resource conflicts between the OSs

The VM86 Dispatcher is preconfigured into DOSRMX as an iRMX first-level system
job.

See also: System jobs, System Concepts

DOS is not supplied with iRMX II.2.3; you must install PC-DOS or MS-DOS OS
before you can run DOSRMX. You can install compatible off-the-shelf DOS
applications before you run DOSRMX.

VM86 Protected Mode Extensions
The VM86 Protected Mode extensions allow you to use Protected Mode services
provided by the iRMX OS. Using these extensions, DOS application programs
running in VM86 mode can access Protected Mode services such as 4 Gbyte
addressing, as well as the iRMX system calls.

4 Chapter 1 Introduction

The Intel-supplied VM86 Protected Mode extensions provided by the VM86
Dispatcher include:

• DOS Real-time extension (RTE)

• Network Redirector (NETRDR)

You can also write your own VM86 Protected Mode extensions.

See also: rqe_set_vm86_extension, in this manual and System Call Reference

Real-time Extension

The DOS Real-time Extension (RTE) enables you to call some of the iRMX Nucleus
system calls from within a DOS application program. By using the RTE, a DOS
application program can communicate with a concurrently-running iRMX application
program using standard iRMX techniques. The RTE includes system calls that create
and delete iRMX objects and descriptors, read and write segments, and catalog and
look up objects.

Figure 1-1 illustrates how a DOS application makes a Nucleus system call.

DOS Application

DOS RTE Request (Software Interrupt)

VM386 Dispatcher

Real-time Extension

iRMX Nucleus

Figure 1-1. Making Nucleus System Calls with the DOS Real-time Extension

For example, the DOS application program may send or receive messages or data
using a mailbox created by an iRMX application program. Similarly, an iRMX
program may send or receive messages using a mailbox created by the DOS
application program.

See also: DOS RTE, in this manual,
DOS-specific system calls, System Call Reference

iRMX Programming Concepts for DOS Chapter 1 5

Making DOS/ROM BIOS System Calls from the
iRMX OS

DOSRMX enables iRMX programs to use the DOS and ROM BIOS software
interrupt services, including any special ROM BIOS functions provided by add-in
adapters, rather than implementing the same function as iRMX system calls.

Figure 1-2 illustrates how iRMX programs can make a DOS/ROM BIOS call.

iRMX Application

DOS/ROM BIOS Request

VM386 Dispatcher

RMX TSR

DOS

Software Interrupt

Int 21H

Figure 1-2. Making DOS and ROM BIOS Requests from an iRMX Application

For example, your iRMX application program can use the DOS Get Free Disk
Space example to check available space on a network disk drive.

See also: Get Free Disk Space Example, Chapter 4,
rqe_dos_request, System Call Reference

File Access
The DOS and iRMX file systems are inherently different. However, a file driver
provided with the iRMX OS allows DOS and iRMX application programs to share
files.

The Encapsulated DOS (EDOS) file driver enables iRMX application programs to
access files on a DOS partition, storage device, or network drive that has a drive
letter mapped to it. EDOS allows both DOS and iRMX partitions to store both DOS
and iRMX files.

6 Chapter 1 Introduction

Applications on a DOS partition can also access files on an iRMX partition by using
a network job and these configuration files:

• The PCNET NetBIOS driver, pcnet.exe (installed on the DOS partition).

• The network redirector job, netrdr.job (loaded on the iRMX partition).

• The iNA 960 networking job, i*.job, appropriate to your OS and the iRMX-NET
client and server jobs (remotefd.job and rnetserv.job).

See also: Using iRMX-NET in a DOS Environment, System Configuration
and Administration

Under DOSRMX, you can choose whether to use only the DOS file system, or a
partitioned file system including a DOS partition and one or more iRMX partitions.
At least one DOS drive is required in an DOSRMX system.

See also: File access, Command Reference,
Installing DOSRMX, Installation and Startup

iRMX Programming Concepts for DOS Chapter 1 7

Figure 1-3 illustrates how DOS file requests are carried out by the I/O System.

DOS Application

DOS File Request

VM386 Dispatcher

DOS Network Redirector

iRMX Network Redirector

iRMX I/O Request

File Request

iRMX I/O System

Figure 1-3. Using Networking to Access Files on the iRMX File System

The iRMX file system could be a separate drive or an iRMX partition on a drive
containing both DOS and iRMX partitions, or even a remote drive accessed through
iRMX-NET.

See also: File types, System Concepts

8 Chapter 1 Introduction

EDOS File Driver
The EDOS file driver uses DOS as a file server to access DOS files. It maps iRMX
file driver interfaces to DOS system calls. Therefore, files on the DOS drives appear
to the iRMX application just as they would on an iRMX drive.

See also: attachdevice command, Command Reference

Figure 1-4 illustrates how iRMX applications make DOS file requests.

iRMX Application

I/O Request

IRMX BIOS

EDOS File Driver

VM86 Dispatcher

RMX TSR

Int 21H

Software Interrupt

DOS

DOS File Request

Figure 1-4. Accessing DOS Files with the EDOS File Driver

Networking
DOSRMX supports both DOS and iRMX networking. This support provides a
variety of capabilities:

• DOS and iRMX applications that communicate on the network run unchanged
when they run within the same system.

• DOS files can be accessed from a remote file consumer without a dedicated file
server.

iRMX Programming Concepts for DOS Chapter 1 9

• DOS and iRMX OSs running within the same system can share a single network
controller.

• OpenNET networking support provides connections to computers running the
DOS and UNIX OSs.

• DOS networking applications can use the network controller in a Multibus I or
Multibus II system.

A PC running DOSRMX can run this network software:

• MS-Net client or server

• IBM PC LAN client or server

• Novell NetWare client

• Combinations of MS-Net and NetWare on one computer

PCs running DOSRMX can also run this iRMX network software:

• iRMX-NET consumer and server for remote file access, which can coexist with
DOS network software

• iNA 960 jobs for a programmatic interface, but which cannot coexist with DOS
network software.

• Null data link network jobs that allow DOS to access the iRMX file system
without an Network Interface Controller (NIC).

See also: Network jobs, i*.job, System Configuration and Administration,
Introduction, Network User's Guide and Reference

10 Chapter 1 Introduction

File and Device Drivers
The DOSRMX software includes preconfigured file drivers and device drivers that
can be loaded dynamically.

Loadable File and Device Drivers
These driver allow you to write procedures to invoke and interface to additional
custom, random access, and terminal hardware.

See also: Loadable file and device drivers, Driver Programming Concepts
and System Configuration and Administration

System Configuration
DOSRMX is preconfigured to run in the DOS ndows environment, however you may
change some aspects of the OS for a particular application.

Certain parts of the OS are loadable, including loadable file and device drivers and
loadable jobs.

You load these elements into the system with the sysload command in the
:config:loadinfo file. Loadable device drivers allow you to write procedures to
invoke and interface to additional custom, random access, and terminal hardware.
Loadable file drivers enable you to include custom file drivers.

The OS includes an rmx.ini file for load-time configuration. As layers of the OS
boot, they read entries from this file. The rmx.ini file contains entries that match
settings preconfigured into DOSRMX. You can modify the existing entries to fine-
tune your use of the OS.

You can also use the Interactive Configuration Utility (ICU) to change the
configuration of the DOSRMX or iRMX for PCs OSs.

See also: Loadable jobs and drivers, System Configuration and Administration,
Loadable device drivers, Driver Programming Concepts,
Physical device names, Command Reference,
ICU Quick Reference, ICU User’s Guide and Quick Reference

■■ ■■ ■■

Programming Concepts for DOS Chapter 2 11

DOS Real-Time Extension 2
The DOS Real-time Extension (RTE) enables DOS application programs to use the
real-time protected mode features of the iRMX Nucleus. Not all iRMX Nucleus
system calls are supported by the RTE.

RTE System Calls
A complete list of calls that are supported by both DOS and the iRMX OS is given in
Table 2-1, which also lists the function code value for each RTE system call.

There are two additional calls that are only available from DOS. These calls,
rqe_read_segment and rqe_write_segment, allow the application program to
transfer data between DOS in VM86 memory and the iRMX OS in Protected
Memory.

See also: rqe_read_segment and rqe_write_segment calls, System Call
Reference

Chapter 2 DOS Real-time Extension12

Table 2-1. RTE System Calls

Code Call Name Description

0 create_mailbox Create an object or data mailbox

1 delete_mailbox Delete an object or data mailbox

2 send_message Send an object to a mailbox

3 send_data Send data to a mailbox

4 receive_message Receive an object

5 receive_data Receive data

6 create_semaphore Create a semaphore

7 delete_semaphore Delete a semaphore

8 send_units Send a unit to a semaphore

9 receive units Receive a unit from a semaphore

10 create_region Create a region

11 delete_region Delete a region

12 send_control Release control of a region

13 receive_control Receive control of a region

14 accept_control Accept control of a region

15 create_segment Create a segment

16 delete_segment Delete a segment

17 get_size Get the size of a segment

18 rqe_get_address Get the physical address of a segment

19 rqe_create_descriptor Create a PVAM descriptor

20 rqe_delete_descriptor Delete a PVAM descriptor

21 rqe_change_descriptor Change a PVAM descriptor

22 catalog_object Catalog an object

23 uncatalog_object Uncatalog an object

24 lookup_object Lookup an object

26 get_task_tokens Get task or job token

27 get_type Get the type of an object

28 sleep Sleep for a specified time

30 rqe_read_segment Read from PVAM to a Real Mode segment

31 rqe_write_segment Write to a PVAM segment from a real mode
segment

Generally, the RTE system calls allow the DOS application program to manipulate
iRMX objects, semaphores, mailboxes, regions, segments and Protected Virtual
Address Mode (PVAM) descriptors, and to communicate with iRMX tasks.

See also: VM86 Protected Mode Extensions, Chapter 3

Programming Concepts for DOS Chapter 2 13

If the DOS application program invokes an RTE system call that creates an iRMX
object (such as a mailbox or PVAM descriptor), it must delete the iRMX object with
the corresponding DOS RTE delete call from DOS. If the DOS application program
does not explicitly delete the object, the object will be deleted upon termination of the
DOS application program, or upon DOS being restarted.

The syntax and the semantics of the parameters for RTE system calls 0 to 28 are the
same as the iRMX Nucleus system calls of the same name except for pointer
parameters. The RTE system calls can return condition codes not returned by their
Nucleus counterparts.

See also: System call descriptions, System Call Reference

All pointers parameters in these calls must be Real Mode pointers. Real Mode
pointers consist of two 16-bit WORDs where the high WORD contains the base
address of a 64 Kbyte segment and the low WORD contains the offset that points into
the segment.

RTE is implemented by the VM86 Dispatcher in the DOS RTE system job. The
DOS RTE job installs itself as a VM86 Protected Mode Extension at interrupt vector
B8H. DOS RTE converts Real Mode pointers to PVAM pointers.

RQEGetRmxStatus Call
Use the RQEGetRmxStatus RTE call to check if the iRMX OS is loaded. Use this
call before any other RTE calls to insure RTE services are available. Unpredictable
results occur if RTE calls are called when iRMX is not present.

See also: RQEGetRmxStatus, System Call Reference

The call returns E_OK if iRMX is loaded and running, or E_EXIST if iRMX is not
present or unavailable. The call is provided in binary form as a linkable module in
the file \rmx386\demo\rte\lib\rmxfuncs.obj.

RTE Files
The C header file \rmx386\demo\rte\lib\rmxintfc.c contains all the declarations for the
RTE functions.

When developing DOS applications which make RTE calls, include the file
rmxintfc.h and compile with the /AL switch (for Microsoft C). Use this file
rmxintfc.h with all models of compilation. The file rmxc.h is specific to the RTE
demo; do not use it in other applications.

There are three versions of the DOS RTE libraries: dosrtec.lib for compact model
compilations, dosrtes.lib for small model compilations, and dosrtel.lib for large

Chapter 2 DOS Real-time Extension14

model compilations. The \rmx386\demo\rte\lib directory contains source for the
libraries.

See also: \rmx386\demo\rte\lib\readme.txt file, for more information about the
source code, header files, and libraries

RTE Objects Limitation
The RTE job in DOSRMX maintains a table of all objects created by it on behalf of
DOS applications. It handles up to 512 RTE-created iRMX objects, which is
sufficient for most applications. However, this limit may be reached accidentally.
When an RTE-created object is deleted in an iRMX task, the entry from the RTE
table still remains. This causes the table to fill up with deleted objects.

The solution is to create a mailbox and send to it the tokens of objects to delete. Then
have code in your DOS application which, when waiting for an iRMX event, queries
the iRMX mailbox for objects to be deleted. If you delete all RTE objects that occur
(which means iRMX applications receiving RTE-created objects need to send them
to this mailbox for deletion), the RTE object table does not fill up and should then be
able to handle all the active RTE objects needed by an application.

Programming Concepts for DOS Chapter 2 15

Making an RTE System Call
All RTE system calls are accessed using a single software interrupt. The
microprocessor registers and the Real Mode stack are used for passing the parameters
of the RTE system call. One of the parameters passed is the RTE function code.

To invoke an RTE system call, the DOS application program must perform these
actions:

1. Push all the parameters required by the RTE system call onto the Real Mode
stack using the PL/M-286 convention. That is, the first parameter is pushed onto
the stack, followed by the second and subsequent parameters.

2. Load the SI register to point to the last parameter pushed onto the Real Mode
stack.

3. Load the AX register with the desired RTE function code.

4. Generate the RTE software interrupt request number, B8H.

This causes the RTE system call to execute and return control to DOS. When the
DOS application program resumes, it must clear the parameters used by the RTE
system call from the Real Mode stack.

If the DOS RTE system call returns a WORD (16-bit), it will be placed in the AX
register. If it returns a DWORD, the high WORD will be placed in the DX register
and the low WORD will be placed in the AX register.

DOS and its application programs run as an iRMX task under DOSRMX. If the
application programs invoke RTE functions, they must obey the normal iRMX rules
of not invoking the RTE from a hardware interrupt handler. In particular, the DOS
TSR programs that typically hook themselves onto the hardware clock or keyboard
interrupts must not issue RTE calls.

Chapter 2 DOS Real-time Extension16

Using RTE Functions
This example illustrates how a DOS application program can invoke one of the RTE
functions. This example uses rq_create_mailbox. The example was compiled using
Microsoft's assembler, MASM.

mov ax,fifombx

push ax ; PUSH 1st parameter - flags

mov ax, SEG exception ; Get 2nd parameter into ES:AX

mov es, ax ;

mov ax, OFFSET exception ;

push es ; PUSH 2nd parameter -

push ax ; pointer to exception

mov si,sp ; point si to last parameter

mov ax,rqcreatembx ; setup AX with FUNCTION CODE

int 0B8H ; CALL DOSRTE

add sp,6 ; remove parameters from stack

mov mbx_tk,ax ; save token

mov ax,exception ;

cmp ax,eok ; check for validity

jne error_p ;

DOS RTE Demonstration
The DOS RTE demonstration program is menu-driven and enables you to exercise
the RTE system calls at the DOS console. Two executable versions of the program
are supplied: one runs as an iRMX application program, and the other runs as a DOS
application program.

The source code and the executable for the demonstration programs are in the
\rmx386\demo\rte\obj\ directory. The executable has two parts:

• demo is the iRMX part

• demo.exe is the DOS part

✏ Note
The DOS RTE demonstration program was compiled using
Microsoft C, Version 7.0, compact model. If you are using the
same compiler and model you can use the source as it is.
Otherwise, compile the source using your compiler, make any
necessary changes, and then recompile.

Both programs create, send, and delete iRMX objects, data, etc. The iRMX program
makes iRMX system calls; the DOS program makes calls to the RTE system calls.

Programming Concepts for DOS Chapter 2 17

Examine the demonstration program source code to see how the RTE system calls are
invoked.

With one exception, the iRMX and DOS programs share the same source code,
which has been compiled conditionally. This demonstrates how you can create your
own application programs to run under either the DOS or the iRMX OS, and
subsequently port them between the OSs.

The RTE system calls rqe_read_segment and rqe_write_segment are demonstrated
by the Data Transfer (Real Mode/PVAM) functions of two different demonstration
programs. The DOS version performs these functions by making RTE system calls;
the iRMX program has code written specifically for this operation. This is necessary
since the rqe_read_segment and rqe_write_segment system calls provided by the
RTE are not required for the iRMX OS.

See also: rqe_read_segment and rqe_write_segment, System Call Reference

Chapter 2 DOS Real-time Extension18

Example: Running the Demonstration Program
To start the demonstration, change to the \rmx386\demo\rte\obj\ directory. If you are
at an iRMX prompt, run the iRMX demo program. If you are at a DOS prompt, run
the DOS demo.exe program. Both programs display this menu:

DOS/iRMX Real Time Extensions Demo Program
======================================

1. Mailboxes (Objects) Functions
2. Mailboxes (data) Functions
3. Semaphore Functions
4. Segment Functions
5. Descriptor Functions
6. Data Transfer Functions
7. Display Help on above functions
8. Exit (terminate program)

Enter option (1 to 8) :-

Press the <Alt +> and <Alt -> keys (using the plus and minus keys on the numeric
keypad) to change the background and foreground colors for the iRMX version of the
demonstration. Since the appearance of the menus is identical, you can use color to
tell you whether you are in the DOS or the iRMX version.

See also: Changing iRMX Console Color, Installation and Startup

You may invoke six different types of functions: mailboxes for data and objects,
semaphores, PVAM segments, descriptors, and data display. The functions are
described in the following sections.

Programming Concepts for DOS Chapter 2 19

Mailboxes (Objects) Functions

To invoke any of the Object Mailbox functions, enter:

1<CR>

in response to the Main Menu prompt. A menu similar to the Object Mailbox menu
appears.

Object Mailbox Functions
========================

1. Send object to mailbox
2. Receive object from mailbox
3. RETURN to previous menu

Enter option (1 to 3) :-

These functions allow you to send and receive objects (segments or descriptors) to or
from a named mailbox. The mailbox may be created by either the DOS or iRMX
version of the demonstration program.

Send Object to Mailbox

If the mailbox does not exist, it is created; if the named object does not exist, a
segment is created for the object.

Receive Object from Mailbox

If the received object is a segment, its name is displayed. Otherwise, the iRMX
token for the object is displayed, or if there are no objects, an E_TIME condition
code is displayed.

If the mailbox does not exist, an error message appears.

Chapter 2 DOS Real-time Extension20

Mailboxes (Data) Functions

To invoke any of the Data Mailbox functions, enter:

2<CR>

in response to the Main Menu prompt. A menu similar to the Object Mailbox
appears.

Data mailbox functions send and receive a string of text (up to a maximum of 127
characters) to and from a data type mailbox. The mailbox may be created by the
DOS or iRMX version of this program.

Send Data to Mailbox

Enter the string at the prompt. The text entry must be terminated by a <CR>. If the
requested data mailbox does not exist, one will be created.

Receive Data from Mailbox

This option receives a string of text from the specified data mailbox and displays the
text and the size of the text string on the screen. If the specified mailbox does not
exist, an error message appears.

Programming Concepts for DOS Chapter 2 21

Semaphore Functions

To invoke any of the Semaphore functions, enter:

3<CR>

in response to the Main Menu prompt. A menu similar to the Object Mailbox
appears.

Semaphore functions send and receive units to and from a semaphore. The
semaphore may be created by either the DOS or the iRMX version of this program.

Send Units to Semaphore

The semaphore will accept a maximum of 10 units. When prompted, enter the
number of units to send.

Receive Units from a Semaphore

This option receives a requested number of units from a named semaphore and
displays the remaining number of units at the semaphore. If the semaphore does not
exist, an error message appears.

Chapter 2 DOS Real-time Extension22

PVAM Segment Functions

To invoke any of the PVAM Segment functions, enter:

4<CR>

in response to the Main Menu prompt. This menu appears:

PVAM Segment Functions
======================

1. Create PVAM Segment
2. Delete PVAM Segment
3. Display PVAM Segment
4. RETURN to previous menu

Enter option (1 to 4) :-

If you are not creating a segment, you can delete or display a segment created
previously by either the DOS or the iRMX version of this program.

Create PVAM Segment

This option creates a named PVAM segment of any size. You can use this segment
as either the source or destination of a copy operation to or from Real Mode memory.
You can also pass the PVAM Segment to object mailboxes as well as display them
by the Display PVAM Segment function.

Delete PVAM Segment

This option deletes a named PVAM segment or named descriptor. If you created the
segment from DOS, delete it from DOS.

Display PVAM Segment

This option displays a PVAM segment or descriptor in blocks of 160 bytes
maximum. The PVAM segment or descriptor displays in lines of 16 bytes, followed
by the printable ASCII characters for each byte. If a byte is not a printable ASCII
character, a . (period) is displayed instead. You are prompted for input to continue
(any key) or quit (Q or q).

Programming Concepts for DOS Chapter 2 23

Descriptor Functions

To invoke any of the Descriptor functions, enter:

5<CR>

in response to the Main Menu prompt. A menu similar to the PVAM Segment menu
appears.

If you are not creating a descriptor, you can delete or display a descriptor created
previously by either the DOS or iRMX version of this program.

Create Descriptor

This option creates a named descriptor of any size and absolute address.

Delete Descriptor

If you created the descriptor from DOS, delete it from DOS.

Display Descriptor

This option displays a PVAM segment or descriptor in blocks of 160 bytes
maximum. The PVAM segment or descriptor is displayed in lines of 16 bytes,
followed by the printable ASCII characters for each byte. If a byte is not a printable
ASCII character, a . (period) is displayed instead. You are prompted for input to
continue (any key) or quit (Q or q).

The segment or descriptor is looked up under its user name.

Chapter 2 DOS Real-time Extension24

Data Transfer Functions

To invoke any of the Data Transfer (Real Mode/PVAM) functions, enter:

6<CR>

in response to the Main Menu prompt. This menu appears:

REAL MODE/PVAM Copy Functions
=============================

1. Copy PVAM segment to real mode address
2. Copy Real mode address to PVAM segment
3. RETURN to previous menu

Enter option (1 to 3) :-

Copy PVAM Segment to Real Mode Address

You are prompted for the Real Mode segment and offset.

▲▲! CAUTION
Do not copy data over vital DOS system or application memory, or
to memory mapped out to I/O devices. Otherwise, your system
could develop problems.

Copy Real Mode Address to PVAM Segment

This option copies a specified Real Mode address to a specified PVAM Segment.
You are prompted for the Real Mode Segment and Offset and also the PVAM
Segment and Offset.

■■ ■■ ■■

Programming Concepts for DOS Chapter 3 25

VM86 Protected Mode Extensions 3
The VM86 Dispatcher enables you to write Protected Virtual Address Mode (PVAM)
extensions for DOS. These extensions are also known as VM86 Protected Mode
Extensions. These extensions allow DOS application programs running in VM86
Mode to change to Protected Mode, obtain Protected Mode services, and then return
to VM86 Mode.

All VM86 Protected Mode Extensions are implemented as software interrupt
handlers using the software interrupt instruction. The VM86 Dispatcher in Protected
Mode intercepts all software interrupt requests. To run a VM86 Protected Mode
Extension, the VM86 Dispatcher calls the required interrupt handler to service the
particular request, and then returns to DOS in VM86 Mode. If the VM86 Dispatcher
intercepts an interrupt request which is not a VM86 Protected Mode Extension
request, that interrupt request is reflected back to DOS.

The RTE described in the previous chapter is an example of a VM86 Protected Mode
Extension.

Installing VM86 Protected Mode Extensions
Each VM86 Protected Mode Extension you write, though implemented as an iRMX
program, is invoked when a DOS application program issues an appropriate software
interrupt. Each extension must be installed at a unique interrupt level and an
extension may contain a number of subfunctions, as does the RTE. You can choose
the method of passing the extension's subfunction. The RTE uses the AX register to
hold the function's code.

Install the extension at its desired interrupt level using the rqe_set_vm86_extension
system call.

See also: rqe_set_vm86_extension, System Call Reference

iRMX Interrupt Levels
Table 3-1 lists the interrupt levels in the Interrupt Descriptor Table (IDT) used by the
DOSRMX OS.

Chapter 3 VM86 Protected Mode Extensions26

Table 3-1. iRMX Interrupt Levels

Interrupt Function

Hex Decimal

00H-10H

11H-20H

21H-2FH

38H-3FH

50H-57H

5BH

80H

85H

B8H

C3H

0-16

17-32

33-47

56-63

80-87

91

128

133

184

195

Microprocessor traps and DOS
hardware vectors

*ROM BIOS services

DOS services

iRMX hardware vectors for Master
PIC

iRMX hardware vectors for Slave
PIC

Network Redirector

Used by the VM86 Dispatcher

iRMX Interface TSR, supports
chaining however

DOS RTE

UDI

* You may install extensions to monitor or evaluate these calls.

Interrupts and ranges not listed in Table 3-1 are available for user-written extensions.

To install an extension, call rqe_set_vm86_extension and pass it these parameters:

1. The desired interrupt level for the extension.

2. The entry point for the extension itself. This entry point defines where the
extension is located in system memory so that it may be invoked when DOS
makes the appropriate interrupt request.

Programming Concepts for DOS Chapter 3 27

3. The entry point for the extension's deletion handler. The deletion handler is not
mandatory, but each extension can have one. Any extension which is used by
DOS to create iRMX objects should have a deletion handler to delete those
objects when the DOS program terminates.

4. A pointer to a WORD (16-bit) in system memory which the VM86 Dispatcher
uses to return a status code for this call.

Once an extension has been installed, it remains active until it is deactivated with the
rqe_set_vm86_extension system call. Call rqe_set_vm86_extension again and pass
it the same parameters, but with the VM86 Extension Entry pointer set to null.

Extension Procedure Operation: DOS Interrupt Handling
Interrupts generated by DOS in VM86 mode are vectored to the PVAM handler
referenced in the processor's IDT. The VM86 Dispatcher invokes a particular
extension in response to an interrupt received at the int_level specified in the
rqe_set_vm86_extension system call.

All DOS interrupts are intercepted by the VM86 Dispatcher and are processed as
follows:

1. If an interrupt requires a Real Mode handler installed by DOS, the VM86
Dispatcher deflects the interrupt back to that Real Mode interrupt handler.

2. If the interrupt requires a PVAM interrupt handler, the Dispatcher enables the
interrupt handler to run; the DOS application program is running in VM86 mode
and all VM86 Mode-generated interrupts naturally vector to the PVAM interrupt
handler in the IDT. The interrupt handler returns control back to the DOS
application program upon termination.

3. If the interrupt requires a VM86 Extension, the VM86 Dispatcher calls the entry
point of the extension. The extension then executes and returns to the VM86
Dispatcher, which then returns control back to the DOS application program that
made the interrupt. The VM86 Dispatcher calls the VM86 Extension, and passes
to it a pointer to a structure defining the DOS machine state and a value defining
the context of the DOS interrupt handler. The VM86 Dispatcher expects the
extension to return a byte indicating that the request has been processed
completely.

See also: rqe_set_vm86_extension, System Call Reference

Chapter 3 VM86 Protected Mode Extensions28

Deletion Handler Operation
The VM86 Dispatcher calls all extension deletion handlers when any DOS program
is deleted. Any of these conditions can delete a DOS program:

• When a DOS application program terminates using DOS system calls INT 20H
or INT 21H

• When a <Ctrl-C> is typed in the middle of a DOS program, and the program has
not changed the default <Ctrl-C> handler in DOS

All installed deletion handlers are called sequentially by the VM86 Dispatcher. The
VM86 Dispatcher calls the deletion handler with a flag that indicates:

• If the current DOS program is being deleted

• If all DOS programs are being deleted

This helps the VM86 Dispatcher perform the appropriate cleanup. For example, if
the VM86 extension has created iRMX objects, the deletion handler will know which
objects to delete.

✏ Note
Every DOS program has a unique identifier: the address of its
Program Segment Prefix (PSP). The VM86 extension can use
rqe_dos_request to obtain the current PSP. This enables the
VM86 extension to track which resources are allocated to which
DOS program.

To ensure that the PSP address obtained is the PSP of the current
DOS program, rather than that of the RMX TSR program, set the
tsr_flag parameter to 1 in the rqe_dos_request call.

Extension System Call Restrictions
The extensions called by the VM86 Dispatcher can use only system calls in the BIOS
and Nucleus subsystems of the iRMX OS. Extensions run in the context of the
VM86 Dispatcher Job, and can only make the same system calls as the Dispatcher
Job.

Programming Concepts for DOS Chapter 3 29

Extension Installation Examples
This section discusses three code segments which illustrate:

• Installing an extension from the iRMX OS

• Two ways of initiating an extension from DOS

Installing an Extension from the iRMX Operating System

An iRMX program \rmx386\demo\c\vm86ext\rmxext.c illustrates how to install an
extension. It also gives example code for both the VM86 Extension entry procedure
and the deletion handler.

In the example, main() creates a mailbox, prints an installation message, and installs
the extension for interrupt level 0B9H (185 decimal). It then waits to receive a
message at the mailbox. At this point, main()waits until the DOS part of the
example issues INT 0B9H.

When the DOS part issues INT 0B9H, main() calls the extension procedure. The
entry_procedure extension procedure sends a message to the mailbox created in
main(), where main() is waiting. Main() receives the message, prints it out, and
deletes in order, the segment described by segtoken, the mailbox, and the extension.

The example was compiled and bound using Intel's iC-386 compiler and BND386
binder. The mailbox token, mbxtoken, is an iRMX object.

Initiating an Extension from DOS

The DOS part of the example uses two programs. The C program is in
\rmx386\demo\c\vm86ext\dosext.c, and the assembly language program is in
\rmx386\demo\c\vm86ext\dosext.asm. These two programs issue INT 0B9H (185
decimal). Both examples have the same functionality.

The DOS application C program illustrates one way the previously installed
extension can be initiated. The example was compiled and linked using the
Microsoft Version 7.0 C compiler.

The DOS application assembly program illustrates one way the previously installed
extension can be initiated. The example was created using the Microsoft Version 5.1
assembler.

■■ ■■ ■■

Chapter 3 VM86 Protected Mode Extensions30

Programming Concepts for DOS Chapter 4 31

Making DOS and ROM BIOS System Calls4
This chapter describes how to make DOS and ROM BIOS system calls from iRMX
application programs.

Making DOS and ROM BIOS Calls
from an iRMX Application

The rqe_dos_request system call enables the iRMX OS to make ROM BIOS and
DOS requests in much the same way as the RTE system calls allow a DOS
application program to make iRMX system calls.

Using rqe_dos_request, a DOS application program can be ported to an iRMX
environment to take advantage of the Protected Mode features without changing all
DOS and ROM BIOS calls to iRMX system calls.

The application program can also use the rqe_dos_request system call to access a
DOS device driver which may be running in VM86 Mode. However, the application
program must not use a DOS system call that conflicts with the file server.

The DOS data structure represents the microprocessor registers, and the
rqe_dos_request system call passes a pointer to this structure.

See also: rqe_dos_request and DOS data structure, System Call Reference

To make DOS/ROM BIOS calls, the application program must set the appropriate
register values in the structure pointed to by register_ptr, set the int_num
parameter with the required DOS interrupt level, and set the xfer_data byte, the
source and destination transfer pairs, pointers, and counts based on the data being
transferred. The rqe_dos_request system call can then be invoked and the required
DOS system call will be made. The WORD pointed to by the status_ptr
parameter contains the condition code generated by the rqe_dos_request. If the call
was successful, the structure pointed to by the register_ptr parameter reflects the
register values returned by the DOS system call.

Chapter 4 Making DOS and ROM BIOS System Calls32

Many DOS system calls pass data. This can be done by passing the segment base and
offset of the source or destination address, where data is located in one or more
register pairs. Other registers sometimes specify the length of data located at the
address specified by the register pair.

The DOS system call Get Redirection List Entry, Interrupt 21H, Function 5FH,
Subfunction 02H, uses the DS:SI register pair to point to a 16-byte (maximum)
character string containing a device name in the redirection list. The ES:DI register
pair points to a 128-byte (maximum) character string containing the network name of
the device. The data transfers from the system call to the calling application
program.

To make a similar call using the rqe_dos_request system call, you use four separate
sets of structure elements to control the data transfer. These structure elements
indicate the appropriate registers, but are ignored if the xfer_data structure element
is set to 0.

See also: rqe_dos_request, System Call Reference

Example: Get Free Disk Space
The Get Free Disk Space DOS system call transfers data only in microprocessor
registers. To make the DOS system call Get Free Disk Space (of a DOS drive)
Interrupt 21H, Function 36H, the iRMX application would:

1. Set int_num (DOS system call interrupt number) to 21H.

2. Set reg_ah (Interrupt 21H subfunction code) to 36H.

3. Set reg_dl (Drive code) to the required drive code level where 1 = drive A,
2 = Drive B, etc.

4. Set xfer_data to 0, as no data is transferred with this system call except
directly using the microprocessor registers.

5. Set status_ptr to point to a WORD variable, which the rqe_dos_request
system call sets with a condition code before returning to the iRMX application
program.

6. Make the rqe_dos_request system call.

See also: rqe_dos_request, System Call Reference

Programming Concepts for DOS Chapter 4 33

To determine the result of the requested DOS system call, the application program
would then:

7. Determine the value of the WORD variable pointed to by status_ptr. If the
rqe_dos_request call did not succeed (condition code not equal to E_OK), the
application program terminates with an appropriate error message.

8. If the condition code returned was 0, the application program could proceed.

9. The values stored in reg_al and reg_ah, on return from the call, hold these
values:

reg_ah = FFH
reg_al = FFH

DOS determined that the drive code specified by
reg_dl was not valid.

or

reg_ah<>FFH
reg_al<>FFH

reg_ah, reg_al specifies the sectors per cluster of
the specified drive.

10. If the drive code was valid, the other register values are set as:

reg_bh,
reg_bl

Specifies the number of available clusters on the
specified drive.

reg_ch,
reg_cl

Specifies the number of bytes per sector on the
specified drive.

reg_dh,
reg_dl

Specifies the number of clusters (used or available)
on the specified drive.

Chapter 4 Making DOS and ROM BIOS System Calls34

Get Redirection List Entry Example
The example \demo\c\vm86ext\dosdevs.c uses the DOS system call Get Redirection
List Entry. The first part shows to set registers in the DOS data structure prior to
making the rqe_dos_request system call. The second part shows how to make the
rqe_dos_request system call. The example was compiled and bound using Intel's
iC-386 compiler and BND386 Binder.

Setting the DOS Data Structure

The DOS system call Get Redirection List Entry, Interrupt 21H, Function 5FH,
Subfunction 02H, uses the DS:SI register pair to point to an ASCIIZ
(null-terminated) character string defining the local device name found in the list, and
uses the ES:DI register pair to point to the ASCIIZ character string defining the
network name for that local device.

For this example, though no source data is transferred, two character strings are
created by the DOS system call destination data parameter, which are pointed to by
the two register pairs.

Set the DOS data structure as follows:

1. Set int_num (DOS system call interrupt number) to 21H.

2. Set tsr_flag to 0.

3. Set reg_ah (Interrupt 21H function code) to 5FH.

4. Set reg_al (Function 5FH subfunction code) to 02H.

5. Set reg_bx to the required redirection list index.

6. Set xfer_data to 0FFH since data is transferred with this system call.

7. Set src1_xfer_pair and src2_xfer_pair to 0 since no source data transfer
is required.

8. Set up the destination data control parameters for the local device name as
follows:
dest_p_1 &local_device_name

(local_device_name is a character array)
dest1_xfer_pair 4 (to specify the DS:SI register pair)
dest_count_1 16 (to specify a maximum size of 16 characters)

Programming Concepts for DOS Chapter 4 35

9. Set up the destination data control parameters for the network name as follows:
dest_ptr_2 &network_name (network_name is a character array)

dest2_xfer_pair 8 (to specify the ES:DI register pair)

dest_count_2 128 (to specify a maximum size of 128 characters)

10. Set status_ptr to point to a WORD variable which the rqe_dos_request
system call will set with a condition code before returning to the iRMX
application.

11. Make the rqe_dos_request system call.

The rqe_dos_request system call returns a value in the WORD variable pointed
to by status_ptr. The meanings of the values are:

Value Meaning

Not 0 The call encountered an error, as specified by the error code.
The iRMX application needs to evaluate the error to see if a
retry is possible.

0 Since no errors were encountered by the iRMX OS, the
application can proceed.

For certain DOS system calls, including this example, the carry flag is set to one
of two values.

Value Meaning

1 The DOS system call failed. If the call failed, reg_al will
contain the DOS error code.

0 The DOS system call was successful.

In this example, if the DOS system call is successful, these parameters return to
the caller from the DOS system call:
reg_bh Device status flag
reg_bl Device type
reg_cx Stored parameter value

■■ ■■ ■■

Chapter 4 Making DOS and ROM BIOS System Calls36

Programming Concepts for DOS Chapter 5 37

General Information 5
This chapter describes various information related to DOSRMX. The information
includes such areas as programming techniques, use of iRMX objects, and network
concepts. This information does not apply to the iRMX III or iRMX for PCs OSs.

Interrupt Virtualization and Determinism
DOSRMX has two interrupts modes in which DOS can operate. You can configure
the mode by changing the appropriate setting in the \rmx386\config\rmx.ini file.
These modes are Interrupt Virtualization Enabled (VIE=0FFH) and Interrupt
Virtualization Disabled (VIE=00H). The default is Interrupt Virtualization Disabled.

With Interrupt Virtualization disabled, DOS executes all real mode instructions
supported by the microprocessor, including ENABLE and DISABLE INTERRUPTs.
This affects system performance in interrupt latency and determinism by enabling
DOS and ROM BIOS-based disk I/O to operate at near optimum DOS performance
levels. In this mode, the iRMX OS has little interaction with DOS.

With Interrupt Virtualization enabled, the iRMX OS traps all DOS access of
privileged instructions (CLI, STI, INT, POPF, etc) as well as attempts to access the
Programmable Interrupt Clock and Programmable Interrupt Timer. The iRMX OS
can virtualize interrupts with respect to DOS, while keeping interrupts disabled for
the iRMX OS for as short a time as possible. This increases interrupt response time
and decreases interrupt latency for iRMX-owned interrupt levels, such as non-DOS
levels. However, this frequent intervention by the iRMX OS into DOS operations
also affects DOS and ROM BIOS-based I/O performance. Small transfers slow
down dramatically while larger transfers (4 Kbytes or larger) experience relatively
little degradation.

38 Chapter 5 General Information

Based on the needs of the application, DOSRMX can be optimized for either higher
performance DOS/ROM BIOS-based I/O with less than ideal determinism or for
solid determinism with less than ideal DOS/ROM BIOS-based I/O performance. To
get both solid determinism and high performance I/O, first add an iRMX-owned disk
controller such as the Adaptec 1542, then use the PCI loadable driver provided in the
product, and finally set VIE=0FFH in the rmx.ini file.

See also: rmx.ini file, System Configuration and Administration

Real-time Fence
The real time fence is set at priority level 127. All active DOS-owned interrupts are
temporarily masked when tasks are running at or above (numerically lower than)
priority level 127. The real-time fence here is different from the real-time fence used
with round robin scheduling. This preserves the real time aspect on the iRMX OS
side of an DOSRMX application system. If you make an rqe_dos_request call from
an iRMX task running at a priority above or equal to this real-time fence, you will
receive an E_TIME condition.

See also: Real-time fence, System Configuration and Administration

iRMX-NET Access From a DOS Server
You can access a DOS server indirectly from the DOSRMX side using the EDOS
File Driver. For example:

From the DOS side of DOSRMX, do this:

net use r: \\<dos-server>

dir r:

Then, from the iRMX side of DOSRMX, do this:

ad r_dos as :r: e

dir :r:

See also: Using iRMX-NET in a DOS Environment, System Configuration and
Administration

If you try to directly access a DOS server from the iRMX OS, such as with the
attachdevice command, you may encounter a General Protection fault or similar
failure.

■■ ■■ ■■

Programming Concepts for DOS Appendix A 39

DOSRMX Default Configuration A
This appendix lists the pre-configured options in the software definition file, used to
generate the DOSRMX boot image. If you ported an existing application to
DOSRMX, you may need to alter it to run within the pre-configured software. If
your application is incompatible with this configuration, use the Interactive
Configuration Utility to change it.

See also: Definition files, ICU User’s Guide and Quick Reference, for a listing of
the definition files you can customize.

Tables of pre-configured options are provided for these system requirements and sub-
systems:

• Sub-Systems

• Memory

• Human Interface

• Application Loader

• Extended I/O System

• Basic I/O System

• Device Drivers

• System Debug Monitor

• Nucleus

• Nucleus Communication Service

• VM86 Dispatcher Reserved Interrupts

Appendix A Default Configuration40

Sub-System Configuration

Table A-1. Sub-Systems Options

Sub-Systems Default

Universal Development Interface
Shared C Libraries
Human Interface
Application Loader
Network Access
Extended I/O System
Basic I/O System
System Debug Monitor
System Debugger
OS Extension

Yes
No
Yes
Yes
No
Yes
Yes
Yes
No
Yes

Memory Configuration

Table A-2. Memory Options

Memory for System Default

Start Address
End Address

110000H
1FFFFFH

Memory for Free Space Default

Start Address
End Address

0200000H
0FFFFFFFFH

Programming Concepts for DOS Appendix A 41

Human Interface Configuration

Table A-3. Human Interface Options

HI Jobs Default

Jobs Minimum Memory
Jobs Maximum Memory
Numeric Processor Extension Used

0H
0FFFFFFFH
Yes

Prefixes Default

Prefix :
Prefix :
Prefix :
Prefix :
Prefix :
Prefix :

:PROG:
:UTILS:
:UTIL286:
:SYSTEM:
:LANG:
:$:

HI Logical Names Default

Name = WORK
Name = UTILS
Name = UTIL286
Name = LANG
Name = RMX
Name = INCLUDE

:SD:WORK
:SD:UTIL386
:SD:UTIL286
:SD:LANG286
:SD:RMX386
:SD:INTEL/INCLUDE

Application Loader Configuration

Table A-4. Application Loader Options

Application Loader Default

All System Calls
Default Memory Pool Size
Read Buffer Size

Yes
0500H
01000H

Appendix A Default Configuration42

Extended I/O System Configuration

Table A-5. EIOS Options

EIOS Default

Retries on Physical Attachdevice
Default IO Job Directory Size

0H
200

Automatic Boot Device Recognition Default

Default System Device Physical Name C_RMX

Logical Names Default
(Device Name, File Driver, Owner's ID)

Logical Name = BB
Logical Name = Stream

BB, PHYSICAL, 0H
STREAM, STREAM, 0H

Basic I/O System Configuration

Table A-6. BIOS Options

BIOS Default

Attach Device Task Priority
Timing Facilities Required
Timer Task Priority
Connection Job Delete Priority
Ability to Create Existing Files
System Manager ID
Common Update Timeout
Terminal Support Code
Control-Sequence Translation
Terminal OSC Controls
Tape Support
BIOS Pool Minimum
BIOS Pool Maximum
Global Clock
Global Clock Name*

129
Yes
129
130
Yes
Yes
1000
Yes
Yes
Yes
No
0800H
0FFFFFH
ATRT

* The Global Clock Name has a blank string as a default.

Programming Concepts for DOS Appendix A 43

Device Drivers Configuration

Table A-7. Device Drivers Options

Driver Default

AT Serial Driver
DUIB Name

Interrupt Level
Base Port Address
Reset Character
Interrupt Character

DUIB Name
Interrupt Level
Base Port Address
Reset Character
Interrupt Character

ROM-BIOS Based Hard Disk Driver
DUIB Name

Base I/O Port Address
Control/Status Port Address

ROM-BIOS Based Diskette Driver
DUIB Name

Interrupt Timeout

EDOS File Driver
DUIB Name

DOS File Driver
DUIB Name

COM1
048H
03F8H
0H
0H
COM2
038H
02F8H
0H
0H

C_RMX and D_RMX (first iRMX partition)
C_RMX0 and D_RMX0 (whole physical drive)
C_RMX1 through C_RMX4 and D_RMX1

through D_RMX4
01F0H
03F6H

A and B (5.25 inch format, 360 Kbyte)
AH and BH (5.25 inch format, 1.2 Mbyte)
AM and BM (3.5 inch format, 720 Kbyte)
AMH and BMH (3.5 inch, 1.44 Mbyte)
AMO and BMO (3.5 inch, 2.88 Mbyte)
01770H

A_DOS, ... ,Z_DOS

C_DOS, ... ,Z_DOS

Appendix A Default Configuration44

System Debug Monitor Configuration

Table A-8. System Debug Monitor Options

System Debug Monitor Default

Console Port System Console Primary

Nucleus Configuration

Table A-9. Nucleus Options

Nucleus Default

Number of GDT Entries
Number of IDT Entries
Parameter Validation
Root Object Directory Size
Default Exception Handler
NMI Exception Handler
NMI Enable Byte
Exception Handler for Stack Exception
Name of Ex Handler Object Module
Exception Mode
Low GDT/LDT Slot Excluded from FSM
High GDT/LDT Slot Excluded from FSM
Round Robin Priority Threshold
Round Robin Time Quota
Report Initialization Errors
Maximum Data Chain Elements
Nucleus Communication Service

8000
256
Yes
200
SDB
IGNORE
4
SDB

NEVER
0
0
140
5
YES
0
YES

Programming Concepts for DOS Appendix A 45

Nucleus Communication Service Configuration

Table A-10. Nucleus Communication Service Options

Nucleus Communication Service Default

Message Task Priority
Deletion Task Priority
Default Number of Port Transactions
Default Host ID
Validate Buffer Parameters
Max. No. of Simultaneous Transactions
Max. No. of Simultaneous Messages
Receive Fragment Failsafe Timeout
Number of Trace Messages

128
128
16
0
Yes
080H
0100H
0400H
255

VM86 Dispatcher Reserved Interrupts Configuration

Table A-11. DOS Extender Reserved Interrupts

DOS Extender
Reserved Interrupts Default

Master Level 0
Master Level 2

Clock
Slave PIC

■■ ■■ ■■

Appendix A Default Configuration46

Programming Concepts for DOS Index 47

Index

C
CPU registers, 15

D
data

structure, DOS, 31
data transfer, 11
default configuration, 39
deleting

DOS programs, 28
deleting objects, 13
deletion handler, 28

extension, 27
demo\c\vm86ext\ directory, 29, 34
device driver, iRMX OS using DOS, 31
dispatcher job restrictions, 28
DOS

and iRMX file access, 5
data structure, 31
deleting programs, 28
encapsulated file driver, 5
encapsulated task, 3
interrupt handling, 27
interrupts masked, 38
iRMX OS making requests, 31
iRMX OS using device driver, 31
real-time extensions, 4

DOS RTE jobs, 13
dosdevs.c file, 34
dosext.asm file, 29
dosext.c file, 29
dosrtec.lib file, 14
dosrtel.lib file, 14
dosrtes.lib file, 14

E
EDOS file driver, 5
examples

DOS RTE, 16
installing an extension, 29

making rqe_dos_request call, 35
setting DOS data structure, 34

extensions
deactivating, 27
deletion handler, 27, 28
entry point, 26
restrictions, 28
writing, 25

F
function code, RTE, 15

I
i*.job, 9
IDT, 25
installing a VM86 extension, 26
interrupt

levels, 25
Interrupt Descriptor Table, 25
interrupt handler

software, 25
VM86 Mode-generated, 27

interrupts
DOS, description of handling, 25
masked, DOS, 38
response time, 37
RTE, 15
vectored to PVAM handler, 27

L
loadinfo file, 10

M
MS-DOS, 1

N
netrdr.job job, 6

48 Index

O
objects, deleting, 13

P
partitions, DOS and iRMX OS, 5
PC-DOS, 1
pcnet.exe file, 6
PL/M 286 convention, 15
pointer

parameter, 13
real mode, 13

pre-configured options, 39
application loader, 41
BIOS, 42
device drivers, 43
EIOS, 42
human interface, 41
memory, 40
Nucleus, 44
Nucleus Communication Service, 45
sub-systems, 40
System Debug Monitor, 44
VM86 Dispatcher reserved interrupts, 45

protected mode, 3, 25
PVAM, 25

interrupt handler, 27

R
real mode

pointer, 13
stack, 15

real-time extensions, 4
restrictions, extension, 28
rmx.ini file, 10
rmx386\demo\rte\lib\ directory, 13
rmx386\demo\rte\obj\ directory, 16
rmxc.h file, 13

rmxext.c file, 29
rmxfuncs.obj file, 13
rmxintfc.h file, 13
rmxtsr.exe file, 3
ROM BIOS, iRMX OS making requests, 31
rqe_dos_request call, 28, 31
rqe_read_segment call, 11
rqe_set_vm86_extension call, 25
rqe_write_segment call, 11
rqegetrmxstatus call, 13
RTE, 4

calls, 12
function code, 15
functions, 16
invoking, 15
relation to Nucleus system calls, 13
restrictions, 15
software interrupt request, 15

S
service information, inside back cover
stack, real mode, 15
system calls

BIOS restrictions, 28
Nucleus restrictions, 28

T
transferring data, 11

V
Virtual 86 Mode, 3
VM86 dispatcher, 25
VM86 extension, installing, 26

W
writing extensions, 25

	iRMX® Programming Concepts for DOS
	Quick Contents
	Notational Conventions

	Contents
	Chapter 1: Introduction
	Understanding the Environments
	Running DOS and the iRMX® OS on the Same System
	VM86 Dispatcher
	VM86 Protected Mode Extensions

	Making DOS/ROM BIOS System Calls from the iRMX€OS
	File Access
	EDOS File Driver
	Networking

	File and Device Drivers
	Loadable File and Device Drivers

	System Configuration

	Chapter 2: DOS Real-Time Extension
	RTE System Calls
	RQEGetRmxStatus Call
	RTE Files

	RTE Objects Limitation
	Making an RTE System Call
	Using RTE Functions

	DOS RTE Demonstration
	Example: Running the Demonstration Program

	Chapter 3: VM86 Protected Mode Extensions
	Installing VM86 Protected Mode Extensions
	iRMX Interrupt Levels
	Extension Procedure Operation: DOS Interrupt Handling
	Deletion Handler Operation
	Extension System Call Restrictions
	Extension Installation Examples

	Chapter 4: Making DOS and ROM BIOS System Calls
	Making DOS and ROM BIOS Calls�from an iRMX Application
	Example: Get Free Disk Space
	Get Redirection List Entry Example

	Chapter 5: General Information
	Interrupt Virtualization and Determinism
	Real-time Fence
	iRMX-NET Access From a DOS Server

	Appendix A: DOSRMX Default Configuration
	Sub-System Configuration
	Memory Configuration
	Human Interface Configuration
	Application Loader Configuration
	Extended I/O System Configuration
	Basic I/O System Configuration
	Device Drivers Configuration
	System Debug Monitor Configuration
	Nucleus Configuration
	Nucleus Communication Service Configuration
	VM86 Dispatcher Reserved Interrupts Configuration

	Index

