
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

iRMX®

Driver Programming
Concepts

07-0572-01
December 1999

ii

RadiSys is a registered trademark of RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
is a trademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

November 1999

Copyright 1999 by RadiSys Corporation

All rights reserved.

Driver Programming ConceptsDriver Programming ConceptsDriver Programming ConceptsDriver Programming Concepts iiiiiiiiiiii

Quick Contents

Chapter 1. Introduction

Chapter 2. Writing Loadable File Drivers

Chapter 3. DUIB and IORS: Device Driver Interfaces

Chapter 4. Writing Custom Device Drivers

Chapter 5. Writing Common or Random Access Device
Drivers

Chapter 6. Writing Terminal Drivers

Chapter 7. Handling I/O Requests

Chapter 8. Making a Device Driver Loadable

Chapter 9. Using the ICU to Configure Your Device Driver

Appendix A. Random Access Support for Interrupt-driven
Devices

Appendix B. Random Access Support for Message-based
Devices

Appendix C. Controlling Terminal I/O

Appendix D. Interpreting Bad Track Information

Appendix E. Supporting the Standard Diskette Format

Index

iviviviv

Notational Conventions
Most of the references to system calls in the text and graphics use C syntax instead of
PL/M (for example, the system call send_messagesend_messagesend_messagesend_message instead of send$messagesend$messagesend$messagesend$message). If you
are working in C, you must use the C header files, rmx_c.h, udi_c.h and rmx_err.h.
If you are working in PL/M, you must use dollar signs ($) and use the rmxplm.ext and
error.lit header files.

This manual uses the following conventions:

• Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

• All numbers are decimal unless otherwise stated. Hexadecimal numbers include
the H radix character (for example, 0FFH). Binary numbers include the B radix
character (for example, 11011000B).

• Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

• Data structures and syntax strings appear in this font.

• System call names and command names appear in this font.System call names and command names appear in this font.System call names and command names appear in this font.System call names and command names appear in this font.

• PL/M data types such as BYTE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C data types are lower case except
those that represent data structures.

• The following OS layer abbreviations are used. The Nucleus layer is
unabbreviated.

AL Application Loader
BIOS Basic I/O System
EIOS Extended I/O System
HI Human Interface
UDI Universal Development Interface

• Whenever this manual describes I/O operations, it assumes that tasks use BIOS
calls (such as rq_a_readrq_a_readrq_a_readrq_a_read, rq_a_writerq_a_writerq_a_writerq_a_write, and rq_a_specialrq_a_specialrq_a_specialrq_a_special). Although not
mentioned, tasks can also use the equivalent EIOS calls (such as rq_s_readrq_s_readrq_s_readrq_s_read,
rq_s_writerq_s_writerq_s_writerq_s_write, and rq_s_specialrq_s_specialrq_s_specialrq_s_special) or UDI calls (dq_readdq_readdq_readdq_read or dq_writedq_writedq_writedq_write) to do the
same operations.

Driver Programming Concepts Contents v

Contents

1 Introduction
Reader Level.. 2
What Is a Device Driver? .. 3

What Does an I/O Device Consist of? .. 4
What is a File Driver?.. 5
Three Types of Device Drivers.. 6

Custom Drivers... 8
Advantages of a Custom Driver .. 8
Disadvantages of Custom Driver... 8

Random Access and Common Drivers... 9
Features for both Common and Random Access Drivers.................. 10
Features for Random Access Devices Only 10

Terminal Drivers .. 11
The Driver Development Process .. 12

Advantages of a Standard Driver Interface... 12

2 Writing Loadable File Drivers
File Driver IDs... 14

Using File Driver IDs ... 14
File Driver Data Structures.. 15

File Driver Data Table.. 16
Dynamic DUIBs.. 18
File Driver Types and DUIBs.. 19

File Driver Configuration Table ... 20
File Driver Info Table ... 22

File Driver Components .. 23
Initialization Procedure .. 23
I/O Task Procedure... 23

Update Procedure .. 24
File Driver Interface Procedures... 24

Choosing Public Symbols for File Driver Procedures 25
Attach Procedures ... 25

vi Contents

File I/O Procedures... 26
Building a Loadable File Driver .. 27

Main Module.. 27
Configuration Module .. 28
File Driver Support Code Library .. 29

alloc_buff_list ... 30
buffered_io.. 30
common_close .. 31
common_dealloc_dev_desc... 31
common_detach_device .. 32
common_finish_device ... 32
common_open... 32
dealloc_buff_list.. 33
delete_eios_obj.. 33
enter_dll .. 33
enter_nk_dll .. 34
flush_eios_buffers ... 34
force_detach.. 35
get_buff ... 35
link_conn... 35
lookup_dll ... 36
mark_buff.. 36
remove_dll .. 36
respond_seg... 37
unlink_conn... 37
update_buff_list... 38
write_thru_buff_list... 38

Example File Driver Algorithms .. 39
Attach Device.. 39
Attach File... 39
Change File Access ... 39
Close File .. 39
Create File... 40
Delete File... 40
Detach Device ... 40
Detach File .. 41
Get Connection Status... 41
Get Directory Entry... 41
Get Extension Data ... 41
Get File Status... 42
Get Path Component ... 42
Null Change File Access ... 42
Null Delete File... 42

Driver Programming Concepts Contents vii

Open File... 43
Read File ... 43
Rename File .. 43
Seek File.. 44
Set Extension Data .. 44
Set File Status.. 45
Special... 45
Truncate File ... 45
Update Device... 46
Write File .. 46
Build Connection... 47
Close Connection .. 47
Open Connection... 47
Low Attach.. 48
Low Change Access .. 48
Low Delete .. 48
Low Detach ... 48
Low Create.. 49
Low Get Dir Entry .. 49
Low Scan Path... 50
Map File .. 50
Scan Path... 50

3 DUIB and IORS: Device Driver Interfaces
Interface Between a Device Driver and the I/O System 52

DUIB Data Structure Definition... 53
Using the DUIBs ... 59
Creating DUIBs... 61
Dynamic DUIBs.. 62

IORS Data Structure Definition ... 62
DUIB and IORS Fields Used by Device Drivers... 68
Interface Between a Driver and the Device ... 72

DMA Device Considerations.. 72
Call Syntax .. 73

4 Writing Custom Device Drivers
What You Must Provide .. 75
Init_io Procedure ... 76

Call Syntax ... 76
Finish_io Procedure ... 77

Call Syntax ... 77

viii Contents

Queue_io Procedure .. 78
Call Syntax ... 78

Cancel_io Procedure.. 79
Call Syntax ... 79

Implementing a Request Queue... 80

5 Writing Common or Random Access Device Drivers
I/O System-supplied Procedures and Tasks... 84

When the I/O System Calls Driver Procedures .. 84
Interrupt Task ... 86
Message Task ... 88

Data Structures Supporting Random Access I/O... 90
DINFO Table Structure for Random Access Driver 92
UINFO Table Structure for Random Access Driver 96

Device Data Storage Area ... 98
Procedures Random Access Drivers Must Supply... 99

Device_init Procedure .. 100
Call Syntax.. 100

Device_finish Procedure .. 101
Call Syntax.. 101

Device_start Procedure... 102
Call Syntax.. 103

Device_stop Procedure... 103
Call Syntax.. 104

Device_interrupt Procedure.. 104
Call Syntax.. 105

Utility Procedures Random Access Drivers Must Call.................................... 109
Notify Procedure .. 109

Call Syntax.. 109
Seek_complete Procedure .. 110

Call Syntax.. 110
Procedures for Long-Term Operations .. 111

Begin_long_term_op Procedure ... 111
Call Syntax.. 112

End_long_term_op Procedure .. 112
Call Syntax.. 112

Get_iors Procedure... 113
Call Syntax.. 113

Formatting Random Access Devices... 114

Driver Programming Concepts Contents ix

6 Writing Terminal Drivers
Terminal I/O Concepts .. 114

Raw-input Buffer Determined by Type of Terminal Driver..................... 114
Nonbuffered Terminal Devices ... 115
Buffered Terminal Devices ... 115

TSC Input Buffer Determined by Terminal Mode 115
Difference between Transparent and Flush Mode............................. 116

I/O System-supplied Procedures and Tasks... 117
Data Structures Supporting Terminal I/O .. 118

DUIB Structure for Terminal Driver .. 118
DINFO Table Structure for Terminal Driver.. 119
UINFO Table Structure for Terminal Driver.. 122
TSC Data Area Structure.. 125

Additional Information for Buffered Devices 132
Procedures Terminal Drivers Must Supply.. 141

Term_init Procedure... 142
Call Syntax .. 143

Term_finish Procedure ... 143
Call Syntax .. 143

Term_setup Procedure.. 143
Setup Procedure Must Recognize the Requested Operation.............. 144
Call Syntax .. 145

Term_answer Procedure... 145
Call Syntax .. 145

Term_hangup Procedure... 146
Call Syntax .. 146

Term_check Procedure... 147
Inform TSC of Interrupt Type ... 147
Determine and Set the Baud Rate.. 149
Reading the Input Character .. 149
Call Syntax .. 150

Term_out Procedure ... 151
Call Syntax .. 152

Term_utility Procedure... 152
Call Syntax .. 154

TSC Utility Procedures Supplied to Drivers.. 155
Ts_mutex_unit Procedure... 155

Call Syntax .. 155
Ts_set_out_buf_size Procedure .. 155

Call Syntax .. 155
Xts_set_output_waiting Procedure ... 156

Call Syntax .. 156

x Contents

G_delay Procedure ... 156
Call Syntax.. 156

7 Handling I/O Requests
I/O System Responses to I/O System Calls ... 159
Actions Required of a Device Driver .. 160

F_read,=Function Code 0 .. 160
F_write,=Function Code 1... 161
F_seek,=Function Code 2 .. 161
F_attach,=Function Code 4.. 161
F_detach,=Function Code 5... 161
F_open,=Function Code 6 ... 162
F_close,=Function Code 7 ... 162
F_special,=Function Code 3 .. 162

Fs_format_track,=Subfunction 0 .. 162
Fs_query,=Subfunction 0 Fs_satisfy,=Subfunction 1 163
Fs_notify,=Subfunction 2 ... 163
Fs_get_drive_data,=Subfunction 3 ... 163
Fs_get_terminal_attributes,=Subfunction 4.. 164
Fs_set_terminal_attributes,=Subfunction 5 .. 164
Fs_set_signal,=Subfunction 6... 164
Fs_rewind,=Subfunction 7.. 165
Fs_read_file_mark,=Subfunction 8 .. 165
Fs_write_file_mark,=Subfunction 9 ... 165
Fs_retention_tape,=Subfunction 10 .. 165
Fs_set_bad_info,=Subfunction 12 .. 166
Fs_get_bad_info,=Subfunction 13.. 166
Getting Terminal Status,=Subfunction 16 .. 167
Cancelling Terminal I/O,=Subfunction 17 ... 167
Resuming Terminal I/O,=Subfunction 18 .. 168
Performing Disk Mirroring,=Subfunction 19 168
Getting Device Free Space, Subfunction 20...................................... 168
Get Extended Free Space Data, Subfunction 21................................ 168

8 Making a Device Driver Loadable
How to Make a Device Driver Loadable ... 170

Making Driver Procedures Callable as Far Procedures 170
Adding Far Pointer Elements to DINFO Table Declarations 171
Preparing the Needed DUIB, DINFO, and UINFO Tables 175
Preparing an Initialization Front-end.. 179

Supplied Front-end Source Code... 180

Driver Programming Concepts Contents xi

Compiling/Assembling and Binding Your Device Driver Code............... 180

9 Using the ICU to Configure Your Device Driver
Adding Drivers with the UDS and ICUMRG Utilities 184

UDS Utility .. 186
Creating the Input File for UDS .. 186
Device Information Screens .. 192
Unit Information Screens .. 192
Device-Unit Information Screens.. 193
Invoking the UDS Utility .. 193
UDS Error Messages... 195

ICUMRG Utility... 198
UDS Modules Screen in the ICU .. 199

Adding Your Driver as a Custom Driver ... 200
Example of Adding an Existing Driver as a Custom Driver..................... 204

Contents of the Duib.inc File Specified in the (DPN) Parameter 205
Contents of the File Specified in the (TUP) Parameter 210
Portion of System Generation Submit File as Changed by this Process 212

A Random Access Support for Interrupt Driven Devices
Init_io Procedure ... 215
Finish_io Procedure ... 217
Queue_io Procedure .. 219
Cancel_io Procedure.. 221
Interrupt Task .. 222

B Random Access Support for Message Based Devices
Init_io Procedure ... 228
Finish_io Procedure ... 230
Queue_io Procedure .. 232
Cancel_io Procedure.. 234
Message Task .. 234

C Controlling Terminal I/O
Line-editing Functions... 237

Controlling Output to a Terminal ... 240
OSC Sequences ... 242

Connection Modes.. 243
Terminal Modes ... 247

xii Contents

Translation and Simulation... 258
Preparing the TSC... 259
Translation Examples.. 262
Simulation Examples .. 264

Escape Sequences... 265
Terminal Character Sequences ... 274

Cursor Positioning... 276
Control Character Redefinition .. 279
Using an Auto-answer Modem with a Terminal 281
Obtaining Information about a Terminal .. 285
Restricting the Use of a Terminal to One Connection.............................. 286
Programmatically Stuffing Data into a Terminal's Input Stream.............. 287

D Interpreting Bad Track Information
Non-ESDI Bad Track Information .. 289
ESDI Bad Track Information .. 291

E Supporting the Standard Diskette Format 293

Index ... 297

Driver Programming Concepts Contents xiii

Tables
Table C-1. Line Editing Control Characters ... 238
Table C-2. Output Control Characters .. 241
Table C-3. Connection Modes .. 245
Table C-4. Terminal Modes.. 249
Table C-5. Escape Sequences ... 266
Table C-6. Terminal Character Sequences.. 275
Table C-7. Example OSC Sequences for Common Terminals 278
Table C-8. Control Character Functions ... 280

xiv Contents

Figures
Figure 1-1. General Relationship between Device and File Drivers 3
Figure 1-2. Relationship between I/O Devices and Device-units.................................. 4
Figure 1-3. File Driver Architecture ... 5
Figure 1-4. Required Device Driver Procedures... 7
Figure 2-1. Loadable File Driver Data Structures... 15
Figure 3-1. Device Driver Interfaces .. 51
Figure 3-2. I/O System and Device Driver Interface .. 52
Figure 3-3. Using Multiple DUIBs for a Single Device.. 60
Figure 3-4. Device Driver to Device Interface.. 72
Figure 4-1. Request Queue ... 81
Figure 5-1. When the I/O System Calls the Device Driver Procedures 85
Figure 5-2. Interrupt Task Interaction... 87
Figure 5-3. Message Task Interaction... 89
Figure 5-4. DUIBs, DINFO, and UINFO Tables.. 91
Figure 5-5. Relationships between Random Access Driver Procedures 99
Figure 6-1. Buffers Used in Terminal I/O... 114
Figure 6-2. TSC Data Area ... 126
Figure 9-1. Adding Drivers with UDS and ICUMRG .. 184
Figure 9-2. Syntax of UDS Input File... 187
Figure 9-3. Example User Devices Screen ... 203
Figure 9-4. Computing Device and Device-Unit Numbers... 206
Figure 9-5. Public Declarations Needed for the DINFO and UINFO Tables................ 211
Figure 9-6. Portion of the Modified Submit File... 212
Figure 9-6. Portion of the Modified Submit File (continued) 213
Figure A-1. Random Access Device Driver Init_io Procedure 217
Figure A-2. Random Access Device Driver Finish_io Procedure................................. 218
Figure A-3. Random Access Device Driver Queue_io Procedure 220
Figure A-4. Random Access Device Driver Cancel_io Procedure 222
Figure A-5. Random Access Device Driver Interrupt Task.. 224
Figure B-1. Random Access Device Driver Init_io Procedure 229
Figure B-2. Random Access Device Driver Finish_io Procedure................................. 231
Figure B-3. Random Access Device Driver Queue_io Procedure 233
Figure B-4. Random Access Device Driver Message... 236
Figure C-1. Composite OSC Sequence Diagram .. 243
Figure C-2. Escape Sequence Translation .. 261
Figure C-3. Escape Sequence Simulation ... 263
Figure D-1. Format of Bad Track Information ... 291

Driver Programming Concepts Chapter 1 1

Introduction 1
Driver Programming Concepts is a guide to writing device drivers and file drivers for
the iRMX Operating System (OS). To make the development task easier, use the
drivers supplied with the OS as a starting point. OS-supplied drivers are designed
according to the concepts shown in this manual.

See also: Configuring loadable jobs and device drivers, System Configuration and
Administration, for information on supplied drivers

This manual includes this information:

• Definition of the device driver programmatic interfaces including:

— Device-unit Information Block (DUIB)

— I/O Request/Result Segment (IORS)

— OS-supplied support code for common and random access devices and
terminals

• Guidelines and examples on writing, loading, and configuring drivers

This chapter provides some basic information that prepares you for the rest of the
manual. This information includes:

• What device drivers, I/O devices, and file drivers consist of

• Descriptions of the three types of device drivers

• The driver development process

This manual uses the data types described in the System Call Reference. These are
constant values:

Value Defined As
0 FALSE
0FFH TRUE

2 Chapter 1 Introduction

Reader Level
This manual assumes you are familiar with:

• The C or PL/M programming language, and the ASM386 Macro Assembly
Language

• The iRMX OS and the concepts of tasks, segments, and other objects

• The I/O System, as described in System Concepts

• The device-specific instructions needed to do read and write operations on your
I/O devices

• The configuration process for ICU-configurable systems, as described in the ICU
User's Guide and Quick Reference

Driver Programming Concepts Chapter 1 3

What Is a Device Driver?
A device driver provides the software interface between a hardware device and file
drivers in the iRMX I/O System. There must be a device driver for every configured
device in the system, and each file type has a file driver for it. This creates a device-
independent interface for file operations; a task can have access to all files in the
same manner, regardless of which devices the files reside on. Figure 1-1 shows the
general relationship between device and file drivers.

W-3200

Hard
disk
drive

Mass
Storage

Controller
(MSC)
driver

File driverBIOS
Application
software

task

General Interface

Device
unit

Device
driver

File driver
Application
software

task

Example

The device is merely a standard block of data
in a data structure. To a device driver, all file
drivers seem the same. The device driver
simply sees itself as being called by the I/O
System, and it returns information to the I/O
System.

To use a device, a file driver
calls the procedures listed in
the device driver data
structure. Every file driver
calls device drivers in the
same way.

The task
invokes a BIOS
or EIOS call that
specifies which
file driver and
device driver
are being used
together.

BIOS

221
controller

board

Device
controller

Figure 1-1. General Relationship between Device and File Drivers

4 Chapter 1 Introduction

What Does an I/O Device Consist of?
Each I/O device consists of a controller and one or more units. A device as a whole
is identified by a unique device number that identifies the controller among all the
controllers in the system. The unit number identifies the unit within the device. The
unique device-unit number identifies the unit among all the units of all the devices.
Figure 1-2 shows a simplified view of three I/O devices and their device, unit, and
device-unit numbers.

Device 0 Device 1 Device 2

Unit 0

ControllerController Controller

Unit 0Unit 1 Unit 2Unit 1 Unit 0

W-2749

Device-
unit 0

Device-
unit 1

Device-
unit 2

Device-
unit 3

Device-
unit 4

Device-
unit 5

Figure 1-2. Relationship between I/O Devices and Device-units

Driver Programming Concepts Chapter 1 5

What is a File Driver?
File drivers implement BIOS system calls for a specific file system. They execute in
the context of an I/O task which is part of the file driver code. File drivers may be
either statically linked with the OS boot image (resident) or dynamically loaded using
the sysload command (loadable). This figure shows the architecture of a file driver.

File driver initialization procedure

I/O task procedure (dispatch)

File driver support code

File driver I/O interfaces

OM02682

Figure 1-3. File Driver Architecture

The file driver initialization procedure is executed when the file driver is loaded. The
file driver I/O task receives I/O requests from the synchronous part of the BIOS and
dispatches them to the proper file driver I/O procedure. There is typically one I/O
task per device. The file driver interface procedures implement high-level file
operations that correspond to the actions of BIOS system calls. A standard parameter
set is defined for the file driver interface procedures.

File Driver Support Code (FDSC) libraries provide a set of file driver utility
procedures. For resident file drivers, the FDSC is accessible as part of the I/O
System. For a loaded file driver, the FDSC is linked directly to the file driver.

See also: Writing loadable file drivers, in this manual

6 Chapter 1 Introduction

Three Types of Device Drivers
The I/O System supports three types of device drivers:

• Custom

• Common and random access

• Terminal

These driver types are distinguished by whether they have a direct interface to the I/O
System or whether they have an interface to OS-supplied high-level device driver
procedures. They are also distinguished by the set of high-level device driver
procedures they use as an interface. There are four high-level device driver
procedures for random access, common, and terminal drivers. You must supply
versions of the four high-level device driver procedures for custom drivers you write.

Initialize I/O
Creates the resources needed by the remainder of the driver procedures,
creates an interrupt/message task, and calls a device driver-specific
procedure that initializes the device itself.

Finish I/O Deletes the resources used by the other driver procedures, deletes the
interrupt/message task, and calls a device driver-specific procedure that
performs final processing on the device itself.

Queue I/O Places IORSs in a queue of requests. This procedure starts the device
processing the first request in the queue.

Cancel I/O Removes one or more requests from the request queue, possibly
stopping the processing of a request that has already been started.

To use these high-level device driver procedures, you just write the set of device-
specific procedures that serve as the interface between the hardware and the high-
level device driver procedures.

Figure 1-4 shows both the high-level device driver and device-specific procedures
and indicates which ones you must write.

Driver Programming Concepts Chapter 1 7

Device

Basic I/O System

Terminal
driver

Device Initialize
Device Finish
Device Start
Device Stop
Device Interrupt

Terminal Initialize
Terminal Finish
Terminal Setup
Terminal Answer
Terminal Hangup
Terminal Check
Terminal Output
Terminal Utility

Random access
or

common driver

Custom
driver

Device

W-2750

Initialize I/O
Finish I/O
Queue I/O
Cancel I/O

Initialize I/O
Finish I/O
Queue I/O
Cancel I/O

Initialize I/O
Finish I/O
Queue I/O
Cancel I/O

Note: The shaded portions represent the code you must write for each type of driver.

Random access
and

common driver
support code

Terminal
driver

support code

Device

Figure 1-4. Required Device Driver Procedures

Custom Drivers
A custom device driver is one you create in its entirety. This type of driver can
assume any form and provide any function you wish, as long as the I/O System can
access it by calling the four high-level device driver procedures you write.

See also: Writing custom device drivers, in this manual

Advantages of a Custom Driver

By writing a custom driver, you can add support for devices that do not fit into the
common, random access, or terminal categories, and for which the OS doesn't
provide a pre-written driver.

8 Chapter 1 Introduction

A custom driver is not restricted by the limitations imposed by the other driver
interfaces. For example, the supplied random access high-level queue_io procedure
sets up a queue to handle device requests in a way that minimizes a disk's seek time.
If you want to handle device requests based on priority instead, you can write a
custom driver that provides that feature.

Disadvantages of Custom Driver

A custom driver must include all the functions needed to control the device, because
the I/O System does not provide the high-level device driver procedures (for
example, automatically setting up a queue to handle device requests). For this
reason, a custom driver usually takes longer to write. Debugging time tends to
increase. With more code to be written, errors are more likely to occur. Driver code
is more complicated to debug than application code because of the interaction
between the code and a physical device.

Unless you coordinate the design of your custom drivers to allow code sharing, the
code size of drivers tends to be larger. With most custom drivers, each driver must
provide all of its own functions, thereby duplicating the functions provided by other
custom drivers.

Driver Programming Concepts Chapter 1 9

Random Access and Common Drivers
The OS provides a single set of high-level device driver procedures for both common
and random access devices.

A common device is a relatively simple device such as a line printer, but not a
terminal. Common devices conform to these conditions:

• Only one interrupt level is needed to service the device.

• Data either read or written by these devices does not need to be divided into
blocks.

• A FIFO mechanism for queuing requests is sufficient for accessing these
devices.

A random access device is one in which data can be read from or written to any
address of the device, such as a disk drive. Random access devices conform to these
conditions:

• Only one interrupt level is needed to service the device.

• I/O requests must be divided into blocks of a specific length.

• The device supports random access seek operations.

When writing a driver for a device that fits into either the common or random access
classification, you don't need to write the high-level device driver procedures, only
these device-specific procedures which adhere to the interface provided by the high-
level device driver procedures:

device_init
device_finish
device_start
device_stop
device_interrupt

See also: Writing common or random access device drivers, in this manual

The I/O System determines whether a device is a common or a random access device
by a value you supply in a Device-unit Information Block (DUIB). The DUIB
describes the device to the I/O System.

See also: DUIB and IORS: device driver interfaces, in this manual

10 Chapter 1 Introduction

Features for both Common and Random Access Drivers

Several features are available to both common and random access devices.

• Interrupt tasks and interrupt handlers

• Request queue

• Volume change notification

• Long-term operations support

Features for Random Access Devices Only

Several features apply specifically to random access devices.

• Dividing I/O requests by sector or by track

• Seek optimization

• Seek overlap

• Retries

In this manual, common and random access devices are referred to as random access
because they share the same high-level device driver procedures.

Driver Programming Concepts Chapter 1 11

Terminal Drivers
The OS also provides high-level device driver procedures needed to operate
terminals. A terminal device reads and writes single characters or blocks of
characters, with an interrupt for each character or block of characters sent.

When writing a driver for a terminal device, you don't need to write the high-level
device driver procedures, just these device-specific procedures which adhere to the
interface provided by the terminal high-level device driver procedures:

term_init
term_finish
term_setup
term_answer
term_hangup
term_check
term_out
term_utility

If you use an OS-supplied terminal driver, or if you write your own driver and adhere
to the terminal driver model, you have access to all the capabilities of the I/O
System's Terminal Support Code (TSC). These capabilities include using control
characters to control terminal I/O, redefining those control characters, setting
connection and terminal modes (including setting up character translation and
simulation), using an auto-answer modem, inquiring about the current terminal setup,
limiting a terminal to one connection, and programmatically inserting text into the
terminal's input stream.

See also: Writing terminal drivers, in this manual

12 Chapter 1 Introduction

The Driver Development Process
This manual guides you through the driver development process:

1. Decide whether or not you can use an OS-supplied driver.

2. Determine what type of device driver you need (custom, common/random
access, or terminal).

You will also need driver-specific information. For example, the ROM BIOS-
based hard disk driver can use three of five required device-specific procedures:
device_init, device_start, and device_interrupt. Default BIOS procedures
provide the other two: device_finish and device_stop.

3. Write and compile the necessary code.

4. Run the driver in loadable form using the Soft-Scope debugger or HI sysload
command; if this is an iRMX for PCs or DOSRMX driver, use this command to
dynamically configure the driver into the OS.

See also: Making a device driver loadable, in this manual

5. If this is an ICU-configurable system, run the Interactive Configuration Utility
(ICU) to configure the driver in the OS.

See also: Using the ICU to configure your device driver, in this manual

Advantages of a Standard Driver Interface
The standard interface between device drivers and file drivers has these advantages:

• You can reconfigure the hardware without extensively modifying the software.
To change devices (to a larger capacity hard disk drive, for example), you just
substitute a different device driver and/or modify a data structure.

• The I/O System can support any device, provided the device driver works with
file drivers in the manner described in this manual.

■■ ■■ ■■

Driver Programming Concepts Chapter 2 13

Writing Loadable File Drivers 2
File drivers in the iRMX OS are resident or loadable. Resident file drivers are those
you have configured into the OS using the ICU or are part of the preconfigured OSs.
You can add loadable file drivers to the OS at load time or run time using the sysload
command. This chapter describes loadable file drivers and how to write them.
Loadable file driver support in the OS simplifies the design, integration, and
debugging of new file drivers. The BIOS provides a device-independent interface to
all file drivers.

These file drivers are provided by the iRMX OS in loadable form:

Name Description
remotefd.job Remote file driver.
nfsfd.job Network File System (NFS) file driver.
dosfd.job Native DOS file driver.
namedfd.job Named file driver
cdromfd.job CD-ROM file driver

The Physical and Stream file drivers must always be present in the BIOS, and cannot
be converted to loadable versions.

See also: File drivers, Introducing the iRMX Operating Systems

The overall performance of a loadable file driver is slightly slower than the resident
version. This is because calls to BIOS procedures are far instead of near, dispatch
from the file driver's I/O task to the loadable file driver code is far instead of near,
and calls to BIOS system calls must go through a call gate instead of a near call.

14 Chapter 2 Writing Loadable File Drivers

File Driver IDs
The file driver ID (also referred to as the file driver number) is a value that identifies
a file driver. The same ID may correspond to either a resident or loaded version of a
file driver. The assignment of file driver ID values is summarized below:

ID Use
0 Reserved; not a valid file driver ID
1 Physical file driver, always present
2 Stream file driver, always present
3 Native DOS file driver, configurable/loadable
4 Named file driver, configurable/loadable
5 Remote file driver, configurable/loadable
6 EDOS file driver, configurable/loadable
7-max Available for loadable file drivers; maximum value determined by the

configuration of the OS; default = 16

The loadable versions of the DOS and Remote file drivers are installed in their own
reserved file driver ID slots. The loaded file driver supersedes a resident instance of
itself.

Using File Driver IDs
The file driver ID is assigned and returned by the install_file_driver system call.
You specify the file driver ID in the physical_attach_device, logical_attach_device,
and get_file_driver_status system calls. System calls work the same regardless of
whether a file driver is resident or loaded. Any applications that contain hard-coded
values for file driver IDs should be modified to obtain the file driver ID with the
get_file_driver_status system call to eliminate these dependencies.

See also: install_file_driver and get_file_driver_status, System Call Reference

Commands such as attachdevice, logicalnames, and deviceinfo all recognize
resident and loaded file driver IDs.

See also: Command Reference for more information on these commands

Driver Programming Concepts Chapter 2 15

File Driver Data Structures
When you write a file driver, you should become familiar with the loadable file
driver data structures:

Driver
present
flag

Master loadable
file driver table

File driver
data table

File driver
configuration

table

File driver
code and data

Loadable file driver job

OM02681

Figure 2-1. Loadable File Driver Data Structures

The File Driver Data Table contains file driver-specific data such as the ASCII
name, I/O task priority, etc.

The File Driver Configuration Table contains the File Driver Dispatch Table and the
File Driver Validation Table.

The File Driver Info Table contains tokens for important BIOS objects used by the
file driver, and pointers to several internal BIOS interface procedures.

When you install a file driver using install_file_driver, the file driver data structures
are entered into a BIOS internal data structure: the Master Loadable File Driver
Table at the appropriate entry point for the file driver ID. The install_file_driver
system call provides the only access to this structure. You can load a file driver on
top of an existing resident file driver at the same ID. The loaded file driver takes
precedence over the resident one. This provides a way to update file drivers without
regenerating the OS boot image.

File Driver Data Table
The data_ptr parameter in install_file_driver points to the file driver data table.
Most of this structure is returned by the get_file_driver_status system call. This
table should reside in a data segment and must have this format:

16 Chapter 2 Writing Loadable File Drivers

DECLARE loadable_fd_data_tbl STRUCTURE(

conn_entries WORD_16,

att_dev_stack_size WORD_16,

dev_desc_size WORD_16,

xface_mbox SELECTOR,

flags WORD_16,

buffer_size WORD_16,

file system BYTE,

io_task_prio BYTE,

name_length BYTE,

name(14) BYTE,

reserved(19) BYTE);

or

typedef struct {

UINT_16 conn_entries;

UINT_16 att_dev_stack_size;

UINT_16 dev_desc_size;

SELECTOR xface_mbox;

UINT_16 flags;

UINT_16 buffer_size;

UINT_8 file system;

UINT_8 io_task_prio;

UINT_8 name_length;

UINT_8 name[14];

UINT_8 reserved[19];

} LOADABLE_FD_DATA_TBL

Where:

conn_entries
Size, in bytes, of the connection object for this file driver.

att_dev_stack_size
Size, in bytes, of the attach interface procedure's stack.

dev_desc_size
Size, in bytes, of the device descriptor for devices attached to this file
driver.

Driver Programming Concepts Chapter 2 17

xface_mbox
Token for a mailbox to use if you supply the attach interface procedure.
If 0, the BIOS-provided attach interface procedure and its mailbox are
used.

flags Control bits defined as follows:

Bit(s) Meaning
0 User object required
1 DUIBs required
2 Convert filenames to lower case
3-15 Reserved, set to 0

buffer_size
Default buffer size for EIOS read-ahead, write-behind buffers. This
value is a configurable option.

See also: EIOS buffer size, System Configuration and
Administration
read-ahead, write-behind, Introducing the iRMX
Operating Systems

file_system
Type of file system supported by this file driver, specifying the DUIBs
that can be used with this file driver (only meaningful if bit 1 is set in
the flags field). Encode as follows:

Bit(s) File System Type
0 Physical
1 Stream
2 DOS
3 iRMX Named (or other hierarchical)
4 Remote
5 EDOS
6-7 Reserved, set to 0

io_task_priority
Default priority for I/O tasks associated with this file driver. For file
drivers that require DUIBs:

Value Meaning
0 To use the DUIB priority
not 0 To override the DUIB priority

For file drivers that do not use DUIBs, must be not 0.
name_length

Actual length of the name field (excluding blanks).

name Unique file driver name of up to 14 bytes (padded with blanks).

18 Chapter 2 Writing Loadable File Drivers

Dynamic DUIBs

The DUIBs required flag in the file driver data table notifies the BIOS of file
drivers that do not use device drivers and therefore do not require DUIBs. When the
BIOS attaches to one of these file drivers, a dynamic DUIB is created instead. The
dynamic DUIB is deleted when the device is detached. File drivers that use dynamic
DUIBs must manage device attach requests so that a device is not allowed to be
attached twice. For example, the Remote file driver manages a linked list of servers,
where each server is associated with a dynamic DUIB.

For regular DUIBs, physical device names are restricted to 14 characters or less.
However, file drivers that use dynamic DUIBs may require device names much
longer than 14 characters. For these file drivers only, physical device names are
allowed to have a maximum length of 255 (the maximum number of characters in a
STRING).

To accommodate the extended physical device name, the BIOS creates an
attach_device IORS that is large enough to fit a full 255 character device name. File
drivers that use dynamic DUIBs obtain the extended device name from this IORS as
passed to the file driver attach_device interface procedure. The dynamic DUIB only
contains part of the device name, truncated to 14 characters, with the full device
name only available from the IORS. File drivers that use regular DUIBs can obtain
the device name from either the DUIB or the IORS. The structure of the IORS
passed to the FD attach_device interface is:

DECLARE ATTACH_DEVICE_INFO STRUCTURE (

status WORD_16,

attach_iors_t TOKEN,

resp_mbox TOKEN,

duib_ptr POINTER,

dev_name_ptr POINTER);

or

typedef struct {

UINT_16 status;

SELECTOR attach_iors_t;

SELECTOR resp_mbox;

DUIB_STRUCT far * duib_ptr ;

UINT_8 far * dev_name_ptr;

} ATTACH_DEVICE_INFO

Driver Programming Concepts Chapter 2 19

Where:

status iRMX exception code set by the file driver's attach interface procedure
before it completes. Only E_OK allows the attach to complete
successfully.

attach_iors_t
Token for the IORS sent back to the original caller of
rq_a_physical_attach_device.

resp_mbox Token for the user's I/O response mailbox.

duib_ptr Pointer to the DUIB for the device being attached. If this file driver
does not require DUIBs, this is a pointer to a dynamic DUIB that has
been created for the duration of the attach.

dev_name_ptr
Pointer to the device name specified in the call to
rq_a_physical_attach_device. The name can be up to 255 characters
long.

File Driver Types and DUIBs

The file_system field in the file driver data structure specifies the file driver type.
This field is used only if the file driver requires DUIBs. For these file drivers, the
file_system field is used to match DUIBs that have the corresponding bit set in the
DUIB's file_driver field. Six types of file drivers are defined so that file drivers
can use all DUIBs in the OS at the time the driver is configured or loaded:

ID Type Description
1 Physical No file system, the device is seen as a single file
2 Stream Stream I/O drivers
3 DOS A native DOS file system
4 Named iRMX Named volumes, and other file systems that support a

hierarchical directory structure
5 Remote Network file drivers, do not require DUIBs
6 EDOS Encapsulated DOS file system (DOS is used as the file server

locally)

20 Chapter 2 Writing Loadable File Drivers

A DUIB can be attached to a file driver (using the logical or physical attach system
calls) when at least one bit in the DUIB's file_driver field matches a bit in the file
driver data structure file_system field. This changes the meaning of the DUIB's
file_driver field slightly. The bits do not correspond to specific file drivers, but
instead to file driver types. This semantic change solves two problems:

1. You don't need to modify standard DUIBs every time a new file driver is added.
Specifying the file driver type allows those DUIBs with a matching bit to work
with the new file driver.

2. The 8-bit file_driver field is no longer limited to eight distinct file drivers.

See also: DUIB and IORS: device driver interfaces, in this manual

File Driver Configuration Table
The file driver configuration table contains the two basic data structures associated
with every file driver (resident or loadable): the file driver dispatch table and file
driver validation table. The file driver dispatch table contains pointers to each of the
file driver interface procedures. The I/O task for the device uses it to quickly
dispatch I/O requests. The file driver validation table contains a code for each of the
file driver interface procedures indicating whether it is supported by the file driver,
not supported, or not configured. This table is used by the synchronous part of the
BIOS.

The config_ptr parameter in install_file_driver points to the file driver
configuration table. If this parameter is a null pointer, an attempt is made to uninstall
the file driver. The configuration table has this format:

DECLARE loadable_fd_config_tbl STRUCTURE(

initialize POINTER, /* Dispatch Table */

io_task POINTER,

update POINTER,

attach_funct(4) POINTER,

io_funct(21) POINTER,

valid_request(21)BYTE), /* Validation Table */

or

typedef struct {

void far * initialize;

void far * io_task;

void far * update;

void far * attach_funct[4];

void far * io_funct[21];

UINT_8 valid_request[21];

} LOADABLE_FD_CONFIG_TBL

Driver Programming Concepts Chapter 2 21

Where:

initialize
Pointer to the file driver initialization procedure. A null pointer means
no initialization is required.

io_task Pointer to the I/O task used with the file driver. A null pointer specifies
the BIOS-provided I/O task.

update Pointer to the file driver update procedure.

attach_funct
Array of pointers to the four attach interface procedures.

io_funct An array of pointers to the 21 file I/O procedures.

valid_request
Each byte specifies whether the corresponding file I/O procedure is
valid for this file driver. The possible values are:

Value Meaning
1 Configured; this file driver interface procedure is

available.
2 Not Supported; this file driver does not support this

interface procedure.
3 Not Configured, this interface procedure is supported,

but has been configured out.

22 Chapter 2 Writing Loadable File Drivers

File Driver Info Table

The ret_info_ptr parameter in install_file_driver points to the file driver info
table, which is filled out by the BIOS. It provides access to several BIOS objects and
procedures that you may require for correct file driver operation and are also used by
the FD support code. To use the objects within this structure, copy them into global
variables of the same name.

DECLARE loadable_fd_info_tbl STRUCTURE(

conn_region SELECTOR,

conn_ext SELECTOR,

detach_device POINTER,

cancel_dev_io POINTER,

device_io POINTER);

or

typedef struct {

SELECTOR conn_region;

SELECTOR conn_ext;

void far * detach_device;

void far * cancel_dev_io;

void far * device_io;

} LOADABLE_FD_INFO_TBL

Where:

conn_region
Token for the global BIOS connection region. This region is used for
mutual exclusion around all connection management operations.

conn_ext Token for the global BIOS connection extension object.

detach_device
Pointer to the BIOS detach device procedure. This procedure is called
by the file driver when a device is physically detached.

cancel_dev_io
Pointer to the BIOS cancel I/O procedure. This is the dispatch for the
device driver's cancel_io procedure.

device_io Pointer to the BIOS device I/O procedure. This is the dispatch for the
device driver queue_io procedure. It should be called to perform all
I/O from the file driver.

Driver Programming Concepts Chapter 2 23

File Driver Components
If you are designing a custom file driver, you may need to write your own version of
these file driver components:

• Initialization procedure

• I/O task

• File driver interface procedures

Initialization Procedure
This optional procedure performs any necessary file driver initialization. For resident
file drivers, the BIOS calls this procedure (for all the configured file drivers) during
I/O system initialization. For loadable file drivers, this procedure is called by the
loadable job's main module.

I/O Task Procedure
This procedure implements the I/O task for the file driver. The I/O task accepts I/O
requests from the synchronous part of the BIOS using the I/O interface mailbox
(created when the device is attached). The request is received in the form of an IORS
that contains a function code, and any other required information. Once an IORS is
received, the I/O request is dispatched to the appropriate file driver interface
procedure based upon the function code.

The BIOS provides a generic I/O task procedure that is suitable for use by most file
drivers (resident and loadable), referred to as the BIOS I/O task. Loadable file
drivers can use this task by specifying a null pointer in the io_task field of the file
driver configuration table.

24 Chapter 2 Writing Loadable File Drivers

Update Procedure

This is the update procedure called by a_update, or the update timeout expires for a
device. This procedure writes the contents of BIOS buffers and/or internal fnodes to
the I/O device. All currently open files are made consistent with the storage device.
This procedure has this syntax:

<fd_update> (dev_desc_t, iors_t, io_mbox);

Where:

fd_update Public name for the update procedure.

dev_desc_t
Token for the device descriptor for the device.

iors_t Token for the IORS.

io_mbox I/O interface mailbox (for I/O task).

See also: fnodes, Command Reference

File Driver Interface Procedures
Each file driver implements a set of file driver interface procedures. There are four
attach procedures, each with a standard set of parameters. Also, there are 21 file I/O
procedures with a standard set of parameters. The interface procedures are called by
the synchronous side of the BIOS to perform the requested file driver function.

While it is not required that every file driver implement every interface procedure,
the more interface procedures implemented by a file driver, the more system utilities
and applications work with that file driver. In general, a file driver should implement
every interface procedure unless limitations of the file system itself preclude certain
operations. For instance, if the target file system does not have a directory structure,
it makes no sense to implement GET_DIRECTORY_ENTRY.

Driver Programming Concepts Chapter 2 25

Choosing Public Symbols for File Driver Procedures

Each file driver interface procedure is given a unique public name. For resident file
drivers, choose the names to not conflict with existing public symbols within the
BIOS. Use these steps when creating the names for your file driver interface
procedures:

1. Create a three or four letter abbreviation for the file driver. The existing
abbreviations used in the BIOS are: PHYS, STR, NAM, DOS, REM, and EDOS.

2. Use this abbreviation as a prefix to each and every public symbol within the file
driver, for example: EDOS_READ, STR_UPDATE, NAM_GET_DIR_ENTRY.

This should guarantee that the public symbols are unique within the BIOS, and will
not cause problems when the OS is built.

Attach Procedures

You will attach procedures without a pre-existing file connection. The function
codes for the file driver attach procedures are listed below, in the order they must
appear in the file driver configuration table.

Function Code Corresponding BIOS System Call
ATTACH_FILE rq_a_attach_file
CREATE_FILE rq_a_create_file
CHANGE_ACCESS rq_a_change_access
DELETE_FILE rq_a_delete_file

These procedures have this syntax:

CALL <attach_function_code> (conn_t, xface_mbox, iors_t, io_mbox);

Where:

attach_function_code
Function code (public procedure name) for one of the attach procedures
for your file driver.

conn_t Token for the connection object.

xface_mbox
Token for the I/O task interface mailbox.

iors_t Token for the IORS.

io_mbox BIOS-provided I/O synchronization mailbox.

26 Chapter 2 Writing Loadable File Drivers

File I/O Procedures
The function codes for the 21 file driver I/O procedures are listed below, in the order
they must appear in the file driver configuration table.

Function Code Corresponding BIOS System Call
0 READ rq_a_read
1 WRITE rq_a_write
2 SEEK rq_a_seek
3 SPECIAL rq_a_special
4 ATTACH_DEVICE rq-a-physical_attach_device
5 DETACH_DEVICE rq_a_physical_detach_device
6 OPEN rq_a_open
7 CLOSE rq_a_close
8 GET_CONNECTION_STATUS rq_a_get_connection_status
9 GET_FILE_STATUS rq_a_get_file_status
10 GET_EXTENSION_DATA rq_a_get_extension_data
11 SET_EXTENSION_DATA rq_a_get_extension_data
12 NULL_CHANGE_ACCESS rq_a_change_access, with null path_ptr
13 NULL_DELETE_FILE rq_a_delete_file, with null path_ptr
14 RENAME rq_a_rename_file
15 GET_PATH_COMPONENT rq_a_get_path_component
16 GET_DIRECTORY_ENTRY rq_a_get_directory_entry
17 TRUNCATE rq_a_truncate
18 DETACH rq_a_delete_connection
19 SET_FILE_STATUS rq_a_set_file_status
20 RESERVED Reserved for future expansion

These interface procedures have this syntax:

CALL <io_function_code> (conn_t, file_t, iors_t, io_mbox,

resp_mbox, respond_p);

Where:

io_function_code
Function code (public procedure name) for one of the file I/O
procedures for your file driver.

conn_t Token for the connection object.

file_t Token for an internal fnode that describes the file. There is always an
internal fnode for a file; only the named file driver places external
fnodes on disk.

Driver Programming Concepts Chapter 2 27

iors_t Token for the IORS.

io_mbox I/O interface mailbox (I/O task).

resp_mbox Application response mailbox token.

respond_p Pointer to a flag indicating whether the I/O task should respond back to
the application.

Building a Loadable File Driver
A loadable file driver is built from modules linked together to form a single loadable
object module.

• Main module

• Configuration module

• File driver code, data, and FDSC library modules

Main Module
The main module initializes and installs the file driver. This module must also
uninstall the file driver when it is unloaded. When a file driver is loaded, the
initialization procedure in the main module calls install_file_driver to install the file
driver configuration tables into the BIOS. The main module should perform these
steps in order:

1. Initialize any global data.

2. Allocate any required resources (segments, mailboxes, etc.). Delete the job on
any fatal error.

3. Call install_file_driver to install the file driver and obtain a file driver ID.

4. Wait at the job exit mailbox for a job deletion message from the sysload
command.

5. Call install_file_driver to uninstall the file driver.

6. Deallocate all resources.

7. Delete the loadable file driver job.

28 Chapter 2 Writing Loadable File Drivers

After the file driver installs itself into the BIOS, it should perform these steps to
uninstall itself if unloaded by the sysload -u command:

1. Create a job exit mailbox where sysload will send a data message upon job
unload.

2. Catalog this mailbox in the current job, under the name R?EXIT_MBX.

3. Wait forever at the mailbox for the exit message, signifying the job is being
unloaded.

4. Call install_file_driver with the same data table pointer used to install, and a
null config_ptr to tell the BIOS to uninstall the file driver.

5. The job should now delete itself by calling delete_job.

See also: install_file_driver, System Call Reference

Configuration Module
The configuration module is similar to the ICU file itabl.a38. This module contains
the file driver configuration table and file driver data table.

You can convert an existing resident file driver to a loadable file driver by
performing these steps:

1. Add a main module.

2. Convert all external interface procedures (those that appear in the file driver
configuration table) to far interfaces. This conversion is commonly done in
PL/M-386 or iC-386 using the subsystem control.

3. Add a configuration module that contains file driver configuration and file driver
data tables.

4. Bind the file driver, configuration module, and main module together with the
FDSC to produce a module which is loadable using the sysload command.

Driver Programming Concepts Chapter 2 29

File Driver Support Code Library
This section defines each FDSC utility procedure, including syntax and parameter
descriptions. You may use one of two compact model libraries: ilfd.lib, which is for
file drivers that use local I/O and device drivers, or ilfdr.lib, which is for file drivers
that use remote I/O (dynamic DUIBs, no device driver, no blocking/deblocking).
FDSC procedures perform these functions, which are described on the next pages:

Usage Procedure(s)
Buffer management (ilfd.lib only) dealloc_buff_list

alloc_buff_list
get_buff
mark_buff
write_thru_buff_list
update_buff_list

Buffered I/O (ilfd.lib only) buffered_io
deblock_io

Detach device common_dealloc_dev_desc
common_finish_device
common_detach_device (far)

Get file status num_get_file_st (far)
Get/set extension data nam_get_ext_data (far)

nam_set_ext_data (far)
Open/close connection common_close

common_open
Open/close/seek file num_open, num_close (far)

num_seek (far)
Connection management force_detach

link_conn
unlink_conn
common_get_conn_st (far)

Double-precision math support dsmul, dssmul
dsdiv, sdsdiv
sdsmod
dsdivrnd

Doubly-linked list management enter_dll
enter_nk_dll
lookup_dll
remove_dll

EIOS buffer management flush_eios_buffers
delete_eios_objects

Filename management lower_case
names_match

30 Chapter 2 Writing Loadable File Drivers

Usage Procedure(s)
Fnode management mark_fnode
IORS management respond_seg
Null procedures null_fd_init, no_att_dev

no_attach, null_update

alloc_buff_list

Allocates buffers and invalidates them. Returns head of buffer list.

head_t = alloc_buff_list (duib_p, status_p);

head_t Token for head of buffer list (buffer token).

duib_p Pointer to DUIB for this device.

status_p Pointer to location where condition code returns.

See also: Condition codes, Programming Techniques

If duib.num_buffers = 0 or duib.dev_gran = 0, this procedure returns a
null list.

buffered_io

Handles I/O that may need deblocking and/or concurrency.

buffered_io (dev_desc_t, funct, count, caller_buff_p,

dev_loc, dirty, iors_t, io_mbox, resp_mbox);

dev_desc_t
Token for device descriptor segment.

funct Function code F_READ or F_WRITE, otherwise implies unbuffered
I/O.

count Number of bytes to transfer.

caller_buff_p
Pointer to buffer list. Null value implies unbuffered I/O.

dev_loc Device location to start transfer.

Driver Programming Concepts Chapter 2 31

dirty How dirty to mark buffers:

Value Meaning
B_NOT_DIRTY Buffer is not dirty
B_MILD_DIRTY Buffer is mildly dirty
B_VERY_DIRTY Buffer is very dirty
B_DIRTY Buffer is mildly or very dirty
B_FLUSH_THRU Flush buffer through I/O errors

iors_t Token for IORS.

io_mbox Token for I/O interface mailbox.

resp_mbox Token for callers response mailbox. If 0, synchronous I/O. If not 0,
supports concurrent/overlapped I/O by allowing actual response to
resp_mbox and early return.

Concurrent I/O is allowed only if the request starts on a sector boundary, and is an
integral number of sectors long.

common_close

Closes the specified connection.

common_close(conn_t, status_p);

conn_t Connection object token.

status_p Pointer to location where condition code returns.

common_dealloc_dev_desc

Deallocates a device descriptor.

common_dealloc_dev_desc(dev_desc_t);

dev_desc_t Device descriptor segment token.

32 Chapter 2 Writing Loadable File Drivers

common_detach_device

Detach a device.

common_detach_device (dev_conn_t, hard, det_resp_seg,

det_resp_mbox);

dev_conn_t
Device connection token.

hard If TRUE, hard detach device, otherwise soft detach device.

det_resp_seg
Response segment token.

det_resp_mbox
Response mailbox token

common_finish_device

Performs final processing on a device, and deletes the device descriptor.

common_finish_device(dev_desc_t, iors_t, io_mbox);

dev_desc_t
Token for device descriptor segment.

iors_t Token for IORS.

io_mbox Token for I/O interface mailbox.

common_open

Opens a connection.

common_open (conn_t, mode, share, status_p);

conn_t Connection object token.

mode File access mode

Value Meaning
1 Read
2 Write
3 Read AND write

Driver Programming Concepts Chapter 2 33

share File share mode

Value Meaning
0 None
1 Share with readers
2 Share with writers
3 Share with all

status_p Pointer to location where condition code returns.

dealloc_buff_list

Deallocates a buffer list.

dealloc_buff_list(buff_t);

buff_t Head of singly-linked buffer list. 0 specifies a null list.

delete_eios_obj

Deletes EIOS-created objects in the supplied structure.

delete_eios_obj (eios_obj_p);

eios_obj_p Pointer to EIOS object.

enter_dll

Inserts a new entry on a doubly-linked and circular list. Returns new header and
moves the old header to the forward link.

new_header_t = enter_dll (header_t, entry_t, key,

links_offset);

new_header_t
Returns new header token for the new head of the list.

header_t Token for the head of the list.

entry_t Token for the entry to be linked.

key A value that uniquely identifies the element.

links_offset
Specifies the location of the links

34 Chapter 2 Writing Loadable File Drivers

The list is identified by a single pointer to an element; and this pointer is the header.
All links and the header are SEGMENT tokens. Links are a given offset from the
beginning of an entry segment, and take the form:

link_for SEGMENT,

link_back SEGMENT,

key WORD_32; /*not used by non-keyed procedures*/

A header of 0 identifies an empty list.

The enter and remove system calls return a new header token, since the actual header
may change.

enter_nk_dll

Insert a new entry on a non-keyed doubly-linked list.

new_header_t = enter_nk_dll (header_t, entry_t, links_offset);

new_header_t
Returns token for new head of list.

header_t Token for head of the list.

entry_t Token for entry to be linked.

links_offset
Specifies the location of the links.

flush_eios_buffers

Writes partially filled EIOS buffers. If necessary, sets a flag to indicate whether
pending driver I/O requests should be canceled or allowed to complete before closing
connection.

cancel_conn_io = flush_eios_buffers (conn_t, file_t, iors_t,

io_mbox);

cancel_conn_io
Indicates to caller whether to cancel queued driver requests associated
with this connection.

conn_t Token for connection to be closed.

file_t Token for file descriptor segment.

iors_t Token for local IORS.

io_mbox Token for internal synchronization mailbox.

Driver Programming Concepts Chapter 2 35

force_detach

Forces a connection to be detached.

force_detach(conn_t);

conn_t Token for connection object.

get_buff

Finds a buffer to use, if possible, one that matches.

buff_t = get_buff(buff_list_p, dev_loc, iors_t, io_mbox);

buff_list_p
Pointer to variable holding token of head of list.

dev_loc Device location the buffer should contain.

iors_t Token for IORS.

io_mbox Token for I/O interface mailbox.

This procedure attempts to find a buffer that contains the value specified in dev_loc.
If found, this buffer moves to front of list. If not, the least recently used non-dirty
buffer moves to the front.

Each time get_buff is called, it may recycle any previously used buffer.

link_conn

Links a connection with its neighbors on a file.

head_t = link_conn(conn_list, conn_t);

head_t Token for new head of connection list.

conn_list Token for head of connection list.

conn_t Token for connection object.

36 Chapter 2 Writing Loadable File Drivers

lookup_dll

Attempts to lookup an entry on a doubly-linked list, given its key. The lookup_dll
algorithm looks at the most recent entry first.

entry_t = lookup_dll (header_t, key, links_offset);

entry_t Token for the linked entry.

header_t Token for the head of the list.

key Uniquely identifies the element.

links_offset
Specifies the location of the links.

This procedure returns 0 if entry is not found, otherwise it returns the entry token.

mark_buff

Marks a buffer as dirty and checks for write protect flag.

mark_buff(buff_t, how_dirty, dev_desc_t, iors_t, io_mbox);

buff_t Buffer segment token.

how_dirty How dirty to mark buffers:

Value Meaning
B_NOT_DIRTY Buffer is not dirty
B_MILD_DIRTY Buffer is mildly dirty
B_VERY_DIRTY Buffer is very dirty
B_DIRTY Buffer is mildly or very dirty
B_FLUSH_THRU Flush buffer through I/O errors

dev_desc_t
Token for device descriptor segment.

iors_t Token for IORS.

io_mbox Token for I/O interface mailbox.

This procedure must be called after modifying the contents of a buffer to insure it
gets updated.

On the first access to a device, in any service request, this procedure checks to see if
the volume is write protected.

remove_dll

Removes an entry from a doubly-linked list. Returns a new header, which may have
changed. If this is the only entry, 0 returns (empty list).

Driver Programming Concepts Chapter 2 37

new_header_t = remove_dll (header_t, entry_t, links_offset);

new_header_t
Token for the new head of the list.

header_t Token for the head of the list.

entry_t Token for the entry to be removed.

links_offset
Specifies the location of the links.

respond_seg

Sends an IORS to a response mailbox.

respond_seg(resp_mbox, iors_t, status, unit_status);

resp_mbox Caller's response mailbox token. If not 0, this procedure fills out and
sends the IORS, then deletes the mailbox and IORS. If 0, the IORS is
deleted if it exists.

iors_t Token for IORS.

status Condition code to return.

unit_status
Unit-status code to return.

unlink_conn

Removes a connection from a connection list.

head_t = unlink_conn(conn_list, conn_t);

head_t Token for new head of connection list.

conn_list Token for head of connection list.

conn_t Token for connection object.

38 Chapter 2 Writing Loadable File Drivers

update_buff_list

Updates a buffer list by writing out dirty buffers.

update_buff_list(buff_t, flags, iors_t, io_mbox);

buff_t Token for head of buffer list.

flags Mask for the buffer's dirty flag:

Value Meaning
B_NOT_DIRTY Buffer is not dirty
B_MILD_DIRTY Buffer is mildly dirty
B_VERY_DIRTY Buffer is very dirty
B_DIRTY Buffer is mildly or very dirty
B_FLUSH_THRU Flush buffer through I/O errors

iors_t Token for IORS.

io_mbox Token for I/O interface mailbox.

The buffer list order is unchanged. If an I/O error occurs, the update stops unless
flags contains B_FLUSH_THRU.

write_thru_buff_list

Checks for writing through cached buffers.

write_thru_buff_list(buff_t, funct, low_range, count, iors_t,

io_mbox);

buff_t Token for head of cache buffer list.

funct F_READ or F_WRITE: function about to be performed. If F_READ,
causes buffers to be updated. If F_WRITE, just marks them non-dirty
and invalid.

low_range Lowest device location of transfer.

count Number of bytes involved in transfer.

iors_t Token for IORS.

io_mbox Token for I/O interface mailbox.

This procedure assumes low_range is sector boundary, count is for an integral
number of sectors.

Driver Programming Concepts Chapter 2 39

Example File Driver Algorithms
This section contains example algorithms for typical file driver actions. In this
example, a hierarchical file system is used. These examples include algorithms for
the public file driver interface procedures and procedures that they may call.

Attach Device

Read the volume label:

Call buffered_io to read the label (boot sector, etc.).

Verify the volume is a supported file system.

If volume not recognized:

Return, status = E_ILLEGAL_VOLUME.

Initialize the device descriptor.

Call low_attach to attach to the volume root directory.

Call build_connection to initialize the new connection.

Attach File

Call scan_path to parse the pathname and attach the file.

Determine if the user has access to the file, detach if no access.

Call build_connection to initialize the new connection.

Change File Access

Call scan_path to parse the pathname and attach the file.

Determine if the user has access to the file, detach if no access.

Call low_change_access to change the file access.

Detach the temporary attach.

Close File

Call flush_eios_buffers to flush any dirty buffers.

Call common_close to close the connection.

If error:

Return status.

If there are pending I/O requests (From flush_eios_buffers):

Call cancel_dev_io to notify device driver.

Call buffered_io (F_CLOSE).

Call delete_eios_obj to delete any EIOS buffers associated

with the connection.

40 Chapter 2 Writing Loadable File Drivers

Create File

Call scan_path to parse the pathname and attach the parent directory.

If pathname is null:

If parent is a directory:

Call low_create to create an unnamed temporary file.

Mark the temp file for deletion upon last detach.

Detach the parent directory.

Call low_change_access to change the file access.

Else this is an existing file:

Determine if the user has access to the file, detach if

no access.

Else create a normal file:

Determine if the user has access to the parent directory,

detach if no access.

Call low_create to create a file, either a directory or a

data file.

Call low_change_access to change the file access.

Make a new directory entry in the parent directory.

Detach the parent directory.

Call build_connection to initialize the new connection.

Delete File

Call scan_path to parse the pathname and attach the file.

Call compute_access to determine if the user has delete access to the

file, detach if no access.

Call low_delete to delete the file.

Call low_detach to detach the file.

Detach Device

This procedure, common_detach_device, is provided in the FDSC library.

Obtain the device descriptor from the connection.

If the device is marked as detaching:

Call respond_seg with E_FEXIST, return.

If a soft detach:

If there are outstanding connections to the device:

Call respond_seg with E_OUTSTANDING_CONNS, exit.

Mark device descriptor as detaching.

Call force_detach to detach the device.

Else a hard detach:

Call traverse_detach to delete all connections to the device.

Driver Programming Concepts Chapter 2 41

Detach File

Decrement the file node's connection count.

If there are no more connections to the file:

If the file is marked for deletion:

Call Truncate to truncate the file to 0 bytes.

Call mark_fnode to deallocate the directory entry.

Else

Call Truncate to adjust file to it's final size.

Call update_fnode to write the new information to disk.

Delete the internal fnode.

Else just update the file:

Call update_fnode to write the new information to disk.

Decrement the device descriptor connect count.

If there are no more connections to this device:

Call common_finish_device to close the device.

Get Connection Status

This procedure, common_get_conn_st, is provided in the FDSC library.

Copy 9 bytes of connection info from the connection to the IORS.

(starting at conn.supp_opt.)

Copy the connection flags to the IORS.

Return, status = E_OK.

Get Directory Entry

If file is not a directory:

Return, status = E_FTYPE.

If connection does not have read access:

Return, status = E_FACCESS.

If connection file pointer is beyond EOF:

Return, status = E_DIR_END.

Call low_dir_entry to obtain the requested directory entry.

Get Extension Data

This procedure, nam_get_ext_data, is provided in the FDSC library.

Compute the number of extra bytes at the end of the internal fnode:

connection.fnode_size NAMED_FNODE_SIZE.

Copy the bytes to the IORS.

Return, status = E_OK.

42 Chapter 2 Writing Loadable File Drivers

Get File Status

This procedure, num_get_file_st, is provided in the FDSC library.

Fill in the file information:

Copy 7 bytes from the internal fnode (at file.num_conn) to

the IORS:

Copy the device name from the DUIB to the IORS.

Fill in the extended information:

Copy the fnode number and id_count from the fnode to the

IORS.

Copy 24 bytes from the internal fnode (at file.type) to the

IORS.

Copy the volume name and volume flags from the device

descriptor.

Copy the accessor list from the fnode to the IORS.

Return, status = E_OK.

Get Path Component

If file is the root directory:

Return null filename, status = E_OK.

If file is marked for deletion:

Return null filename, status = E_FNEXIST.

Return the filename contained in the internal fnode.

Null Change File Access

If the connection does not have change access OR the file is marked

for deletion:

Return, status = E_FACCESS.

Call low_change_access to change the file access.

Null Delete File

If caller has delete access:

Call low_delete to delete the file.

Else

Status = E_FACCESS.

Driver Programming Concepts Chapter 2 43

Open File

Obtain the mode byte from the lower 8 bits of the IORS subfunct.

Obtain the share byte from the upper 8 bits of the IORS subfunct.

If file type is not DATA and mode is not SHARE_READER or SHARE_ALL:

Return, status = E_SHARE.

Call common_open to open the connection.

If error:

Mark map_valid field in connection invalid (=0).

Read File

If connection file pointer is past EOF:

Return, status = E_OK, actual = 0.

WHILE there is more data to read:

Call map_file to get the physical disk address of the read

request.

Call buffered_io to read from the device.

Update file pointer, byte count, and data_block

If a response mailbox was specified:

Call rq_send_message to send the IORS back to the caller.

Call mark_fnode to update the last access time of the file.

Rename File

If caller does not have delete access:

Return, Status = E_FACCESS.

Call scan_path to parse the pathname and attach the new parent

directory.

Attach to the old parent directory.

Check if legal rename:

Call compute_access to determine if caller has access to the

new parent.

If trying to rename any system or special files:

Return Status = E_FACCESS.

If either the file or it's parent are marked for deletion:

Return Status = E_FNEXIST.

44 Chapter 2 Writing Loadable File Drivers

If file to be renamed is a directory, check for a circular

rename:

If new parent the same as old parent, OK.

Call low_dos_attach to get another attach to new

parent.

Backup through pathname to root directory:

If the parent directory is the same as the

directory being renamed:

Return Status = E_ILLOGICAL_RENAME.

Attach to next parent directory.

Detach current parent.

If old parent is not the same as the new parent:

Remove file from old parent.

Make new directory entry in new parent.

Else

Update directory entry in parent with new filename.

Call low_dos_detach to detach the old parent.

Call low_dos_detach to detach the new parent.

Seek File

This procedure, num_seek, is provided in the FDSC library.

If the connection is not open:

Return, status = E_CONN_NOT_OPEN.

DO CASE seek mode (in iors.subfunct)

1: Subtract seek_loc from current file pointer.

2: Set current file pointer to seek_loc exactly.

3: Add seek_loc to current file pointer.

4: Set current file pointer to EOF minus seek_loc.

Mark file mapping invalid (conn.map_valid = 0).

Set Extension Data

This procedure, nam_set_ext_data, is provided in the FDSC library.

Compute the number of extra bytes at the end of the internal fnode:

connection.fnode_size NAMED_FNODE_SIZE.

If request is larger than the available area for extension data:

Return, status = E_PARAM.

Copy the bytes from the IORS to the internal fnode.

Call mark_fnode to update the file's last modified time.

Return, status = E_OK.

Driver Programming Concepts Chapter 2 45

Set File Status

Obtain the pointer to the set_fs structure from the IORS.

If set_fs.func_code has change owner bit set:

If the requesting user has access:

Set the file owner to the new owner.

If set_fs.func_code has the change create time bit set:

If the requesting user has access:

Set the file create time to the new time.

If set_fs.func_code has the change access time bit set:

If the requesting user has access:

Set the file access time to the new time.

If set_fs.func_code has the change modification time bit set:

If the requesting user has access:

Set the file last modified time to the new time.

If any changes have been made to the fnode:

Mark the fnode dirty.

If the access time was not set above:

Set the last access time to now.

Special

If the subfunction is GET_DISK_TAPE_DATA:

Fill return structure with the pertinent data.

Else If the subfunction is GET_DEVICE_FREE:

Fill the return structure with the device free space.

Else If the connection is not a device connection:

Return status = E_NOT_DEVICE_CONN

Call buffered_io (F_SPECIAL) to pass the request on to the device

driver.

Truncate File

If file is the root directory:

Return Status = E_OK.

If connection file pointer is at or beyond End-Of-File:

Return Status = E_OK.

While there are volume blocks to truncate:

Deallocate a volume block.

If there have been changes to the file:

Call mark_fnode to update the file.

46 Chapter 2 Writing Loadable File Drivers

Update Device

DO: Traverse all fnodes linked to the device descriptor, update any

dirty ones.

If device is not write protected:

Call update_fnode to write fnode if dirty.

Else:

If the fnode is dirty:

Call buffered_io to read in a fresh copy of the fnode

from disk.

Mark fnode not dirty.

If any error:

Return

If device is not write protected:

Call update_buff_list to write out any dirty buffers.

Write File

If the connection file pointer is beyond EOF:

Call make_sparse to add sparse space to the file.

Call alloc_file to allocate the required number of volume blocks to

the file.

WHILE there is more data to write:

Call buffered_io to write the data.

Update file pointer, byte count, and data_block.

Call map_file to get the physical disk address of the read

request.

If a response mailbox was specified:

Call rq_send_message to send the IORS back to the caller.

Call mark_fnode to update the last modified time of the file.

✏ Note
The remaining algorithms are for low-level procedures that are
only called by the algorithms previously described.

Driver Programming Concepts Chapter 2 47

Build Connection

Initialize the connection with:

File driver ID.

flags, access, ch_access (parameters to this procedure).

fnode size (from device descriptor).

fnode token.

I/O interface mailbox.

Call link_conn to link the connection to the fnode.

Close Connection

This procedure, common_close, is provided in the FDSC library.

If the connection is not open:

Return, status = E_CONN_NOT_OPEN.

Decrement file readers/writers as necessary.

Adjust share information in the fnode.

Set the connection open mode/share to closed.

Open Connection

This procedure, common_open, is provided in the FDSC library.

If the connection is a device connection:

Return, status = E_NOT_FILE_CONN.

If the connection is not active:

Return, status = E_FTYPE.

If the connection is already open:

Return, status = E_CONN_OPEN.

If mode is SHARE_READER and connection does not have read access:

Return, status = E_FACCESS.

If mode is SHARE_WRITER and connection does not have write access:

Return, status = E_FACCESS.

If there is a readers/writers conflict:

Return, status = E_SHARE.

If SHARE_READER:

Increment fnode num readers.

If SHARE_WRITER:

Increment fnode num writers.

Update the connection with share and mode info.

Set the connection file pointer to zero (Implicit seek to zero on

open).

48 Chapter 2 Writing Loadable File Drivers

Low Attach

Call lookup_dll to determine if the file is already attached

If file is already attached:

If marked for deletion:

Return status = E_FNEXIST.

Else

Increment file and device descriptor connect counts.

Return the file token.

Else file is not attached:

Create an internal fnode.

Increment the device descriptor connect count.

Return the file token.

Low Change Access

Map the requested iRMX access rights to the target file system access

rights.

Update the internal fnode with the new rights.

Call mark_fnode to write the fnode to disk.

Low Delete

If file is the root directory or file type is system/special:

Return, status = E_FACCESS.

If file is a directory, make sure the directory is empty:

WHILE there are more directory entries to read:

Call low_dir_entry to get a directory entry.

If the dir entry fnode number is not zero (not a empty

entry):

Return, status = E_DIR_NOT_EMPTY.

Call remove_from_parent to delete the file directory entry in the

parent.

Call mark_fnode to mark the file for deletion.

Low Detach

Call the external DETACH_FILE interface procedure.

Driver Programming Concepts Chapter 2 49

Low Create

Create an internal fnode.

Initialize the fnode with file type, granularity, owner.

Pre-allocate space in the file if requested:

If requested size is less than the current file size:

Call Truncate.

Else

Call Alloc_file to add blocks to the file.

Call mark_fnode to update the directory entry.

If error:

Delete the internal fnode.

Increment the device descriptor connect count.

Return the file token.

Low Get Dir Entry

This function is called from READ and GET_DIR_ENTRY.

If count or file pointer is not a multiple of 16 (size of a directory

entry):

Return, status = E_SUPPORT.

WHILE there are more directory entries to read:

Call read_file to get a directory entry.

If at the end of the directory:

If called from READ:

Return status = E_OK, actual = 0.

Else

Return status = E_DIR_END.

Update file pointers.

Convert the file system directory entry into the iRMX OS

format (14 bytes plus fnode number).

50 Chapter 2 Writing Loadable File Drivers

Low Scan Path

This function traverses a full file pathname through the directory structure.

DO FOREVER: scan loop:

If the file is marked for deletion:

Return, status = E_FNEXIST.

Call get_path_component to obtain the next part of the

pathname

If the returned path is null, done:

Return, status = E_OK.

If the path component begins with a '^' (carat, up arrow):

If at the root fnode, ignore.

Call attach_parent to attach to this file's parent.

Call low_detach to detach this file.

Else this is a normal (filename) component:

If the file type is not a directory

Return, status = E_FTYPE; must be a directory.

Call find_name to lookup the filename in the parent

directory.

If couldn't find the filename in the directory:

Return, status = E_FNEXIST.

Call low_attach to attach to the filename.

Call low_detach to detach the parent.

Map File

This function computes the physical (disk) address of a file, given a logical address.
The algorithm is highly dependent on the structure of the file system.

Scan Path

If the device is marked detaching:

Return status = E_DEV_DETACHING.

If the first character of the pathname is a '$':

Remove the '$'.

Else If the first character of the pathname is a '/':

Use the root directory as the prefix.

Call low_scan_path to complete the scan.

■■ ■■ ■■

Driver Programming Concepts Chapter 3 51

DUIB and IORS:
Device Driver Interfaces

A device driver transforms general instructions from the I/O System into specific
instructions to send to the device. This chapter discusses the interfaces that a device driver
uses in the process.

• The interface between the device driver and the I/O System : the Device-unit
Information Block (DUIB) and I/O Request/Result Segment (IORS) data structures

• The interface to the device itself, which is device specific

The majority of this chapter is dedicated to the DUIB and IORS structures. This chapter
defines the fields of these structures for PL/M or C, and indicates which of these fields are
used by the three types of device drivers.

W-3201

Device
driver

Device
unit

Interface
between
the device
driver and
the device
unit

(varies
depending
on the
device)

Interface
between
the device
driver and
the I/O
System

(the same
for all
device
drivers)

BIOS

Figure 3-1. Device Driver Interfaces

3

52 Chapter 3 DUIB and IORS: Device Driver Interfaces

Interface Between a Device Driver and the I/O System
The interface between the device driver and the I/O System consists of two data structures,
the DUIB and IORS. The DUIB contains device-related information; the IORS defines I/O
requests. Through the DUIB for a device-unit, the I/O System can access the appropriate
high-level device driver procedure or device-specific driver procedure. Drivers then
perform operations based upon information provided by the I/O System in the IORS.

W-3202

Device
driver

Device-unit
information
block
(DUIB)

I/O request/
result
segment
(IORS)

DUIB
The DUIB contains the
addresses of one of the
following sets of routines:

Device driver routines
(for custom drivers)

Device driver support routines
(for common, random access,
and terminal drivers)

IORS
The IORS contains information
about the I/O request that a task
has made and about the unit on
which the I/O operation is to be
done.

BIOS Device
unit

Interface
between
the device
driver and
the device
unit

Figure 3-2. I/O System and Device Driver Interface

Driver Programming Concepts Chapter 3 53

DUIB Data Structure Definition
The DUIB is the primary interface between the device driver and the I/O System. Each
device-unit has its own DUIB. Each DUIB contains one pointer to a Device Information
(DINFO) table and another to a Unit Information (UINFO) table.

The DUIB is defined in PL/M or C:

DECLARE DUIB STRUCTURE(

name (14) BYTE,

file_drivers WORD_16,

functs BYTE,

flags BYTE,

dev_gran WORD_16,

dev_size WORD_32,

device BYTE,

unit BYTE,

dev_unit WORD_16,

init_io WORD_32,

finish_io WORD_32,

queue_io WORD_32,

cancel_io WORD_32,

device_info_ptr POINTER,

unit_info_ptr POINTER,

update_timeout WORD_16,

num_buffers WORD_16,

priority BYTE,

fixed_update BYTE,

max_buffers BYTE,

duib_flags BYTE,

dev_size_hi WORD_32)

or

54 Chapter 3 DUIB and IORS: Device Driver Interfaces

typedef struct {

UINT_8 name [14];

UINT_16 file_drivers;

UINT_8 functs;

UINT_8 flags;

UINT_16 dev_gran;

UINT_32 dev_size;

UINT_8 device;

UINT_8 unit;

UINT_16 dev_unit;

UINT_32 init_io;

UINT_32 finish_io;

UINT_32 queue_io;

UINT_32 cancel_io;

UINT_8 * device_info_ptr;

UINT_8 * unit_info_ptr;

UINT_16 update_timeout;

UINT_16 num_buffers;

UINT_8 priority;

UINT_8 fixed_update;

UINT_8 max_buffers;

UINT_8 duib_flags;

UINT_32 dev_size_hi;

} DUIB_STRUCT

Where:

name The DUIB name. This name uniquely identifies the device-unit to the I/O
System. Use only the first 13 bytes. The fourteenth is used by the I/O System.
Names with less than 14 characters are extended with spaces.

The name is assigned as part of the driver configuration process. You specify
the DUIB name when attaching a unit using the a_physical_attach_device
system call. Device drivers do not read or write this field.

Driver Programming Concepts Chapter 3 55

file_drivers
Specifies which file driver(s) can attach this device-unit:

Bit Driver No. Driver
5 6 EDOS
4 5 Remote
3 4 Named
2 3 DOS
1 2 Stream
0 1 Physical

See also: file driver types and duibs, in this manual

functs Specifies the valid I/O function(s) for this device-unit:

Bit Function
7 close
6 open
5 detach device (always set)
4 attach device (always set)
3 special
2 seek
1 write
0 read

To provide accurate status information, this field should indicate the device's
ability to perform the I/O functions. Each device driver must be able to either
perform the function or return a condition code indicating the inability to
perform that function. Device drivers do not read or write this field.

56 Chapter 3 DUIB and IORS: Device Driver Interfaces

flags This field does not apply to PC-AT ROM BIOS-based diskette driver.
Specifies characteristics of diskette devices:

Bits Value Meaning
7-6 0 Reserved; set to 0.
5 0 Normal DUIB
5 1 Dynamic DUIB
4 0 Standard diskette, for MB I only

1 Uniform diskette or not a diskette

3 0 Quad density
1 Double density

For 8 inch diskettes, set to 0

2 0 Single-sided
1 Double-sided

1 0 Single density
1 Not single density

Disk
Size Bit 1 Bit 3
3.5D 1 1t
3.5Q 1 0
5.25D 1 1
5.25Q 1 0
8S 0 0
8D 1 0

0 0 This field is undefined
1 Bits 7-1 are valid

See also: Supporting the standard diskette format, in this manual
Dynamic DUIBs, in this manual

dev_gran Specifies the device granularity in bytes. This field applies to random access
devices, and to some common devices such as tape drives. It specifies the
minimum number of bytes of information the device reads or writes in one
operation. If the device is a disk or tape drive, set to the sector size for the
device. Otherwise, set to 0 (zero).

dev_size If this is a DUIB structure, this field specifies the number of bytes of
information the device-unit can store. If this is an Extended DUIB structure,
this field holds the lower 32 bits of a device’s size.

Driver Programming Concepts Chapter 3 57

For more information about DUIB and Extended DUIB structures, see the
duib_flags field description on page 59.

device Specifies the device number of the device with which this device-unit is
associated. Device drivers do not access this field.

unit The unit number of this device-unit. This distinguishes the unit from the other
units of the device.

dev_unit The device-unit number. This number distinguishes the device-unit from the
other units in the entire hardware system. Device drivers can ignore this field.

init_io Specifies the offset address of the init_io procedure associated with this unit
(the base portion is the driver code segment). Custom device drivers must
supply this procedure and the finish_io, queue_io, and cancel_io procedures.
For common, random access, and terminal drivers, the procedures are supplied
with the I/O System. For loadable device drivers, this field specifies the driver
type. Device drivers do not access this field.

finish_io Specifies the offset address of the finish_io procedure associated with this unit
(the base portion is the driver code segment). Device drivers do not access
this field. For loadable drivers, this field specifies the driver type.

queue_io Specifies the offset address of the queue_io procedure associated with this unit
(the base portion is the driver code segment). Device drivers do not access
this field. For loadable drivers, this field specifies the driver type.

cancel_io Specifies the offset address of the cancel_io procedure associated with this unit
(the base portion is the driver code segment). Device drivers do not access
this field. For loadable drivers, this field specifies the driver type.

See also: Making a device driver loadable, in this manual

device_info_ptr
Pointer to a structure containing additional information about the device: the
DINFO table. Each common, random access, and terminal device driver
requires a DINFO table in a particular format.

See also: DINFO table structure

When writing a custom driver, you can place information in the DINFO table
according to the needs of the driver. Specify a 0 for this parameter if the
associated device driver does not use this field.

58 Chapter 3 DUIB and IORS: Device Driver Interfaces

unit_info_ptr
Pointer to a structure containing more information about the unit: the UINFO
table. Random access and terminal device drivers require a UINFO table in a
particular format.

See also: UINFO table structure

When writing a custom device driver, place information in this structure
according to the needs of the driver. Specify a 0 if the associated device driver
does not use this field.

update_timeout
Specifies the number of system clock ticks the I/O System must wait before
writing a partial sector after processing a write request for a disk device.
Except for disk device drivers, set to 0FFFFH. This field applies only to the
device-unit specified by this DUIB; the field is independent of updating done
either because of the value in the fixed_update field of the DUIB or the
a_update system call. Device drivers do not access this field.

num_buffers
A 0 indicates the device is not a random access device. Otherwise, the number
of buffers of dev_gran size that the I/O System allocates. The I/O System
uses the buffers for data blocking and deblocking, so that data is read or
written beginning on sector boundaries. The random access high-level device
driver procedures guarantee that no data is written or read across track
boundaries in a single request. Device drivers do not access this field.

See also: UINFO table structure for random access driver

priority Specifies the priority of the I/O System service task for the device. Device
drivers do not access this field.

fixed_update
TRUE indicates that the fixed update option was selected for the device-unit
when the driver was configured, FALSE indicates otherwise. This option
causes the I/O System to finish any write requests that had not been finished
earlier because less than a full sector remained to be written. Fixed updates
are performed throughout the entire system whenever a time interval
(specified during configuration) elapses. This is independent of the updating
indicated for a particular device by the update_timeout field of the DUIB
or the updating of a particular device indicated by the a_update system call of
the I/O System. Device drivers do not access this field.

max_buffers
Specifies the maximum number of buffers the EIOS can allocate for a
connection to this device-unit when the connection is opened by a call to
s_open. The value in this field is specified during driver configuration.
Device drivers do not access this field.

Driver Programming Concepts Chapter 3 59

duib_flags
Determines whether this is a DUIB or an Extended DUIB structure:

Bits Value Meaning
0 0 Identifies this as a DUIB structure. The DUIB size

remains unchanged and handles the size of its
device on an as-is basis.

0 1 Identifies this as an Extended DUIB structure.
With this setting, the DUIB appends a 32-bit field
called dev_size_hi to the current DUIB
structure, transforming it into an Extended DUIB
structure.

dev_size_hi
Contains the upper 32 bits of a device’s size.

Using the DUIBs

Clusters of DUIBs for all configured devices are contained in tables set up during
configuration time or by the install_duibs system call at run time.

See also: DUIB names, System Configuration and Administration
Preparing an initialization front-end, in this manual
physname command to obtain information about your system's available
DUIBs, Command Reference

To allow the I/O System to communicate with files on a device-unit, first attach the unit by
invoking the a_physical_attach_device system call. The DUIB name specified in the call
selects the DUIB for the device-unit from the DUIB table.

See also: a_physical_attach_device, System Call Reference

Whenever the application software makes an I/O request to the attached device-unit, the I/O
System determines the characteristics of that unit by examining the associated DUIB. The
I/O System looks at the DUIB and calls the appropriate device driver or device driver
support procedures listed there to process the I/O request.

If you want the I/O System to assume different characteristics at different times for a
particular device-unit, you can supply multiple DUIBs, each containing identical device
number, unit number, and device-unit number parameters, but a different DUIB name.
Before you can switch the DUIBs for a unit, you must detach the unit.

Figure 3-3 illustrates this concept. It shows six DUIBs, two for each of three units of one
device. The main difference between each pair of DUIBs in this figure is the device
granularity parameter, which is either 128 or 512. With this setup, a user can attach any unit
of this device with one of two device granularities. In Figure 3-3, units 0 and 1 are attached

60 Chapter 3 DUIB and IORS: Device Driver Interfaces

with a granularity of 128 and unit 2 with a granularity of 512. To change this, the user can
detach the device and attach it again using the other DUIB name.

DUIBS for
Device - Unit 8

DUIBS for
Device - Unit 7

DUIBS for
Device - Unit 6

NAME = UNITA1
DEV_GRAN = 512

DEVICE = 1
UNIT = 0
DEV_UNIT = 6

NAME = UNITB
DEV_GRAN = 128

DEVICE = 1
UNIT = 1
DEV_UNIT = 7

NAME = UNITB1
DEV_GRAN = 512

DEVICE = 1
UNIT = 1
DEV_UNIT = 7

NAME = UNITC
DEV_GRAN = 128

DEVICE = 1
UNIT = 2
DEV_UNIT = 8

NAME = UNITC1
DEV_GRAN = 512

DEVICE = 1
UNIT = 2
DEV_UNIT = 8

W-2765

rq_a_physical_attach_device

rq_a_physical_attach_device CALL (UNITB, . . .)

CALL (UNITA, . . .)

CALL (UNITC1, . . .)

rq_a_physical_attach_device

NAME = UNITA
DEV_GRAN = 128

DEVICE = 1
UNIT = 0
DEV_UNIT = 6

Figure 3-3. Using Multiple DUIBs for a Single Device

Driver Programming Concepts Chapter 3 61

Creating DUIBs

You create the DUIB data structures for your own device driver; get the information on
device granularity and size from the documentation supplied with the device.

See also: Making a device driver loadable, in this manual

Observe these guidelines when supplying DUIB information:

• Specify a unique name for every DUIB, even those that describe the same device-unit.

• For every device-unit in the hardware configuration, provide information for at least
one DUIB. Because the DUIB contains the addresses of the high-level device driver
procedures, this guarantees that each device-unit has a device driver to handle its I/O.

• Specify the high-level driver procedures in all of the DUIBs associated with a particular
device. There is only one set of high-level device driver procedures for a given device,
and each DUIB for that device must specify this unique set of procedures.

• If you write a common or random access device driver, supply a DINFO table for each
device. If you write a random access device driver, also supply a UINFO table for each
unit. If you are using custom device drivers and they require tables, you must supply
them, as well.

• If you write a terminal driver, supply a terminal device information table for each
terminal device driver, and a unit information table for each terminal.

See also: DINFO table structure, UINFO table structure in this manual

✏ Note
When the I/O System accesses a device containing named files, it obtains
information such as granularity, density, size, or the number of sides from
the volume label. It is not necessary to supply a different DUIB for every
kind of volume you intend to use. But, except for the PCI driver generic
SCSI DUIBs, you must supply a separate DUIB for every kind of volume
you intend to format using the format command.

62 Chapter 3 DUIB and IORS: Device Driver Interfaces

Dynamic DUIBs

If bit 5 of the DUIB flags field is set, the I/O system creates a segment of DUIB size and
copies the DUIB structure into it. It then uses this Dynamic DUIB when accessing the
device using this DUIB name. Since this Dynamic DUIB is a writable segment, the driver
can update this DUIB at attachdevice time and make its various fields match the actual
charactistics of the device being accessed. For instance, the driver can query a SCSI drive
for its actual size and then update the DUIB dev_size and dev_size_hi fields
accordingly.

IORS Data Structure Definition
An IORS is the second structure that forms an interface between a device driver and the I/O
System. The I/O System creates an IORS when an application task requests an I/O
operation. The IORS contains information about the request and about the unit on which the
operation is to be performed. The I/O System passes the IORS to the queue_io procedure,
which then processes the request or puts it in a queue for processing. After performing the
requested operation, the device driver must modify the IORS to indicate what it has done
and send the IORS back to the response mailbox indicated in the IORS.

When you write a custom driver, the high-level driver procedures you write (init_io,
finish_io, queue_io, and cancel_io) must be aware of the IORS structure. When you write
a common or random access driver, the device-specific procedures you write must also be
aware of the IORS structure, because the high-level driver procedures supplied by the I/O
System pass the IORS on for further processing.

When you write a terminal driver, your device-specific procedures do not need to be aware
of the IORS. The TSC transforms the information received from the IORS into different
structures which pass to your device-specific procedures.

See also: TSC Data Structures in this manual

The IORS is structured in PL/M or C as:

Driver Programming Concepts Chapter 3 63

DECLARE IORS STRUCTURE(

status WORD_16,

unit_status WORD_16,

actual WORD_32,

device WORD_16,

unit BYTE,

funct BYTE,

subfunct WORD_16,

dev_loc WORD_32,

buff_ptr POINTER,

count WORD_32,

aux_ptr POINTER,

link_for POINTER,

link_back POINTER,

resp_mbox SELECTOR,

done BYTE,

iors_flags BYTE,

cancel_id SELECTOR,

conn_t SELECTOR,

dev_loc_hi WORD_32,

actual_hi WORD_32,

count_hi WORD_32)

or

64 Chapter 3 DUIB and IORS: Device Driver Interfaces

typedef struct {

UINT_16 status;

UINT_16 unit_status;

UINT_32 actual;

UINT_16 device;

UINT_8 unit;

UINT_8 funct;

UINT_16 subfunct;

UINT_32 dev_loc;

void far * buff_ptr;

UINT_32 count;

AUX_STRUCT far * aux_ptr;

UINT_8 far * link_for;

UINT_8 far * link_back;

SELECTOR resp_mbox;

UINT_8 done;

UINT_8 iors_flags;

SELECTOR cancel_id;

SELECTOR conn_t;

UINT_32 dev_loc_hi;

UINT_32 actual_hi;

UINT_32 count_hi;

} A_IORS_DATA_STRUCT;

Where:

status The condition code for the I/O operation, placed here by the device driver.
The E_OK condition code indicates successful completion of the operation.

See also: Condition codes, System Call Reference

Driver Programming Concepts Chapter 3 65

unit_status
Additional status information provided by the device driver if the status
field indicates an E_IO condition:

Value Mnemonic Description
0 IO_UNCLASS Unclassified error
1 IO_SOFT Soft error; a retry is possible
2 IO_HARD Hard error; a retry is impossible
3 IO_OPRINT Operator intervention is required;

the device is off-line
4 IO_WRPROT Write-protected volume
5 IO_NO_DATA No data on the next tape record
6 IO_MODE A read/write was attempted before

the previous write/read completed.
7 IO_NOSPARES Number of bad tracks/sectors

exceeds the number of alternates.
8 IO_ALT_ASSIGNED An alternate track or sector was

assigned to replace a defective one.

The I/O System reserves bits 3-0 of this field for unit status codes. Bits 15-4
of this field can be used for any other purpose.

actual After completing an I/O operation, the device driver must update this value to
indicate the number of data bytes actually transferred.

device The device number, placed here by the I/O System, identifying the device for
which this request is intended.

unit The unit number, placed here by the I/O System, for which this request is
intended.

funct The function code, placed here by the I/O System, for the operation to be
performed:

Value Function
0 f_read
1 f_write
2 f_seek
3 f_special
4 f_attach_dev
5 f_detach_dev
6 f_open
7 f_close

See also: Handling I/O Requests, in this manual, for function
definitions

66 Chapter 3 DUIB and IORS: Device Driver Interfaces

subfunct The sub-function code of the operation, placed here by the I/O System when
the f_special function code appears in the funct field. The value in this
field depends on the file driver being used with this device:

File Driver Value Sub-function
Physical 0 Format track

Stream 0 Query

Stream 1 Satisfy

Physical or Named 2 Notify

Physical 3 Get disk/tape data

Physical 4 Get terminal data

Physical 5 Set terminal data

Physical 6 Set signal

Physical 7 Reset (rewind tape/reset disk)

Physical 8 Read tape file mark

Physical 9 Write tape file mark

Physical 10 Retension tape

11 Reserved

Physical 12 Set bad track information

Physical 13 Get bad track information

14-15 Reserved

Physical 16 Get Terminal Status

Physical 17 Cancel Terminal I/O

Physical 18 Resume Terminal I/O

Physical or Named 19 Perform disk mirroring

Named, DOS, EDOS 20 Get device free space

21-32767 Reserved

Physical 32768-
65535

Available for user-
written/custom device drivers

dev_loc If this is an IORS structure, this field specifies the absolute byte location on
the device where the operation is to be performed, initially placed here by the
I/O System. If this is an extended DUIB structure, this field holds the lower
32 bits of a device’s target location.

For more information about IORS and Extended IORS structures, see the
iors_flags_id field description on page 67.

Driver Programming Concepts Chapter 3 67

For a write operation, this is the address on the device where writing begins.
The I/O System fills out this information when it passes the IORS to the driver
or the driver procedures.

For a random access driver, the high-level device driver procedures modify
this field before passing the IORS on to driver procedures. The value placed
in dev_loc by these procedures depends upon the track_size field in the
unit's UINFO table:

Value Meaning
0 Divide dev_loc by the device granularity (the absolute

sector number)
not 0 Divide the absolute byte number in dev_loc by track_size

(the track and sector numbers)

buff_ptr A pointer, set by the I/O System, to the buffer where data is read from or
written to.

count Number of bytes, set by the I/O System, to transfer in the operation.

aux_ptr A pointer, set by the I/O System, to the location of auxiliary data. The I/O
System uses aux_ptr to send or receive the additional data as required by the
sub_funct field.

See also: BIOS call a_special, System Call Reference, for
definitions of the data structures that aux_ptr can
reference for particular subfunctions

link_for Pointer to the next IORS in the request queue.

link_back Pointer to the previous IORS in the request queue.

resp_mbox A token, placed here by the I/O System, for the response mailbox. On
completion of the I/O request, the device driver or high-level device driver
procedures must send the IORS to this response mailbox or exchange.

done TRUE indicates that the entire request has been completed; FALSE indicates
otherwise.

iors_flags Value indicates the type of IORS as follows:

Bits Value Meaning
0 0 Identifies this as an IORS structure. The IORS

size remains unchanged and handles the size of the
I/O requests to the device on an as-is basis.

68 Chapter 3 DUIB and IORS: Device Driver Interfaces

0 1 Identifies this as an Extended IORS structure.
With this setting, the IORS appends the following
32-bit fields after the conn_t token, transforming
the IORS into an Extended IORS structure:
dev_loc_hi
actual_hi
count_hi

conn_t A token, placed here by the I/O System, to identify queued I/O requests the
cancel_io procedure can remove from the queue. For I/O operations that
require multiple requests (and therefore multiple IORSs), the I/O System uses
the same cancel_id value in all IORSs for that operation. This allows the
cancel_io procedure to remove all IORSs for a given operation.

dev_loc_hi
Contains the upper 32 bits of a device’s target location in absolute bytes on the
disk.

actual_hi
Reserved.

count_hi
Reserved.

DUIB and IORS Fields Used by Device Drivers
These lists indicate, for common, random access, and custom drivers, the DUIB and IORS
fields needed for device-specific procedures. Write only to those fields listed as written by
the driver.

Common
DUIB Fields

Attach
Device

Detach
Device Open Close Read Write Seek Special

Name
File_drivers
Functs
Flags m m m m m m m m
Dev_gran m m m m m m m m
Dev_size m m m m m m m m
Device
Unit m m m m m m m m
Dev_unit
Init_io
Finish_io
Queue_io
Cancel_io
Device_info_ptr m m m m m m m m
Unit_info_ptr m m m m m m m m
Update_timeout
Num_buffers
Priority

Driver Programming Concepts Chapter 3 69

Fixed_update
Max_buffers

Common
IORS

Attach
Device

Detach
Device Open Close Read Write Seek Special

Status w w w w w w w w
Unit_status w w w w w w w w
Actual w w
Device
Unit m m m m m m m
Funct r r r r r r r r
Subfunct r
Dev_loc m m m
Buff_ptr r r
Count r r
Aux_ptr m
Link_for
Link_back
Resp_mbox
Done w w w w w w w w
Fill m m m m m m m m
Cancel_id
Conn_t

r: read by the device driver w: written by the device driver
m: might be read by the device driver

Random Access
DUIB Fields

Attach
Device

Detach
Device Open Close Read Write Seek Special

Name
File_drivers
Functs
Flags m m m m m m m m
Dev_gran m m m m m m m m
Dev_size m m m m m m m m
Device
Unit m m m m m m m
Dev_unit
Init_io
Finish_io
Queue_io
Cancel_io
Device_info_ptr m m m m m m m m
Unit_info_ptr m m m m m m m m
Update_timeout
Num_buffers
Priority
Fixed_update
Max_buffers

70 Chapter 3 DUIB and IORS: Device Driver Interfaces

Random
Access IORS

Attach
Device

Detach
Device Open Close Read Write Seek Special

Status w w w w w w w w
Unit_status w w w w w w w w
Actual w w
Device
Unit m m m m m m m
Funct r r r r r r r r
Subfunct r
Dev_loc r r r r
Buff_ptr r r r
Count r r m
Aux_ptr m
Link_for
Link_back
Resp_mbox
Done w w w w w w w w
Fill m m m m m m m m
Cancel_id
Conn_t

r: read by the device driver w: written by the device driver
m: might be read by the device driver

Driver Programming Concepts Chapter 3 71

Custom
DUIB Fields

Attach
Device

Detach
Device Open Close Read Write Seek Special

Name
File_drivers
Functs
Flags m m m m m m m m
Dev_gran m m m m m m m m
Dev_size m m m m m m m m
Device
Unit m m m m m m m
Dev_unit
Init_io
Finish_io
Queue_io
Cancel_io
Device_info_ptr m m m m m m m m
Unit_info_ptr m m m m m m m m
Update_timeout
Num_buffers
Priority
Fixed_update
Max_buffers

Custom
IORS Fields

Attach
Device

Detach
Device Open Close Read Write Seek Special

Status w w w w w w w w
Unit_status w w w w w w w w
Actual
Device
Unit m m m m m m m
Funct r r r r r r r r
Subfunct m
Dev_loc m m m
Buff_ptr r r m
Count r r
Aux_ptr m
Link_for a a a a a a a a
Link_back a a a a a a a a
Resp_mbox r r r r r r r r
Done a a a a a a a a
Fill m m m m m m m m
Cancel_id m
Conn_t

r: read by the device driver w: written by the device driver
m: might be read by the device driver a: available for any purpose

72 Chapter 3 DUIB and IORS: Device Driver Interfaces

Interface Between a Driver and the Device
To carry out I/O requests, one or more of the device-specific procedures in every device
driver must send commands to the device itself. The steps vary depending on the type of
device. Some devices are controlled by on-board firmware; the driver communicates by
sending firmware commands and receiving status. Others may require different methods.
The I/O System places no restrictions on the method; use the method that the device
requires.

W-3203

BIOS Device
Driver

Interface
between the
device
driver and
the device
unit

The routines in this interface must vary depending on the
device itself. Use whatever method the device requires.

Device
unit

Interface
between the
device
driver and
the I/O
System

Figure 3-4. Device Driver to Device Interface

DMA Device Considerations
The OS and most devices expect logical addresses of this form:

selector:offset

On the other hand, DMA controllers expect absolute physical addresses. For example,
writing information to a DMA device usually involves giving the controller the address of
the data buffer that holds the information. The controller expects the 32-bit physical address
of the buffer. To the device driver (or any other program that fills the buffer), the buffer is
known by its logical address. Therefore, the driver must convert the buffer's logical address
to a physical address before passing the address to the device controller.

Driver Programming Concepts Chapter 3 73

The iRMX OS provides two ways of converting a logical address into a physical address.
The Nucleus provides one method with the system call rqe_get_address. The BIOS
provides a similar but faster method for use by device drivers.

The BIOS method uses a procedure called bios_get_address that converts logical addresses
to physical addresses. For iRMX for PCs and DOSRMX applications, this procedure is
located in the file /rmx386/lib/ldd.lib, for ICU-configurable systems in
/rmx386/ios/xcmdrv.lib. Link your driver code to this library and call the bios_get_address
procedure. Because this conversion program is a procedure, not a system call, it runs in the
calling program's environment without invoking other BIOS routines.

Call Syntax

physical = bios_get_address (logical, except_ptr);

Where:

physical The 32-bit physical address desired.

logical A pointer specifying the logical address to be converted. The pointer must be
in the form selector:offset.

except_ptr
Pointer to a location where a condition code returns:

Value Mnemonic Description

0000H E_OK No exceptional conditions
occurred.

800FH E_BAD_ADDR The logical address is invalid.
Either the selector does not
point to a valid segment, or the
offset is outside the segment
boundaries.

74 Chapter 3 DUIB and IORS: Device Driver Interfaces

This example illustrates how a PL/M program declares and invokes bios_get_address:

$INCLUDE(:rmx:inc/rmxplm.ext) /* Declares all system

calls */

DECLARE phys_addr WORD_32;

DECLARE buff_ptr POINTER;

DECLARE status_ptr POINTER;

BIOSGETADDRESS: PROCEDURE(log_addr, except_ptr)

WORD_32 EXTERNAL;

DECLARE (log_addr, except_ptr) POINTER

END BIOSGETADDRESS;

SAMPLE_PROCEDURE:

PROCEDURE;

•
• Typical PL/M Statements

•

phys_addr = BIOSGETADDRESS(buff_ptr, status_ptr);

•
• Typical PL/M Statements

•

END SAMPLE_PROCEDURE;

Converting from physical addresses to logical addresses is also necessary if you need to
have access to the information returned by a device controller. The Nucleus provides the
rqe_create_descriptor system call that sets up an entry in the descriptor table for any
segment whose physical address and size you specify. By setting up a descriptor, you allow
programs to access that memory with logical addresses.

■■ ■■ ■■

Driver Programming Concepts Chapter 4 75

Writing Custom Device Drivers 4
A custom device driver is one that you create in its entirety because your device
doesn't fit into the common, random access, or terminal device category. You may
need a custom driver because your device:

• Requires a priority-based queue

• Requires multiple interrupt levels

• Has other requirements you have determined

What You Must Provide
When you write a custom device driver, you must provide all of the features of the
driver, including creating and deleting resources, implementing a request queue, and
creating an interrupt handler. You can provide the features however you choose as
long as you supply these four high-level device driver procedures for the I/O System
to call:

• init_io

• finish_io

• queue_io

• cancel_io

For the I/O System to communicate with your driver procedures, you must place the
addresses of these four procedures in the DUIBs that correspond to the units of the
device.

The rest of this chapter describes the format of each of these four procedures. Your
own procedures must conform to these formats.

76 Chapter 4 Writing Custom Device Drivers

Init_io Procedure
The I/O System calls the init_io procedure when an application task makes an
a_physical_attach_device system call and no units of the device are currently
attached.

The init_io procedure must do any initial processing necessary for the device or the
driver. If the device requires an interrupt_task, region, or device data area, the
procedure should create them.

Call Syntax
init_io (duib_ptr, ddata_ptr, status_ptr);

Where:

init_io The name of the procedure. Use any name as long as it does not
conflict with other procedure names. Include its name in the DUIBs of
all device-units that it serves.

duib_ptr Pointer to the DUIB of the device-unit for which the request is intended.
This is an input parameter supplied by the I/O System. The init_io
procedure uses this DUIB to determine the characteristics of the unit.

ddata_ptr Pointer to a token for a data storage area, if the device driver needs such
an area. If the device driver requires a data area to contain the head of
the I/O queue, DUIB addresses, or status information, the init_io
procedure should create this area and save its segment token using this
pointer. If the driver does not need a data area, the procedure should
return a null selector in this token.

status_ptr
Pointer to a location where the init_io procedure must place the status
of the initialize operation. If the operation is completed successfully,
the procedure must return the E_OK condition code. Otherwise, it
should return the appropriate condition code, and must delete any
resources it has created.

Driver Programming Concepts Chapter 4 77

Finish_io Procedure
The I/O System calls the finish_io procedure after an application task makes an
a_physical_detach_device system call to detach the last unit of a device.

The finish_io procedure does any necessary final processing on the device. It must
delete all resources created by other procedures in the device driver and must perform
final processing on the device itself, if the device requires such processing.

Call Syntax
finish_io (duib_ptr, ddata_t);

Where:

finish_io The name of the procedure. Specify any name as long as it does not
conflict with other procedure names. Include its name in the DUIBs of
all device-units that it serves.

duib_ptr Pointer to the DUIB of the device-unit of the device being detached.
This is an input parameter supplied by the I/O System. The finish_io
procedure needs this DUIB to determine the device on which to
perform the final processing.

ddata_t Token for the data storage area originally created by the init_io
procedure (or a null selector, if none was created). This is an input
parameter supplied by the I/O System. The finish_io procedure must
delete this resource and any others created by driver procedures.

78 Chapter 4 Writing Custom Device Drivers

Queue_io Procedure
The I/O System calls the queue_io procedure to place an I/O request on a queue, so
that it can be processed when the device is not busy. The procedure must actually
start processing the next I/O request on the queue if the device is not busy.

Call Syntax
queue_io (iors_t, duib_ptr, ddata_t);

Where:

queue_io The name of the procedure. Use any name for this procedure as long as
it does not conflict with other procedure names. Include its name in the
DUIBs of all device-units that it serves.

iors_t Token for an IORS. This is an input parameter supplied by the I/O
System. The IORS describes the request and contains fields that the
device driver must fill in to indicate the success of the operation. When
the request is processed, the driver must send the IORS to the response
mailbox indicated in the IORS.

duib_ptr Pointer to the DUIB of the device-unit for which the request is intended.
This is an input parameter supplied by the I/O System.

ddata_t Token for the data storage area originally created by the init_io
procedure (or a null selector, if none was created). This is an input
parameter supplied by the I/O System. The queue_io procedure can
place any necessary information in this area to update the request queue
or status fields.

Driver Programming Concepts Chapter 4 79

Cancel_io Procedure
The I/O System calls the cancel_io procedure to cancel one or more previously
queued I/O requests under any of these conditions:

• If the user invokes an a_physical_detach_device system call with a hard detach
option. This system call forcibly detaches all device connections associated with
a device-unit.

• If the job containing the task which made an I/O request is deleted. The I/O
System calls the cancel_io procedure to remove any requests that tasks in the
deleted job might have made.

• If the user deletes a connection to a device. The I/O System calls cancel_io to
remove any I/O requests pending for the device.

If the device cannot guarantee to finish a request in a fixed amount of time (such as
waiting for terminal input), the cancel_io procedure must stop the device from
processing the current request. If the device guarantees to finish requests in an
acceptable amount of time, the cancel_io procedure just has to remove requests from
the queue.

Call Syntax
cancel_io (cancel_id, duib_ptr, ddata_t);

Where:

cancel_io The name of the procedure. Use any name as long as it doesn't conflict
with other procedure names. Include its name in the DUIBs of all
device-units that it serves.

cancel_id The ID value for the I/O requests to be canceled. This is an input
parameter supplied by the I/O System. Any pending requests with this
ID in the cancel_id field of their IORSs must be removed from the
queue of requests by the procedure. The I/O System places a CLOSE
request with the same cancel_id value in the queue. The CLOSE
request must not be processed until all other requests with that value
have been removed from the queue.

duib_ptr Pointer to the DUIB of the device-unit for which the request
cancellation is intended. This is an input parameter supplied by the I/O
System.

ddata_t Token for the data storage area originally created by the init_io
procedure (or a null selector, if none was created). This is an input
parameter supplied by the I/O System. This data storage area may
contain the request queue.

80 Chapter 4 Writing Custom Device Drivers

Implementing a Request Queue
Making I/O requests using system calls and the actual processing of these requests by
I/O devices are asynchronous activities. When a device is processing one request,
many more can be accumulating. Unless the device driver has a mechanism for
placing I/O requests on a queue of some sort, these requests will be lost. For
common and random access devices, the high-level queue_io procedure forms this
queue by creating a doubly-linked list. The list is used by the queue_io and cancel_io
procedures, as well as by the interrupt_task.

Using this mechanism of the doubly-linked list, the common and random access
driver procedure implements a FIFO queue for I/O requests. For a custom device
driver, you can use the link_for and link_back fields that are provided in the
IORS and implement a scheme similar to this for queuing I/O requests.

1a. The device driver procedure that actually sends data to the controller accesses
the first IORS on the queue.

b. The link_for field in this IORS points to the next IORS on the queue, and so
forth.

c. The last IORS on the queue, the link_for field points back to the first IORS on
the queue.

The link_back fields operate in the same manner.

2a. The link_back field of the last IORS on the queue points to the previous IORS,
and so forth.

b. The link_back field in this IORS points to the previous IORS on the queue,
and so forth.

c. In the first IORS on the queue, the link_back field points to the last IORS in
the queue.

The device driver can add or remove requests from the queue by adjusting the
link_for and link_back pointers in the IORSs.

This kind of queue is illustrated in Figure 4-1.

Driver Programming Concepts Chapter 4 81

Pointer
to head
of queue First IORS

on queue

link_for

link_back

Second IORS
on queue

Third IORS
on queue

Last IORS
on queue

W-2773

link_for

link_back

link_for

link_back

link_for

link_back

Figure 4-1. Request Queue

To handle the dual problems of locating the queue and learning whether the queue is
empty, use a variable such as queue_head. If the queue is empty, queue_head
contains a null selector. Otherwise, queue_head contains the token for the first
IORS in the queue.

■■ ■■ ■■

82 Chapter 4 Writing Custom Device Drivers

Driver Programming Concepts Chapter 5 83

Writing Common or Random
Access Device Drivers

This chapter describes how to write device drivers for common and random access
devices, referring to both as random access type drivers. The chapter:

• Lists the high-level device driver procedures the I/O System supplies, describes
the conditions under which they are called, and describes the tasks the I/O
System supplies.

• Describes the data structures that must exist.

• Describes the device-specific procedures you must supply for random access
drivers.

• Describes the five utility procedures the I/O System supplies and describes the
conditions under which they are called.

Throughout this chapter, the differences are noted between message-based and
interrupt-driven data structures and parameter descriptions. Message-based devices
use message passing; device drivers must treat them as buffered devices. Buffered
devices are those that manage their own data buffers. Interrupt-driven devices use
I/O system-provided buffers.

5

84 Chapter 5 Writing Common or Random Access Device Drivers

I/O System-supplied Procedures and Tasks
The I/O System supplies high-level device driver procedures, which process I/O
requests:

• init_io

• finish_io

• queue_io

• cancel_io

See also: Appendix A and Appendix B, for procedure descriptions

These procedures distinguish between common or random access devices based on
the num_buffers field in the DUIB.

Value Meaning
not 0 The device is a random access device.
0 The device is a common device.

You must write these device-specific procedures for the high-level device driver
procedures to call: device_init, device_finish, device_start, device_stop, and
device_interrupt.

When the I/O System Calls Driver Procedures
The I/O System calls the four high-level device driver procedures in response to
specific conditions, as shown in Figure 5-1.

1. The first I/O request to each device-unit must be an a_physical_attach_device
system call. After that, the application task makes an I/O request by invoking
one of a variety of system calls.

2. If the device is not already attached, the I/O System calls the init_io procedure.

3. The I/O System calls the queue_io procedure to queue the request for execution.

4. If the request resulted from an a_physical_detach_device system call, the I/O
System checks to see if other units of the device are currently attached. If not,
the I/O System calls the finish_io procedure.

The I/O System calls the cancel_io procedure when:

• The user makes an a_physical_detach_device system call specifying the hard
detach option, to forcibly detach connection objects associated with a device-
unit.

• The job containing the task that made a request is deleted.

See also: a_physical_detach_device, System Call Reference

Driver Programming Concepts Chapter 5 85

Yes

No

No

Yes

1

3

4

Yes

Return

Yes

2

The user makes an I/O Request
via a system call.

W-2768

Does this
request result from an

system call?
rq_a_physical_attach_device

rq_a_physical_attach_device

Are
any units of the
device currently

attached?

Does this
request result from an

system call?

No

No

The I/O System calls the Initialize I/O
procedure to initialize the device.

The I/O System calls the Queue I/O
procedure to place the request on
the queue.

Are
any other units of

the device currently
attached?

The I/O System calls the Finish I/O
Procedure to clean up the Device
and Delete Objects.

Figure 5-1. When the I/O System Calls the Device Driver Procedures

Interrupt Task
The I/O System also supplies an interrupt handler and an interrupt_task for interrupt-
driven devices. The handler and task respond to all device interrupts, process them,
and start the device working on the next I/O request in the queue. The init_io
procedure creates the interrupt_task.

After processing a request, a device sends an interrupt to the processor. The
processor then calls the interrupt handler. This handler invokes the signal_interrupt
system call to tell a waiting interrupt_task to process the interrupt. The handler
doesn't process the interrupt itself because it is limited in the types of system calls it
can make and the number of interrupts that can be enabled while it is processing.

86 Chapter 5 Writing Common or Random Access Device Drivers

The interrupt_task returns the results of the interrupt back to the I/O System: results
are either data from a read operation or status from other types of operations. The
interrupt_task then gets the next I/O request from the queue and starts the device
processing. This cycle continues until the device is detached.

Figure 5-2 shows the interaction between an interrupt_task, an I/O device, an I/O
request queue, and the queue_io procedure.

I/O request queue

queue_io procedure

Put request on queue

Interrupt

Device

I/O request

I/O request

I/O request

Get request

1

Start device4

3

interrupt_task

W-2766

interrupt
Service2

The interrupt_task in this figure is in a continual cycle of:

1. Waiting for an interrupt

2. Processing it

3. Getting the next I/O request

4. Starting up the device again

While this is going on, the queue_io procedure runs in parallel, putting more I/O requests in the
queue.

Figure 5-2. Interrupt Task Interaction

Driver Programming Concepts Chapter 5 87

Message Task
The I/O System supplies a message_task for message-based devices. The task
responds to all device messages, processes them, and starts the device working on the
I/O requests in the queue.

Figure 5-3 shows the interaction between a message_task, an I/O device, an I/O
request queue, the queue_io procedure, and driver-specific procedures. The
message_task running on the CPU board is in a continual cycle of waiting for a
message, processing it, then checking the next request on the I/O request queue. If
the request has not been started, the message_task starts the device processing the
request. If the request is marked DONE, the task removes it from the queue. While
the task goes through this cycle, the queue_io procedure runs in parallel, putting more
I/O requests in the queue.

88 Chapter 5 Writing Common or Random Access Device Drivers

I/O request

I/O request

I/O request

5

67

4

2

3

1

Device

W-2767

User-provided
code

Device_start

Controller
board

Device_interrupt

Basic I/O System
request queue

init_io

queue_io

Message task

1. An I/O request comes in to the queue_io procedure.

2. The queue_io procedure places the request on the I/O request queue.

3. The queue_io procedure calls the user-supplied device start procedure.

4. The device start procedure sends a message to the controller board.

5. After processing this device driver request, the controller board sends a message to the
message task.

6. The message task calls the user-supplied device interrupt procedure that tracks which
IORS corresponds to each transaction ID. It also marks the I/O request as DONE, when
the I/O request is complete. If the I/O request is complete, the message task returns the
IORS to the user who originated the request.

7. The message task calls the device start procedure to start the next available unstarted
request on the I/O request queue. The message task waits for a message from the
controller.

Figure 5-3. Message Task Interaction

Data Structures Supporting Random Access I/O
The principal data structures supporting common and random access drivers are the
DUIB, DINFO table, and UINFO table (random access drivers only).

When you write your own device-specific procedures, the supplied high-level device
driver procedures must be able to call them. For this to happen, you must supply the
addresses of your device-specific procedures, as well as other information, in a

Driver Programming Concepts Chapter 5 89

DINFO table. OS-supplied device drivers also use DINFO tables to supply
information about their device-specific procedures.

In addition, random access drivers require UINFO tables to process I/O requests for
devices with multiple units (such as a disk controller with multiple drives) where the
units have different characteristics.

In setting up DUIBs, those DUIBs that correspond to units of the same device should
point to the same DINFO table. But they should point to different UINFO tables if
the units have different characteristics. Figure 5-4 illustrates this.

DINFO and UINFO tables are defined for common and random access drivers in this
section. Data structures are shown for PL/M and C.

See also: DINFO Table Structure for Terminal Driver in this manual

DUIB1

UNIT_INFO_2 DUIB3

DEV_INFO_2

UNIT_INFO_1

DUIB2

Device = 1
Unit = 0

Device
1

Unit
0

Unit
1

Device = 1
Unit = 1

Device = 2
Unit = 0

W-2769

=

=

Unit
0

Device
2

UNIT_INFO_2

DEV_INFO_1

UNIT_INFO_2

DEV_INFO_1UNIT_INFO_1
DEV_INFO_1

DEV_INFO_2

Figure 5-4. DUIBs, DINFO, and UINFO Tables

90 Chapter 5 Writing Common or Random Access Device Drivers

DINFO Table Structure for Random Access Driver
The data structures shown here are set up for random access drivers. You may
append additional device-specific fields as your driver requires. The DINFO table is
defined as:

DECLARE RAD_DINFO STRUCTURE(

level WORD_16,

priority BYTE,

stack_size WORD_32,

data_size WORD_32,

num_units WORD_16,

device_init WORD_32,

device_finish WORD_32,

device_start WORD_32,

device_stop WORD_32,

device_interrupt WORD_32,

timed_out WORD_16,

reserved_a WORD_16,

reserved_b WORD_16,

/* Remaining fields apply to Message-based

random access driver only */

queue_size WORD_16,

instance BYTE,

board_id (10) BYTE)

or

Driver Programming Concepts Chapter 5 91

typedef struct {

UINT_16 level;

UINT_8 priority;

UINT_32 stack_size;

UINT_32 data_size;

UINT_16 num_units;

UINT_32 device_init;

UINT_32 device_finish;

UINT_32 device_start;

UINT_32 device_stop;

UINT_32 device_interrupt;

UINT_16 timed_out;

UINT_16 reserved_a;

UINT_16 reserved_b;

/* Remaining fields apply to Message-based

random access driver only */

UINT_16 queue_size;

UINT_8 instance;

UINT_8 board_id [14];

} RAD_DINFO_STRUCT

Where:

level For interrupt-driven devices, this field specifies an encoded interrupt
level at which the device will interrupt. The interrupt_task uses this
value to associate itself with the correct interrupt level. The values for
this field are encoded:

Bits Value Meaning

15 0 The driver procedures don't use the fields timed_out,
reserved_a, and reserved_b, even if present.

1 This is an extended DINFO structure: the
procedures use the fields timed_out, reserved_a, and
reserved_b.

14-7 0 Reserved

6-4 0-7 First digit of the interrupt level.

3 0

1

This is a slave level and bits 2-0 specify the second
digit.
This is a master level and bits 6-4 specify the entire
level number.

2-0 0-7 Second digit of the interrupt level, if bit 3 is 0.

For message-based devices, this field specifies the device as:

92 Chapter 5 Writing Common or Random Access Device Drivers

Bits Meaning
15 0
14 Set to 1 to indicate a message-based device.
13-8 0
7-0 Specifies the type of message interface. Currently only 0 is

supported.

priority For interrupt-driven controllers, the initial priority of the interrupt_task.
The actual priority of an interrupt_task might change because the
Nucleus adjusts an interrupt_task's priority according to the interrupt
level it services.

See also: Interrupt task priorities, interrupt levels, System
Concepts

For message-based controllers, this value specifies the fixed priority of
the task receiving messages from the controller.

stack_size
The size, in bytes, of the stack for the device_interrupt procedure and
procedures that it calls. This number should not include stack
requirements for the supplied high-level device driver procedures.
They add their own requirements to this figure.

data_size The size, in bytes, of the user portion of the device's data storage area.
This figure should not include the amount needed by the supplied high-
level device driver procedures; it should include only that amount
needed by the device-specific procedures.

num_units Number of units supported by the driver. Units are assumed to be
numbered consecutively, starting with 0.

device_init
The offset address of this procedure which init_io calls. The format of
this procedure is described later in this chapter.

device_finish
The offset address of this procedure which finish_io calls. The format
of this procedure is described later in this chapter.

device_start
The offset address of this procedure which the queue_io procedure and
interrupt_task/message_task calls. The format of this procedure is
described later in this chapter.

Driver Programming Concepts Chapter 5 93

device_stop
For interrupt-driven devices, the offset address of this procedure which
cancel_io calls. The format of this procedure is described later in this
chapter.

For message-based devices, cancel_io does not call this procedure.

device_interrupt
The offset address of this procedure which interrupt_task/message_task
calls. The format of this procedure is described later in this chapter.

timed_out For interrupt-driven devices, the timeout value for the timed_interrupt
system call. This value represents the number of system clock ticks the
call waits without receiving an interrupt before it returns with an error.
If level bit 15 is set to 0, the default value for timed_out will be
0FFFFH, which means the task will wait forever.

For message-based devices, this value specifies the number of Nucleus
clock intervals the message_task should wait for a message from the
controller. If the message_task times out without having received a
message and I/O requests are pending, the message_task tries to receive
the message again. If this attempt succeeds, the previous timeout is
ignored. If it fails, all pending requests are flushed from the queue with
an E_TIME condition code. The time the device driver procedures may
take to return an IORS with this status may vary from the timeout you
specify to (timeout * 2). For the message_task to wait forever, specify
0FFFFH.

reserved_a, reserved_b
Reserved.

These fields apply only to message-based drivers.

queue_size
The maximum number of controller messages the Nucleus
Communications Service will queue at the port from which the
message_task receives these messages. Adding 1 increases this port's
memory requirements by 5 bytes.

instance Specifies a particular board in a system containing multiple occurrences
of this board name. Boards having the same name are assumed to have
instance IDs allocated in contiguous order, starting from ID 1 for the
occurrence of the board with the lowest slot id.

board_id The 10-character board name stored in registers 2-11 of the header
record in this board's interconnect space.

94 Chapter 5 Writing Common or Random Access Device Drivers

UINFO Table Structure for Random Access Driver
Each random access device-unit's DUIB must point to one UINFO table, although
multiple DUIBs can point to the same UINFO table. The UINFO table must include
all information that is unit specific. The required fields for the UINFO table data
structure are for PL/M or C:

DECLARE RAD_UINFO STRUCTURE (

track_size WORD_16,

max_retry WORD_16,

cylinder_size WORD_16)

or

typedef struct {

UINT_16 track_size;

UINT_16 max_retry;

UINT_16 cylinder_size;

} RAD_UINFO_STRUCT

Where:

track_size Specifies the size, in bytes, of a single track of a volume on
the unit.

Value Meaning
0 The driver is a random access driver and the device

controller supports reading and writing across track
boundaries. In this case, the supplied high-level device
driver procedures place an absolute sector number in the
dev_loc field of the IORS.

not 0 The supplied high-level device driver procedures
guarantee that read and write requests do not cross track
boundaries by placing the sector and track numbers in the
dev_loc field before calling the device_start procedure.

For message-based devices, set to 0.

Driver Programming Concepts Chapter 5 95

max_retry For interrupt-driven devices, the maximum number of times an I/O
request should be tried if an error occurs. Nine is the recommended
value for this field. When this field contains a nonzero value, the
supplied high-level device driver procedures guarantee that read or
write requests are retried if the device_start or device_interrupt
procedures return an IO_SOFT condition code in the IORS
unit_status field.

For message-based devices, this field is ignored.

cylinder_size
For interrupt-driven devices:

Value Meaning
0 The supplied high-level device driver procedures never split

a read or write into a seek/read or a seek/write. Instead,
either they expect the device driver to request seek
operations whenever a read/write begins on a cylinder
different from the one associated with the current position of
the read/write head (), or it expects the controller to perform
these seeks automatically ().

1 The I/O System automatically requests a seek operation to
seek to the correct cylinder before performing any read or
write. The device driver for the unit must call the
seek_complete procedure immediately following each seek
operation.

Other Specifies the number of sectors in a cylinder on the unit.
The I/O System uses this information to determine when it
should request seek operations. It automatically requests a
seek operation whenever a requested read or write operation
begins in a different cylinder than that associated with the
current position of the read/write head. The device driver
for the unit must call the seek_complete procedure
immediately following each seek operation.

For message-based devices, this field is ignored.

96 Chapter 5 Writing Common or Random Access Device Drivers

Device Data Storage Area
The common and random access device drivers are set up so that all data that is local
to a device is maintained in an area of memory. The init_io procedure creates this
device data storage area, and the other driver procedures access and update
information in it as needed. Storing the device data in a central area serves two
purposes.

First, all device driver procedures that service individual units of the device can
access and update the same data. The init_io procedure passes the address of the area
back to the I/O System, which in turn gives the address to the other driver
procedures. They can then place information relevant to the whole device into the
area. The identity of the first IORS on the request queue is maintained in this area, as
well as the attachment status of the individual units and a means of accessing the
interrupt/message task.

Second, several devices of the same type can share the same device driver code and
still maintain separate device data areas. The same init_io procedure is called for
each. Each time init_io is called, it obtains memory for the device data, from
different memory areas; only the procedures that service units of a particular device
are able to access the memory area for that device.

Driver Programming Concepts Chapter 5 97

Procedures Random Access Drivers Must Supply
You must supply these device-specific procedures:

• device_init, called by init_io

• device_finish, called by finish_io

• device_start, called by queue_io and interrupt_task/message_task

• device_stop, called by cancel_io (interrupt-driven devices only)

• device_interrupt, called by interrupt_task/message_task

Figure 5-5 illustrates these device-specific procedures and the high-level device
driver procedures supplied by the I/O System.

Creates

Initializes
Interrupt

Task

Device

I/O
system

W-2770

init_io device_init

interrupt_
handler interrupt_task device_interrupt

queue_io device_start

cancel_io

finish_io

device_stop

device_finish

Unit

Unit

Unit

Unit

Figure 5-5. Relationships between Random Access Driver Procedures

98 Chapter 5 Writing Common or Random Access Device Drivers

Device_init Procedure
This procedure must do this:

• Initialize any driver data structures or flags.

For message-based drivers, this procedure must initialize the port_t and
slot_id fields of the device's data storage area. The procedure must create a
port and store its token. The procedure must also scan interconnect space for the
board instance specified in the DINFO table and return its slot ID to the
slot_id field.

See also: Host ID, socket, System Concepts

If you have a device that does not need to be initialized before use, use
default_init, the default procedure supplied by the I/O System. Specify this
name in the DINFO table. Default_init does nothing but return the E_OK
condition code.

• Reset the board or device, then wait for completion of the reset.

For interrupt-driven drivers, the device_init procedure will not receive the
interrupt if the device sends an interrupt to indicate the reset is complete. For
such devices, either the device_start or device_interrupt procedure should
contain special code to process the reset interrupt.

For message-based drivers, this procedure will receive initialization responses
from the controller. Either this procedure, the device_start, or device_interrupt
procedure can process such responses.

Call Syntax

device_init (duib_ptr, ddata_ptr, status_ptr);

Where:

device_init
The name of the procedure. Use any name, as long as it doesn't
conflict with other procedure names. Include the name in the DINFO
table.

duib_ptr Pointer to the DUIB of the device-unit being attached. Init_io supplies
this pointer as an input parameter. From this DUIB, this procedure can
obtain the DINFO table.

ddata_ptr Pointer to a memory area provided by the supplied high-level device
driver procedures. This memory is the user portion of the device data
storage area. You must specify the size of this area of memory in the
DINFO table. This procedure can use this data area for whatever
purpose it chooses.

Driver Programming Concepts Chapter 5 99

For message-based devices, this portion of the device's data storage area
begins with these fields:

port_t Token for the port where the message_task waits for
messages from the controller.

slot_id The cardslot number (host ID) for this controller.

status_ptr
Pointer to the location of the status for the initialization operation. This
becomes an output parameter returned by the init_io procedure. The
device_init procedure must place the condition code here: E_OK if the
initialization is successful; otherwise, a condition code that describes
the failure. If initialization does not complete successfully, this
procedure must delete any resources it creates.

Device_finish Procedure
If you have a device that does not require any final processing, use the default
device_finish procedure supplied by the I/O System. It returns control to the caller.
Specify this name in the DINFO table. If your device requires special processing,
write a device_finish procedure as specified here.

Call Syntax

device_finish (duib_ptr, ddata_ptr);

Where:

device_finish
The name of the procedure. Use any name, as long as it doesn't conflict
with other procedure names. Include the name in the DINFO table.

duib_ptr Pointer to the DUIB of the device-unit being detached. Finish_io
supplies this parameter as an input parameter. From this DUIB, this
procedure can obtain the DINFO table, where information such as the
I/O port address is stored.

ddata_ptr Pointer to the user portion of the device's data storage area. This is an
input parameter supplied by finish_io. The device_finish procedure
should obtain, from this data area, identification of any resources other
procedures may have created, and delete these resources.

100 Chapter 5 Writing Common or Random Access Device Drivers

Device_start Procedure
This procedure must do this:

• Start the device processing any of the I/O requests supported by the device and
recognize that requests for non-supported functions are error conditions.

• Update the IORS actual field to reflect the total number of bytes of data
transferred if data is transferred.

• Set the IORS status and unit_status fields to indicate the success or failure
of the operation. If an error occurs when this procedure tries to start the device
(such as on a write request to a write-protected disk), status should be set to
indicate an E_IO condition and the lower four bits of the unit_status field
should be set to a non-zero value. The remaining bits of the field can be set to
any value (some device drivers return the device's result byte in the remainder of
this field). If the function completes without an error, this procedure must set the
IORS status field to indicate an E_OK condition.

• For message-based devices, this procedure must set the IORS done field to any
even value between 0 and 0FFH if the request has been started and is in progress.

If this procedure determines that the I/O request has been processed completely,
either because of an error or because the request has completed successfully, it
must set the IORS done field to TRUE. The I/O request will not always be
completed; it may take several calls to the device_interrupt procedure to
complete. However, if the request is finished and the device_start procedure
does not set the IORS done field to TRUE, the supplied high-level device driver
procedures wait until the device sends an interrupt/message indicating the
request is finished and the device_interrupt procedure sets IORS done to TRUE,
before determining that the request is actually finished.

Queue_io calls this procedure on receiving an I/O request when the request queue is
empty. Interrupt_task/message_task calls this procedure after it finishes one I/O
request if there are one or more I/O requests in the queue.

Driver Programming Concepts Chapter 5 101

Call Syntax

device_start (iors_ptr, duib_ptr, ddata_ptr);

Where:

device_start
The name of the procedure. Use any name, as long as it doesn't conflict
with other procedure names. Include the name in the DINFO table.

iors_ptr Pointer to the IORS of the request. This is an input parameter supplied
by queue_io or interrupt_task/message_task. This procedure must
access the IORS to obtain information such as the type of I/O function
requested, the address on the device of the block (absolute sector)
where I/O is to begin, and the buffer address.

duib_ptr Pointer to the DUIB of the device-unit for which the I/O request is
intended. This is an input parameter supplied by queue_io or
interrupt_task/message_task. This procedure can use the DUIB to
access the DINFO table, where information such as the I/O port address
is stored.

ddata_ptr Pointer to the user portion of the device's data storage area. This is an
input parameter supplied by queue_io or interrupt_task/message_task.
This procedure can use this data area to set flags or store data.

Device_stop Procedure
If you have a device, such as a message-based device, that guarantees all I/O requests
will finish in an acceptable amount of time, you do not need to write a device_stop
procedure. Instead, use default_stop, the default procedure supplied with the I/O
System, which returns to the caller. Specify this name in the DINFO table.

For interrupt-driven devices, the cancel_io procedure calls the device_stop procedure
to stop the device from performing the current I/O function.

102 Chapter 5 Writing Common or Random Access Device Drivers

Call Syntax

device_stop (iors_ptr, duib_ptr, ddata_ptr);

Where:

device_stop
The name of the procedure. Use any name, as long as it doesn't conflict
with other procedure names. Include this name in the DINFO table.

iors_ptr Pointer to the IORS of the request. This is an input parameter supplied
by cancel_io. This procedure needs this information to determine what
type of function to stop.

duib_ptr Pointer to the DUIB of the device-unit on which the I/O function is
being performed. This is an input parameter supplied by cancel_io.

ddata_ptr Pointer to the user portion of the device's data storage area. This is an
input parameter supplied by cancel_io. This procedure can use this area
to store data, if necessary.

Device_interrupt Procedure
This procedure must do this:

• For interrupt-driven devices, it must determine from the IORS which device-unit
sent the interrupt and what action to take.

For message-based devices, it must determine this information from the data
message received.

• After determining the device-unit, this procedure must decide whether the
request is finished. If the request is finished, the procedure must set the IORS
done field to TRUE.

• It must process the interrupt/message. This may involve setting flags in the user
portion of the data storage area, transferring data written by the device to a
buffer, or some other operation.

• If an error occurred, it must set the IORS status field to an E_IO condition and
the IORS unit_status field to a nonzero value. The lower four bits of the
IORS unit_status field should be set.

See also: IORS data structure definition, in this manual

Driver Programming Concepts Chapter 5 103

The remaining bits of the field can be set to any value (some device drivers
return the device's result byte in the remainder of this field). It must also set the
IORS done field to TRUE, indicating that the request is finished because of the
error.

For message-based drivers, status_ptr returns an error only if an
unrecoverable controller failure occurs. Message_task will mark all pending
IORSs DONE with their status set to the error returned by status_ptr, then
flush them from the request queue.

• If no error has occurred, this procedure must set the IORS status field to
indicate an E_OK condition.

Call Syntax

For interrupt-driven devices, the call format is:

device_interrupt (iors_ptr, duib_ptr, ddata_ptr);

Where:

device_interrupt
The name of the procedure. Use any name, as long as it doesn't conflict
with other procedure names. Include this name in the DINFO table.

iors_ptr Pointer to the IORS of the request being processed. This is an input
parameter supplied by interrupt_task. This procedure must update
information in this IORS. A null pointer value indicates either that
there are no requests on the request queue (the interrupt is extraneous),
or that the unit is completing a seek or other long-term operation.

duib_ptr Pointer to the DUIB of the device-unit on which the I/O function was
performed. This is an input parameter supplied by interrupt_task.

ddata_ptr Pointer to the user portion of the device's data storage area. This is an
input parameter supplied by interrupt_task. This procedure can update
flags in this data area or retrieve data sent by the device.

104 Chapter 5 Writing Common or Random Access Device Drivers

For message-based devices, the call format is:

device_interrupt (message_ptr, ddata_ptr, status_ptr);

Where:

device_interrupt
The name of the procedure. Use any name, as long as it doesn't conflict
with other procedure names. Include this name in the DINFO table.

message_ptr
Pointer to this structure:

DECLARE message STRUCTURE (

data_ptr POINTER,

flags WORD_16,

status WORD_16,

trans_id WORD_16,

data_length WORD_32,

dummy1 WORD_16,

socket WORD_32,

control(20) BYTE,

dummy2(12) BYTE);

or

typedef struct {

MESSAGE_DATA far * data_ptr

UINT_16 flags;

UINT_16 status;

UINT_16 trans_id;

UINT_32 data_length;

UINT_16 dummy1;

UINT_32 socket;

UINT_8 control[20];

UINT_8 dummy2[12];

} MESSAGE_STRUCT;

Driver Programming Concepts Chapter 5 105

Where:

data_ptr Pointer to the data message received. If the data was in a data
chain, this points to the data chain. A null pointer means a
control message was received.

flags This field's meaning depends on the bit pattern. Patterns not
shown are reserved:

Bits Value Meaning
7-4 0000B Transactionless message

0001B Transmission or system status message
0010B Transaction request message
0100B Transaction response message

3-0 0000B The data_ptr field points to a single
buffer

0001B The data_ptr field points to a data
message buffer

status The send message status. The status codes are:

Value Meaning
0000H E_OK A new message was received.

000BH E_TRANSMISSION
A NACK, timeout, bus or host error, or retry
expiration occurred during transmission.

00E1H E_CANCELLED
A send_rsvp transaction has been remotely
canceled

00E3H E_NO_LOCAL_BUFFER
If the flags parameter indicates a transaction
request, the local port's buffer pool doesn't have
a big enough buffer to hold the message: use
receive_fragment.
If the flags parameter indicates a transaction
response, the RSVP buffer in the send_rsvp
system call is too small to hold the response.

00E4H E_NO_REMOTE_BUFFER
The remote port's buffer pool doesn't have a big
enough buffer to hold the message and message
fragmentation is disabled.

106 Chapter 5 Writing Common or Random Access Device Drivers

trans_id The transaction ID for this message. If a transactionless
message was received, trans_id is invalid. The
device_interrupt procedure must map trans_id to the correct
IORS. To do this, the driver must maintain a queue of started
requests and their transaction IDs.

data_length Indicates the length of the data message received.

If the flags field indicates a newly received message, this
parameter contains the length of the message.

If the flags and status fields indicate request message
fragmentation, this parameter contains the length of all
message fragments to be received using receive_fragment.

dummy1 Reserved. Set to 0.

socket The host_id:port_id that indicates the message source.

control The 20-byte long control part of a data message.

dummy2 Reserved. Set all elements to 0.

ddata_ptr Pointer to the user portion of the device's data storage area.
This is an input parameter supplied by message_task. This
procedure can update flags in this data area or retrieve data
sent by the device.

status_ptr Pointer to a location containing the device status code returned
by this procedure: E_OK condition unless a board failure
occurs.

Driver Programming Concepts Chapter 5 107

Utility Procedures Random Access Drivers
Must Call

There are several supplied utility procedures that random access drivers must call
under certain circumstances. They are notify, seek_complete, and the procedures for
the long-term operations: begin_long_term_op, end_long_term_op, and get_iors.

Notify Procedure
Whenever a situation like an open diskette drive occurs during an I/O operation on a
device, the device driver must notify the I/O System that the device is no longer
available. The driver does this by calling the notify procedure. When notify is
called, the I/O System stops accepting I/O requests for files on that device unit.

Before the device-unit can again be available, the application must detach it by a call
to a_physical_detach_device and reattach it by a call to a_physical_attach_device.
Moreover, the application must obtain new file connections for files on the device
unit.

Besides not accepting I/O requests for files on that device unit, the I/O System will
send an object to a mailbox. For this to happen, the object and the mailbox must have
been established for this purpose by a prior call to a_special, with the spec_func
argument equal to fs_notify (2). The task that awaits the object at the mailbox must
detach and reattach the device unit and create new file connections for files on the
device unit.

See also: a_special, System Call Reference

Call Syntax

notify (unit, ddata_ptr);

Where:

unit The unit number of the unit on the device that went off-line.

ddata_ptr Pointer to the user portion of the device's data storage area. This is the
same pointer that the high-level device driver procedures pass to the
device_start or the device_interrupt procedure.

108 Chapter 5 Writing Common or Random Access Device Drivers

Seek_complete Procedure
In most applications, you should overlap seek operations which can take relatively
long periods of time with other operations on other units of the same device. A
device driver receiving a seek request can take these actions in this order:

1. The device_start procedure starts the requested seek operation.

2. Depending on the kind of device, either the device_start procedure or the
device_interrupt procedure sets the done flag in the IORS to TRUE.

• Some devices send only one interrupt/message in response to a seek request,
the one that indicates the completion of the seek. If your device operates
like this, the device_start procedure sets the done flag to TRUE
immediately.

• Some devices send two interrupts/messages in response to a seek request,
one upon receipt of the request and one upon completion of the seek. If
your device operates like this, the device_start procedure leaves the done
flag in the IORS set to FALSE.

When the first interrupt/message from the device arrives, the
device_interrupt procedure sets the done flag to TRUE.

3. When the interrupt/message from the device arrives (the one that indicates the
completion of the seek), the device_interrupt procedure calls the seek_complete
procedure to signal the completion of the seek operation.

This enables the device driver to handle I/O requests for other units on the device
while the seek is in progress, thereby increasing the performance of the I/O System.

Configure the cylinder_size field of the UINFO table for the device-unit to
greater than 0. If you configure cylinder_size to 0 (indicating that you don't want
to overlap seek operations), the driver should never call seek_complete.

Call Syntax

seek_complete (unit, ddata_ptr);

Where:

unit Number of the unit on the device on which the seek operation is
completed.

ddata_ptr Pointer to the user portion of the device's data storage area. This is the
same pointer that the high-level device driver procedures pass to the
device_start and device_interrupt procedures.

Driver Programming Concepts Chapter 5 109

Procedures for Long-Term Operations
There are three procedures that device drivers can use to overlap long-term
operations (such as tape rewinds) with other I/O operations. The procedures are
begin_long_term_op, end_long_term_op, and get_iors. These are intended
specifically for use with devices that do not support seek operations such as tape
drives.

Begin_long_term_op Procedure
The begin_long_term_op procedure informs the high-level device driver procedures
that a long-term operation is in progress, and that the high-level device driver
procedures do not have to wait for the operation to complete before servicing other
units on the device. Calling begin_long_term_op allows the controller to service read
and write requests on other units of the device while the long-term operation is in
progress.

To use begin_long_term_op, the device driver receiving the request for the long-term
operation should take these actions:

1. The device_start procedure starts the long-term operation.

2. Depending on the kind of device, either the device_start procedure or the
device_interrupt procedure sets the done flag in the IORS to TRUE.

• Some devices send only one interrupt/message in response to a request for a
long-term operation, the one that indicates the completion of the operation.
If your device operates like this, the device_start procedure sets the done
flag to TRUE immediately.

• Some devices send two interrupt/messages in response to a request for a
long-term operation, one upon receipt of the request and one upon
completion of the operation. If your device operates like this, the
device_start procedure leaves the done flag in the IORS set to FALSE.
When the first interrupt/message from the device arrives, the
device_interrupt procedure sets the done flag to TRUE.

3. The procedure that just set the done flag to TRUE (either the device_start or
device_interrupt procedure) calls begin_long_term_op.

110 Chapter 5 Writing Common or Random Access Device Drivers

Call Syntax

begin_long_term_op (unit, ddata_ptr);

Where:

unit Number of the unit on the device that is performing the long-term
operation.

ddata_ptr Pointer to the user portion of the device's data storage area. This is the
same pointer that the high-level device driver procedures pass to the
device_start and device_interrupt procedures.

If your driver calls begin_long_term_op, it must also call end_long_term_op when
the device sends an interrupt/message to indicate the end of the long-term operation.

End_long_term_op Procedure
The end_long_term_op procedure informs the high-level device driver procedures
that a long-term operation has completed. A driver that calls begin_long_term_op
must also call end_long_term_op, or the driver cannot further access the unit that
performed the long-term operation.

Specifically, when the unit sends an interrupt/message indicating the end of the long-
term operation, the device_interrupt procedure must call end_long_term_op.

Call Syntax

end_long_term_op (unit, ddata_ptr);

Where:

unit Number of the unit on the device that performed the long-term
operation.

ddata_ptr Pointer to the user portion of the device's data storage area. This is the
same pointer that the high-level device driver procedures pass to the
device_start and device_interrupt procedures.

Driver Programming Concepts Chapter 5 111

Get_iors Procedure
Long-term operations on some units involve multiple operations. For example,
performing a rewind on some tape drives requires you to perform a rewind and a read
file mark. The get_iors procedure allows your device-specific procedures to handle
this without forcing you to write a custom driver for each device that is different.

Get_iors obtains the token of the IORS for the previous long-term request, so it can
be modified to initiate new I/O requests. The driver cannot access the IORS without
calling this procedure, because when the long-term operation completes (and an
interrupt/message occurs), the iors_ptr that interrupt_task passes to the
device_interrupt procedure is set to 0 (for units busy performing a seek or other long-
term operation).

To use get_iors, the device driver performing the long-term operation should take
these actions:

1. The device driver starts the long-term operation and calls begin_long_term_op as
usual, as described earlier.

2. When the unit sends an interrupt/message indicating the end of the long-term
operation, the device_interrupt procedure calls get_iors to obtain the IORS.

3. The device_interrupt procedure modifies the funct and subfunct fields of the
IORS to specify the next operation to perform. It also sets the done flag to
FALSE.

4. The device_interrupt procedure calls end_long_term_op.

Call Syntax

iors_base = get_iors (unit, ddata_ptr);

Where:

iors_base Token for the IORS.

unit Number of the unit on the device that performed the long-term
operation.

ddata_ptr Pointer to the user portion of the device's data storage area. This is the
same pointer that the high-level device driver procedures pass to the
device_start and device_interrupt procedures.

112 Chapter 5 Writing Common or Random Access Device Drivers

Formatting Random Access Devices
If you write a random access driver and you intend to use the format command to
format volumes on that device, your device-specific procedures must set the status
field in the IORS in the manner that the format command expects.

When formatting volumes, the format command issues system calls (a_special or
s_special) to format each track. It knows that formatting is complete when it
receives an E_SPACE condition code in response. To be compatible with format,
your driver must also return E_SPACE when formatting is complete.

In particular, if your driver must perform some operation on the device to format it,
your device_interrupt procedure must set the IORS status to E_SPACE after the
last track has been formatted.

However, if the device requires no physical formatting (for example, when
formatting is a null operation for that device), your device_start procedure can set
IORS status to E_SPACE immediately after being called to start the formatting
operation.

The format command can report the assignment of alternate tracks, or, if no alternate
tracks are available, can mark all the sectors in the track being formatted as
unavailable using the bad block map. This lets you see the state of the media in
question and allows a disk with excess bad tracks (more than the available alternate
tracks can handle) to continue being used. For the format command to provide these
features, the driver must return these error codes in these conditions:

• Whenever the device driver is processing an f_special (fs_format) function and it
allocates an alternate track, it must return an E_IO_ALT_ASSIGNED error code
in the IORS after marking the request DONE.

• Whenever the device driver is processing an f_special (fs_format) function and
discovers the track is bad, but no alternate tracks are available for assignment, it
must return an E_IO_NO_SPARES error code in the IORS after marking the
request DONE.

■■ ■■ ■■

Driver Programming Concepts Chapter 6 113

Writing Terminal Drivers 6
This chapter describes how to write device drivers for interrupt/message-driven
terminal controllers. The driver provides the software link between the high-level
device driver procedures, called Terminal Support Code (TSC), and the terminal
controller. The chapter describes:

• Terminal driver concepts

• The high-level device driver procedures and tasks the I/O System supplies

• The data structures that must exist

• The device-specific procedures you must supply for terminal drivers

• The TSC utility procedures called by terminal drivers

Driver capabilities can include handling single-character or block-mode I/O, parity
checking, answering and hanging up functions on a modem, and automatic baud rate
recognition.

The TSC supports interrupt- and message-driven terminal drivers. It distinguishes
between these drivers through the DINFO table described in this chapter. TSC duties
include managing buffers and maintaining several terminal-related modes.

See also: Appendix C, Controlling Terminal I/O

114 Chapter 6 Writing Terminal Drivers

Terminal I/O Concepts
Input characters normally pass through three buffers on their way from the terminal
to the application task: the raw-input buffer, the TSC input buffer, and the
application task buffer. Each terminal device-unit has its own raw-input buffer and
its own TSC input buffer. Each task that reads input from a terminal has its own
buffer.

Figure 6-1 shows how these buffers interact.

255 bytes

Raw
input
buffer

W-2751

Terminal
Support

Code input
buffer

Application
task

buffer

1a. First, the terminal driver takes characters from the terminal device and places them in the

raw-input buffer. Buffer size depends on the terminal driver.

b. When the device driver signals the TSC that an input interrupt has occurred, the TSC

transfers the characters from the raw-input buffer to the TSC input buffer.

c. When the I/O System passes a read request to the TSC, the TSC moves the characters

from its input buffer to the task buffer pointed to in this read request. Buffer size depends

on the application task.

2. In bypass mode, when the I/O System passes a read request to the TSC, the TSC moves

the characters directly from the raw-input buffer of the terminal device to the task buffer

pointed to in this read request.

Figure 6-1. Buffers Used in Terminal I/O

Raw-input Buffer Determined by Type of Terminal Driver
The type of terminal driver type, nonbuffered or buffered, determines the location of
the raw-input buffer and its size.

Driver Programming Concepts Chapter 6 115

Nonbuffered Terminal Devices

Nonbuffered devices do not have dual-port memory of their own. The terminal
driver must create a logical segment for the raw-input buffer when it initializes the
unit.

The device must send one interrupt for each input character, so there is usually only
one character in the raw-input buffer at a time. However, the buffer enables other
input characters to be sent while the TSC is processing the previous input character.
The size of the raw-input buffer provided by OS-supplied drivers is 256 bytes.

Buffered Terminal Devices

In buffered terminal devices, the raw-input buffer resides in the dual-port memory of
the terminal controller board. Buffered terminal devices do not need to send an
interrupt each time an input character is transmitted, so there might be many
characters in the raw-input buffer when an interrupt occurs. The maximum number
depends on the size of the input buffer for that device.

See also: term_init procedure, in this chapter

TSC Input Buffer Determined by Terminal Mode
The size of the TSC input buffer is fixed, with 256 bytes for each device-unit. Each
buffer is divided into two logical buffers: a type-ahead buffer and a line-edit buffer.
How input characters move through these logical buffers and into the application task
buffer depends on the input mode of the terminal.

line-edit mode Characters first move into the type-ahead buffer, then to the
line-edit buffer when the user does line-editing. When the
TSC receives a read request, it moves the line-edited
characters to the requesting task's buffer.

The maximum number of characters a task can request in this
mode is 255. If the terminal operator tries to type more
characters before typing a line terminator, the TSC discards
each extra character and echoes a bell <Ctrl-G> to the
terminal.

transparent mode
flush mode

Characters move from the type-ahead buffer to the application task buffer
without being line-edited. However, the TSC still might intercept and
modify some characters before placing them into the task buffer,
depending on the terminal's current connection modes. The characters
are output control characters, OSC sequences, and Terminal Character
Sequences.

See also: Line editing control, Appendix C

116 Chapter 6 Writing Terminal Drivers

bypass mode Characters move from the raw-input buffer to the task buffer
without any processing. This means that output control
characters, OSC sequences, and Terminal Character Sequences
are all ignored.

If you want characters to be received without modification when the terminal is in
transparent or flush mode, set the output control mode and the OSC control mode so
that the TSC does not act on these characters when they appear in the input stream.

Difference between Transparent and Flush Mode

These modes handle read requests differently. In flush mode, the read request returns
immediately with as many characters as currently reside in the TSC's input buffer, up
to the number of characters requested. Any number of characters, from 0 to the
number requested, might move into the application task buffer.

In transparent mode, the read request does not return until all characters requested by
the task are moved into the task's buffer.

The maximum number of characters that can be read in one request, in either
transparent or flush mode, is 255 for nonbuffered devices and 255 plus the size of the
device's dual-port memory for buffered devices.

▲▲! CAUTION

In transparent mode, if any characters are lost during transmission,
an input request can remain unsatisfied and the terminal will appear
nonfunctional. Get the terminal status and then cancel the request
and recover from the problem using the a_special system call.

Driver Programming Concepts Chapter 6 117

I/O System-supplied Procedures and Tasks
The I/O System supplies these high-level device driver procedures and tasks, which
process I/O requests:

• ts_init_io

• ts_finish_io

• ts_queue_io

• ts_cancel_io

• interrupt_task

• message_task

You must write these device-specific procedures for the high-level device driver
procedures to call: term_init, term_finish, term_setup, term_answer, term_hangup,
term_check, term_out, and term_utility.

118 Chapter 6 Writing Terminal Drivers

Data Structures Supporting Terminal I/O
The principal data structures supporting terminal I/O are the DUIB, DINFO table,
UINFO table, and TSC Data Area. These data structures are defined in this section.

DUIB Structure for Terminal Driver
This assembly language macro defines the DUIB for a terminal device driver. This
macro initializes constant numeric values and labels to suit the TSC. Lowercase
values are variables.

See also: DUIB, in this manual for PL/M and C data declarations, and
descriptions of each field

DEFINE DUIB <

& name, ; DUIB name

& 1, ; file_drivers = physical

& 0FBH, ; functs = no seek

& 0, ; flags = not disk device

& 0, ; dev_gran = not random access

& 0, ; dev_size = not storage device

& device, ; (device specific)

& unit, ; (unit specific)

& dev_unit, ; (device and unit specific)

& TSINITIO, ; init_io for terminal device

& TSFINISHIO, ; finish_io for terminal device

& TSQUEUEIO, ; queue_io for terminal device

& TSCANCELIO, ; cancel_io for terminal device

& device_info_ptr, ; pointer to TERMINAL_DEVICE_INFO

& unit_info_ptr, ; pointer to TERMINAL_UNIT_INFO

& 0FFFFH, ; update_timeout = not disk

& 0, ; num_buffers = none

& priority, ; (I/O System dependent)

& 0, ; fixed_update = none

& 0, ; max_buffers = none

& RESERVED, ;

& >

Driver Programming Concepts Chapter 6 119

DINFO Table Structure for Terminal Driver
A terminal's DINFO table provides information about a terminal controller for the
device driver.

Interrupt-driven devices use this DINFO table:

DECLARE term_dinfo STRUCTURE(

num_units WORD_16,

data_size WORD_16,

stack_size WORD_32,

term_init WORD_32,

term_finish WORD_32,

term_setup WORD_32,

term_output WORD_32,

term_answer WORD_32,

term_hangup WORD_32,

term_utility WORD_32,

num_interrupts WORD_16,

interrupt_level WORD_16,

term_check WORD_32)

or

typedef struct {

UINT_16 num_units;

UINT_16 data_size;

UINT_32 stack_size;

UINT_32 term_init;

UINT_32 term_finish;

UINT_32 term_setup;

UINT_32 term_output;

UINT_32 term_answer;

UINT_32 term_hangup;

UINT_32 term_utility;

UINT_16 num_interrupts;

UINT_16 interrupt_level;

UINT_32 term_check;

} TERM_DINFO_STRUCT;

120 Chapter 6 Writing Terminal Drivers

Message-based devices use this DINFO table:

DECLARE mterm_dinfo STRUCTURE(

num_units WORD_16,

data_size WORD_16,

stack_size WORD_32,

term_init WORD_32,

term_finish WORD_32,

term_setup WORD_32,

term_output WORD_32,

term_answer WORD_32,

term_hangup WORD_32,

term_utility WORD_32,

num_interrupts WORD_16,

term_check WORD_32,

priority WORD_16,

reserved_a WORD_32,

reserved_b WORD_32);

or

typedef struct {

UINT_16 num_units;

UINT_16 data_size;

UINT_32 stack_size;

UINT_32 term_init;

UINT_32 term_finish;

UINT_32 term_setup;

UINT_32 term_output;

UINT_32 term_answer;

UINT_32 term_hangup;

UINT_32 term_utility;

UINT_16 num_interrupts;

UINT_32 term_check;

UINT_16 priority;

UINT_32 reserved_a;

UINT_32 reserved_b;

} MTERM_DINFO_STRUCT;

Where:

num_units Number of terminals on this terminal controller.

data_size Number of bytes in the driver's data area pointed to by the
user_data_ptr field of the TSC data structure.

Driver Programming Concepts Chapter 6 121

stack_size
Number of bytes of stack needed collectively by the device-specific
procedures in this device driver.

term_init Address of this procedure.

term_finish
Address of this procedure.

term_setup
Address of this procedure.

term_out Address of this procedure.

term_answer
Address of this procedure.

term_hangup
Address of this procedure.

term_utility
Address of this procedure.

See also: Procedures terminal drivers must supply, later in this
chapter

num_interrupts
For interrupt-driven drivers, the number of interrupts this controller
uses. Define an interrupt_level and term_check for each
interrupt. For message-based drivers, set to 0. The TSC determines the
type of device from this field.

interrupt_level
For interrupt-driven drivers, the encoded level numbers of the interrupts
associated with the terminals driven by this controller. Expand the
structure here to supply one level for each interrupt the controller uses.
For message-based drivers, this field is not present.

See also: level parameter, set_interrupt, System
Call Reference for bit encoding information

term_check
For interrupt-driven drivers, specifies the offset address of the
term_check procedures. Each term_check field specifies the
term_check procedure for the interrupt_level immediately
preceding it. If any term_check field is 0, there is no term_check
procedure associated with it. Instead, interrupts on these levels are
assumed to be output interrupts that will cause term_out to be called.

For message-based drivers, the offset address of the term_check
procedure. Only one procedure is valid.

122 Chapter 6 Writing Terminal Drivers

priority For interrupt-driven drivers, this field is not present.

For message-based drivers, the priority of the TSC's message_task.
This task receives messages from the controller.

reserved_a, reserved_b
For message-based drivers, reserved fields.

You can append additional driver-specific fields to the end of this structure.

UINFO Table Structure for Terminal Driver
The UINFO table provides information about an individual terminal. Although only
one DINFO table can exist for each driver (controller), several UINFO tables can
exist if different terminals have different characteristics, such as baud rate, parity, or
modem control.

DECLARE term_uinfo STRUCTURE(

conn_flags WORD_16,

terminal_flags WORD_16,

in_rate WORD_32,

out_rate WORD_32,

scroll_number WORD_16);

or

typedef struct {

UINT_16 conn_flags;

UINT_16 terminal_flags;

UINT_32 in_rate;

UINT_32 out_rate;

UINT_16 scroll_number;

} TERM_UINFO_STRUCT;

Driver Programming Concepts Chapter 6 123

Where:

conn_flags
Default connection flags for this terminal:

Bits Meaning

15-10 Reserved, set to 0

9 Type-ahead buffer bypass flag

8 Service/interrupt task raw-input buffer processing flag

7-6 OSC control sequence control

5 Output control character control

4 Output parity control

3 Input parity control

2 Echo control

1-0 Line editing control

See also: connection_flags parameter, BIOS call a_special,
System Call Reference

Bits 8 and 9 affect I/O performance in these ways:

Bit 8 Bit 9 Result
0 0 No performance change
0 1 Best performance (assumes flush mode), but

translation, OSC sequence, and CONTROL
character recognition capabilities are lost.

1 0 Some performance increase and translation,
OSC sequence, and CONTROL character
recognition capabilities are kept. Requesting
task must have a priority higher than 82H.

1 1 No advantages to this setting

124 Chapter 6 Writing Terminal Drivers

terminal_flags
Terminal flags for this terminal:

Bits Meaning

15-13 Reserved, set to 0.

12 Vertical axis orientation control

11 Horizontal axis orientation control

10 Terminal axes sequence control

9 OSC Translation control

8-6 Output parity control

5-4 Input parity control

3 Modem indicator

2 Output medium

1 Line protocol indicator

0 Reserved, set to 1

See also:terminal_flags parameter, BIOS call
a_special, System Call Reference

in_rate Input baud rate encoded:

Value Meaning
0 Invalid
1 Perform an automatic baud rate search
Other Actual input baud rate, such as 9600

out_rate Output baud rate encoded:

Value Meaning
0-1 Use the input baud rate for output
Other Actual output baud rate, such as 9600

Most applications require the input and output baud rates to be equal.
In such cases, use in_rate to set the baud rate and specify a 0 for
out_rate.

scroll_number
Number of lines to send to the terminal each time the operator enters
the appropriate control character for scrolling; <Ctrl-W> is the default.

Depending on the requirements of the device, append additional driver-specific
information to the structure.

Driver Programming Concepts Chapter 6 125

TSC Data Area Structure
The DINFO and UINFO tables specify the initial terminal attributes. The BIOS
provides the TSC Data Area that reflects the current state of the terminal controller
and its units. The TSC Data Area consists of three parts:

• A 40H-byte controller part that contains information about the whole device

• A 500H-byte unit part for each device-unit. The num_units field in the DINFO
table specifies the number of unit portions that the BIOS creates.

• A user part that the device-specific procedures can use. The
driver_data_size field in the DINFO table specifies the length of this part.
The user_data_ptr field in the controller part of the TSC data area points to
the beginning of this field.

Figure 6-2 illustrates the TSC Data Area.

When the BIOS calls one of the device-specific procedures, it passes a pointer either
to the start of the TSC Data Area or to the start of one of the unit portions of the TSC
Data Area. Your procedures can then obtain information from the TSC Data Area or
modify the information there.

126 Chapter 6 Writing Terminal Drivers

USER_DATA_PTR

TSC_DATA

UNIT_DATA_1

40H bytes

500H bytes

UNIT_DATA_N

USER_DATA

500H bytes

Size specified in
DRIVER_DATA_SIZE
field of device
information table

W-2772

Figure 6-2. TSC Data Area

Driver Programming Concepts Chapter 6 127

The TSC data area has this structure:

DECLARE TSC_DATA STRUCTURE(

ios_data_segment SELECTOR,

status WORD_16,

interrupt_type BYTE,

interrupting_unit BYTE,

dev_info_ptr POINTER,

user_data_ptr POINTER,

reserved(46) BYTE);

DECLARE UNIT_DATA(*) STRUCTURE(

unit_info_ptr POINTER,

terminal_flags WORD_16,

in_rate WORD_32,

out_rate WORD_32,

scroll_number WORD_16,

page_width BYTE,

page_length BYTE,

cursor_offset BYTE,

overflow_offset BYTE,

raw_size WORD_16,

raw_data_ptr POINTER,

raw_in WORD_16,

raw_out WORD_16,

output_scroll_count WORD_16,

unit_number BYTE,

reserved(1099) BYTE,

buffered_device_data(144) BYTE);

or

128 Chapter 6 Writing Terminal Drivers

typedef struct {

SELECTOR ios_data_segment;

UINT_16 status;

UINT_8 interrupt_type;

UINT_8 interrupting_unit;

TERM_DINFO_STRUCT * dev_info_ptr;

DRIVER_DATA_STRUCT * user_data_ptr;

UINT_8 reserved[46];

} TSC_DATA_STRUCT

typedef struct {

TERM_UINFO_STRUCT * unit_info_ptr;

UINT_16 terminal_flags;

UINT_32 in_rate;

UINT_32 out_rate;

UINT_16 scroll_number;

UINT_8 page_width;

UINT_8 page_length;

UINT_8 cursor_offset;

UINT_8 overflow_offset;

UINT_16 raw_size;

UINT_8 * raw_data_ptr;

UINT_16 raw_in;

UINT_16 raw_out;

UINT_16 output_scroll_count;

UINT_8 unit_number;

UINT_8 reserved[1099];

UINT_8 buffered_device_data[144];

} UNIT_DATA_STRUCT

Where:

ios_data_segment
Token for the I/O System's data segment. The ts_init_io procedure fills
in this information during initialization.

status The term_init procedure must return status information here.

Driver Programming Concepts Chapter 6 129

interrupt_type
The term_check procedure must return the interrupt type here. The
supported values are:

Value Meaning
0 None
1 Input interrupt
2 Output interrupt
3 Ring interrupt
4 Carrier interrupt
5 Delay interrupt
6 Special character interrupt
7 None

If the term_check procedure cannot guarantee there are no more
interrupts to service, it adds 8 to the encoded interrupt type it returns
indicating that more interrupts are available.

See also: term_check procedure description, later in this chapter

interrupting_unit
The term_check procedure must return the unit number of the
interrupting device here. This value identifies the unit that is
interrupting.

dev_info_ptr
Pointer to the terminal DINFO table for this controller. The ts_init_io
procedure fills in this data during initialization.

user_data_ptr
Pointer to the beginning of the user part of the TSC Data Area. This
user area can be used by the driver, as needed. The ts_init_io procedure
fills in this pointer value during initialization.

For message-based drivers, the first two bytes of this field are structured
as:

DECLARE DRIVER_DATA STRUCTURE(

port_token TOKEN,

other_data(*) BYTE);

or
typedef struct driver_data_struct {

SELECTOR port_token;

UINT_8 other_data[2];

130 Chapter 6 Writing Terminal Drivers

Where:

port_token
Token for the port/mailbox used by the TSC to receive messages
from the controller. The term_init procedure creates this token;
the term_finish procedure deletes it.

other_data
Available for driver-specific information.

reserved Reserved array for use by the TSC. Device drivers should not set these
bytes.

The UNIT_DATA structure defines each unit (terminal) of the device. When a user
attaches the unit using the a_physical_attach_device system call or the attachdevice
command, the high-level device driver procedures initialize the appropriate
unit_data structure. They do so by filling in all fields of the unit_data structure
with information from the DUIB and the UINFO table.

unit_info_ptr
Pointer to the UINFO table for this terminal. This is the same
information as in the unit_info_ptr field of the DUIB for this
device-unit.

terminal_flags, in_rate, out_rate, scroll_number
The ts_queue_io procedure fills in these fields with information from
the equivalent fields in the UINFO table when the unit is attached.

See also: UINFO Table Structure in this manual for field descriptions

The TSC sets these four fields based on user input (OSC sequences, a_special calls,
or s_special calls).

page_width
Number of character positions on each line of the terminal's screen.

page_length
Number of lines on the terminal's screen.

cursor_offset
Value that starts the numbering sequence of both the X and Y axes.

overflow_offset
Value to which the numbering of the axes must fall back after reaching
127.

See also: Cursor positioning, in Appendix C

Driver Programming Concepts Chapter 6 131

raw_size Size of the unit's raw-input buffer in bytes. The term_init procedure
must set this size. OS-supplied drivers for message-based and
nonbuffered devices always set this size to 256. Device drivers for
buffered devices set this value according to the size of the controller's
onboard input buffer.

raw_data_ptr
Pointer to the unit's raw-input buffer. The term_init procedure must
initialize this pointer.

For buffered devices, this field should point to the controller's onboard
input buffer for this unit.

For message-based and nonbuffered devices, this field should point to a
segment that the term_init procedure creates.

raw_in Offset from the raw_data_ptr pointer indicating the head of the
circular raw-input buffer. The term_init procedure must set this value
to 0. The term_check procedure must update this value whenever
characters are moved into the raw-input buffer.

raw_out Offset from the raw_data_ptr pointer indicating the tail of the
circular raw-input buffer. The term_init procedure must set this value
to 0. The TSC updates this value whenever it moves characters from
the raw-input buffer to the type-ahead buffer. The device driver should
use the difference between raw_in and raw_out to determine how
many characters are in the raw-input buffer. After initialization, the
driver must never update raw_out.

output_scroll_count
Number of output lines that have been displayed while in scrolling
mode. This field is updated by the TSC; the terminal driver should not
update this count.

Nonbuffered terminal drivers should not change this value. Buffered
terminal drivers must decrement this number, in the term_utility
procedure function 0, by the number of lines actually output.

unit_number
The unit number of this unit, filled in by the TSC.

reserved Reserved for use by the TSC. Device drivers should not set these bytes.

buffered_device_data
Additional information that applies to drivers of buffered devices. The
next section describes this information.

132 Chapter 6 Writing Terminal Drivers

Additional Information for Buffered Devices

A buffered device is an intelligent processor that manages its own data buffers
separately from the ones managed by the TSC. Interrupt-driven buffered device
drivers differ from message-based buffered device drivers in how they manage the
raw-input buffer.

Multibus I (MB I) systems support a shared-memory architecture.

• An MB I interrupt-driven terminal driver can use the dual-port input buffer on
the controller as the raw-input buffer.

• An MB I message-based terminal driver uses a mailbox to send or receive data
from another job that manages data input and output. Subsequently, the TSC
transfers the data from the driver's raw-input buffer to its type-ahead buffer.

Multibus II (MB II) supports connectionless data transfers.=

• An MB II message-based terminal driver must maintain its own circular raw-
input buffer in addition to the controller's input buffer. An MB II controller uses
the MB II Transport Protocol to send data (using messages) to the terminal
driver, which transfers the data to the raw-input buffer it maintains.

See also: Message-passing, Nucleus Communications Service, System
Concepts

If you write a driver for a buffered device, the device-specific procedures must make
use of the buffered_device_data array of the unit_data structure. Use this
data structure. Some of the fields are set and updated by the TSC based on OSC
sequences, a_special calls, or s_special calls.

See also: OSC sequences, Appendix C

Driver Programming Concepts Chapter 6 133

DECLARE BUFFERED_DEVICE_DATA STRUCTURE(

buffered_device BYTE,

buff_input_state WORD_16,

buff_output_state WORD_16,

select(2) BYTE,

line_ram_ptr POINTER,

function_id BYTE,

in_count WORD_16,

out_count WORD_16,

units_available WORD_16,

output_buffer_size WORD_16,

user_buffer_ptr POINTER,

echo_count BYTE,

echo_buffer_ptr POINTER,

received_special WORD_16,

special_modes WORD_16,

high_water_mark WORD_16,

low_water_mark WORD_16,

fc_on_char WORD_16,

fc_off_char WORD_16,

link_parameter WORD_16,

spc_hi_water_mark WORD_16,

special_char(4) BYTE,

reserved(41) BYTE,

driver_use_only(48) BYTE);

or

134 Chapter 6 Writing Terminal Drivers

typedef struct {

UINT_8 buffered_device;

UINT_16 buff_input_state;

UINT_16 buff_output_state;

UINT_8 select[2];

UINT_8 * line_ram_ptr;

UINT_8 function_id;

UINT_16 in_count;

UINT_16 out_count;

UINT_16 units_available;

UINT_16 output_buffer_size;

UINT_8 * user_buffer_ptr;

UINT_8 echo_count;

UINT_8 * echo_buffer_ptr;

UINT_16 received_special;

UINT_16 special_modes;

UINT_16 high_water_mark;

UINT_16 low_water_mark;

UINT_16 fc_on_char;

UINT_16 fc_off_char;

UINT_16 link_parameter;

UINT_16 spc_hi_water_mark;

UINT_8 special_char[4];

UINT_8 reserved[41];

UINT_8 driver_use_only[48];

{ BUFFERED_DEVICE_DATA_STRUCT

Where:

buffered_ device
The term_init procedure sets to TRUE indicating the unit is a buffered
device. If 0, the rest of the fields in this structure are meaningless.

Driver Programming Concepts Chapter 6 135

buff_input_state
The input state between the TSC and the terminal driver encoded as:

Bits Value Meaning
15-8 Available bits for the driver's use to keep track of

its input state. The TSC does not use them.
7,6 Reserved, the driver should not set these bits.

5 0 The TSC ignores output control characters in the
input stream.

1 The device driver can examine this bit and, if the
controller supports it, direct the firmware to
process output control characters when they appear
in the input stream. The TSC sets this bit, based on
user input, to indicate whether output control
characters are processed.

4 Reserved, the driver should not set this bit.

3 0 This bit should be cleared by the driver whenever it
sends an input command to the firmware;
otherwise, the TSC will not accept characters from
the raw buffer if a type-ahead-buffer-full condition
previously existed.

1 The TSC sets this flag when it finds the type-ahead
buffer full; when it is no longer full, the TSC will
call for an input command from the driver. The
driver must clear the bit at this time.

2 Reserved, the driver should not set this bit.

1 1 The TSC sets this bit after taking characters from
the raw-input buffer. It calls the term_utility
procedure, which should reset the bit after
informing the firmware about the removal of the
characters.

0 0 No modem is on-line; the driver should reset DTR.
1 A modem is on-line; the driver should set DTR.

The TSC calls the term_utility procedure to set or
reset DTR.

136 Chapter 6 Writing Terminal Drivers

buff_output_state
The output state between the TSC and the terminal driver, encoded as:

Bits Value Meaning
15-8 Available bits for the driver's use to keep track of

its output state. The TSC does not use these bits.
7-3 Reserved, device drivers should not set these bits.

2 0 Scrolling mode is not set (characters appear on the
screen without stopping).

1 Scrolling mode is set (only a certain number of
characters appear on the screen; the operator must
press a key to see the next group of characters).
The TSC sets this bit, based on output control
characters entered by the operator, to indicate
whether the output device is in scrolling mode.
The device driver must examine this bit when
sending output.

1 0 Output can occur.
1 Output is stopped.

The TSC sets this bit, based on output control
characters entered by the operator. The device
driver must examine this bit when sending output.

0 0 The TSC keeps track of the number of characters
available in the device's output buffer without
requiring information from the device.

1 The terminal driver (or the device's firmware)
keeps track of the space remaining in the output
buffer. If the device is maintaining this
information, the term_utility procedure must place
into the units_available field of this structure the
number of bytes of free space remaining in the
output buffer.

select(2) An array that the term_init procedure must fill in to identify the board
and line number of this unit. The first byte identifies the number of this
unit's controller board (where 0 is the first board). The second byte
identifies the line number on that board (where the first line is line 0).

Driver Programming Concepts Chapter 6 137

line_ram_ptr
For interrupt-driven devices, a pointer to the dual-port RAM address of
the specified line. The term_init procedure must place this address here
so that it doesn't need to calculate the address each time it accesses the
unit.

For message-based devices, this field is ignored.

function_id
The TSC specifies a function that the term_utility procedure should
perform in this field.

in_count Number of bytes the TSC has moved from the raw-input buffer to the
TSC's buffer.

out_count Number of bytes to be moved from the driver's output buffer to the
device's on-board output buffer. Decrement this field by the number of
bytes actually output.

units_available
Number of characters remaining (free space) in the output buffer. The
term_utility procedure sets this field.

output_buffer_size
Size of the buffered unit's output buffer. The term_init procedure must
set this field.

user_buffer_ptr
Pointer to the user buffer containing characters to be output.

echo_count
Number of characters, indicated by the TSC, that the term_utility
procedure should echo to the terminal. The term_utility procedure gets
these characters from the echo_buffer_ptr buffer.

echo_buffer_ptr
Pointer to the buffer containing characters to be echoed to the terminal.
The TSC provides the pointer.

received_special
Used by devices supporting Special Character mode. When Special
Character Mode is enabled and a special character interrupt occurs, the
term_check procedure sets bits 3-0 to indicate which special character
was entered. Bit 0 corresponds to the first character defined in the
special_char array. Bit 1 corresponds to the second character, and
so forth. The driver can ignore the other 12 bits.

138 Chapter 6 Writing Terminal Drivers

special_modes
Indicates whether the terminal is using any special modes. The TSC
sets this field based on user input as:

Bits Value Meaning
15-2 Reserved, the device driver should not set these

bits.

1 1 Enable Special Character Mode. This bit, in
conjunction with the spc_hi_water_mark field,
indicates whether the TSC responds to special
characters immediately. If your device supports
special characters, it sends an interrupt whenever a
special character is typed. When this mode is
enabled, the term_check procedure sets the
received_special field whenever a special character
interrupt occurs. If the special character is defined
as a signal character, the TSC sends a unit to the
appropriate semaphore.

0 Disable Special Character Mode. The characters
are handled when received through the normal
input stream.

0 1 Enable flow control. Indicates whether the
communications board sends flow control
characters (selected by fc_on_char and fc_off_char,
but usually XON and XOFF) to turn input on and
off. The board can use flow control to prevent
buffer overflow.

0 Disable flow control.

high_water_mark
When the communication board's input buffer fills to contain this
number of bytes, the board sends the flow control character to stop
input. The TSC sets this field based on user input.

low_water_mark
When the number of bytes in the communication board's input buffer
drops to this value, the board sends the flow control character to start
input. The TSC sets this field based on user input.

fc_on_char
ASCII flow control character that starts input. Normally, this character
tells the connecting device to resume sending data. The TSC sets this
field based on user input.

Driver Programming Concepts Chapter 6 139

fc_off_char
ASCII flow control character that stops input. Normally, this character
tells the connecting device to stop sending data. The TSC sets this field
based on user input.

link_parameter
The characteristics of the physical link between the terminal and a
device. The TSC sets this field based on user input. Physical link
parameters are not supported by all devices or device drivers. For
supported drivers (such as the Terminal Communications Controller
driver), when the physical link parameters are used, the TSC passes the
low-order byte of this field to the driver, which passes it directly to the
controller. The controller sets the physical link appropriately as:

Bits Value Meaning
15 0 The link parameters are not used. The input and

output parity applies from the setting of
terminal_flags.

1 The link parameters are used. The TSC passes
the low-order byte of the link_parameter field to
the controller, overriding the parity settings in
terminal_flags.

14-9 Reserved, drivers should not set these bits.

8-7 0 Replace erroneous character (parity, framing, or
overrun errors) by ASCII NULL (0H)

1 Discard erroneous character

2 Prefix erroneous character by the two-byte
sequence: 0FFH, 0. A valid 0FFH character will
be replaced by the two-character sequence:
0FFH, 0FFH.

3 Set the most significant bit of erroneous
character to 1.

6 0 Transmitter and receiver unconditionally enabled
1 CTS enables transmitter; CD enables receiver

5-4 0 1 stop bit
1 1-1/2 stop bits
2 2 stop bits
3 Reserved, drivers should not set this value

140 Chapter 6 Writing Terminal Drivers

Bits Value Meaning
3-2 0 6 bits/character

1 7 bits/character
2 8 bits/character
3 5 bits/character

1-0 0 No parity
1 Invalid value

2 Even parity

3 Odd parity

spc_hi_water_mark
When the device's input buffer fills to contain this number of characters,
Special Character Mode is enabled (if enabled by the special_modes
field). If the number of characters in the device's input buffer is less
than the high water mark, Special Character Mode is disabled, even if it
is turned on in the special_modes field. The TSC sets this field
based on user input.

special_char(4)
An array of up to four characters that are defined as the device's special
characters. If Special Character Mode is on, typing any of these
characters at the keyboard generates a special-character interrupt.
When this happens, the term_check procedure sets the
received_special field of this structure to indicate which special
character was typed. If the character is a signal character, the TSC
processes it immediately. The TSC sets this field based on user input.

If you define less than four special characters, fill the remaining slots
with duplicates of the last character you define.

reserved(41)
Reserved. Device drivers should not set these bytes.

driver_use_only(48)
Reserved for use by the device driver. The TSC does not read or write
these bytes.

Driver Programming Concepts Chapter 6 141

Procedures Terminal Drivers Must Supply
You must supply device-specific procedures for the TSC-supplied high-level device
driver procedures to call:

• term_init, called by ts_init_io

• term_finish, called by ts_finish_io

• term_setup, term_answer, and term_hangup, called by ts_queue_io and the
TSC's interrupt_task/message_task

• term_check, called by the TSC's interrupt handler/message_task

• term_out, called by ts_queue_io and the TSC's interrupt handler

• term_utility, called for buffered devices

The I/O System-supplied term_null procedure returns control to the caller. Use
term_null in place of TSC-required procedures when the driver does not require
them.

• If your terminals are not used with modems, use term_null instead of writing
your own term_answer and term_hangup procedures.

• If your terminal is not a buffered device, use term_null in place of the
term_utility procedure.

• If your application does not need to perform special processing when the last
terminal on the controller is detached, use term_null instead of the term_finish
procedure.

To use this procedure, specify its name in the DINFO table.

142 Chapter 6 Writing Terminal Drivers

Term_init Procedure
This procedure is called when the user attaches the first unit on the terminal
controller. This procedure must initialize the controller. When finished, the
procedure must fill in the status field of the TSC Data Area:

• If initialization is successful, set status to E_OK (0).

• If not, set status to E_IO (2BH) or any other value, in which case the BIOS
returns that value to the calling task. The attachdevice command expects E_IO
status if initialization is unsuccessful.

In addition, the term_init procedure must initialize the raw-input buffer for each unit
of the device. How this is done depends on whether your system is interrupt-driven
or message-based and whether the device is buffered or nonbuffered:

• For interrupt-driven nonbuffered devices and message-based drivers, the
term_init procedure must create a logical segment for the unit's raw-input buffer,
place a pointer to the segment in the raw_data_ptr field of the unit_data
portion of the TSC Data Area, place the size of the segment in the raw_size
field, and initialize the raw_in and raw_out fields to 0 (the offset for the start
of the segment). The recommended size of the raw-input buffer for nonbuffered
devices is 256 bytes.

• For message-based drivers, the term_init procedure must create the port/mailbox
the TSC uses to receive messages. This token is passed to the TSC by
port_token in the driver data portion of the TSC Data Area.

• For buffered devices, the term_init procedure must place a pointer to the unit's
on-board input buffer in the raw_data_ptr field of that unit's unit_data
portion of the TSC Data Area, set the raw_size field to the size of the input
buffer, and initialize raw_in and raw_out to 0 (the start of the input buffer).
Finally, it must set the output_buffer_size field of the buffered device's
buffer_device_data structure to the size of the unit's output buffer, and the
buffered_device field to TRUE to inform the TSC to use this buffer size.
The raw-input buffer size is provided by the terminal controller. The
raw_data_ptr pointer is created using the descriptor for the controller's shared
memory.

Driver Programming Concepts Chapter 6 143

Call Syntax

term_init (tsc_data_ptr);

Where:

term_init The name of the procedure. Use any name as long as it doesn't conflict
with other procedure names. Include the name in the DINFO table.

tsc_data_ptr
Pointer to the beginning of the TSC Data Area.

Term_finish Procedure
The TSC calls this procedure when a user detaches the last terminal unit on the
terminal controller. The procedure can do nothing and return, it can clean up data
structures for the driver, or it can clear the controller. It should delete any objects
created by the other terminal procedures.

Call Syntax

term_finish (tsc_data_ptr);

Where:

term_finish
The name of the procedure. Use any name as long as it doesn't conflict
with other procedure names. Include the name in the DINFO table.

tsc_data_ptr
Pointer to the beginning of the TSC Data Area.

Term_setup Procedure
This procedure initializes a terminal according to the fields in the corresponding
unit_data portion of the TSC Data Area. The TSC calls this procedure when
attaching the unit the first time, when detaching the device (for buffered devices
only), and whenever the terminal's input baud rate, output baud rate, read parity, and
write parity attributes are changed.

When the term_setup procedure receives control, it should initialize the unit using the
information that already exists in the unit_data portion of the TSC Data Area.

If indicated, this procedure must start a baud rate search. The term_check procedure
usually finishes the search and then fills in in_rate with the actual baud rate.

If the terminal controller is a buffered device, the term_setup procedure must set the
buffered_device field to TRUE. It should also fill in the other fields of the
buffered_device_data structure.

144 Chapter 6 Writing Terminal Drivers

In addition, this procedure should enable the communication device's on-board
receiver interrupt (the one for the unit being attached) so that it can accept data from
the connected terminal.

When a user detaches a unit on a buffered device, the TSC sets the
buffered_device field to FALSE and again calls the term_setup procedure. This
procedure should disable the communication device's on-board receiver interrupt (the
one for the unit being detached) to prevent extraneous characters from being
received.

Setup Procedure Must Recognize the Requested Operation

To distinguish between an attach device, a detach device, and a change terminal
characteristics operation requiring reinitialization, the term_setup procedure should
establish an internal flag for each unit in addition to the buffered_device fields.
A user bit in buff_output_state can be used for this flag. The term_setup
procedure can use its internal flag:

1. Initially, the term_init procedure sets the flag of each unit to FALSE to indicate
that no devices are attached.

2. When the TSC calls the term_setup procedure to attach a unit, both the
buffered_device field and the internal flag are FALSE. The term_setup
procedure recognizes from this combination that the operation is an attach
device.

3. The term_setup procedure performs the attach device operation and sets the
internal flag and the buffered_device flag to TRUE to indicate that the
device is attached.

4. When the TSC calls the term_setup procedure after attaching the unit but before
detaching it, both the buffered_device field and the internal flag are TRUE.
This means the line parameters (such as baud rate or parity) have changed. The
term_setup procedure must reinitialize the unit with the correct characteristics.

Driver Programming Concepts Chapter 6 145

5. When the unit is detached, the TSC sets the buffered_device flag to FALSE
and calls the term_setup procedure. In this situation, the buffered_device
field is FALSE, but the internal flag is TRUE. The term_setup procedure
recognizes from this combination that the operation is a detach device.

If your terminal driver supports a modem, the term_setup procedure should also set
the DTR line to active.

Call Syntax

term_setup (unit_data_n_ptr);

Where:

term_setup
The name of the procedure. Use any name as long as it doesn't conflict
with other procedure names. Include the name in the DINFO table.

unit_data_n_ptr
Pointer to the terminal's unit_data structure in the TSC Data Area.

Term_answer Procedure
This procedure activates the DTR line for a particular terminal. The TSC calls the
term_answer procedure only when both of these conditions are true:

• Bit 3 of terminal_flags in the terminal's unit_data structure (the modem
indicator) is set to 1.

• The TSC has received a Ring Indicate signal (the phone is ringing) or an answer
request (using an OSC modem answer sequence) for the terminal.

See also: OSC sequences, Appendix C

Call Syntax

term_answer (unit_data_n_ptr);

Where:

term_answer
The name of the procedure. Use any name as long as it doesn't conflict
with other procedure names. Include the name in the DINFO table.

unit_data_n_ptr
Pointer to the terminal's unit_data structure in the TSC Data Area.

146 Chapter 6 Writing Terminal Drivers

Term_hangup Procedure
This procedure clears the DTR line for a particular terminal. The TSC calls the
term_hangup procedure only when both of these are true:

• Bit 3 of terminal_flags in the terminal's unit_data structure (the modem
indicator) is set to 1.

• The TSC has received a Carrier Loss signal (the phone is hung up) or a hangup
request (using an OSC modem hangup sequence) for the terminal.

See also: OSC sequences, Appendix C

Call Syntax

term_hangup (unit_data_n_ptr);

Where:

term_hangup
The name of the procedure. Use any name as long as it doesn't conflict
with other procedure names. Include the name in the DINFO table.

unit_data_n_ptr
Pointer to the terminal's unit_data structure in the TSC Data Area.

✏ Note
Some modem devices recognize only carrier detect as an indication
that someone is calling and loss of carrier detect as an indication of
hangup. However, most of these devices require the DTR line to
be active before they can recognize carrier detect. For these
devices, the term_setup procedure must activate the DTR line.
Likewise, the term_hangup procedure must clear the DTR line for
about one second and then reactivate it.

Driver Programming Concepts Chapter 6 147

Term_check Procedure
For interrupt-driven devices, the TSC calls this procedure whenever the device
generates an interrupt (usually indicating that a key has been pressed). This
procedure should do this:

1. Check all terminals on the device for an input character. If found, put the
character in the unit's raw-input buffer, updating raw_in in the TSC Data Area.

2. If no input character is available, check to see if any device is ready to transmit
another character to the terminal.

3. If no device is ready to transmit a character to the terminal, and if this is a
buffered device for which special character mode is enabled, check for a special
character.

4. If no special character is available, check for a change in status (such as a ring or
carrier interrupt).

When the term_check procedure finds the first valid interrupt, it should quit scanning
other units and place the unit number in the interrupting_unit field of the TSC
Data Area.

✏ Note
Because an interrupt handler calls the term_check procedure and it
runs with interrupts disabled, the length of the procedure affects
interrupt latency.

For message-based devices, the TSC calls the term_check procedure on receipt of a
message from the controller. The length of this procedure does not affect interrupt
latency since it is called from a task and runs with interrupts enabled. This procedure
must do this:

1. Examine the received message and place the sending unit number in the
interrupting_unit field of the TSC Data Area.

2. Call the TSC's terminal mutual exclusion procedure.

See also: TSC Utility Procedures Supplied to Drivers, in this chapter

3. Copy any received characters into the device driver's raw-input buffer, modify
the parity bits (if necessary), and update raw_data_ptr in the TSC Data Area.

4. Process the received message.

Inform TSC of Interrupt Type

For both interrupt-driven and message-based drivers, place the type of interrupt this
procedure will return in the interrupt_type field of the TSC Data Area:

148 Chapter 6 Writing Terminal Drivers

Value Meaning
0 No interrupt occurred
1 An input interrupt occurred
2 An output interrupt occurred. This signals the TSC to call the term_out

procedure to display the output character at the terminal.
3 A ring interrupt occurred. If the terminal_flags field in the unit's unit_data

structure indicates that the unit supports a modem, this signals the TSC to
call the term_answer procedure to activate the DTR line.

Value Meaning
4 A carrier-loss interrupt occurred. If the terminal_flags field in the

unit_data structure indicates that the unit supports a modem, this signals
the TSC to call the term_hangup procedure to reset the DTR line.

5 A baud rate scan is in progress and the term_setup procedure needs more
time to determine the baud rate. This signals the TSC to delay for some
time and call the term_setup procedure again.

6 A special-character interrupt occurred. Only certain controllers can
generate these interrupts. The term_check procedure sets the
received_special field of the device's buffered_device_data structure to
identify the character. To avoid missing these occurrences, the
term_check procedure must add 8 to the value it places in the
interrupt_type field indicating that more interrupts are available.

Adding 8 to the interrupt_type value signals the TSC to call the term_check
procedure again after it processes the current interrupt. Values returned after
processing this and subsequent interrupts are:

Value Meaning
0H No more interrupts are pending
9H An input interrupt occurred
0AH An output interrupt occurred
0BH A ring interrupt occurred
0CH A carrier-loss interrupt occurred
0DH Term_check couldn't determine the baud rate; call term_setup again
0EH A special character interrupt occurred

Unless the controller hardware guarantees that an interrupt will be set after one of
multiple pending interrupts is serviced, the term_check procedure should always
signal that more interrupts are available. This ensures that the TSC calls the
procedure again. Otherwise, the driver could lose interrupts.

Driver Programming Concepts Chapter 6 149

Determine and Set the Baud Rate

If your terminal driver supports a baud rate search on an individual terminal, the
term_check procedure must ascertain the terminal's baud rate:

1. The first time the term_check procedure encounters an input interrupt for a
particular terminal, it should examine the in_rate field of that terminal's
unit_data structure to determine the baud rate.

2. If the in_rate indicates automatic baud rate search, the term_check procedure
should examine the input character to determine if it is an uppercase U from
which the baud rate is determined. It can usually check for 19200, 9600, and
4800 baud in one attempt.

3. If the term_check procedure determines the baud rate, it should set the in_rate
field of the unit_data structure to reflect the actual input baud rate and skip
Steps 4 and 5.

4. If the term_check procedure cannot determine the baud rate, it should increment
the in_rate field in the unit_data structure. When the next input interrupt
occurs, the procedure can try again to determine the baud rate.

5. The term_check procedure should place 0DH in the interrupt_type field to
tell the TSC that a baud rate scan is in progress. The TSC then waits a few clock
cycles and calls the term_setup procedure to set up the terminal for the new baud
rate. When the next interrupt occurs, the term_check procedure can continue
with the baud rate scan.

Reading the Input Character

For message-based and nonbuffered devices, the term_check procedure must also
read the input character, adjusting the parity bit according to bits 4 and 5 of the
terminal_flags field in the interrupting unit's unit_data structure, and move
that input character into the raw-input buffer pointed to by the raw_data_ptr field
of the unit_data structure. When raw_in equals raw_out minus 1, the circular
buffer is full. Message-based devices can handle multiple characters per message.
Nonbuffered devices handle one character per interrupt.

150 Chapter 6 Writing Terminal Drivers

For buffered devices, the term_check procedure does not read the input character(s).
Instead, the TSC calls the term_utility procedure to retrieve characters from the
buffered device. If the device is capable of informing the TSC about the current
values of raw_in and raw_out, the term_check procedure doesn't need to keep track
of raw_in. Later the TSC will call the term_utility procedure again to update the
raw_in field. However, if the device is not capable of informing the driver about the
current values of the raw_in and raw_out fields, the term_check procedure must
keep track of the raw_in value. It can either update the raw_in field each time an
input interrupt occurs, or it can maintain an internal copy of raw_in and make the
information available to the term_utility procedure. If the interrupt is a special
character interrupt, the term_check procedure must set the special_received field
of the unit_data structure to identify the special character.

Call Syntax

term_check (tsc_data_ptr); /* Interrupt-based */

or

term_check (tsc_data_ptr, message_ptr); /* Message-based */

Where:

term_check
The name of the procedure. Use any name as long as it doesn't conflict
with other procedure names. Include the name in the DINFO table.

tsc_data_ptr
Pointer to the start of the TSC Data Area.

message_ptr
For message-based terminal drivers, a pointer to the message received
from the controller using the receive system call, structured as:

DECLARE message STRUCTURE (
data_ptr POINTER,

flags WORD_16,

status WORD_16,

trans_id WORD_16,

data_length WORD_32,

forwarding_port SELECTOR,

remote_socket WORD_32,

control_msg(20) BYTE,

reserved(4) BYTE);

or

Driver Programming Concepts Chapter 6 151

typedef struct {

UINT_8* data_ptr

UINT_16 flags;

UINT_16 status;

UINT_16 trans_id;

UINT_32 data_length;

SELECTOR forwarding_port;

UINT_32 remote_socket;

UINT_8 control_msg[20];

UINT_8 reserved[4];

} MESSAGE_STRUCT;

Where:

data_ptr Pointer to the starting address of the data portion (if any) of the received
message. If the data was received in a data chain, this parameter points
to the data chain block. If a null pointer, there is no optional data
portion for this message.

See also: Device_interrupt Procedure, message_ptr, in this manual
Nucleus call receive, System Call Reference for descriptions of the
remaining fields of the message structure

For MB I message-based terminal drivers, the call syntax is:

term_check (controller_data_ptr, message_ptr);

Where:

controller_data_ptr
Pointer to the device data segment created by the TSC.

message_ptr
Pointer to a structure containing tokens for the object received at a
message mailbox and a token for a response mailbox.

Term_out Procedure
The TSC calls this procedure to display a character at a terminal connected to a
nonbuffered device. The TSC passes the character and a pointer to the terminal's
unit_data structure. If bits 6 through 8 of the terminal_flags field of the
unit_data structure so indicate, the term_out procedure should adjust the
character's parity bit and then output the character to the terminal.

This procedure is not needed for message-based and buffered devices. They can send
more than one output character at a time. Instead, the term_utility procedure is used
to move characters to the device's output buffer.

152 Chapter 6 Writing Terminal Drivers

Call Syntax

term_out (unit_data_n_ptr, output_character);

Where:

term_out The name of the procedure. Use any name for this procedure, as long
as it doesn't conflict with other procedure names. Include the name in
the DINFO table.

unit_data_n_ptr
Pointer to the terminal's unit_data structure in the TSC Data Area.

output_character
A character that the term_out procedure sends to the terminal.

Term_utility Procedure
This call applies specifically to message-based and buffered devices. If your device
is a nonbuffered device, use term_null for the term_utility procedure.

See also: buffered_device_data structure, in this chapter

When the TSC calls the term_utility procedure, it sets the function_id field of the
unit's buffered_device_data structure to one of these values:

Value Meaning
0 This procedure must move the number of characters specified in the

out_count field from the user's output buffer (pointed to by the
user_buffer_ptr field) to the unit's on-board output buffer. For
message-based drivers, this step involves sending a message
containing the output data to the controller.

1 The TSC has moved a number of characters specified in the in_count
field from the unit's raw-input buffer to the type-ahead buffer. If the
device driver (or the device itself) is keeping track of the space
remaining in the unit's input buffer, the term_utility procedure should
update its count (or send a command to the device's firmware)
indicating that in_count bytes have been removed from the unit's input
buffer. The driver should also decrement in_count.

2 When an input interrupt was received, the TSC's input buffer was full.
Therefore it didn't move any characters from the device's raw-input
buffer to the type-ahead buffer. The term_utility procedure must send
a command to the device to send the input interrupt again.

Driver Programming Concepts Chapter 6 153

Value Meaning
3 The modem control bit in the terminal_flags field of the unit's

unit_data structure has changed. The term_utility procedure should
set or reset DTR according to the setting of the bit.

4 One or more of the terminal attributes that apply specifically to
buffered devices have changed. In the buffered_device_data
structure, these attributes are listed in the fields from special_modes
through special_char. The term_utility procedure should issue
controller or firmware commands to modify the device attributes to
match the values listed in the buffered_device_data structure.

5 The TSC calls this function to find out the amount of space available
in the unit's output buffer. When this function is called, the
term_utility procedure must indicate how much room is left in the
output buffer for more characters by placing the number of bytes of
free space in the units_available field.

6 Output has been canceled, or the TSC has received a discard output
control character, normally <Ctrl-O>. The term_utility procedure
must clear the unit's output buffer.

7 The TSC has received an output control character that changes the
output state of the terminal. The term_utility procedure must examine
the buff_output_state field and set the output state accordingly. For
example, if an operator types a <Ctrl-S>, the TSC sets bit 1 in the
buff_output_state field to 1. In this case, the procedure must stop
output to the terminal.

8 Characters must be echoed to the terminal. The term_utility
procedure must move the number of characters specified in
echo_count from the buffer pointed to by echo_buffer_ptr to the unit's
on-board output buffer. Any characters that the procedure doesn't
move are lost. For message-based drivers, this step involves sending a
message containing these characters to the controller.

9 Input has been canceled. The term_utility procedure must clear the
unit's raw-input buffer and set raw_out equal to raw_in.

0AH The term_utility procedure must update the raw_in field of the
unit_data structure to the correct value.

154 Chapter 6 Writing Terminal Drivers

Value Meaning
0BH, 0CH Reserved

0DH If the controller does not automatically send output interrupts, the
driver must request the controller to send an interrupt/message when
the output buffer on the controller is empty. The driver must then
indicate an output interrupt to the TSC. Otherwise, ignore this
function code.

Call Syntax

term_utility (unit_data_n_ptr);

Where:

term_utility
The name of the procedure. Use any name as long as it doesn't conflict
with other procedure names. Include the name in the DINFO table.

unit_data_n_ptr
Pointer to the terminal's unit_data structure in the TSC Data Area.

Driver Programming Concepts Chapter 6 155

TSC Utility Procedures Supplied to Drivers
Some terminal drivers make calls to TSC utility procedures. These procedures are
described here:

• ts_mutex_unit (terminal mutual exclusion)

• ts_set_out_buf_size (terminal set output buffer size)

• xts_set_output_waiting (terminal set output waiting)

• g_delay (time delay)

Ts_mutex_unit Procedure
For message-based drivers, the term_check procedure calls the ts_mutex_unit
procedure. The procedure gains exclusive access to the unit_data structure for the
message-sending device. The procedure must be declared as an external procedure
with one pointer parameter.

Call Syntax

ts_mutex_unit (unit_data_ptr);

Where:

unit_data_ptr
Pointer to the unit_data structure for the message-sending unit. The
term_check procedure obtains this value by using the pointer to the TSC
Data Area.

Ts_set_out_buf_size Procedure
For message-based drivers, this procedure is called by the term_init procedure to
communicate the size of the controller's output buffer to the TSC. This is needed if
the initialization procedure does not inform the TSC of the buffer size. For example,
a driver that can determine the size of the output buffer only after the unit is attached
must call this procedure.

Call Syntax

ts_set_out_buf_size (udata_ptr, out_buf_size);

Where:

udata_ptr Pointer to the unit_data structure for the attached unit.

out_buf_size
The controller's output buffer size for this unit.

156 Chapter 6 Writing Terminal Drivers

Xts_set_output_waiting Procedure
When a unit of a nonbuffered device is initialized, the term_setup procedure should
notify the TSC that the unit is ready to accept interrupts by calling this procedure.
The term_setup procedure must declare the xts_set_output_waiting procedure as an
external procedure with one pointer parameter. For buffered devices, this procedure
does not need to be called.

Call Syntax

xts_set_output_waiting (unit_data_ptr);

Where:

unit_data_ptr
Pointer to this unit's unit_data portion of the TSC Data Area.

G_delay Procedure
This procedure is called by drivers that need a time delay between I/O instructions
(10 Microsecond granularity).

Call Syntax

g_delay (count, delay_factor);

Where:

count Number of 10 Microsecond intervals to wait

delay_factor
A system-dependent value that guarantees proper granularity.

See also: /rmx386/inc/sysinfo.lit file for WORD_16 that defines
delay_factor

■■ ■■ ■■

Driver Programming Concepts Chapter 7 157

Handling I/O Requests 7
Tasks use BIOS or EIOS calls to do I/O operations. If the operation is valid for the
requested device, the device driver translates the request into specific commands for
the device.

This chapter describes the two basic parts involved in processing the calls: the device
driver procedures that the I/O System calls, and the tasks that the driver procedures
must do after being called. If you are writing your own device drivers, you will need
to provide some or all of these functions.

The I/O System can make eight types of requests of a device driver. One of the eight
requests, the a_special system call, has multiple subrequests associated with it. User-
specified subfunctions can have numbers from 32,768 through 65,535 and can be
used with the physical file driver only.

158 Chapter 7 Handling I/O Requests

The I/O System supports these functions.

Name Number Description

Attachdevice
Detachdevice
Open
Close
Read
Write
Seek
Special functions

Format track
Query
Satisfy
Notify
Get data
Get term data
Set term. data
Set signal
Rewind tape
Read file mark
Write file mark
Retention tape

Set info
Get info

Get Status
Cancel I/O
Resume I/O
Disk Mirror
Get Device Free

Space Data
Get Extended Free

Space Data

4
5
6
7
0
1
2
3
0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14-15
16
17
18
19
20

21

22–32,767

Prepare device for use.
Disconnect device.
Prepare device or file for I/O.
Terminate I/O on device or file.
Read from device at current location.
Write to device at current location.
Find new location on random access device.
Perform following functions.
Format track on mass-storage device.
Find out about stream-file request.
Force stream file operation.
Find out when volume is unavailable.
Find out about hard disk or tape.
Find out about terminal.
Change current terminal configuration.
Designate keyboard signal character.
Rewind tape to load point.
Move to next tape file mark.
Write at current tape position.
Fast-forward then rewind tape to load point.
Reserved
Write bad track or sector locations.
Retrieve bad track or sector locations.
Reserved
Find out about physical terminal device.
Cancel requests to specified terminal.
Resume I/O with specified terminal.
Mirror primary hard disk of set.
Obtain information about available space on
a disk device(limited to 4Gbyte disks).
Obtain information about available space on
a disk device(limited to 256K Gbyte disks).
Reserved

You must provide support for the functions Attach Device through Seek. You may
omit support for Special if you do not need it.

See also: a_special BIOS call for complete descriptions of special functions,
System Call Reference

Driver Programming Concepts Chapter 7 159

I/O System Responses to I/O System Calls
The I/O System identifies the kind of request to the device driver by setting the
funct field of the IORS. If the request is an a_special request, the system also sets
the subfunct field. Then it calls queue_io. This chapter explains the actions
queue_io must take.

When a connection is deleted while I/O is in progress, such as when a job is deleted,
the I/O System calls cancel_io to remove requests from the request queue and stop
the processing of the current request, if necessary. Then the I/O System calls
queue_io with the funct field of the IORS set to f_close (7). When this request
reaches the front of the queue, it is simply returned to the indicated response mailbox.

When the I/O System calls multiple procedures, the order of the calls is significant.
The I/O System calls a different set of procedures depending on whether or not other
units of the device have already been attached.

• On receiving the first attach call for a device, the I/O System calls init_io, then
queue_io, with the funct field of the IORS set to f_attach (4).

• On subsequent attach calls, the I/O System just calls queue_io with the funct
field of the IORS set to f_attach (4).

• If more than one unit of the device is attached when the I/O System receives a
detach device request, the I/O System calls queue_io, with the funct field of the
IORS set to f_detach (5). Queue_io does cleanup on the selected unit, if
necessary.

• If only one unit of the device is attached, the I/O System calls queue_io, then
finish_io to do cleanup for the device as a whole (if necessary) and to delete any
objects created by init_io.

160 Chapter 7 Handling I/O Requests

Actions Required of a Device Driver
This section summarizes the actions required of a device driver whenever it receives
any of the requests or subrequests. Unless otherwise specified, all actions must be
done by the queue_io procedure or a procedure it calls. If a driver does not support a
particular function or subfunction, it must place the E_IDDR (2AH) condition code in
the IORS status field before returning.

If you write a custom terminal driver, the driver must process all requests directly. If
you write a custom random access and common driver, it must process most requests.
Unless otherwise noted, these sections assume that your device driver handles all the
actions described.

Unless otherwise specified, the descriptions of each function refer to fields of the
IORS structure such as status.

See also: IORS in this manual, for descriptions of these fields

When status is returned by an operation, it should be E_OK for successful
completion. If an error occurs, place the general condition code into the IORS
status field and specific error code into the IORS unit_status field.

F_read,,,,====Function Code 0
The device driver must do this to support f_read requests:

1. Use count to determine the number of bytes to read from the device.

2. Read the bytes from the location specified in dev_loc, as an absolute byte
count, an absolute sector number, or as the track and sector numbers. If the
device is a diskette drive formatted in the OS standard format, calculate the real
location after accounting for the special formatting on track 0. Read the data into
the memory pointed to by buff_ptr.

See also: Appendix E, Supporting the Standard Diskette Format

The dev_loc field is not used by terminal device drivers or by common drivers
such as tape drivers.

3. Place the number of bytes read into actual. If no error occurs, this value
should be the same as count, otherwise the actual value will be less.

4. Place the read status into status.

Driver Programming Concepts Chapter 7 161

F_write,,,,====Function Code 1
The device driver must do this to support f_write requests:

1. Use count to determine the number of bytes to write to the device.

2. Read the bytes from the area of memory pointed to by buff_ptr.

3. Write the bytes to the location specified in dev_loc, as an absolute byte count,
an absolute sector number, or as the track and sector numbers. If the device is a
diskette drive formatted in the OS standard format, calculate the real location
after accounting for the special formatting on track 0.

The dev_loc field is not used by terminal device drivers or by common drivers
such as tape drivers.

4. Place the number of bytes written into actual. If no error occurs, this value
should be the same as count, otherwise actual will be less.

5. Place the write status into status.

F_seek,,,,====Function Code 2
The device driver must do this to support f_seek requests:

1. Seek to the location specified in dev_loc, as an absolute byte count, an absolute
sector number, or as the track and sector numbers. If the device is a diskette
drive formatted in the OS standard format, calculate the real location after
accounting for the special formatting on track 0.

2. Place the seek status into status.

F_attach,,,,====Function Code 4
The device driver must do this to support f_attach requests:

1. Initialize the unit specified in unit and initialize any driver data structures
specific to that unit.

2. Place the attach status into status.

F_detach,,,,====Function Code 5
The device driver must do this to support f_detach requests:

1. Delete any driver data structures created by the device driver that are specific to
the unit listed in unit.

2. Place the detach status into status.

162 Chapter 7 Handling I/O Requests

F_open,,,,====Function Code 6
The device driver must do this to support f_open requests:

1. Prepare the unit for accessing a file. Usually, no processing is involved for this
operation.

2. Place the open status into status.

F_close,,,,====Function Code 7
The device driver must do this to support f_close requests:

1. Prepare the unit for closing a file. Usually, no processing is involved for this
operation.

2. Place the close status into status.

F_special,,,,====Function Code 3
The device driver must do this to support f_special requests:

Examine subfunct to determine the action to take. Most subfunctions use auxiliary
information pointed to by the ioparm_ptr pointer from the a_special system call.
The format of this information depends on the subfunction invoked. These
paragraphs describe the actions of the driver for each subfunction.

See also: BIOS call a_special, System Call Reference

Fs_format_track,,,,====Subfunction 0

For a tape drive, do this:

1. Rewind the tape.

2. Erase the entire tape.

3. Rewind the tape again.

For a disk drive, format a track according to the information pointed to by
ioparm_ptr:

1. If the track_number field of the format_track structure is greater than the
highest track on the disk, set status to E_SPACE.

2. If the track_number field is valid, format the track using the interleave and
fill_char values from the format_track structure, and using the device
characteristics listed in the DUIB dev_gran and flags. If necessary, also use
the device-specific characteristics listed in the UINFO table.

Driver Programming Concepts Chapter 7 163

3. If the drive includes information about bad sectors or bad tracks, retrieve this
information and assign alternate sectors or an alternate track for the track listed
in the format_track structure. Depending on how the driver works, it might
not need to retrieve the data more than once. But it should check to assign
alternate sectors or an alternate track each time it formats a track.

4. If this is a diskette drive and bit 4 of the flags field in the DUIB is set to 0
(indicating standard format), track 0 must be formatted differently.

5. Place the format status in status.

See also: Bad sector information, Appendix D
Supporting the Standard Diskette Format, Appendix E

Fs_query,,,,====Subfunction 0
Fs_satisfy,,,,====Subfunction 1

These are stream file operations handled totally by the I/O System's stream file
driver.

Fs_notify,,,,====Subfunction 2

The random access high-level device driver procedure handles fs_notify requests for
random access and common drivers. If the driver is a custom driver, it must do this:

1. Save the parameters passed in the notify structure in variables for later use.

2. Whenever a media change occurs, such as opening a diskette drive door or
removing a tape cartridge (these usually cause an interrupt that the driver can
identify as a media-change interrupt), the driver must send a token to the
mailbox in the notify structure.

If the driver is a random access driver, the I/O System doesn't pass the fs_notify
request to the device-specific procedures. However, the driver must call the I/O
System-supplied notify procedure whenever it detects a media change.

Fs_get_drive_data,,,,====Subfunction 3

1. Copy the disk drive or tape drive characteristics (as obtained from the DUIB,
DINFO table, UINFO table, or the device itself) into the structure pointed to by
the ioparm_ptr parameter.

2. Place the status into status.

164 Chapter 7 Handling I/O Requests

Fs_get_terminal_attributes,,,,====Subfunction 4

For terminal drivers, the TSC does this operation without passing it on to the device-
specific procedures. Random access and common drivers do not support this
operation and should set status to E_IDDR.

If custom terminal drivers support this subfunction, they should place information
about the terminal in the structure pointed to by the ioparm_ptr parameter.

Fs_set_terminal_attributes,,,,====Subfunction 5

For terminal drivers, the TSC places attributes in a terminal_attributes
structure that is pointed to by the ioparm_ptr pointer. This is the same structure
used by fs_get_terminal_attributes. The TSC calls the term_setup procedure that
changes the baud rate and parity. It also calls the term_utility procedure for changes
in those attributes that apply specifically to buffered devices. The procedure that
receives control must examine the structure and ensure that the device is set up with
the corresponding attributes.

Random access and common drivers do not support this operation and should set
status to E_IDDR.

If custom terminal drivers support this subfunction, they should examine the structure
pointed to by the ioparm_ptr pointer and act on the changes. Otherwise, they
should return E_IDDR in status.

Fs_set_signal,,,,====Subfunction 6

For terminal drivers, the TSC performs this operation without passing it on to the
device-specific procedures.

For custom terminal drivers, the ioparm_ptr pointer points to a signal_pair
structure.

To be compatible with the TSC and allow the HI <Ctrl-C> mechanism to operate
properly, the driver must do this. Otherwise, the driver can set up its own
interpretation of signal characters.

1. Save the parameters passed in the signal_pair structure in driver variables for
later use. The driver should accept signal_pair.character values in the
range of 0 through 31 or 32 through 63.

• If the value is in the range of 0 through 31, it is the ASCII code of the signal
character.

Driver Programming Concepts Chapter 7 165

• If the value is in the range of 32 through 63, the driver must subtract 32
from the value to obtain the ASCII code of the signal character. These
higher values indicate that the driver must flush the terminal's input buffer
when it receives the signal character.

• If the value is greater than 63, the driver can ignore the fs_set_signal
request.

2. Whenever the character indicated in the signal_pair.character field is
entered at the terminal, send a unit to the semaphore listed in
signal_pair.semaphore. If the signal character was originally specified in
the range 32 through 63, also flush the terminal's input buffer.

Random access and common drivers do not support this operation and should set
status to E_IDDR. If the driver doesn't support this subfunction, it should return an
E_IDDR condition code.

Fs_rewind,,,,====Subfunction 7

For a tape drive, rewind the tape and return status.

For other devices, place E_IDDR in status and return.

Fs_read_file_mark,,,,====Subfunction 8

For a tape drive, move the tape to the next file mark and return status.

For other devices, place E_IDDR in status and return.

Fs_write_file_mark,,,,====Subfunction 9

For a tape drive, write a file mark on the tape at the current tape position and return
status.

For other devices, place E_IDDR in status and return.

Fs_retention_tape,,,,====Subfunction 10

For a tape drive, do these steps to ensure that the tape is wound evenly and is straight
in the cartridge:

1. Rewind the tape.

2. Fast forward the tape to the end.

3. Rewind the tape again and return status.

For other devices, place E_IDDR in status and return.

166 Chapter 7 Handling I/O Requests

Fs_set_bad_info,,,,====Subfunction 12

For an ESDI hard drive, do all of these steps. For a non-ESDI hard drive, do steps 1
through 5.

1. Examine the dev_gran field of the DUIB to determine the sector size of the
device.

2. Based on the sector size, move the head to the appropriate surface of the last
cylinder - 1:

128-byte sectors last surface
256-byte sectors last surface-1
512-byte sectors last surface-2
1024-byte sectors last surface-3

3. Format the entire track.

4. Write 0ABCDH in the first word of the track. Then write the information from
the bad_track_info structure (beginning with the count field) to the track.
Write the entire bad-track information four times.

5. NON-ESDI: Return status to the caller.

ESDI: If the operation completes successfully, continue to step 6. If an error
occurs, place the general condition code into the status and a specific error
code into unit_status. Return to the caller.

6. Translate the information from the bad_track_info structure into the ESDI
structure.

See also: Appendix D, Interpreting Bad Track Information

7. Format the entire track of every surface of the last cylinder - 2.

8. For a given surface, write the bad track information four times at each
corresponding head of the last cylinder - 2. Write the information at 1024 bytes
per sector.

9. Return status to the caller.

Fs_get_bad_info,,,,====Subfunction 13

For an ESDI hard drive, do all of these steps. For a non-ESDI hard drive, do steps 1
through 4.

1. Examine the dev_gran field of the DUIB to determine the sector size of the
device.

Driver Programming Concepts Chapter 7 167

2. Based on the sector size, move the head to the appropriate surface of the last
cylinder - 1:

128-byte sectors last surface
256-byte sectors last surface-1
512-byte sectors last surface-2
1024-byte sectors last surface-3

3. Read the bad-track information into the bad_track_info structure.

4. NON-ESDI: If the read operation completes successfully, set status to E_OK.
If an I/O error occurs, attempt to read the next copy of the bad track information.
If I/O errors occur when reading all four copies of the information, place the
general condition code into status and a specific error code into
unit_status. Return to the caller.

ESDI: If the read operation completes successfully, set status to E_OK and
return to the caller. If the errors occur when reading all four copies of the bad
track information, continue with step 5.

5. Read the bad track information on every surface of the last cylinder - 2 into the
ESDI structure.

6. If all read operations complete successfully, continue with step 7. If I/O errors
occur when reading all four copies of information at any head, continue with step
8.

7. Translate the ESDI structure into the bad_track_info structure and set
status to E_OK and return to the caller.

8. Read the vendor bad track information on every surface of the last cylinder + 1
into the ESDI structure.

9. If all read operations complete successfully, set status to E_OK. If an I/O
error occurs on any surface, place the general condition code into status and a
specific error code into unit_status.

Getting Terminal Status,,,,====Subfunction 16

This function applies only to physical devices. It returns the status of a terminal that
is being driven by a terminal device driver. To get a terminal's status, call a_special.

Cancelling Terminal I/O,,,,====Subfunction 17

Cancel all requests associated with a specified connection to a terminal. To cancel all
requests, call a_special.

168 Chapter 7 Handling I/O Requests

Resuming Terminal I/O,,,,====Subfunction 18

Resumes an output request that is blocked because an output control character was
entered at the terminal. To resume an output request, call a_special.

Performing Disk Mirroring,,,,====Subfunction 19

This function does disk mirroring operations on the primary hard disk of the mirror
set. The PCI device driver implements the actual mirroring, error detection and
rollover, and on-line synchronization.

Getting Device Free Space, Subfunction 20

This function gets information about the free space available on the specified device.

See also: a_special, System Call Reference

Get Extended Free Space Data, Subfunction 21

This function gets information about the free space available on the specified device.

See also: a_special, System Call Reference

■■ ■■ ■■

Driver Programming Concepts Chapter 8 169

Making a Device Driver Loadable 8
Now that you have written your device driver, load and run the driver using the
sysload command. This command adds the driver to the OS dynamically at run time
as a child job of the HI. As such, it stays resident until the system is reset. When a
device driver is loadable, you need to have it present in your working environment
only when you have the device present.

See also: Jobs, System Concepts
Loadable jobs and device drivers, System Configuration and
Administration

A loadable driver consists of two parts:

• Procedures that interface to the hardware controlled by the driver (described
earlier in this manual)

• An initialization front-end

This chapter explains how to write the initialization front-end and the DUIB, DINFO,
and UINFO tables that are required to add your device driver or drivers to your
application system.

Reference is made to the loadable drivers that are provided with the iRMX product.
In addition to the executables, the OS includes source code for their initialization
front-ends found in the /demo/ldd/ subdirectories. The OS also includes source for a
loadable RAM driver, ramdrv. These examples are good models to follow in your
own device driver development.

See also: Loadable Drivers in this manual
ASM386 Macro Assembler User's Guide
iC-386 Compiler User's Guide
PL/M-386 Programmer's Guide

170 Chapter 8 Making a Device Driver Loadable

How to Make a Device Driver Loadable
Making a device driver loadable involves these steps:

1. Make the required driver procedures callable as far procedures using the proper
compiler controls.

2. Add the required far pointer elements to the device driver's source code
declaration of the DINFO table.

3. Prepare the needed DUIB, DINFO and UINFO tables which define the interfaces
to the driver.

4. Prepare an initialization front-end for the driver.

5. Compile/assemble your device driver, its front-end, and its interface table
module. Bind your loadable driver as a closed COMPACT subsystem with
exported BIOS/high-level device driver procedure interfaces. Use one of the
supplied generation submit files as a template.

Once the driver is loadable, run it using the sysload command or the Soft-
Scope debugger while debugging. Use the attachdevice command to attach your
driver for use by the OS.

See also: Using the sysload command, debugging a loadable job or device driver,
System Configuration and Administration

Making Driver Procedures Callable as Far Procedures
Since the driver procedures reside in their own code segment (COMPACT model),
separate from the code segment of the device drivers in the OS, the BIOS needs to
access your device driver procedures using far calls. To make the far pointers to your
device driver procedures use the EXPORT control of your iC-386 or PL/M-386
compiler to force the exported procedures to be far.

For custom drivers, using the provided RAM driver front-end source as an example,
the subsystem declaration is:

$compact(ramdrv -const in code- has

$ ramdrv,

$ xram;

$ exports

$ ram_init_io,

$ ram_finish_io,

$ ram_queue_io,

$ ram_cancel_io)

Driver Programming Concepts Chapter 8 171

This declaration defines the loadable RAM-disk driver as a closed COMPACT
subsystem with the name ramdrv. This segment contains the modules ramdrv (the
driver front-end) and xram (the actual RAM-disk driver written according to the
custom driver specifications). The declaration exports the four custom driver
procedures ram_init_io, ram_finish_io, ram_queue_io, and ram_cancel_io. This
same subsystem declaration must be added to other modules that make up the
loadable driver.

If you want common source between the loadable version of the driver and the ICU-
configurable version, conditionally include this subsystem declaration in the actual
driver modules. For example, in a C driver use this:

#ifdef loadable

$compact(ramdrv -const in code- has

$ xram;

$ exports

$ ram_init_io,

$ ram_finish_io,

$ ram_queue_io,

$ ram_cancel_io)

$optimize(3)

#endif

The subsystem declaration for common, random access, and terminal drivers is
similar to the RAM driver example as can be seen in the front-end source modules
for the provided drivers of these types.

Adding Far Pointer Elements to DINFO Table Declarations
Once again using the RAM-disk driver as an example, a minimal DINFO table
declaration is required in the source code for the addresses ram_init_io,
ram_finish_io, ram_queue_io, and ram_cancel_io procedures. Use this DINFO
structure for PL/M or C programs:

LOADABLE_CUSTOM_DINFOLITERALLY 'STRUCTURE(

far_init_io POINTER,

far_finish_io POINTER,

far_queue_io POINTER,

far_cancel_io POINTER)';

or

172 Chapter 8 Making a Device Driver Loadable

typedef struct loadable_custom_dinfo_struct {

char * far_init_io;

char * far_finish_io;

char * far_queue_io;

char * far_cancel_io;

} LOADABLE_CUSTOM_DINFO_STRUCT

For common and random access drivers, using the Native AT Floppy driver as an
example, the required DINFO table structure is:

LOADABLE_RAD_DINFO LITERALLY 'STRUCTURE(

level WORD_16,

priority BYTE,

stack_size WORD_32,

data_size WORD_32,

num_units WORD_16,

device_init WORD_32,

device_finish WORD_32,

device_start WORD_32,

device_stop WORD_32,

device_interrupt WORD_32,

time_out WORD_16,

reserved_a WORD_16,

reserved_b WORD_16,

/* The following POINTERS are far procedure slots */

far_dev_init_pPOINTER,

far_dev_finish_pPOINTER,

far_dev_start_pPOINTER,

far_dev_stop_pPOINTER,

far_dev_interrupt_pPOINTER)';

or

Driver Programming Concepts Chapter 8 173

typedef struct {

UINT_16 level;

UINT_8 priority;

UINT_32 stack_size;

UINT_32 data_size;

UINT_16 num_units;

UINT_32 device_init;

UINT_32 device_finish;

UINT_32 device_start;

UINT_32 device_stop;

UINT_32 device_interrupt;

UINT_16 time_out;

UINT_16 reserved_a;

UINT_16 reserved_b;

/* The following pointers are far procedure slots */

UINT_8 * far_dev_init_p;

UINT_8 * far_dev_finish_p;

UINT_8 * far_dev_start_p;

UINT_8 * far_dev_stop_p;

UINT_8 * far_dev_interrupt_p;

} LOADABLE_RAD_DINFO_STRUCT

174 Chapter 8 Making a Device Driver Loadable

For terminal drivers, using the AT serial port driver as an example, the required
DINFO table structure is:

LOADABLE_TERM_DINFO LITERALLY 'STRUCTURE(

num_units WORD_16,

data_size WORD_16,

stack_size WORD_32,

term_init WORD_32,

term_finish WORD_32,

term_setup WORD_32,

term_output WORD_32,

term_answer WORD_32,

term_hangup WORD_32,

term_utility WORD_32,

num_interrupt WORD_16,

interrupt_level WORD_16,

term_check WORD_32,

/* The following POINTERS are far procedure slots */

far_term_init_p POINTER,

far_term_finish_p POINTER,

far_term_setup_p POINTER,

far_term_output_p POINTER,

far_term_answer_p POINTER,

far_term_hangup_p POINTER,

far_term_utility_p POINTER,

far_term_check_p POINTER)';

or

Driver Programming Concepts Chapter 8 175

typedef struct {

UINT_16 num_units;

UINT_16 data_size;

UINT_32 stack_size;

UINT_32 term_init;

UINT_32 term_finish;

UINT_32 term_setup;

UINT_32 term_output;

UINT_32 term_answer;

UINT_32 term_hangup;

UINT_32 term_utility;

UINT_16 num_interrupts;

UINT_16 interrupt_level;

UINT_32 term_check;

/* The following pointers are far procedure slots */

UINT_8 * far_term_init_p;

UINT_8 * far_term_finish_p;

UINT_8 * far_term_output_p;

UINT_8 * far_term_answer_p;

UINT_8 * far_term_hangup_p;

UINT_8 * far_term_utility_p;

UINT_8 * far_term_check_p;

} LOADABLE_TERM_DINFO;

Preparing the Needed DUIB, DINFO, and UINFO Tables
The easiest way to define DUIB, DINFO, and UINFO tables is to use one of the
provided configuration files as a template. This configuration file is an assembly
language program that invokes macros from the file lddinfo.mac. This discussion
uses the file for the AT COMn serial port driver, comcfg.a38, in the /demo/ldd/
subdirectory.

The configuration file has a number of essential parts:

• Name specification

name comcfg ; Module name

• Macro file lddinfo.mac

$include(lddinfo.mac) ; Macro include file

176 Chapter 8 Making a Device Driver Loadable

• Code segment declaration

comdrv_code32 segment er public

; AT COMn port driver far

; procedures part of the comdrv

; subsystem

• External declarations for the driver procedures specified in the added fields of
the DINFO table (source for the procedures in this example is in the file
c/x120sp.c in the /demo/ldd/ subdirectory.

extrn I120SERINIT : far

extrn I120SERFINISH : far

extrn I120SERSETUP : far

extrn I120SEROUTPUT : far

extrn I120SERANSWER : far

extrn I120SERHANGUP : far

extrn I120SERUTILITY : far

extrn I120SERCHECK : far

comdrv_code32 ENDS

• Additional segment directives

code segment er public ; segment definition

assume ds:data

assume es:nothing

• DINFO structure definition using the macro in lddinfo.mac that is appropriate for
the driver type (the structure name is a PUBLIC variable so it can be referenced
from the driver front-end for any updating based on command line input).

Driver Programming Concepts Chapter 8 177

PUBLIC DINFO_COM ; Public DINFO name

DINFO_COM term_dev_info < ; Terminal DINFO macro

& 01H, ; num_units

& 9, ; data_size

& 256, ; stack_size

& 0, ; null term_init procedure (near)

& 0, ; null term_finish procedure (near)

& 0, ; null term_setup procedure (near)

& 0, ; null term_output procedure (near)

& 0, ; null term_answer procedure (near)

& 0, ; null term_hangup procedure (near)

& 0, ; null term_utility procedure (near)

& 1, ; num_interrupts

& 048H, ; interrupt_level

& 0, ; null term_check procedure (near)

& I120SERINIT, ; far term_init procedure

& I120SERFINISH, ; far term_finish procedure

& I120SERSETUP, ; far term_setup procedure

& I120SEROUTPUT, ; far term_output procedure

& I120SERANSWER, ; far term_answer procedure

& I120SERHANGUP, ; far term_hangup procedure

& I120SERUTILITY, ; far term_utility procedure

& I120SERCHECK ; far term_check procedure

&>

DW 03F8H ; Serial port I/O address

DB 0H ; System reset character

DB 0H ; Monitor breakpoint character

• UINFO structure definition, with the structure name as a PUBLIC variable so it
can be referenced from the driver front-end for any updating based on command
line input.

PUBLIC UINFO_COM ; Public UINFO name

UINFO_COM DW 01AH ; conn_flags

DW 0101H ; terminal_flags

DD 02580H ; in_rate

DD 00000H ; out_rate

DW 012H ; scroll_count

• DUIB table structure definition, using the define_duib (or define_duib_ext)
macro, with the structure name as a PUBLIC variable so it can be referenced
from the driver front-end for any updating based on command line input. The
define_duib_ext macro defines an extended DUIB for large device support.

178 Chapter 8 Making a Device Driver Loadable

This table includes from one to 255 DUIBs. The unit number must be 0. The
device and device-unit numbers must all start with 0 and increment with each
additional unit defined. The I/O system adds the next available device and
device-unit number to these values when it inserts the DUIBs into the list of
DUIBs accessible by the I/O system.

DUIBTABLE LABEL BYTE

PUBLIC DUIBTABLE

DEFINE_DUIB < ; DUIB definition macro

& 'COMx', ; Unit 0 DUIB name

& 00001H, ; supported file drivers

& 0FBH, ; supported functions

& 00, ; flags (N/A)

& 00, ; dev_gran (N/A)

& 00, ; dev_size low (N/A)

& 00, ; dev_size high (N/A)

& 0H, ; dev_number (first device in the

; cluster must be 0)

& 0H, ; unit number (unit 0)

& 0H, ; device-unit number (first dev_unit

; in the cluster must be 0)

• Driver type, as defined in lddinfo.mac, that specifies the driver type for the
init_io finish_io, queue_io, and cancel_io procedures

Value Driver Type
0FFFFFFFFH custom
0FFFFFFFEH random access
0FFFFFFFDH terminal
0FFFFFFFCH message-based random access
0FFFFFFFBH message-based terminal

& TERMINALTYPE, ; Terminal type init_io procedure

& TERMINALTYPE, ; Terminal type finish_io procedure

& TERMINALTYPE, ; Terminal type queue_io procedure

& TERMINALTYPE, ; Terminal type cancel_io procedure

• Locally defined PUBLIC names to designate the DINFO and UINFO tables
which are used by this DUIB

& DINFO_COM, ; public name of DINFO table

& UINFO_COM, ; public name of UINFO table

Driver Programming Concepts Chapter 8 179

• Driver type-specific fields; use the provided configuration files as templates,
based on the driver's type

& 0FFFFH, ; update_timeout

& 0, ; num_buffers

& 130, ; service task priority

& FALSE, ; fixed_update

& 0H, ; max_buffers

& 0 ; duib_flags

&>

• Definition of a PUBLIC variable that indicates the number of DUIBs being
defined; this variable is used by the install_duibs system call in the driver front-
end

PUBLIC NUM_DUIBS ; Public NUM_DUIBS variable

NUM_DUIBS DB 01H ; Number of DUIBs defined above

• Final code directives and a module END statement

code ENDS ; End of code segment declaration

END ; End of module

Preparing an Initialization Front-end
The initialization front-end program of a loadable device driver does this:

• Sets up an exception handler to handle exceptions inline

• Gets the first argument (program name) from the command line

• Creates a log file for the program named <program name>.log using the EIOS

• Creates a connection to the log file and opens it for writing only

• Writes the sign-on message to the log file

• Retrieves parameters from the command line (if applicable) one at a time and
sends them to the appropriate procedures

• Creates an alias descriptor for the DINFO table; this allows updates from
information specified at the command line even though the DINFO table for this
driver is in the code segment

• Calls the install_duibs system call to add the specified DUIBs to the list of
DUIBs managed by the I/O system

• Determines the token of the driver job and catalogs it in the HI job's object
directory

180 Chapter 8 Making a Device Driver Loadable

• Closes and detaches the log file

• Calls suspend_task to put itself to sleep after it has completed its work

Supplied Front-end Source Code

Each provided loadable device driver front-end contains these subroutines:

convert This procedure converts a string of ASCII decimal characters into a
hexadecimal number. If any characters are not decimal numbers, the
procedure returns 0. Otherwise, the procedure returns the hexadecimal-
converted value of the ASCII string.

append_string
This procedure appends one ASCII string onto the end of another
ASCII string. It is used to produce a log file of the name <program
name>.log.

check_exception
This procedure checks the condition code it receives and returns to the
caller if the condition code is E_OK. If not, the procedure decodes the
code into an ASCII string, writes the string to the log file, and deletes
its job and itself.

For an example of initialization front-end code, see the file comdrv.c in the
/demo/ldd/ subdirectory.

Compiling/Assembling and Binding Your Device Driver Code
You can compile/assemble and bind your loadable driver source modules using a
submit file. For this example, the comdrv.csd submit file is used; the file does this:

• Assembles the configuration file containing the DUIB, DINFO, and UINFO
tables

asm386 comcfg.a38 pr(comcfg.lst) oj(comcfg.obj)

• Compiles the driver front-end and device-specific support procedures; the db
(debug) switch can be removed once the driver has been debugged

ic386 comdrv.c cp ex dn(2) ot(3) fp noal rom db &

df(word16) pr(comdrv.lst) oj(comdrv.obj)

ic386 x120sp.c cp ex dn(2) ot(3) fp noal rom db &

df(loadable) df(r_32) pr(x120sp.lst) oj(x120sp.obj)

• Assembles the start-up code required by the C compiler

asm386 cstart.a38 pr(cstart.lst) oj(cstart.obj)

Driver Programming Concepts Chapter 8 181

• Binds the object modules with loadable device driver and iRMX libraries as a
closed compact subsystem with exported BIOS/high-level device driver
procedure interfaces

bnd386 cf(comdrv.bnd)

As specified in the file comdrv.bnd, shown below:

cstart.obj, &

comdrv.obj, &

x120sp.obj, &

comcfg.obj, &

/rmx386/lib/ldd.lib, &

/rmx386/lib/udiifc32.lib, &

/rmx386/lib/rmxifc32.lib &

object(comdrv) segsize(stack(1200)) print (comdrv.mp1) &

NAME(comdrv) RN(tsc_code to comdrv_code32, &

code32 to comdrv_code32, &

code to comdrv_code32) rc(dm(5000,0fffffh))

The file specifies an initial dynamic memory size of 5000 with a maximum
amount of dynamic memory of 1 MByte. The binder remaps the object code
found in the code and tsccode segments into the combined comdrv_code32

code subsystem.

■■ ■■ ■■

182 Chapter 8 Making a Device Driver Loadable

Driver Programming Concepts Chapter 9 183

Using the ICU to Configure
Your Device Driver

This chapter describes how to add your driver to ICU-configurable systems. iRMX
for PCs and DOSRMX users can ignore this chapter.

For your driver to work in an ICU-configurable system, you must define the device-
specific procedures as reentrant, public procedures, and compile them using the rom
and compact controls. Assembly language routines must follow the conditions and
conventions used by the compact control. In particular, the procedures must
function in the same way as high-level language procedures.

See also: ASM386 Macro Assembler User's Guide
iC-386 Compiler User's Guide
PL/M-386 Programmer's Guide

This chapter explains how to use the OS-supplied tools UDS and ICUMRG. To use
these tools, first you must:

• Assemble or compile the code for each driver you have written.

• Put the resulting object modules for terminal drivers in a single library, such as
terminal.lib.

• Put the resulting object modules for random/common/custom drivers in a single
module, such as driver.lib.

9

184 Chapter 9 Using the ICU to Configure Your Device Driver

Adding Drivers with the UDS and ICUMRG Utilities
The iRMX III OS has two utilities that support adding user-written device drivers to
the ICU. With these utilities, you can add screens so that configuring your driver is
just a matter of running the ICU and answering the appropriate questions. Add
information about devices, units, and device-unit screens for as many user-written
device drivers as you wish. Then the ICU can build the proper DUIB, DINFO, and
UINFO structures.

The two utilities are UDS (User Device Support) and ICUMRG (ICU Merge).

• UDS transforms files of screen specifications into files that are compatible with
the ICU.

• ICUMRG merges the new files into the ICU.

Figure 9-1 shows a flowchart overview of using these utilities. These sections
describe the utilities in detail.

No

Yes

Are
new ICU
screens
correct?

W-2774

Output of ICUMRG is new
.scm and .tpl files that

describe new version of ICU

Examine .lst file
generated by UDS

Run UDS to produce
.scm and .tps files

for user device

Create or modify
specification file
for input to UDS

Run ICUMRG to add
new screens to ICU

Figure 9-1. Adding Drivers with UDS and ICUMRG

Driver Programming Concepts Chapter 9 185

186 Chapter 9 Using the ICU to Configure Your Device Driver

UDS Utility
UDS lets you set up a device information screen, a unit information screen, and a
device-unit information screen for your user-written driver. The steps are:

1. Set up the screens by placing information in a file that the UDS reads.

2. When setting up a screen, choose from a set of standard screens. For example,
when describing a device information screen, you can choose from three
terminal support screens, two random access support screens, and a general
screen.

3. Add auxiliary lines to the device information and unit information screens. This
allows your device-specific information to be entered during configuration.

By choosing the appropriate screens and adding the correct number of auxiliary lines,
you can set up the ICU to configure almost any device driver. Depending on the
number of auxiliary fields defined, you can provide the new auxiliary fields with
descriptive names.

After you create the input file, these steps occur:

1. Using the input file you provide, the UDS creates two files that define the new
screens. These files have extensions .scm and .tpl.

2. The ICU Merge Utility can merge these new files with the ICU.

3. The UDS also produces a listing file that has a .lst extension; the list file shows
how the screens will look when added to the ICU.

Creating the Input File for UDS

The UDS includes two input file templates you can modify to suit your application
needs:

• The file templ_1.uds is an example of a basic user input file; it contains no
auxiliary help fields.

• The file templ_2.uds is a complete input file and contains examples of most
auxiliary fields.

You must add each user device driver separately, because a UDS input file can add
only one driver.

Before invoking UDS, you must create an input file that defines how the ICU screens
for your driver should look. Figure 9-2 shows the format of that input file. The
information in brackets ([]) is not part of the input file; it simply describes the lines of
the file. The "xxxx" characters indicate that you must fill in a value. The paragraphs
following the figure describe the individual lines of the input file.

Driver Programming Concepts Chapter 9 187

#version = xxxx [1-4 character version number]

#name = xxxx [1-25 character name]

#abbr = xxx [1-3 character abbreviation]

#driver = x [driver type value, from 1 to 7]

#device [start of device information]

#dev aux = xx [number of auxiliaries, from 0 to 20]

#d01 = 'parameter name' [1-41 character parameter name, in quotes]

d01 help information [0-1024 character help information]

[Max of 1024 chars, help msgs are required]

.

. [names and help information for other]

. [auxiliary parameters]

#end [end of device information]

#unit [start of unit information]

#unit aux = xx [number of auxiliaries, from 0 to 20]

#u01 = 'parameter name' [1-41 character parameter name, in quotes]

u01 help information [0-1024 character help information]

[Max of 1024 chars, help msgs are required]

.

. [names and help information for other]

. [auxiliary parameters]

#end [end of unit information]

#duib

#duib aux = 0

#end [end of device unit information]

Figure 9-2. Syntax of UDS Input File

188 Chapter 9 Using the ICU to Configure Your Device Driver

#version This is a one- to four-character user version number that will be used as
the new version number of the ICU. By picking consistent version
numbers, you can always keep track of the latest version of the ICU.

It is important to enter meaningful data for the version number, because
the ICU uses the version to determine whether the definition files are
current. When the ICU is invoked by using an existing definition file,
the ICU checks the version number of the definition file against the
version number of the master .scm and .tpl files. If an inconsistency
occurs, the ICU displays the differing version numbers and asks if you
want to update the file. The version number that the ICU displays is
built from the value you specify here, plus the date and time on which
you run the ICUMRG utility.

#name The 1- to 25-character name of the driver being supported.

#abbr The 1- to 3-character abbreviation used to form screen names and
abbreviations for all three driver screens:

Screen Abbreviation Screen Name
D_<abrv> <name> Driver
U_<abrv> <name> Unit Information
I_<abrv> <name> Device-unit Information

If you enter an abbreviation of ABC and a name of High Speed ABC,
your screen abbreviations would be D ABC, U ABC, and I ABC. The
screen names would be High Speed ABC Driver, High Speed ABC Unit
Information, and High Speed ABC Device-unit Information.

Driver Programming Concepts Chapter 9 189

#driver The value you specify indicates the kind of driver this is and thus the
kind of screens to display. These values apply:

Value Driver
1 Terminal Support driver with one interrupt level

2 Terminal Support driver with two interrupt levels

3 Interrupt-less Multibus I and Multibus II Full Message-
based Terminal support driver

4 Interrupt-driven Random Access Support and common
drivers

5 Multibus II Full Message-based Random Access devices

6 Reserved

7 General driver

#device This field indicates the start of the information that applies to the device
information screen. The information continues until an #end field
appears.

#dev aux Number of auxiliary parameters on the device information screen. The
value can range from 0 to 20. If the value is 4 or less for terminal
support or random access devices, or 14 or less for general devices,
each auxiliary parameter is displayed on a separate line, and the
parameter names you specify in the #d fields are displayed there too. If
more auxiliary parameters are specified, the parameters are displayed
on the device information screen in rows of five parameters each. In
this case, there is no room for the parameter names, and if any are
entered, the UDS ignores them.

When the ICU generates a system, it gets auxiliary parameters from the
device information screen. The ICU places random/common device
parameters in ?icdev.a38 files and places terminal parameters in
?itdev.a38 files, immediately after the Device Information structure.
The ? means the character can vary.

190 Chapter 9 Using the ICU to Configure Your Device Driver

#d01 Each field (#d01 through #d20) identifies auxiliary parameters in the
device information table. The identifiers are fixed (D01 through D20).
If a parameter fits on a single line, the 1- to 41-character 'parameter
name' you specify (surrounded by quotes) will be included on the
menu.

Even if your table contains too many auxiliary parameters to include a
parameter name for each, you must specify the #d field for a parameter
if you plan to add help information for that field. In such cases, you can
specify the #d field without a parameter name:

#d03 =

You can also modify the parameter names and help information for the
standard parameters that normally appear on the device information
screen you selected. For example, if you are setting up a random access
device and you want to modify the parameter name and help
information for the DS field, you could include this information in the
input file:

#ds = 'Size of Device Local Data [0-0FFFFH]'

This describes the DS field. You can modify the other fields in the same
manner.

d01 help This is the help information for the parameters. You must include help
information for all parameters. The UDS assumes that the help
information ends when a # appears at the start of a subsequent line or
when the maximum character count is reached. The UDS displays help
information when the ICU user requests help for the corresponding
parameter. Help information is limited to a maximum of 1024
characters.

#end This field designates the end of the device, unit, or device-unit
information.

#unit This field indicates the start of the information that applies to the unit
information screen. The information continues until an #end field
appears.

Driver Programming Concepts Chapter 9 191

#unit aux Number of auxiliary parameters on the unit information screen. This
value can range from 0 to 20. If this value is 10 or less, each auxiliary
parameter is displayed on a separate line with the parameter names you
specify. With more than 10 auxiliary parameters, the parameters are
displayed two to a row, with no room for parameter names.

When the ICU generates a system, it places the auxiliary parameters
from the unit information screen in the ?itdev.a38 or ?icdev.a38 files it
creates, immediately after the Unit Information structure. The file that
is actually altered depends on the type of device: ?icdev.a38 for
common and random devices and ?itdev.a38 for terminal devices.

#u01 Each of fields #u01 through #u20 identifies auxiliary parameters in the
unit information screen. The identifiers are fixed (U01 through U20).
If each of the auxiliary parameters fits on a single line, the 1- to 41-
character parameter name you specify here as 'parameter name'

(surrounded by quotes) will be included on the menu to describe the
auxiliary parameter.

You can also use similar fields to change the parameter names and help
information for any of the standard parameters of the unit information
screen.

u01 help This is the help information for the parameters. You must include help
information for all parameters. The UDS assumes that the help
information ends when a # appears at the start of a subsequent line. The
UDS displays the help information when the ICU user requests help for
the corresponding parameter. Help information is limited to a
maximum of 1024 characters.

#duib This field indicates the start of the information that applies to the
device-unit screen. The device-unit information continues until a #end
field is encountered.

#duib aux Number of auxiliary parameters on the device-unit information screen.
This value can range from 0 to 20. Currently, the UDS does not support
any auxiliary parameters; therefore, set this field:

#duib aux=0

✏ Note
All auxiliary parameter fields (#dev_aux, #unit_aux,
#duib_aux) must be WORD values. The UDS will not accept
DWORDs and will write BYTE values as WORDs.

192 Chapter 9 Using the ICU to Configure Your Device Driver

Device Information Screens

This section lists the different Device Information Screens that the UDS can generate.
When adding support for your own driver, choose the screen that matches the way the
driver expects the DINFO table to look. All screens in this group can also contain
auxiliary parameter lines. You should set up auxiliary parameter lines if none of the
Device Information Screens listed contain enough fields to support the needs of your
driver.

The meanings of the individual fields in these screens are the same as the fields in the
DINFO table.

See also: DINFO Table Structure in this manual

• One-Interrupt Terminal Device Information

• Two-Interrupt Terminal Device Information

• Interrupt-less Multibus I and Multibus II Full Message-based Terminal Device
Information

• Multibus I Random Access Device Information

• Multibus II Random Access Device Information

• General Device Information

Unit Information Screens

This section lists the Unit Information Screens that the UDS can generate. These
screens are defined by placing information into a user input file, which the UDS
reads. By choosing the appropriate driver type and adding the correct number of
auxiliary lines to the driver's screens, you can set up the ICU to handle the
configuration of virtually any driver. All screens in this group can contain auxiliary
parameter lines. If none of the Unit Information Screens listed contain enough fields
to support your driver, set up auxiliary parameter lines.

The meanings of the individual fields in these screens are the same as the fields in the
UINFO table.

See also: UINFO Table Structure, in this manual

• Terminal Support Unit Information

• Random Access Support Unit Information

• General Device Unit Information

Driver Programming Concepts Chapter 9 193

Device-Unit Information Screens

This section lists the Device-Unit Information Screens that the UDS generates.
When adding support for your own driver, choose the screen that matches the way the
driver expects the DUIB to look. None of the screens in this group currently allow
auxiliary parameter lines.

The meanings of the individual fields in these screens are the same as the fields in the
DUIB.

See also: DUIB in this manual

• Terminal Support Device-Unit Information

• Random Access Device-Unit Information

• General Device-Unit Information

Invoking the UDS Utility

Once you have created an input file that specifies how the screens for your device
driver should appear, you are ready to invoke the UDS utility. To do this, ensure that
the directory containing the UDS program also contains the UDS database file named
uds.scm. Then invoke the utility by typing:

UDS input-file TO output-file

Where:

input-file
The name of the file that contains the information that will be used as
input to the UDS utility.

See also: UDS Input File in this section

output-file
The name portion of the output files generated by UDS. UDS adds
three-character extensions to this name when generating its output files.
The two primary output files are output-file.scm and output-file.tpl.
You will use these output files as input to the ICUMRG utility. The
other output file is output-file.lst, a listing file that shows exactly how
the screens will appear when added to the ICU.

You should not name your UDS output files icu386.scm or icu386.tpl.

194 Chapter 9 Using the ICU to Configure Your Device Driver

For example, suppose you created an input file called newdriver.txt and wanted the
UDS utility to generate output files called special.scm and special.tpl. To do this,
you would enter this command:

uds newdriver.txt to special

Part of the output of the UDS utility are two files with extensions .scm and .tpl (in the
example, special.scm and special.tpl). These files contain the definitions of the ICU
screens for your driver. After running the UDS utility, you will use the ICUMRG
utility to add these files to the ICU.

However, before running ICUMRG, examine the listing file (in the example,
special.lst). This file shows how the device information screen, the unit information
screen, and the device-unit information screen will look when added to the ICU. If
there is a problem with the appearance of any of these files, you can catch the
problem early and rerun UDS, instead of adding incorrect screens to the ICU.

Driver Programming Concepts Chapter 9 195

UDS Error Messages

If you make a mistake when creating the files to use as input to UDS, the UDS utility
will display an error message.

The messages in this group refer to external file and memory type errors. The
detailed message will be preceded by

*** Error in UDS

*** Cannot Attach Input File
You did not have the proper permission to access the file containing the UDS
instructions.

*** Not enough memory for buffers
Your memory partition is not large enough to permit the UDS utility to run.

*** Cannot Attach UDS SCM File
UDS needs to access a file called uds.scm, but you do not have read access to that
file.

*** Invalid UDS.SCM File
The UDS file uds.scm has been corrupted.

*** Cannot Create New SCM File
UDS cannot create the output file (output_file.scm).

*** Cannot Create New TPL File
UDS cannot create the output file (output_file.tpl).

*** Cannot Create LST File
UDS cannot create the listing file (output_file.lst).

*** I/O Error in File [file-name]
The specified file or directory lacks read or creation permission.

The messages in the next group refer to UDS input file errors. The detailed message
will be preceded by

*** Error in UDS Input File on line <line-number>

where <line-number> is where the error occurred in the user input file.

*** Missing User Version
The required #version statement is missing.

*** Illegal Version
The #version number in the input file is outside the legal range of 1 to 4 characters.

*** Missing User Device Name
The required #name field is missing.

196 Chapter 9 Using the ICU to Configure Your Device Driver

*** Illegal Device Name
The #name identifier is 0 length or is greater than 25 characters in length.

*** Missing User Device Abbr
The required #abbr identifier is missing.

*** Illegal Device Abbr
The #abbr value in the user input file is outside the legal range of 1 to 3 characters.

*** Missing User Driver Type
The required #driver identifier is missing.

*** Illegal Driver Type
The #driver value is outside the legal range of 1 to 7.

*** Missing User Device
The required #device identifier is missing.

*** Missing Number of Device Auxiliaries
The required #dev_aux identifier is missing.

*** Missing User Unit
The required #unit identifier is missing.

*** Missing Number of Unit Auxiliaries
The #unit_aux identifier is missing.

*** Missing User Duib
The #duib identifier is missing.

*** Missing Number of DUIB auxiliaries
The required #duib_aux identifier is missing.

*** DUIB Screen Can Not Have Auxiliary Fields
The #duib_aux value in the user input file is set to other than 0.

*** Missing Equal Sign
The equal sign is missing from an identifier that requires one.

*** Line Too Long
A line in the user input file is longer than the allowable 132 characters.

*** Missing Auxiliary Help Message
An auxiliary parameter line was added without its required help message.

*** Auxiliary Line Out of Sequence
Auxiliary parameter lines must be listed sequentially, beginning with line 01.

*** Less Auxiliary Lines than Expected
The number of auxiliary lines is less than the xxx_aux value of the user input file.

*** More Auxiliary Lines than Expected
The number of auxiliary lines is more than the xxx_aux value of the input file.

*** Illegal Input
Extra characters were entered on a line after the valid input.

Driver Programming Concepts Chapter 9 197

*** Invalid Abbreviation
The abbreviation for an auxiliary field is outside the legal range of 1 to 3 characters.

*** Abbreviation Not Found
When a standard parameter line or its help message was changed, the abbreviation
was entered incorrectly.

*** Number Exceeds Maximum
Dev_aux or unit_aux is greater than 20.

*** Number Expected
A nonnumeric value was entered.

*** Syntax Error
The opening quote on a parameter name line is missing.

*** Do Not Use # Sign in Text
A parameter name contains a pound symbol (#).

*** Do Not Use (Sign in Text
A parameter name contains a left parenthesis "(".

*** Missing End of Text Sign
The closing quote on a parameter name line is missing.

*** Text Line Too Long
A parameter name exceeds 41 characters.

*** Help Message is too Long
The Help message you entered exceeds 1024 characters in length.

*** Field Name Expected
A blank line was detected in the device, unit, or DUIB information.

*** Unexpected eof
The user input file is incomplete.

198 Chapter 9 Using the ICU to Configure Your Device Driver

ICUMRG Utility
After using UDS to generate .scm and .tpl files for your new driver, use the ICUMRG
utility to combine the information in these files with the definitions of all other ICU
screens (in the icu386.scm and icu386.tpl files). Before running ICUMRG, make
sure these icu386.* files reside in the same directory as the ICUMRG command.
Then, invoke the ICUMRG utility:

ICUMRG input-file TO output-file

Where:

input-file
The name (minus the extension part) of the .scm and .tpl files generated
by the UDS. For example, if the UDS utility created files called
special.scm and special.tpl, you would specify the name special here.

output-file
The name (minus the extension part) of new ICU files that ICUMRG
will create. For example, if you specified the name icunew, the
ICUMRG utility will create files called icunew.scm and icunew.tpl.
These new files will contain the complete definition of the ICU,
including the screens you just defined for your new driver. By naming
the files something other than icu386, you can save the previous version
of the ICU files. For testing, you can change the name of the ICU
executable file to match the base name of the new file (e.g., icunew).
Then, when you are satisfied with the updated ICU, rename your
icunew, icunew.scm, and icunew.tpl test files to their icu386
counterparts so they match the standard user documentation.

After adding driver support to the ICU, you can configure the drivers almost as you
would any OS-supplied drivers:

1. Invoke the ICU and go to the (UDDM) UDS Device Drivers Module.

2. Enter the appropriate driver type, (T)erminal or (C)ommon, and the full
pathname for the location of the object code for your device driver.

3. After entering the correct value, choose the device you want to configure.

4. Fill in the appropriate values when the ICU displays the Device Information,
Unit Information, and Device-Unit Information screens.

Driver Programming Concepts Chapter 9 199

UDS Modules Screen in the ICU

(UDDM) UDS Device Driver Modules

Module= Driver type , Object code pathname

[T/C] , [1-55 Characters]

[1] Module=

Specify (C) for common/random/custom drivers and (T) for terminal drivers.

Place the modules according to type, with all of your terminal modules in one
module, and all your common/random/custom drivers in a separate module. For
example, 1 = T, terminal.lib, and 2 = C, driver.lib.

✏ Note
Before changing the name of any ICUMRG output files to
icu386.scm and icu386.tpl, save the original files by copying them
to other files (such as icu_old.scm and icu_old.tpl). Although
ICUMRG lets you add support for new drivers, once you add that
support, there is no way to remove it. If you decide you don't want
the ICU to display information about one of your drivers, or you
made a mistake when adding information about your driver, you
must revert to the original files you saved (or an intermediate
version that doesn't contain support for that driver).

200 Chapter 9 Using the ICU to Configure Your Device Driver

Adding Your Driver as a Custom Driver
If you don't want to modify the ICU, you can add your custom device driver by doing
this:

1. Get the device numbers and device-unit numbers to use in the DUIBs for your
devices:

a. Use the ICU to configure a system containing all the OS-supplied and ICU-
supported user drivers you require.

b. Use the G command to generate that system.

c. Use a text editor to examine the file ?icdev.a38 (the ? means the first letter
can vary; the file extension is .a28 for iRMX II users and .a86 for iRMX I
users). This file contains DUIBs for all the device-units defined in your
configuration.

d. Look for the %DEVICETABLES macro that appears after all the
define_duib structures. The second and third parameters in that macro
list are the next available device-unit number and the device number,
respectively. For example, suppose the %DEVICETABLES macro appears
as:

%DEVICETABLES(NUMDUIB,0000CH,005H,003E8H)

The next available device-unit number is 0CH and the next available device
number is 05H.

e. Use the next available device number and device-unit number in your
DUIBs.

2. Create these files and tables:

a. A file containing the DUIBs for all device-units you are adding. Use the
define_duib structures, and place all the structures in the same file. The
ICU will include this file when assembling the ?icdev.a38 file.

b. A file containing all the device information tables of the
random/common/custom type that you are adding. Use the
radev_dev_info structures for any random access drivers you add. Later,
the ICU includes this file when assembling the ?icdev.a38 file.

c. If applicable, any random access or common unit information table(s). Use
the radev_unit_info structures for any random access drivers you add.
Add these tables to the file created in step 2b.

Driver Programming Concepts Chapter 9 201

d. A file containing all the device information tables of the terminal type you
are adding. Use a structure similar to the
terminal_device_information structure for terminal drivers. The ICU
will include this file when assembling the ?itdev.a38 file.

e. If applicable, any terminal unit information table(s). Use a structure similar
to terminal_unit_information for terminal drivers. Add these tables
to the file created in step 2b.

f. External declarations for any procedures you write. The procedure names
appear in either the DUIB or the DINFO table associated with this device
driver. Add these declarations to the file created in steps 2b and 2d.

3. Use the ICU to configure your final system. When doing so:

a. Answer yes when asked if you have any device drivers not supported by the
ICU.

b. As input to the Custom User Devices screen, enter the pathname of your
random/common/custom device driver library. This refers to the library
built earlier; for example, :f1:driver.lib.

c. As input to the Custom User Devices screen, enter the pathname of your
terminal device driver library. This refers to the library built earlier; for
example, :f1:terminal.lib.

d. Enter these:

• DUIB source code pathname (the file created in step 2a).

• Device and Unit source code pathnames (the files created in steps
2b through 2f).

• Number of user-defined devices.

• Number of user-defined device-units.

The ICU does the rest.

202 Chapter 9 Using the ICU to Configure Your Device Driver

Figure 9-3 contains an example of the Custom User Devices screen. The bold text
represents user input to the ICU. In this example:

• :f1:driver.lib contains the object code for the random/common/custom drivers

• :f1:terminal.lib contains the object code for the terminal driver

• :f1:duib contains the source code for the DUIBs

• :f1:rinfo.inc contains the source code for the Device and UINFO tables along
with the necessary external procedure declarations for the
random/common/custom drivers

• tinfo.inc contains the source code for the Device and UINFO tables and the
necessary external procedure declarations for the terminal driver

The code in the driver.lib file supports 1 device with 2 units. The code in terminal.lib
supports 1 device with 2 units; therefore, the (ND) Number of User Defined Devices
[0-0FFH] field equals 2, and the (NDU) Number of User Defined Device-Units [0-
0FFH] field equals 4.

Driver Programming Concepts Chapter 9 203

(USERD) User Devices

(OPN) Random Access Object Code Path Name [1-45 Chars/NONE]

NONE

(TOP) Terminal Object Code Path Name [1-45 Chars/NONE]

NONE

(DPN) DUIB Source Code Path Name [1-45 Chars/NONE]

NONE

(DUP) Random Access Device and Unit Source Code Path Name

[1-4 Chars/NONE]

NONE

(TUP) Terminal Device and Unit Source Code Path Name

[1-45 Chars/NONE]

NONE

(ND) Number of User Defined Devices [0-0FFH] 0H

(NDU) Number of User Defined Device-Units [0-0FFH] 0H

(N01) NONE (N02) NONE (N03) NONE

(N04) NONE (N05) NONE (N06) NONE

(N07) NONE (N08) NONE (N09) NONE

(N10) NONE (N11) NONE (N12) NONE

(N13) NONE (N14) NONE (N15) NONE

(N16) NONE (N17) NONE (N18) NONE

: OPN = :F1:DRIVER.LIB <CR>

: TOP = :F1:TERMINAL.LIB <CR>

: DPN = :F1:DUIB.INC <CR>

: DUP = :F1:RINFO.INC <CR>

: TUP = :F1:TINFO.INC <CR>

: ND = 2 <CR>

: NDU = 4 <CR>

Figure 9-3. Example User Devices Screen

204 Chapter 9 Using the ICU to Configure Your Device Driver

Example of Adding an Existing Driver as a Custom Driver
This section illustrates how to create the screens needed for adding the 544A device
to your system using the UDS. Because device configuration is complex, the
example covers this in detail.

While reading this example, keep in mind that the code for terminal drivers is in a
different segment than the code for random or common drivers. Because of this split
in the segments, you must be careful to properly provide the correct publics,
extrns, and nopublics except, and also to properly bind the code segments
together.

(USERD) User Devices

(OPN) Random Access Object Code Path Name [1-45 Chars/NONE]

NONE

(TOP) Terminal Object Code Path Name [1-45 Chars/NONE]

NONE

(DPN) Duib Source Code Path Name [1-45 Chars/NONE]

DUIB.INC

(DUP) Random Access Device and Unit Source Code Path Name

[1-45 Chars/NONE]

NONE

(TUP) Terminal Device and Unit Source Code Path Name

[1-45 Chars/NONE]

TINFO.INC

(ND) Number of User Defined Devices [0-0FFH] 01H

(NDU) Number of User Defined Device-Units [0-0FFH] 04H

Terminal Device and Unit Names [1-16 Chars]

(N01) DINFO_544A (N02) UINFO_544A (N03) NONE

(N04) NONE (N05) NONE (N06) NONE

(N07) NONE (N08) NONE (N09) NONE

(N10) NONE (N11) NONE (N12) NONE

(N13) NONE (N14) NONE (N15) NONE

(N16) NONE (N17) NONE (N18) NONE

The TOP option was left at NONE in this example because the 544A driver code is
already in the driver library xcmdrv.lib. If you were adding another module, you
would enter the location of the file as a full path name.

Driver Programming Concepts Chapter 9 205

The OPN and DUP options were left at NONE because the driver being configured is
a terminal driver, not a random access, common, or custom driver.

You can add up to 18 total Terminal DINFO and UINFO public names in this screen.

Contents of the Duib.inc File Specified in the (DPN) Parameter

Figure 9-4 shows the contents of the file whose pathname you supplied in the (DPN)
DUIB Source Code Pathname parameter of the User Devices Screen. This assembly-
language file provides the information to define how the operating system should
interface with the device.

Note the lines with arrows pointing to them. These are the device number and
device-unit number for this device, and the numbers were taken from the ?icdev.a38
file:

1. Make sure that the files you start with contain all of the OS-supplied and ICU-
supported drivers you require. If you haven't generated such a system, use the
ICU to do so before continuing.

2. Use a text editor to examine the file ?icdev.a38 (the ? means that the first letter
can vary; the file extension is .a28 for iRMX II users and .a86 for iRMX I users).
You will find all of the DUIBs for your entire system in this file. Scan this file
for a line that starts with %DEVICETABLE.

3. %DEVICETABLE is a macro that appears below all of the systems'
define_duib structures. The second and third parameters in that macro are the
next available device-unit and device number, respectively. For example,
suppose the %DEVICETABLE macro appears as:

%DEVICETABLE (NUMDUIB, 0002EH, 008H, 003E8H)

In this case, the next available device-unit number is 2EH and the next available
device number is 08H.

4. Use these numbers to fill in the two lines of the file indicated by the arrows.

At the end of this file are several more lines that should be noted. Be sure to examine
the last part of this figure and read the text that goes with it.

206 Chapter 9 Using the ICU to Configure Your Device Driver

DEFINE_DUIB <

& 'T2',

& 00001H,

& 0FBH,

& 00,

& 00,

& 00,

& 00,

& 08H, ← Put next available DEVICE NUMBER here

& 0H,

& 2EH, ← Put next available DEVICE-UNIT NUMBER here

& TSINITIO,

& TSFINISHIO,

& TSQUEUEIO,

& TSCANCELIO,

& DINFO_544A,

& UINFO_544A,

& 0FFFFH,

& 0,

& 130,

& FALSE,

& 0H,

& 0

&>

Figure 9-4. Computing Device and Device-Unit Numbers

Driver Programming Concepts Chapter 9 207

DEFINE_DUIB <

& 'T3',

& 00001H,

& 0FBH,

& 00,

& 00,

& 00,

& 00,

& 08H, ← The DEVICE NUMBER is the same

& 0H,

& 2FH, ← The DEVICE-UNIT number (T3) is equal to the

& TSINITIO, DEVICE-UNIT number of 'T2' plus one.

& TSFINISHIO,

& TSQUEUEIO,

& TSCANCELIO,

& DINFO_544A,

& UINFO_544A,

& 0FFFFH,

& 0,

& 130,

& FALSE,

& 0H,

& 0

&>

Figure 9-4. Computing Device and Device-Unit Numbers (continued)

208 Chapter 9 Using the ICU to Configure Your Device Driver

DEFINE_DUIB <

& 'T4',

& 00001H,

& 0FBH,

& 00,

& 00,

& 00,

& 00,

& 08H, ← The DEVICE NUMBER is the same

& 0H,

& 30H, ← The DEVICE-UNIT number (T4) is equal to the

& TSINITIO, DEVICE-UNIT number of 'T3' plus one.

& TSFINISHIO,

& TSQUEUEIO,

& TSCANCELIO,

& DINFO_544A,

& UINFO_544A,

& 0FFFFH,

& 0,

& 130,

& FALSE,

& 0H,

& 0

&>

Figure 9-4. Computing Device and Device-Unit Numbers (continued)

Driver Programming Concepts Chapter 9 209

DEFINE_DUIB <

& 'T5',

& 00001H,

& 0FBH,

& 00,

& 00,

& 00,

& 00,

& 08H, ← The DEVICE NUMBER is the same

& 0H,

& 31H, ← The DEVICE-UNIT number (T5) is equal to the

& TSINITIO, DEVICE-UNIT number of 'T4' plus one.

& TSFINISHIO,

& TSQUEUEIO,

& TSCANCELIO,

& DINFO_544A,

& UINFO_544A,

& 0FFFFH,

& 0,

& 130,

& FALSE,

& 0H,

& 0

&>

Figure 9-4. Computing Device and Device-Unit Numbers (continued)

210 Chapter 9 Using the ICU to Configure Your Device Driver

BIOS_CODE ENDS ←−−

TSC_CODE SEGMENT ER PUBLIC |

extrn DINFO_544A : far |-NEW PORTION OF FILE

extrn UINFO_544A : far | TO ACCOUNT FOR NEW SEGMENT

|

TSC_CODE ENDS |

BIOS_CODE SEGMENT ←−−

Figure 9-4. Computing Device and Device-Unit Numbers (continued)

The lines starting with BIOS_CODE ENDS through BIOS_CODE SEGMENT must be
added to the end of the file. They provide BND386 with information on the location
of your information tables. You must provide an extrn <MODULE_NAME>: far

declaration for each DINFO and UINFO public name specified here; these names
must be supplied as parameters N01 through N18 above in the USERD screen. This
declaration is required because all terminal information is stored in a different
physical segment than other driver information, and a far call is required to access it.

Contents of the File Specified in the (TUP) Parameter

Figure 9-5 shows the contents of the file whose pathname you supplied in the (TUP)
Terminal Device and Unit Source Code Path Name parameter of the User Devices
Screen. This assembly-language file provides the information to define how the
operating system should interface with this device.

Driver Programming Concepts Chapter 9 211

extrn I544INIT : near

extrn I544FINISH : near

extrn I544SETUP : near

extrn I544CHECK : near

extrn I544ANSWER : near

extrn I544HANGUP : near

extrn I544UTILITY : near

;

PUBLIC DINFO_544A ←

DINFO_544A DW 04H |

DW 9 |

%DW 300 |

%DW I544INIT |

%DW I544FINISH |

%DW I544SETUP |

%DW TERMNULL |

%DW I544ANSWER | PUBLIC

%DW I544HANGUP | DECLARATIONS

%DW I544UTILITY |

DW 1 |

DW 071H |

%DW I544CHECK |

DD 0FE0000H |

DW 04000H |

DB 01H |
PUBLIC UINFO_544A ←

UINFO_544A DW 01AH

DW 0109H

%DW 02580H

%DW 00000H

DW 012H

Figure 9-5. Public Declarations Needed for the DINFO and UINFO Tables

212 Chapter 9 Using the ICU to Configure Your Device Driver

Provide the normal extrn <MODULE_NAME>: near declarations for I544INIT, ...,
I544FINISH procedures. You must also provide a PUBLIC <table name> label
before each DINFO and UINFO table specified.

Portion of System Generation Submit File as Changed by this Process

After completing the changes outlined above, you must generate a new system using
the ICU. During the generation process, information is sent to the screen. Figure 9-6
presents those portions of system generation that are changed by the steps outlined
above.

; BIOS

.

ASM386 ICDEV.A38

ASM386 ITDEV.A38

.

BND386 & ← SEPARATE BIND OF TSC CODE

SEGMENT

ITDEV.OBJ, &

/RMX386/IOS/XDRMB1.LIB, &

/RMX386/IOS/XCMDRV.LIB(XTSIF), &

/RMX386/IOS/XCMDRV.LIB(XTSIO), &

/RMX386/IOS/XCMDRV.LIB, &

/INTEL/LIB/PLM386.LIB, &

/RMX386/LIB/RMXIFC32.LIB &

RENAMESEG(CODE32 TO TSC_CODE, TSC_CODE32 TO TSC_CODE, &

CODE TO TSC_CODE, DATA TO TSC_DATA) &

Figure 9-6. Portion of the Modified Submit File

Driver Programming Concepts Chapter 9 213

OBJECT (TSC.LNK) NODEBUG NOTYPE SEGSIZE(STACK(0)) &

NOLOAD NOPUBLICS EXCEPT(TSCINITIO, &

TSCFINISHIO, &

DINFO_02H, &

UINFO_8251, &

DINFO_03H, &

UINFO_18848, &

DINFO_04H, &

UINFO_546, &

UINFO_546CC, &

DINFO_05H, &

UINFO_547A, &

DINFO_06H, &

UINFO_547B, &

DINFO_07H, &

UINFO_547C, &

DINFO_544A, & ← USER SPECIFIED PUBLIC DINFO

UINFO_544A, & ← USER SPECIFIED PUBLIC UINFO

TSCQUEUEIO, &

TSCCANCELIO)

BND386 &

IOS1.LNK, &

TSC.LNK, & ← INCLUSION OF TSC SUBSYSTEM IN IOS

SYSTEM BIND

ICDEV.OBJ, &

/RMX386/IOS/XDRMB1.LIB, &

/RMX386/IOS/XCMDRV.LIB, &

/INTEL/LIB/PLM386.LIB, &

/RMX386/LIB/RMXIFC32.LIB &

RENAMESEG(DRV_CODE TO CODE, CODE32 TO CODE, TSC_DATA TO DATA) &

OBJECT (IOS2.LNK) NODEBUG NOTYPE SEGSIZE(STACK(0)) &

NOLOAD NOPUBLICS EXCEPT (rqaiosinittask , &

RqAttachDevice , &

.

.

.

Figure 9-6. Portion of the Modified Submit File (continued)

■■ ■■ ■■

214 Chapter 9 Using the ICU to Configure Your Device Driver

Driver Programming Concepts Appendix A 215

Random Access Support
for Interrupt Driven Devices

Interrupt-driven devices signal the CPU host using interrupts at a specified interrupt
level. This appendix describes the operations of the random access support
procedures as they apply to interrupt-driven devices. The procedures and task
described include:

init_io
finish_io
queue_io
cancel_io
interrupt_task

These procedures, supplied with the OS, are called when an application task makes
an I/O request to support a random access or common device. The procedures
ultimately call the device-specific device_init, device_finish, device_start,
device_stop, and device_interrupt procedures.

This appendix describes the steps that an actual device driver follows. You can use
this appendix to get a better understanding of the supplied high-level procedures to
make writing the device-specific portion easier. Or you can use it as a guideline for
writing custom device drivers.

Init_io Procedure
The I/O System calls init_io when an application task makes an
a_physical_attach_device system call and no units of the device are currently
attached.

Init_io initializes objects used by the remainder of the driver procedures, creates an
interrupt_task, and calls a user-supplied device_init procedure to initialize the device
itself.

When the I/O System calls init_io, it passes the following parameters:

• A pointer to the DUIB of the device-unit to initialize

• A pointer to the location where init_io must return a token for a data segment
(data storage area) that it creates

• A pointer to the location where init_io must return the condition code

A

216 Appendix A Random Access Support for Interrupt-driven Devices

Figure A-1 illustrates the steps that the init_io procedure follows to initialize the
device. The numbers in the figure correspond to the step numbers in the text.

1. The init_io procedure creates a data storage area to be used by all procedures in
the driver. The size of this area depends in part on the number of units in the
device and special space requirements of the device. Init_io then begins
initializing this area and eventually places the following information there:

• A token for a region. Step 2 creates this region for mutual exclusion.

• An array to contain the addresses of the DUIBs for the device-units attached
to this device. Init_io places the address of the DUIB for the first attaching
device unit into this array.

• A token for the interrupt_task.

• Other values indicating the queue is empty and the driver is not busy.

The procedure also reserves space in the data storage area for device data.

2. The init_io procedure creates a region. The other high-level procedures receive
control of this region whenever they place a request on the queue or remove a
request from the queue. Init_io places the token for this region in the data
storage area.

3. The procedure enters the region to prevent the interrupt_task from starting before
initialization is complete.

4. The init_io procedure creates an interrupt_task to handle interrupts generated by
this device. When init_io invokes create_task to create the interrupt_task, it
does not specify the task's data segment. Instead, it uses the data_seg
parameter of create_task to pass the interrupt_task a token for the data storage
area. This area is where the interrupt_task will get information about the device.
Init_io places the actual data segment value, as well as a token for the
interrupt_task, in the data storage area.

5. The init_io procedure calls a device_init procedure that initializes the device
itself. It gets the address of this procedure by examining the DINFO table
specified in the DUIB.

See also: device_init procedure, Chapter 5

6. The init_io procedure exits the region.

7. It returns control to the I/O System, passing a token for the data storage area and
a condition code which indicates the success of the initialization operation.

If an error occurs at any point in these steps, the init_io procedure exits the region,
deletes all the objects it has created up to that point, and returns an error to the I/O
System.

Driver Programming Concepts Appendix A 217

1

2

3

4

5

6

7

W-2775

init_io

Creates data segment for
device and starts filling it

Enters the region

Creates the region for
access to the queue

Creates the interrupt task

Calls user-supplied procedure
to initialize device

Exits the region

Returns to I/O system
passing data object and

condition code

Figure A-1. Random Access Device Driver Init_io Procedure

Finish_io Procedure
The I/O System calls finish_io when an application task makes an
a_physical_detach_device system call and no other units of the device are currently
attached.

Finish_io calls a device_finish procedure to perform final processing on the device
itself, deletes the interrupt_task, and deletes objects used by the other device driver
procedures.

When the I/O System calls finish_io, it passes the following parameters:

• A pointer to the DUIB of the device-unit just detached

• A token for the data storage area created by init_io

218 Appendix A Random Access Support for Interrupt-driven Devices

Figure A-2 illustrates the steps that the finish_io procedure follows to terminate
processing for a device. The numbers in the figure correspond to the step numbers in
the text.

1. The finish_io procedure calls a device-specific device_finish procedure that does
any necessary final processing on the device itself. Finish_io gets the address of
this procedure by examining the DINFO table specified in the DUIB.

2. The finish_io procedure deletes the interrupt_task originally created for the
device by the init_io procedure and cancels the assignment of the interrupt
handler to the specified interrupt level.

3. It deletes the region and the data storage area originally created by the init_io
procedure, allowing the operating system to reallocate the memory used by these
objects.

4. The finish_io procedure returns control to the I/O System.

See also: device_finish in Chapter 5

Returns to the I/O system

1

2

3

4

Deletes region and data objects
used by this device driver

Deletes interrupt task for
device and resets interrupt

Calls user - supplied
procedure to finish up

processing on the device

W-2776

finish_io

Figure A-2. Random Access Device Driver Finish_io Procedure

Driver Programming Concepts Appendix A 219

Queue_io Procedure
The I/O System calls the queue_io procedure to place an I/O request on a queue of
requests. This queue has the structure of a doubly-linked list. If the device itself is
not busy, queue_io also starts the request.

When the I/O System calls queue_io, it passes the following parameters:

• A token for the IORS

• A pointer to the DUIB

• A token for the data storage area originally created by init_io

Figure A-3 illustrates the steps that the queue_io procedure goes through to place a
request on the I/O queue. The numbers in the figure correspond to the step numbers
in the text.

1. The queue_io procedure sets the done field in the IORS to 0H, indicating the
request has not yet been completely processed. Other procedures that start the
I/O transfers and handle interrupt processing also examine and set this field. It
also sets status to E_OK and actual to 0H.

2. The queue_io procedure receives control of the region and thus access to the
queue. This allows queue_io to adjust the queue without concern that other tasks
might also be doing this at the same time.

3. The queue_io procedure verifies that the request is within the range of 0 to
device size for this device. If the request is outside this range, queue_io returns
E_PARAM. For a valid request, it converts iors.dev_loc from the absolute
byte position on the device, as passed by the BIOS, to the absolute block (sector)
number (if track size equals 0). If the track size is not 0, iors.dev_loc is
converted to the sector and track number. Finally, it places the IORS on the
queue in seek-optimized order.

4. If the device is busy processing an I/O request, queue_io goes on to Step 5.
Otherwise, it calls the device-specific device_start procedure to process the
request at the head of the queue.

See also: device_start in Chapter 5

5. The queue_io procedure surrenders control of the region, thus allowing other
procedures to have access to the queue.

✏ Note
If the request is complete, queue_io returns a token for the IORS to
the response mailbox; if not, the interrupt_task returns it upon
completion. The random access support does not return a CLOSE
request until all prior requests for the same unit are completed.

220 Appendix A Random Access Support for Interrupt-driven Devices

1

2

3

4

5

W-2777

queue_io

Sets status fields
in the IORS

Gains access
to the region

Places the IORS
on the queue

Starts the processing of the
request if the device is not busy

Surrenders access
to the region

Returns to the I/O system

Figure A-3. Random Access Device Driver Queue_io Procedure

Driver Programming Concepts Appendix A 221

Cancel_io Procedure
The I/O System calls cancel_io to remove one or more requests from the queue and
possibly to stop the processing of a request, if it has already been started. The I/O
System calls this procedure in one of two instances:

• If a task invokes the a_physical_detach_device system call and specifies the
hard detach option. The hard detach removes all requests from the queue.

See also: a_physical_detach_device, System Call Reference

• If the job containing the task that makes an I/O request is deleted. In this case,
the I/O System calls cancel_io to remove all of that task's requests from the
queue.

When the I/O System calls cancel_io, it passes the following parameters:

• An ID value that identifies requests to be canceled

• A pointer to the DUIB

• A token for the device data storage area

Figure A-4 illustrates the steps that the cancel_io procedure follows to cancel an I/O
request. The numbers in the figure correspond to the step numbers in the text.

1. The cancel_io procedure receives access to the queue by gaining control of the
region. This allows it to remove requests from the queue without concern that
other tasks might also be processing the IORS at the same time.

2. The cancel_io procedure locates the request(s) to be canceled by looking at the
cancel_id field of the queued IORSs, starting at the front of the queue.

3. If the request to be canceled is at the head of the queue, that is, the device is
processing the request, cancel_io calls a device-specific device_stop procedure
that stops the device from further processing.

4. If the request is finished or the IORS is not at the head of the queue, cancel_io
removes the IORS from the queue and sends it to the response mailbox indicated
in the IORS. It examines the rest of the requests on the queue, removing all of
them whose cancel_id fields match the ID of the canceled request.

5. The cancel_io procedure surrenders control of the region, thus allowing other
procedures to gain access to the queue.

The additional CLOSE request supplied by the I/O System will not be processed until
all other requests with the given cancel_id value have been dealt with.

See also: device_stop, in Chapter 5

222 Appendix A Random Access Support for Interrupt-driven Devices

Yes

No

No

Yes

No

Yes

W-2778

cancel_io
1

2

3

4

5

Gains access
from the region

Obtain IORS
with specified

cancel$id value

Gains access
from the region

Is the device
currently processing

the request
?

Calls the user-written
device stop procedure

Sends the IORS
to the response

mailbox

Is the
request done

?

Any more
IORS to cancel

?

Returns to the
I/O system

Removes the IORS
from the queue

Surrenders access
to the region

Figure A-4. Random Access Device Driver Cancel_io Procedure

Interrupt Task
As a part of its processing, the init_io procedure creates an interrupt_task for the
entire device. This interrupt_task responds to all interrupts generated by the units of
the device, processes those interrupts, and starts the device working on the next I/O
request on the queue.

Figure A-5 illustrates the steps that the interrupt_task for the random access device
driver follows to process a device interrupt. The numbers in the figure correspond to
the step numbers in the text.

1. The interrupt_task uses the contents of the processor's DS register to obtain a
token for the device data storage area. This is possible for the following two
reasons:

Driver Programming Concepts Appendix A 223

• When init_io created the interrupt_task, instead of specifying the
interrupt_task's DS register in the data_seg parameter of the create_task
call, it passed the token of the data storage area in this parameter.
Therefore, when the Nucleus created the task, it set the task's DS register to
the value of the token.

• When the init_io procedure initialized the data storage area, it included the
value of the interrupt_task's DS register there.

When the interrupt_task starts running, it saves the contents of the DS register to
use as the address of the data storage area and sets the DS register to the value
listed in the data storage area. Thus the DS register does point to the task's data
segment, and the task also knows the address of the data storage area. This is the
mechanism that is used to pass the address of the device's data storage area from
the init_io procedure to the interrupt_task.

2. The interrupt_task invokes the set_interrupt system call to indicate that it is an
interrupt_task associated with the interrupt handler supplied with the random
access device driver. It also indicates the interrupt level to which it will respond;
it obtains this information from the DINFO table.

3. The interrupt_task begins an infinite loop by invoking the rqe_timed_interrupt
system call to wait for an interrupt of the specified level. If the time limit
expires before an interrupt occurs, the effect is the same as a null (or spurious)
interrupt, and the task waits for another interrupt. By invoking a number of
rqe_timed_interrupt calls, instead of a single wait_interrupt, the task allows
lower-priority tasks to gain control between calls. For example, if an application
attempts to send data to a line printer that isn't connected, the user can press
<Ctrl-C> to cancel the operation.

224 Appendix A Random Access Support for Interrupt-driven Devices

No

Yes

Gains access from region

Starts the request at the
head of the queue

Calls the user-written interrupt
procedure to process

the interrupt

Waits for interrupt at the
specified level

Gets selector for device data
storage area from DS register

7

8

6

W-2779

interrupt_task

Is
the request

done
?

1

2

3

4

5

Removes the IORS from the
queue and sends a message to

the response mail box

Sets interrupt level at which to
respond and indicates device

handler

Surrenders access
to the region

Figure A-5. Random Access Device Driver Interrupt Task

4. Using a region, the interrupt_task gains access to the request queue. This allows
it to examine the first entry in the request queue without concern that other tasks
are modifying it at the same time.

5. The interrupt_task calls a device-specific device_interrupt procedure to process
the actual interrupt. This can involve verifying that the interrupt was legitimate
or any other operation that the device requires.

See also: Interrupt Task, Chapter 5

6. If the request has been completely processed, (one request can require multiple
reads or writes, for example), the interrupt_task removes the IORS from the
queue and sends it as a message to the response mailbox indicated in the IORS.
If the request is not completely processed, the interrupt_task leaves the IORS at
the head of the queue.

Driver Programming Concepts Appendix A 225

7. If there are requests on the queue, the interrupt_task initiates the processing of
the next I/O request by calling the device-specific device_start procedure.

8. In any case, the interrupt_task then surrenders access to the queue, allowing
other procedures to modify the queue, and loops back to wait for another
interrupt.

■■ ■■ ■■

226 Appendix A Random Access Support for Interrupt-driven Devices

Driver Programming Concepts Appendix B 227

Random Access Support
for Message Based Devices

Message-based devices support asynchronous I/O. The CPU host and the controller
communicate using messages. In a Multibus I system, a shared-memory queue is
used; interrupt-driven controllers signal the host through hardware interrupts, and the
host signals the controller at a flag byte I/O port. In a Multibus II system, the
Multibus II Transport Protocol is used; controllers signal the CPU host using virtual
interrupts that are referred to as messages throughout this appendix.

This appendix describes the operations of the random access support procedures as
they apply to message-based devices. The procedures and task described include:

init_io
finish_io
queue_io
cancel_io
message_task

These procedures, supplied with the I/O System, are called when an application task
makes an I/O request to support a random access or common device. The procedures
ultimately call the device-specific device_init, device_finish, device_start,
device_stop, and device_interrupt procedures.

This appendix describes the steps that an actual device driver follows. You can use
this appendix to get a better understanding of the I/O System-supplied portion of a
device driver to make writing the device-specific procedures easier. Or you can use
it as a guideline for writing custom device drivers.

B

228 Appendix B Random Access Support for Message-based Devices

Init_io Procedure
The I/O System calls init_io when an application task makes an
a_physical_attach_device system call and no units of the device are currently
attached.

The init_io procedure initializes objects used by the remainder of the driver
procedures, creates a message_task, and calls a device_init procedure to initialize the
device itself.

When the I/O System calls init_io, it passes the following parameters:

• A pointer to the DUIB of the device-unit to initialize

• A pointer to the location where init_io must return a token for a data segment
(data storage area) that it creates

• A pointer to the location where init_io must return the condition code

Figure B-1 illustrates the steps that the init_io procedure follows to initialize the
device. The numbers in the figure correspond to the step numbers in the text.

1. The init_io procedure creates a data storage area to be used by all the procedures
in the device driver. The size of this area depends in part on the number of units
in the device and any special space requirements of the device. Init_io initializes
this area and places the following information there:

• A token for a region. Step 2 creates this region for mutual exclusion.

• An array to contain the addresses of the DUIBs for the device-units attached
to this device. Init_io places the address of the DUIB for the first attaching
device unit into this array.

• A token for the message_task.

• Other values indicating the queue is empty and the driver is not busy.

• A port object used by the message_task to receive messages from the
controller. The user-supplied driver uses this object to send messages to the
controller.

It also reserves space in the data storage area for device data.

2. The procedure creates a region. The other high-level procedures receive control
of this region whenever they place a request on the queue or remove a request
from the queue. Init_io places the token for this region in the data storage area.

3. The init_io procedure enters the region to prevent the message_task from starting
before initialization is complete.

Driver Programming Concepts Appendix B 229

Enters the region

Exits the region

Creates the object for
device and starts filling It

Creates the region for
access to the queue

Creates the
interrupt/message task

Calls user-supplied procedure
to initialize device

W-2780

Returns to I/O system
passing data object and

condition code

init_io

4

5

6

7

3

2

1

Figure B-1. Random Access Device Driver Init_io Procedure

4. The init_io procedure calls a device_init procedure that initializes the device
itself. It gets the address of this procedure by examining the DINFO table
specified in the DUIB.

See also: device_init, Chapter 5

5. The init_io procedure creates a message_task to handle messages generated by
this device. When init_io invokes create_task to create the message_task, it
does not specify the task's data segment. Instead, it uses the data_seg
parameter of create_task to pass the message_task a token for the data storage
area. This area is where the message_task will get information about the device.
Init_io places the actual data segment value, as well as a token for the
message_task, in the data storage area.

6. The init_io procedure exits the region.

230 Appendix B Random Access Support for Message-based Devices

7. It returns control to the I/O System, passing a token for the data storage area and
a condition code which indicates the success of the initialization operation.

If an error occurs at any point, the init_io procedure exits the region, deletes all the
objects it has created up to that point, and returns an error to the I/O System.

Finish_io Procedure
The I/O System calls finish_io when an application task makes an
a_physical_detach_device system call and no other units of the device are currently
attached.

Finish_io calls a device_finish procedure to do final processing on the device, deletes
the message_task, and deletes the objects used by the other device driver procedures.

When the I/O System calls finish_io, it passes the following parameters:

• A pointer to the DUIB of the device-unit just detached

• A token for the data storage area created by init_io

Figure B-2 illustrates the steps that the finish_io procedure follows to terminate
processing for a device. The numbers in the figure correspond to the step numbers in
the text.

1. The finish_io procedure calls a device-specific device_finish procedure that does
any necessary final processing on the device itself. Finish_io gets the address of
this procedure by examining the DINFO table specified in the DUIB.

2. It deletes the message_task originally created for the device by the init_io
procedure.

3. It deletes the region and the data storage area originally created by the init_io
procedure, allowing the operating system to reallocate the memory used by these
objects.

4. The finish_io procedure returns control to the I/O System.

Driver Programming Concepts Appendix B 231

W-2781

finish_io

1

2

3

4

Deletes message
task for device

Deletes region and data objects
used by this device driver

Returns to the I/O system

Calls user-supplied
procedure to finish up

processing on the device

Figure B-2. Random Access Device Driver Finish_io Procedure

232 Appendix B Random Access Support for Message-based Devices

Queue_io Procedure
For message-based devices, the I/O System calls the queue_io procedure to place an
I/O request on a queue of requests on a first-in-first-out basis. This queue has the
structure of a doubly-linked list. This procedure calls a device_start procedure to
start processing the I/O requests.

When the I/O System calls queue_io, it passes the following parameters:

• A token for the IORS

• A pointer to the DUIB

• A token for the data storage area originally created by init_io

Figure B-3 illustrates the steps that the queue_io procedure follows to place a request
on the I/O queue. The numbers in the figure correspond to the step numbers in the
text.

1. The queue_io procedure sets the done field in the IORS to 0H, indicating the
request has not yet been completely processed. Other procedures that start the
I/O transfers and provide message handling also examine and set this field. It
also sets status to E_OK and actual to 0H.

2. The queue_io procedure receives control of the region and thus access to the
queue. This allows queue_io to adjust the queue without concern that other tasks
might also be doing this at the same time.

3. It verifies that the request is within the range of 0 to device size for this device.
If the request is outside this range, queue_io returns E_PARAM. Then it places
the IORS on the queue.

4. Queue_io calls the device_start procedure to process the request at the head of
the queue.

5. It surrenders control of the region, thus allowing other procedures to have access
to the queue.

6. The queue_io procedure returns control to the I/O System.

✏ Note
If the request is complete, queue_io returns the IORS to the
response mailbox; if not, the message_task returns it upon
completion. The random access support does not return a CLOSE
request until all prior requests for the same unit are completed.

See also: device_start, Chapter 5

Driver Programming Concepts Appendix B 233

Sets status fields in
the IORS

Gains access to the
region

Places the IORS in
the queue

Surrenders access to the
region

Returns to the I/O
system

W-2782

Starts processing the
request

queue_io

6

5

4

3

2

1

Figure B-3. Random Access Device Driver Queue_io Procedure

234 Appendix B Random Access Support for Message-based Devices

Cancel_io Procedure
This procedure does no operations for message-based devices. The message_task
sweeps through the request queue and starts all requests. Because of this feature, all
I/O requests are guaranteed to finish within a limited time.

✏ Note
The CLOSE request supplied by the I/O System is immediately
sent to the device_start procedure. However, the random access
support does not return it to the I/O System until all requests in the
queue have been completed.

Message Task
The init_io procedure creates a message_task for the entire device. This
message_task responds to all messages generated by the units of the device, processes
those messages, and starts the device working on the unstarted I/O requests on the
queue.

Figure B-4 illustrates the steps that the message_task follows to process a message
from the device. The numbers in Figure B-4 correspond to the step numbers in the
text.

1. Message_task uses the contents of the processor's DS register to obtain a token
for the device data storage area. This is possible for these reasons:

• When init_io created the message_task, instead of specifying the
message_task's DS register in the data_seg parameter of the create_task
call, it passed the token of the data storage area in this parameter.
Therefore, when the Nucleus created the task, it set the task's DS register to
the value of the token.

• When the init_io procedure initialized the data storage area, it included the
value of the message_task's DS register there.

When the message_task starts running, it saves the contents of the DS
register to use as the address of the data storage area and sets the DS register
to the value listed in the data storage area. Thus the DS register does point
to the task's data segment, and the task also knows the address of the data
storage area. This is the mechanism used to pass the address of the device's
data storage area from the init_io procedure to the message_task.

Driver Programming Concepts Appendix B 235

2. Message_task begins an infinite loop by invoking the receive call to wait at the
port for messages from the device.

See also: Send and receive messages to/from specific ports, Nucleus
Communications Service, Nucleus Programming Concepts
Setting the message task priority, Nucleus Communication
Service screen, ICU User's Guide and Quick Reference manual

3. Using a region, message_task gains access to the request queue. This allows it to
examine the first entry in the request queue without concern that other tasks are
modifying it at the same time.

4. It calls a device_interrupt procedure to process the received message.

See also: device_interrupt procedure, Chapter 5

5. The message_task checks the status of each request in the queue.

6. If the request has been completely processed, (one request can require multiple
reads or writes, for example), the message_task removes the IORS from the
queue and sends it as a message to the response mailbox (exchange) indicated in
the IORS. If the request is not completely processed, the message_task leaves
the IORS in the queue but checks to see if the request has been started.

7. If the request has not been started, the message_task calls the device_start
procedure to process the request.

8. In any case, the message_task then surrenders access to the queue, allowing
other procedures to modify the queue, and loops back to wait for another
message from the controller.

236 Appendix B Random Access Support for Message-based Devices

No

Yes

Yes

No

Gets selector for device data
storage area from DS register

Waits for message at the
specified port

Removes the IORS from the
queue and sends a message to

the response mail box

Surrenders access
to the region

W-2783

Call the user-written
device start procedure

to start the request

6

7

8

message_task

Gains access to region

Calls the user-written interrupt
procedure to process

the message

Get IORS from the queue

Is
the request

done
?

Is
the request

started
?

1

2

3

4

5

Figure B-4. Random Access Device Driver Message

■■ ■■ ■■

Driver Programming Concepts Appendix C 237

Controlling Terminal I/O C
The TSC supplies a set of control functions that, when placed in the input stream of
data, affect how data flows between the BIOS and a terminal. There are two kinds of
control functions: line-editing functions and OSC sequences. The control characters
assigned to these functions are configurable.

In this appendix, current line refers to the set of characters that the operator has
entered since the last line terminator.

All control functions do not take effect when entered from a terminal running under
the HI CLI. The only control functions that operate under the CLI are the delete
character, line terminator character, empty type-ahead buffer character, start output
character, and stop output character.

See also: CLI special characters, Command Reference

Line-editing Functions
This section describes the control functions the TSC uses to edit data in the line-edit
buffer and the default control characters assigned to do the functions. Each control
character described here can be replaced with a different character by using control
character redefinition, described later in this chapter.

✏ Note
The line-editing control characters described in the following
paragraphs are effective only when the terminal is in line-edit mode
and when the characters appear in the input stream. The characters
have no effect when the terminal is in transparent or flush mode, or
when the characters appear in the output stream.

Appendix C Controlling Terminal I/O238

Table C-1. Line Editing Control Characters

Function Default Description

End line CR or LF Terminates current line. Entering CR or LF inserts a
carriage return and a line feed. The TSC moves the
current line (or the number of characters specified in the
input request) from the type-ahead buffer, through the
line-edit buffer (if specified), to the task's buffer. If
characters remain in the line-edit buffer, they satisfy the
next input request from the terminal.

Delete char Rubout Removes the last data character from the current line. If
the terminal has a monitor, the character combination
(backspace) (space) (backspace) is echoed to the
screen. If the terminal output is hard copy, the deleted
character is displayed a second time, surrounded by #
characters; for example, CAT (rubout)(rubout)(rubout)
would appear as CAT#T##A##C#; the letters C, A, and
T would be removed from the current line.

Quote char <Ctrl-P> The next character entered is treated as data, even if
that character is normally a line-editing control
character. (Output control characters perform their
normal functions even if preceded by a <Ctrl-P>.) In
line-edit mode, the TSC removes the <Ctrl-P> but
leaves the disabled character that follows. Neither the
<Ctrl-P> nor the character that immediately follows it are
displayed at the terminal.

continued

Driver Programming Concepts Appendix C 239

Table C-1. Line Editing Control Characters (continued)

Function Default Description

Show line <Ctrl-R> Displays a #, then skips to the next line and displays the
current line with editing already performed. If the current
line is empty, <Ctrl-R> displays the previous line. If an
operator enters <Ctrl-R> several times successively, the
TSC displays previous lines (skipping those with carriage
return/line feed only) until it can't find any more lines;
then it repeatedly displays the last line found for the
remaining <Ctrl-Rs>.

Empty buffer <Ctrl-U> Immediately empties the type-ahead buffer.

Delete line <Ctrl-X> Deletes the current line. Discards all characters entered
since the most recent line terminator and displays #.

EOF <Ctrl-Z> Terminates the current line and signifies the end of file.
<Ctrl-Z> does not become part of the current line.
Consequently, entering <Ctrl-Z> causes a task pending
on an a_read call to have its read request satisfied
without transferring the EOF character to the waiting
task's buffer. If this character is the only character on a
line, no characters are sent in response to the read
request.

Spec. end line None Terminates the current line without inserting a CR LF
into the text stream. The TSC transfers this special line
terminator to the waiting task's buffer, but it does not
expand the line terminator into a CR/LF pair.

Appendix C Controlling Terminal I/O240

Controlling Output to a Terminal
When sending output to a terminal, the TSC always operates in one of four modes.
You can switch the current output mode to any of the others by entering an output
control character at the terminal. The output modes and their characteristics are:

Normal The TSC accepts output from tasks and immediately passes the output
to the terminal. (Default)

Stopped The TSC accepts output from tasks, up to the size of the output buffer,
but it queues the output rather than immediately passing it to the
terminal.

Scrolling The TSC accepts output from tasks, up to the size of the output buffer,
and it queues the output as in the stopped mode. However, it sends the
scrolling count (a predetermined number of lines) to the terminal
whenever an operator enters an appropriate output control character at
the terminal.

Discarding The TSC discards all output for the terminal.

The output control characters in Table C-2 change the output mode for the terminal.
Each control character described here is the default, and each can be replaced with a
different control character by means of control character redefinition, as explained
later in this chapter.

✏ Note
The output control characters described in Table C-2 do their
intended operations only when they appear in the input stream.
They have no effect when they appear in the output stream.

Driver Programming Concepts Appendix C 241

Table C-2. Output Control Characters

Default Character(s) Description

Discard <Ctrl-O> Toggles output in/out of discarding mode. If not in
discarding mode, changes to discarding mode. If in
discarding mode, changes to the previous mode.

Start <Ctrl-Q> Places output into normal mode unless the last output
control character was <Ctrl-S>; then output mode
returns to the previous mode. This means:

<Ctrl-S>, <Ctrl-Q> returns to the previous mode.

<Ctrl-Q>, <Ctrl-Q> always changes to normal mode.

Stop <Ctrl-S> Places output into stopped mode unless output was in
the discarding mode. <Ctrl-S> <Ctrl-O> changes to
stopped mode.

Scroll 1 <Ctrl-T> Places output into scrolling mode, temporarily sets the
scrolling count to 1, sends one output line to the
terminal, and changes to stopped mode.

Scroll n <Ctrl-W> Places output into scrolling mode and sends n lines to
the terminal, where n is the scrolling count, then
changes to stopped mode.

Appendix C Controlling Terminal I/O242

OSC Sequences
When a terminal is attached, the default terminal and connection modes are those
contained in the UINFO table. A terminal operator or a program can get or set these
modes by issuing OSC sequences. The format of the OSC sequence is as follows:

W-2752

Esc] data Esc\

The opening delimiter, Escape Right Bracket, tells the TSC that the following data is
an OSC sequence, and the closing delimiter, Escape Backslash, indicates the end of
the sequence.

See also: Software control strings, ANSI publication X3.64 (1979)

If you use an OSC sequence to get the current terminal mode, the TSC responds by
sending an Application Program Command (APC) sequence to the application
program or terminal input buffer. The format of the APC sequence is as follows:

W-2753

data Esc\Esc_

The opening delimiter, Escape Underline, tells the application program or the
operator that the following data is an APC sequence, and the closing delimiter,
Escape Backslash, indicates the end of the sequence.

Instead of using OSC sequences, your programs can use the a_special or s_special
system call to set most of the modes described in this appendix. Those that a_special
cannot set are noted when described.

The TSC can accept OSC sequences as input from the terminal operator, as output
from a task, from both, or from neither. When the TSC accepts OSC sequences, it
strips the OSC sequence from the input or output stream and does the desired
operation.

See also: terminal_flags, UINFO table structure, Chapter 6

Figure C-1 shows an overall syntax diagram of the possible OSC sequences. The rest
of this appendix discusses portions of the diagram in more detail. You can combine
individual portions of OSC sequences as shown in Figure C-1.

Driver Programming Concepts Appendix C 243

L H M R W T F I O S X

 Y U V G D J K P Q N A

decimal
number

Esc]

C =

decimal
number=

O

A H Q

U

L

M

wait

,

=

A

H

;

textS

Esc \

W-2754

T E R W O C

T

E C Z decimal
number

,

,

Figure C-1. Composite OSC Sequence Diagram

Connection Modes
This section describes the modes that depend on the terminal connection, rather than
on the terminal itself. With these modes, when multiple connections to a terminal
exist, the terminal might operate one way when communicating using the first
connection and a different way when communicating using the second connection.

Each mode relates directly to one or more bits in the connection_flags field for
the connection, as defined in the a_special system call. Table C-3 gives the names of
the modes, the single-letter identification codes for the modes, the bits of the
connection_flags field to which they correspond, and a brief description of their
functions.

Assuming the OSC control mode is set appropriately, the modes that a terminal
inherits from a connection can be altered. The syntax of an OSC sequence that will
change one or more of these modes is as follows:

Esc] C: mode id decimal number Esc\

W-2755

=

,

Where:

Appendix C Controlling Terminal I/O244

C: Indicates this sequence applies to a connection. Include the
colon (:) after the C.

mode id An ID letter from the available modes

decimal number The value representing the desired mode. This number must
be of the character data type.

See also: a_special, System Call Reference

Driver Programming Concepts Appendix C 245

Table C-3. Connection Modes

Mode Name ID Bit(s) Description and Values

Input T 0-1 0 = Invalid entry.

1 = Transparent mode. Input is transmitted to the
requesting task without being line-edited. Before
being transmitted, data accumulates in a buffer until
the number of characters equals the number
requested by the task in its read call.

2 = Line editing mode. Input remains in the line-edit buffer
until a line terminator is entered. While in the line-edit
buffer, input control characters can be used to edit the
input. In line-editing mode, the TSC restricts input
lines to 253 characters (plus a line terminator, such as
carriage return and/or line feed). If an operator enters
more than 253 characters, only the first 253 are
passed to the requesting task's buffer. The remaining
characters are lost. If there are more characters than
requested in the buffer when a line terminator is
entered, only the requested characters are sent. The
additional characters remain in the buffer for the next
input request.

3 = Flush mode. Input is transmitted to the requesting
task without being line-edited. Before being
transmitted, data accumulates in a buffer until an input
request occurs (that is, a task issues a read request).
Then, the number of characters requested is moved
from the TSC input buffer to the requesting task's
buffer. If characters remain in the buffer, they are
saved for the next input request. If not enough
characters are in the buffer, the request is returned
immediately with all available characters, without
waiting for the number of characters requested.

Echo E 2 0 = The TSC echoes characters to the terminal's display
screen.

1 = No echoing.

continued

Appendix C Controlling Terminal I/O246

Table C-3. Connection Modes (continued)

Mode Name ID Bit(s) Description and Values

Input parity R 3 0 = For characters entered at the terminal, the TSC
sets the parity bit to 0.

1 = The TSC does not alter the input parity bit.

Output parity W 4 0 = For characters sent to the terminal, the TSC sets
the parity bit to 0.

1 = The TSC does not alter the output parity bit.

Output control O 5 0 = The TSC recognizes and acts on output control
characters in the input stream.

1 = The TSC ignores output control characters in the
input stream.

OSC control C 6-7 0 = The TSC recognizes and acts on OSC sequences
that appear in either the input or output stream.

1 = The TSC acts on OSC sequences in the input
stream only.

2 = The TSC acts on OSC sequences in the output
stream only.

3 = The TSC does not act on OSC sequences.

Delayed Input 8 0 = Characters are moved from the raw input to the
type-ahead buffer by the interrupt_task.

1 = Characters are moved from the raw input buffer to
the type-ahead buffer by the service task.

By-Pass 9 0 = Characters are moved from the raw input buffer to
the type-ahead buffer.

1 = Characters are moved from the raw input buffer
directly to the application task's buffer. The line-
edit and type-ahead buffers are bypassed.

Driver Programming Concepts Appendix C 247

✏ Note
You can use two or more connections concurrently to obtain input
from a single terminal. In such cases, the connection associated
with the last active read request always has its connection modes in
effect. This means that if characters come in from the terminal
before another connection's read request has been issued to receive
those characters, the characters are processed in the TSC's input
buffer according to the connection modes associated with the
previous read request. To prevent data loss or corruption when
using connections with different mode settings, ensure that read
requests occur before data comes in from the terminal.

Neither Delayed Input nor By-Pass modes can be activated using
an OSC Sequence; they can only be specified programmatically
using an a_special or s_special system call.

Terminal Modes
Some terminal modes are the same regardless of the connection used to communicate
with them.

Table C-4 gives the names of these modes, the single-letter identification codes for
the modes, the bits of the terminal_flags field to which they correspond, and a
brief description of their functions. The modes that do not correspond to options in
a_special are noted with asterisks (*) in the table.

See also: terminal_attributes structure, a_special, System Call Reference

Assuming that the OSC control mode is set appropriately, a terminal's modes can be
altered using OSC sequences.

Appendix C Controlling Terminal I/O248

The syntax of an OSC sequence that changes one or more of the modes covered in
this section is as follows:

W-2756

Esc]

,

mode id Esc\T:

n

m=

Where:

T: Indicates this sequence applies to a terminal. Include the colon (:) after
the T.

mode id An ID letter from the available modes

n The decimal representation of an ASCII code, if the mode ID is C or Z,
or the number of an escape sequence, if the mode ID is E. This
parameter is valid only if the mode ID is C, E, or Z.

m If the mode ID is C, this parameter represents a function code from
Table C-8. If the mode ID is M, it is the number of a terminal character
sequence. If the mode ID is Z, it is an integer from 0 to 3 that specifies
the index into the special character array. Otherwise, it is the value to
which you want to change the mode.

Driver Programming Concepts Appendix C 249

Table C-4. Terminal Modes

Mode Name ID Bit(s) Description and Values

Line protocol L 1 0 = Full duplex.
1 = Half duplex.

Output
medium

H 2 0 = Video display terminal.
1 = Printed (hard copy).

Modem
indicator

M 3 0 = No modem connected.

1 = The terminal is connected to the hardware by a
modem.

Input parity R 4-5 For drivers that support link parameters, the physical link
handling mode (ID N), when enabled, overrides this
setting. Bit 15 of the physical link field enables and
disables that mode.

0 = Driver always sets input parity bit to 0. This yields
8-bit data.

1 = Driver never alters the input parity bit. This yields
8-bit data.

2 = Driver expects even parity on input. This yields
7-bit data.

3 = Driver expects odd parity on input. This yields
7-bit data.

continued

If a transmission error occurs when even or odd parity is set, the driver sets bit 7 to 1.
Otherwise the driver sets bit 7 to 0. Errors include:

• A parity error

• The received stop bit has 0 (framing error)

• The previous character received has not yet been fully processed (overrun error)

Appendix C Controlling Terminal I/O250

For the Terminal Communications Controller driver controlling an SBC 188/48 or
188/56 board, if a parity error occurs, the character is discarded. If a framing error
occurs, the character is returned as an 8-bit null character (00H) without error
indication.

Table C-4. Terminal Modes (continued)

Mode Name ID Bit(s) Description and Values

Output parity* W 6-8 For drivers that support link parameters, the physical link
handling mode (ID N) when enabled overrides this setting.

0 = Driver always sets output parity bit to 0. This
yields 8-bit data.

1 = Driver always sets the output parity bit to 1. This
yields 8-bit data.

2 = Driver sets output parity bit to give even parity.
This yields 7-bit data.

3 = Driver sets output parity bit to give odd parity.
This yields 7-bit data.

4 = Driver does not change parity. This yields 8-bit
data.

Translation T 9 Indicates whether the TSC for this terminal performs
translation between ANSI Standard X3.64 escape
sequences and unique terminal character sequences.

0 = Do not enable translation.
1 = Enable translation.

continued
* If you set input or output parity to even or odd, you must set both to the same value. That is, if you

set mode ID R to 2 or 3, you must also set mode ID W to the same value.

Driver Programming Concepts Appendix C 251

Table C-4. Terminal Modes (continued)

Mode Name ID Bit(s) Description and Values

Axes sequence
and orientation

F 10-12 Each bit in this three-bit field corresponds to a
different function. Enter a value (0-7) accordingly.

10 Terminal axis sequence:

0 = List or enter the horizontal coordinate first.

1 = List or enter the vertical coordinate first.

11 Horizontal axis orientation:

0 = Numbering of coordinates increases from
left to right.

1 = Numbering of coordinates decreases from
left to right.

12 Vertical axis orientation:

0 = Numbering of coordinates increases from
top to bottom.

1 = Numbering of coordinates decreases from
top to bottom.

Input baud rate I N/A Corresponds to in_baud_rate field of
terminal_attributes in a_special.

0 = Not applicable.
1 = Do an automatic baud-rate search.
other = Actual input baud rate, such as 2400.

Output baud rate O N/A Corresponds to out_baud_rate field of
terminal_attributes in a_special.

0 = Not applicable.
1 = Use the input baud rate for output.
other = Actual output baud rate, such as 9600.

continued

Appendix C Controlling Terminal I/O252

Table C-4. Terminal Modes (continued)

Mode Name ID Bit(s) Description and Values

Scrolling number S N/A Corresponds to scroll_lines field of terminal_attributes
in a_special. Specify the number of lines of output to
send to the terminal's display whenever the operator
enters the scrolling control character (default is <Ctrl-
W>).

Screen width X N/A Corresponds to low-order byte of x_y_size field in
a_special's terminal_attributes structure. This is the
number of character positions on each line of the
terminal's screen.

Screen Height Y N/A Corresponds to high-order byte of x_y_size field in
a_special's terminal_attributes structure. This is the
number of lines on the terminal's screen.

Cursor addressing
offset

U N/A Corresponds to low-order byte of x_y_offset field in
a_special's terminal_attributes structure. This value
starts the numbering sequence on both axes.

Overflow offset V N/A Corresponds to high-order byte of x_y_offset field in
a_special's terminal_attributes structure. This is the
value to which the numbering of the axes must fall
back after reaching 127.

Flow control G 0 Corresponds to flow control bit in special_modes field
of terminal_attributes in a_special. This bit specifies
whether an intelligent communications board (such as
the 188/48, 186/410, or 188/56 board) sends flow
control characters to prevent input buffer overflow.

0 = Disable flow control.
1 = Enable flow control.

continued

Driver Programming Concepts Appendix C 253

Table C-4. Terminal Modes (continued)

Mode Name ID Bit(s) Description and Values

Special character D 1 Corresponds to special character bit of
special_modes field of terminal_attributes in
a_special. If your device supports special characters
(the 188/48, 188/56, 186/410, 546, 547, 548, and 549
boards do), the device can send an interrupt
whenever a special character (defined in the special
array) is typed.

When Special Character Mode is on, the device uses
interrupts to inform the TSC that special characters
have been entered. If a special character has also
been defined as a signal character, the TSC sends a
unit to the appropriate signal semaphore as soon as
it receives the special character interrupt. This
enables the special character to be processed ahead
of characters in the input buffer that are waiting to be
processed. However, the special character remains
in the input stream and must also be processed in
line with the rest of the input characters.

If the special character is not assigned as a signal
character, the TSC discards the special character
after receiving it. When Special Character mode is
off, the device sends special characters through the
normal input stream.

The setting of this bit is as follows:

0 = Disable Special Character Mode.
1 = Enable Special Character Mode.

The Special Character High Water mark (A) is used
in conjunction with this field to control Special
Character Mode.

continued

Appendix C Controlling Terminal I/O254

Table C-4. Terminal Modes (continued)

Mode Name ID Bit(s) Description and Values

High water
mark

J N/A Corresponds to high_water_mark field of
terminal_attributes in a_special. This field
specifies the number of bytes the terminal
communication board's buffer must contain
before the board sends the flow control
character to stop input.

Low water
mark

K N/A Corresponds to low_water_mark field of
terminal_attributes in a_special. This field
specifies the number of bytes the terminal
communication board's buffer must drop to
before the board sends the flow control
character to start input.

Start input
character

P N/A Corresponds to fc_on_char field of
terminal_attributes in a_special. This
decimal value specifies an ASCII character
that the communication board sends when
the buffer drops to the low water mark.

Stop input
character

Q N/A Corresponds to fc_off_char field of
terminal_attributes in a_special. This
decimal value specifies an ASCII character
that the communication board sends when
the buffer rises to the high water mark.

continued

Driver Programming Concepts Appendix C 255

Table C-4. Terminal Modes (continued)

Mode Name ID Bit(s) Description and Values

Physical link N N/A

0 - 1

2 - 3

4 - 5

6 - 14

15

Corresponds to link_parameter field of
terminal_attributes in a_special. Specifies
characteristics of the physical link between
the terminal and a device. It is not supported
by all device drivers. When enabled, this field
overrides the input and output parity modes
(IDs R and W).

Specifies the input and output parity, as
follows:

0 = No parity
1 = Invalid value
2 = Even parity
3 = Odd parity

Specifies the character length, as follows:

0 = 6 bits/character
1 = 7 bits/character
2 = 8 bits/character
3 = Invalid value

Indicates the number of stop bits, as follows:

0 = 1 stop bit
1 = 1-1/2 stop bits
2 = 2 stop bits
3 = Invalid value

Reserved, set to 0.

Specifies whether the physical link is enabled
or disabled.
0 = Disable
1 = Enable

continued

Appendix C Controlling Terminal I/O256

Table C-4. Terminal Modes (continued)

Mode Name ID Bit(s) Description and Values

Special high
water mark

A N/A For the Terminal Communications Controller driver, if a
parity error occurs on input, the character is discarded.
If a framing error occurs, the character is returned as
an 8-bit null character (00H). This method of error
reporting is different from the method used when the
terminal_flags parity specification is in effect.
Corresponds to spc_hi_water_mark field in
terminal_attributes of a_special. This field is used in
conjunction with the Special Characters field (D) to
control Special Character Mode. When the device's
input buffer fills to contain the number of characters
specified in this field, Special Character Mode is
enabled (assuming the Special Character field is
turned on). If the number of characters in the device's
input buffer is less than the high water mark, Special
Character Mode is disabled, even if the Special
Character field is turned on.

If the Special Character field (D) is turned off, this field
has no effect.

*Control
characters

C N/A Modifies the line-edit character and output control
character assignments. See also: Control Character
Redefinition

*Escape
sequence

E N/A Pairs an escape sequence with a terminal character
sequence to translate or simulate a terminal function.
See also: Translation and Simulation

continued
* Function not available with a_special. The OSC Query sequence does not return information about

this option.

Driver Programming Concepts Appendix C 257

Table C-4. Terminal Modes (continued)

Mode Name ID Bit(s) Description and Values

Special Array Z N/A Corresponds to special_char array of
terminal_attributes field in a_special. This array can
hold as many as four characters that are defined as
the device's special characters. If Special Character
Mode is on (and the device supports Special Character
Mode), typing any of these characters at the keyboard
generates an interrupt that immediately informs the
TSC that a special character was entered. If the
character is a signal character, the TSC processes it
immediately. If the character isn't a signal character,
the TSC does nothing with the character.

The format of this sequence is Zn = m, where

m is an integer in the range 0-3, specifying this
character's index in the special character array.

n is a decimal value of the special character's ASCII
code.

If you define less than four special characters, you
must fill the remaining slots of the array with duplicates
of the last character you define.

Appendix C Controlling Terminal I/O258

Translation and Simulation
The TSC's translation and simulation capabilities let application programs use a table
of predefined escape sequences to do terminal functions such as directly controlling a
terminal's cursor and setting tabs. This section describes these capabilities.

The TSC recognizes certain escape sequences (sequences beginning with Escape) as
instructions to do terminal functions. These sequences remain the same regardless of
the terminal you connect to the system. To make application programs terminal-
independent, use escape sequences to control your terminal. (The terminal character
sequences that terminals recognize vary from terminal to terminal. Application
programs that use terminal character sequences must be modified whenever the
program is used with a different type of terminal.)

The TSC can translate device-independent escape sequences into device-specific
terminal character sequences. How this translation occurs depends on an OSC
sequence supplied either by an operator or by an application program. The OSC
sequence forms an association between a terminal character sequence and an escape
sequence. If translation for the terminal is turned on, the TSC replaces the escape
sequence with the equivalent terminal character sequence. If translation for the
terminal is turned off, or if no association has been formed between the escape
sequence and a terminal character sequence, the TSC passes the escape sequence
unchanged to the terminal. The TSC can also translate a single escape sequence into
multiple terminal character sequences. This operation is useful for simulating
operations that the terminal doesn't support directly.

✏ Note
The TSC translates escape sequences into terminal character
sequences consisting of a single control character or an Escape
followed by a single character. If your terminal requires sequences
that are more complicated or that require characters other than
Escape as the first character, you cannot use the TSC for
translation. Your tasks must send the other sequences directly.

Translation and simulation relates three items: terminal character sequence, escape
sequence, and OSC sequence.

Terminal Character Sequence
A sequence of characters that is terminal-specific. It is usually
a control character or an escape code. Table C-6 lists the
sequences that the TSC supports. Some terminals have
sequences that are not supported.

Escape Sequence A terminal-independent sequence of characters beginning with
an Esc character. Each escape sequence corresponds to a

Driver Programming Concepts Appendix C 259

terminal function. If translation is turned on, whenever the
escape sequence is sent to the terminal, the TSC replaces it
with the functionally equivalent terminal character sequence.
Alternatively, the TSC can either pass the escape sequence to
the terminal as is, or it can discard the sequence.

OSC Sequence A sequence of characters sent to the TSC to establish a pairing
between an escape sequence and a terminal character
sequence. OSC sequences can also set other attributes of the
terminal and the connection.

To send an OSC sequence, an operator can place the OSC
sequence in a file and copy the file to :co:, or a task can call
a_write or s_write_move to send the OSC sequence to the
terminal. The operator cannot enter the sequence directly from
the terminal. The TSC intercepts the OSC sequence and
establishes the desired pairing, regardless of whether the OSC
sequence comes from a file or a task.

Preparing the TSC

OSC sequences can be placed in a file and copied to the terminal, or they can be
issued from a task. To establish a pairing, the following conditions must exist:

• There must be a connection to the terminal, and it must be open for writing.

• The OSC control bits for that connection must be set to permit the TSC to
recognize and act upon OSC sequences on output. This feature can be
configured into the system with the ICU, or a task can use the a_special or
s_special system calls to enable the I/O System to act on OSC sequences on
output.

When these conditions exist, the operator can copy a file containing OSC sequences
to the terminal, or a task can call a_write to send the OSC sequences to the terminal.

Whether the OSC sequences came from a task or from copying a file to the terminal,
the TSC intercepts the OSC sequence, removes it from the input or output stream,
and establishes the desired pairing.

Appendix C Controlling Terminal I/O260

The syntax of an OSC sequence that establishes one or more escape-
sequence/terminal-character-sequence pairings is as follows:

,

Esc\Esc] E

W-2757

nT: = m

Where:

T: Indicates that this sequence applies to the terminal. Include the colon
(:) after the T.

E Indicates that this sequence applies to Escape sequences.

n The number of an available escape sequence.

m The number of an available terminal character sequence.

For example, suppose a terminal interprets <Ctrl-H> as a terminal character sequence
that causes the cursor to move backward one position. TSC uses the escape sequence
Esc [D (n=3) to mean the same thing. To establish a relationship between m=8 for
the terminal and n=3 for the TSC, the operator or a task can send the following OSC
sequence:

Esc] T: E3=8 Esc\

Then, if translation is turned on for the terminal (Esc] T: T=1 Esc\), whenever a
task writes the escape sequence Esc [D to the terminal, the terminal's cursor will
move backward one position. Figure C-2 illustrates this situation.

Driver Programming Concepts Appendix C 261

User Application Terminal Support Code Terminal

TranslationEsc [D Control-H

Receives and
sends terminal
character sequences

Sends and receives
ANSI standard escape
sequence

W-3358

Figure C-2. Escape Sequence Translation

Translation occurs when a task calls a_write to write an escape sequence. Instead of
passing an escape sequence which the terminal doesn't recognize, the TSC intercepts
the escape sequence and sends the equivalent terminal character sequence in its place.
This equivalence is established by OSC sequences.

Translation also occurs when a task calls a_read to read a terminal character
sequence for which an equivalent escape sequence is established.

Before translation can occur, the operator or the task must turn on translation for the
terminal by sending the following OSC sequence:

Esc] T: T=1 Esc\

If translation is turned off, the TSC does not intercept escape sequences. Instead, it
passes them on unchanged to the terminal. Changing the T=1 to T=0 in the previous
OSC sequence turns off translation mode.

Appendix C Controlling Terminal I/O262

Translation Examples

This section lists several translation examples for Hazeltine 1510 terminals. These
examples assume the terminal's switches are set to allow the Esc character, not the
tilde character, as the lead-in character of the terminal character sequence. The TSC
cannot handle terminal character sequences that begin with the tilde character. These
examples also assume the following OSC sequence has been issued to specify
information about the terminal's coordinate system:

Esc] T:
F=0,

(Horizontal coordinates listed first, horizontal
numbering increases left to right, vertical numbering
increases top to bottom)

U=96, (Axis numbering starts at 96)

V=32, (Axis numbering falls back to 32 after reaching 127)

X=80, (Screen width is 80 characters)

Y=24, (Screen height is 24 lines)

E6=49, (Cursor-addressing terminal character sequence is Esc
<Ctrl-Q>)

E31=47, (Terminal character sequence to clear a line is Esc
<Ctrl-O>)

E26=51 (Terminal character sequence to delete a line is Esc
<Ctrl-S>)

Esc\

See also: Cursor Positioning, for more information about setting up the terminal's
coordinate system

Example 1. Move the cursor to the position X=2, Y=2.

Escape sequence (task) Terminal Character Sequence (terminal)
Esc [2 ; 2 H Esc <Ctrl-Q> a a

(ASCII 1B 5B (ASCII 1B 11 61 61h)
32 3B 32 48h)

Example 2. Clear the current line from the cursor position to the end of the line.

Escape sequence (task) Terminal Character Sequence (terminal)
Esc [0 K Esc <Ctrl-O>

(ASCII 1B 5Bh (ASCII 1B 0Fh)
30 4B)

Driver Programming Concepts Appendix C 263

Example 3. Delete a line.

Escape sequence (task) Terminal Character Sequence (terminal)
Esc [1 M Esc <Ctrl-S>

(ASCII 1B 5B (ASCII 1B 13h)
31 4Dh)

Simulation occurs when there is no single terminal character sequence that
corresponds exactly to a given escape sequence. Simulation is necessary because
some terminals might not have terminal character sequences to perform the functions
indicated by certain escape sequences.

Simulation is performed only on output: on a_write simulation will occur, but not on
a_read. When a task calls a_write to write an escape sequence, the TSC intercepts
the escape sequence and determines what the task wants the terminal to do. Then the
TSC sends a series of one or more terminal character sequences that the terminal
recognizes, producing the desired effect as shown in Figure C-3.

User Application Terminal Support Code Terminal

SimulationEsc [D Control-H

Sends terminal
character sequences

Sends ANSI standard
escape sequence

W-2758

Figure C-3. Escape Sequence Simulation

For example, suppose the terminal does not support tab stops. If given the right
information about the terminal, the TSC can simulate the tab stops, creating the
impression the terminal does indeed support tab stops as if it were a typewriter. To
accomplish this, the TSC must

• Remember where the cursor is on the display

• Remember where the tab stops are supposed to be

• Be able to tell the terminal to move the cursor forward by one space

Appendix C Controlling Terminal I/O264

In general, to support simulation of escape sequences, the terminal must have
terminal character sequences for the following cursor movements:

• One position to the right

• One position to the left

• One position upward

• One position downward

Simulation Examples

These examples assume the terminal has the following terminal character sequences
for cursor movement:

Cursor Movement Terminal Character Sequence
Cursor up <Ctrl-L> (ASCII 0Ch)
Cursor down <Ctrl-K> (ASCII 0Bh)
Cursor left <Ctrl-H> (ASCII 08h)
Cursor right <Ctrl-J> (ASCII 0Ah)

In addition, the examples assume the following OSC sequence has been sent to
translate the right, left, up, and down cursor movements:

Esc] T: E2=10, E3=8, E4=12, E5=11 Esc\

Example 1. Move the cursor to x=2, y=8 (current position is x=1, y=5).

The escape sequences are simulated as follows:

Escape Sequence Terminal Character Sequence
(Output from Task) (Actually Sent to Terminal)
Esc [8 ; 2 H <Ctrl-J>

<Ctrl-K>
<Ctrl-K>
<Ctrl-K>

(ASCII 1B (ASCII 0A 0B 0B 0Bh)
5B 38 3B 32 48h)

Driver Programming Concepts Appendix C 265

Example 2. Simulate tab stops.

Although the terminal does have a terminal character sequence for moving to the
right, it does not support functions n=10 (advancing to the next tab stop) and n=11
(setting a tab stop). Therefore, the TSC must simulate these functions. The
following OSC sequence sets up the terminal to support tabs:

Esc] T:E2=10, E3=8, E4=12, E5=11, E10=192, E11=192 Esc\

Before operators can set tab stops, they must provide the TSC with the location of the
cursor. This can be done by resetting the terminal; that is, by sending the following
escape sequence to the terminal:

Esc c

Resetting the terminal works only if the terminal has a reset terminal command and if
you established a relationship between that command and the escape sequence Esc c
using an OSC sequence (Esc] T:E0=m Esc\, where m is the number of a
terminal character sequence.

Having done this, you can set a horizontal tab stop by entering Esc [0 W at the
terminal, and you can advance the cursor to the next tab stop by entering Esc [1

I. The TSC keeps track of the locations of the horizontal tab stops as well as the
position of the cursor.

Escape Sequences
Table C-5 lists the escape sequences you can pair with terminal character sequences
using OSC sequences. The following remarks apply to the table:

• The Code column contains codes used in the ANSI X3.64 document.

• The expression 99 represents any decimal number. Unless otherwise specified,
omitting the number causes the TSC to supply a default value of 1.

• In some cases, you can combine multiple escape sequences into a single,
compound escape sequence. The table identifies these cases.

• The TSC can simulate the escape sequences numbered 0, 1, 6 through 11, 13, 15,
18 through 20, 22, and 23. The remaining escape sequences can only be
translated.

• In almost all cases, tasks issue the escape sequences by calling a_write. The
exceptions concern escape sequences 7 and 18, and they are described in the
table.

Appendix C Controlling Terminal I/O266

Table C-5. Escape Sequences

n Code
Escape
Sequence Function

* 0 RIS Esc c Returns the terminal to its initial state. This consists of
resetting the horizontal tab stops to four spaces apart,
beginning with the first space, and returning the cursor
to the upper- left corner of the display.

* 1 HTS Esc H Sets a horizontal tab at the current cursor position.

2 CUF Esc [99 C Moves the cursor forward the specified number of
positions.

3 CUB Esc [99 D Moves the cursor backward the specified number of
positions.

4 CUU Esc [99 A Moves the cursor upward the specified number of
positions.

5 CUD Esc [99 B Moves the cursor downward the specified number of
positions.

* 6 CUP Esc [99 ;
99 H

Moves the cursor to the position specified by the
decimal numbers. The first number specifies the vertical
coordinate position, and the second number specifies
the horizontal coordinate position. The horizontal
coordinates are numbered from left to right, beginning
with 1, and the vertical coordinates are numbered from
top to bottom, also beginning with 1. If the parameters
are omitted, this sequence moves the cursor to the
upper-left corner of the display.

* Function that can be simulated. continued

Driver Programming Concepts Appendix C 267

Table C-5. Escape Sequences (continued)

n Code
Escape
Sequence Function

* 7 CPR Esc [99 ;
99 R

Reports the coordinates of the current cursor position. The
TSC places this sequence into the terminal's input stream
in response to sequence number 19, which asks for the
cursor's coordinates. The first number specifies the vertical
coordinate position, and the second number specifies the
horizontal coordinate position. The horizontal coordinates
are numbered from left to right, beginning with 1, and the
vertical coordinates are numbered from top to bottom, also
beginning with 1.

* 8 CBT Esc [99 Z Moves the cursor backward by the specified number of
horizontal tab stops. For example, if the specified number
is 2, the cursor moves backward to the second tab stop it
encounters.

* 9 CHA Esc [99 G Moves the cursor to the specified position in the current
line.

* 10 CHT Esc [99 I Moves the cursor forward by the specified number of
horizontal tab stops. For example, if the specified number
is 2, the cursor moves forward to the second tab stop that it
encounters.

* Function that can be simulated. continued

Appendix C Controlling Terminal I/O268

Table C-5. Escape Sequences (continued)

n Code
Escape
Sequence Function

* 11 CTC Esc [0 W Sets a horizontal tab stop at the current cursor
position. You can combine this and any other
CTC escape sequence to form a compound CTC
escape sequence. An example of such a
combined sequence is Esc [0;1 W, which sets
both horizontal and vertical tab stops at the cursor
position.

12 CTC Esc [1 W Sets a vertical tab stop at the current cursor
position. See the description of escape sequence
number 11.

* 13 CTC Esc [2 W Clears a horizontal tab stop if there is one at the
current cursor position. See the description of
escape sequence number 11.

14 CTC Esc [3 W Clears a vertical tab stop if there is one at the
current cursor position. See the description of
escape sequence number 11.

* 15 CTC Esc [4 W Clears all horizontal tab stops on the line
containing the cursor. See the description of
escape sequence number 11.

16 CTC Esc [5 W Clears all horizontal and vertical tab stops. See the
description of escape sequence number 11.

17 CTC Esc [6 W Clears all vertical tab stops. See the description of
escape sequence number 11.

* Function that can be simulated. continued

Driver Programming Concepts Appendix C 269

Table C-5. Escape Sequences (continued)

n Code
Escape
Sequence Function

* 18 DA Esc [99 c Tasks send this sequence with the number 0 to
request the ID number of the terminal to which the
request is being sent. The TSC intercepts the
request and returns to the requesting task an
identical sequence, except that the number (which
is greater than 0) is the requested ID number.

* 19 DSR Esc [6 n Asks the TSC to report the coordinates of the
current cursor position. See sequence number 7 for
a description of the response.

* 20 TBC Esc [0 g Clears a horizontal tab stop if there is one at the
current cursor position. You can combine this and
any other TBC escape sequence to form a
compound TBC escape sequence. An example of
such a combined sequence is Esc [0;1 g, which
clears both horizontal and vertical tab stops from
the current cursor position.

21 TBC Esc [1 g Clears a vertical tab stop if there is one at the
current cursor position. See the description of
escape sequence number 20.

* 22 TBC Esc [2 g Clears all horizontal tab stops on the line containing
the cursor. See the description of escape sequence
number 20.

* 23 TBC Esc [3 g Clears all horizontal and vertical tab stops. See the
description of escape sequence number 20.

* Function that can be simulated. continued

Appendix C Controlling Terminal I/O270

Table C-5. Escape Sequences (continued)

n Code
Escape
Sequence Function

24 TBC Esc [4 g Clears all vertical tab stops. See the description of
escape sequence number 20.

25 DCH Esc [99 P Deletes the specified number of characters,
beginning at the current cursor location.

26 DL Esc [99 M Deletes the specified number of lines, beginning at
the line containing the cursor.

27 ECH Esc [99 X Replaces the specified number of characters with
blanks, beginning at the current cursor location.

28 ED Esc [0 J Places blanks at all positions from the cursor to the
end of the display. You can combine this and any
other ED escape sequence to form a compound ED
escape sequence. An example of such a combined
sequence is Esc [0;1 J, which clears the entire
display.

29 ED Esc [1 J Places blanks at all positions from the beginning of
the display to the cursor. See the description of
escape sequence number 28.

30 ED Esc [2 J Fills the entire display with blanks. See the
description of escape sequence number 28.

31 EL Esc [0 K Places blanks at all positions from the cursor to the
end of the line. You can combine this and any other
EL escape sequence to form a compound EL
escape sequence. An example of such a combined
sequence is Esc [0;1 K, which places blanks
throughout the line currently containing the cursor.

continued

Driver Programming Concepts Appendix C 271

Table C-5. Escape Sequences (continued)

n Code
Escape
Sequence Function

32 EL Esc [1 K Places blanks at all positions from the beginning of the
line containing the cursor to the cursor itself. See the
description of escape sequence number 31.

33 EL Esc [2 K Places blanks at all positions in the line containing the
cursor. See the description of escape sequence number
31.

34 ICH Esc [99 @ Inserts the specified number of blanks, beginning at the
location of the cursor.

35 IL Esc [99 L Inserts the specified number of blank lines, beginning at
the location of the cursor.

36 NP Esc [99 U Moves the display forward in a multiple-page file by the
specified number of pages. If 0, the display moves to the
next page.

37 PP Esc [99 V Moves the display backward in a multiple-page file by the
specified number of pages. If 0, moves to the previous
page.

38 SD Esc [99 T Moves the display downward (forward) by the specified
number of lines. If 0, moves to the next line.

39 SU Esc [99 S Moves the display upward (backward) by the specified
number of lines. If 0, moves to the previous line.

40 SGR Esc [99 m Described in the 1979 ANSI X3.64 standard.

41 RM Esc [0 l An error condition.

continued

Appendix C Controlling Terminal I/O272

Table C-5. Escape Sequences (continued)

n Code
Escape
Sequence Function

42 RM Esc [1 l Described in the 1979 ANSI X3.64 standard.

43 RM Esc [2 l Unlocks the terminal's keyboard, allowing all characters to
be entered.*

44 RM Esc [3 l Prevents control characters from being displayed, but still
causes those characters to have their normal effects.*

45 RM Esc [4 l Causes output characters to overwrite characters on the
display.*

46 RM Esc [5 l Described in the 1979 ANSI X3.64 standard.

47 RM Esc [6 l Described in the 1979 ANSI X3.64 standard.

48 RM Esc [7 l Described in the 1979 ANSI X3.64 standard.

49 RM Esc [8 l Reserved.

50 RM Esc [9 l Reserved.

51 RM Esc [10 l Described in the 1979 ANSI X3.64 standard.

52 RM Esc [11 l Described in the 1979 ANSI X3.64 standard.

53 RM Esc [12 l Causes characters to be displayed on the terminal's
display screen as they are entered.

54 RM Esc [13 l Described in the 1979 ANSI X3.64 standard.

55 RM Esc [14 l Described in the 1979 ANSI X3.64 standard.

56 RM Esc [15 l Described in the 1979 ANSI X3.64 standard.

57 RM Esc [16 l Described in the 1979 ANSI X3.64 standard.

58 RM Esc [17 l Described in the 1979 ANSI X3.64 standard.

* This is the default setting for most terminals. continued

Driver Programming Concepts Appendix C 273

Table C-5. Escape Sequences (continued)

n Code
Escape
Sequence Function

59 RM Esc [18 l Causes horizontal tab stops to apply equally to all lines,
not line-by-line.*

60 RM Esc [19 l Causes data on the terminal's display screen to be
treated as a continuous stream, not a collection of
disjoint, independent pages.*

61 RM Esc [20 l Prevents the line feed character from automatically
performing a carriage return when sent to the terminal.*

62 SM Esc [0 h An error condition.

63 SM Esc [1 h Described in the 1979 ANSI X3.64 standard.

64 SM Esc [2 h Locks the terminal's keyboard, preventing characters from
being received when they are typed.

65 SM Esc [3 h Enables the display of control characters for debugging
purposes.

66 SM Esc [4 h Enables output characters to be inserted in the display,
rather than always overwriting existing characters.

67 SM Esc [5 h Described in the 1979 ANSI X3.64 standard.

68 SM Esc [6 h Described in the 1979 ANSI X3.64 standard.

69 SM Esc [7 h Described in the 1979 ANSI X3.64 standard.

70 SM Esc [8 h Reserved.

71 SM Esc [9 h Reserved.

72 SM Esc [10 h Described in the 1979 ANSI X3.64 standard.

* This is the default setting for most terminals. continued

Appendix C Controlling Terminal I/O274

Table C-5. Escape Sequences (continued)

n Code
Escape
Sequence Function

73 SM Esc [11 h Described in the 1979 ANSI X3.64 standard.

74 SM Esc [12 h Prevents characters from being displayed on the
terminal's screen as they are typed.

75 SM Esc [13 h Described in the 1979 ANSI X3.64 standard.

76 SM Esc [14 h Described in the 1979 ANSI X3.64 standard.

77 SM Esc [15 h Described in the 1979 ANSI X3.64 standard.

78 SM Esc [16 h Described in the 1979 ANSI X3.64 standard.

79 SM Esc [17 h Described in the 1979 ANSI X3.64 standard.

80 SM Esc [18 h Causes horizontal tab stops to apply only to the line on
which they are entered.

81 SM Esc [19 h Causes data to be treated as a collection of disjoint,
independent pages. A terminal operator typically
accesses the pages in a file by pressing keys such as
next page, previous page, or go to page.

82 SM Esc [20 h Causes the line feed character to automatically perform
a carriage return when sent to the terminal.

* This is the default setting for most terminals.

Terminal Character Sequences
Table C-6 lists the terminal character sequences that you can pair with escape
sequences using OSC sequences. The assignment portion of the OSC sequence has
the form En=m, where n is the escape sequence number and m is the terminal
character sequence number. The value m is the decimal representation of the code
the terminal requires for the given function. If the function requires a character plus
a lead-in Escape, add 32 to the character's decimal representation. The ASCII code
1BH (Escape) by itself cannot be the result of a translation.

Driver Programming Concepts Appendix C 275

Table C-6. Terminal Character Sequences

m Terminal Character Sequence or Special Instructions

0 Disable the translation of escape sequence: pass to the terminal without TSC
translation or simulation.

1 01H <Ctrl-A>

2 02H <Ctrl-B>

...

26 1AH <Ctrl-Z>

27 This sequence (1BH - Escape) is not supported.

28 1CH (FS)

29 1DH (GS)

30 1EH (RS)

31 1FH (US)

32 Esc 00H

33 Esc 01H

...

159 Esc 7FH

160-191 Reserved

192 Simulate the escape sequence.

193 Discard the escape sequence: do not translate, simulate, or pass it to the
terminal.

Appendix C Controlling Terminal I/O276

Cursor Positioning

Before the TSC can monitor or control the position of a cursor, it must know the
coordinate numbering conventions for that terminal. The TSC has its own model of
the terminal coordinate numbering scheme, as follows.

• The horizontal coordinates are numbered from left to right, beginning with 1.

• The vertical coordinates are numbered from top to bottom, also beginning
with 1.

Whenever programs refer to cursor positions, they should use this convention.

Not all terminals use this numbering scheme. The TSC can translate the terminal
numbering scheme into its own model, if the terminal numbering scheme obeys the
following rules:

• The numbering of the axes can start at any point left or right, top or bottom.
However, the numbering of both axes must start with the same positive value.

• From there, numbering of both axes must increase by ones until it reaches 127.

• If the numbering reaches 127, it must fall back to a lower positive value, then
increase by ones again.

• If the numbering of both axes reaches 127, the numbering of each must fall back
to the same value.

If the terminal numbering scheme meets these criteria, you can set up the TSC using
OSC sequences to handle that numbering scheme. The terminal modes F, U, V, X,
and Y enable you to specify information about the terminal numbering conventions.
Once you send the proper OSC sequences, the TSC translates the terminal numbering
conventions into its own standard conventions. Then, your programs can use the
TSC standard conventions when referring to all terminals.

For example, suppose the terminal horizontal positions (the columns) are numbered
left to right as 80, 81, 82, ..., 127, 16, 17, 18, ..., 31. Also, suppose its vertical
positions (the rows) are numbered top to bottom as 103, 102, 101, ..., 80. Finally,
suppose that when referring to a particular position on the terminal screen, you must
specify the vertical position first, followed by the horizontal position.

Driver Programming Concepts Appendix C 277

This numbering convention differs from the TSC numbering conventions in these
ways:

• The numbering on each axis starts with 80, not 1.

• When the horizontal axis numbering reaches 127, it falls back to 16 before
resuming its climb.

• The vertical axis numbering increases from bottom to top, not top to bottom.

• The coordinates of a given screen position are vertical coordinate first, then
horizontal coordinate, not horizontal first and vertical second.

The numbering convention of this terminal obeys the rules listed earlier in this
section. To set up this terminal for use with the TSC, you can issue the following
OSC sequence:

Esc] T: F=5, U=80, V=16, X=64, Y=24 Esc\

The F=5 portion tells the TSC the vertical coordinate is called out first, the horizontal
numbering increases from left to right, and the vertical numbering increases from
bottom to top. The U=80 portion specifies the starting number, V=16 indicates the
fall-back value, X=64 specifies the line length, and Y=24 specifies the number of
lines on the screen.

Table C-7 lists OSC sequences you can use to set up the cursor positioning and
control characters of some common terminals. The OSC sequences listed in the table
do not take full advantages of the features of the terminals. You can add to these
sequences to support more features of the terminals.

Appendix C Controlling Terminal I/O278

Table C-7. Example OSC Sequences for Common Terminals

Hazeltine 1500,
1510, 1520;
Executive 80

TeleVideo
950 Description

Esc] Esc] OSC sequence opening delimiter

T:T=1, T:T=1, Turn on translation

F=0, F=1, Specify terminal coordinate system

U=96, U=32, Start of axes number sequence

V=32, V=32, Fall back value when cursor reaches 127 on either
axis

X=80, X=80, Number of character positions per line

Y=24, Y=24, Number of lines per screen

E2=16, E2=12, Cursor right

E3=8, E3=08, Cursor left

E4=44, E4=11, Cursor up

E5=43, E5=22, Cursor down

E6=49, E6=93, Cursor position

E31=47 E31=148 Clear line, cursor to end

Esc\ Esc\ OSC sequence closing delimiter

Driver Programming Concepts Appendix C 279

Control Character Redefinition
You can dynamically assign any control character to a control function provided by
the TSC, as described in this section.

If you assign a control character to a control function, the assignment applies only
when the character appears as input from the terminal. In particular, assigning a new
control character to be the Escape character does not change the Escape character
used for output translation; it is still the ASCII Esc character, 1BH. Any new Escape
character you define cannot be used as part of an OSC sequence.

The characters you can assign to control functions include the following:

Character Decimal ASCII Code Hexadecimal ASCII Code

<Ctrl-@ 0 0

<Ctrl-A> - <Ctrl-Z> 1 - 26 1 - 1AH

ESC 27 1BH

FS 28 1CH

GS 29 1DH

RS 30 1EH

US 31 1FH

DEL 127 7FH

The syntax of the OSC sequence used to assign control characters to control functions
is as follows:

W-2760

,

Esc\Esc] nT: = mC

Where:

T: Indicates that this sequence applies to the terminal. Include the :
(colon) at the end.

C Indicates that this sequence applies to control characters.

Appendix C Controlling Terminal I/O280

n If this control character is already assigned as a signal character, this
assignment to a control function is ignored. The decimal representation
of the ASCII code for the desired control character. The range is 0-31
or 127.

See also: Signal characters, System Concepts

If this control character is assigned to another control function, this
OSC sequence reassigns the character to a new function.

m A number indicating the function to assign to the control character.
Table C-8 lists these numbers, with descriptions and defaults.

The following sequence cancels the default assignment of Rubout (DEL) as the
deletion character and assigns Backspace (BS) in its place:

Esc] T: C127=0, C8=11 Esc\

Table C-8. Control Character Functions

Function # Description Default Assignment

0 Don't change char All control characters not assigned as line-
edit, escape, output control, or signal
characters

1 Stop output <Ctrl-S>

2 Start output <Ctrl-Q>

3 Discard output <Ctrl-O>

4 Scroll n lines <Ctrl-W>

5 Scroll 1 line <Ctrl-T>

6 Empty type-ahead buffer <Ctrl-U>

7 Escape Escape (ASCII 1BH)

8 Line terminator <Ctrl-J>, <Ctrl-M> (CR, LF)

9 End of file <Ctrl-Z>

10 Quote next char <Ctrl-P>

11 Delete char Rubout (ASCII 7FH)

12 Delete line <Ctrl-X>

13 Redisplay line <Ctrl-R>

14 Special line terminator None

Driver Programming Concepts Appendix C 281

Using an Auto-answer Modem with a Terminal
The TSC supports terminals that interface with an iRMX-based application system
through an auto-answer modem. It does this by controlling the RS232 Data Terminal
Ready (DTR) line and by providing OSC sequences to enable handshaking between a
task and a terminal connected to a modem.

If your system contains a modem and the system is configurable, you can configure
the BIOS to support modem control. Then during system initialization, the BIOS
establishes the initial link to the modem. Or, your tasks can use OSC sequences to
establish modem mode, to break the link (hang up), and to reestablish the link (dial
and answer). Other than these operations, tasks and terminals communicate through
a modem as if linked by a dedicated line.

See also: For ICU-configurable systems, Modem control configuration, ICU
User's Guide and Quick Reference
For DOSRMX and iRMX for PCs systems, Configuring terminals for a
modem, System Configuration and Administration

The following diagram illustrates the syntax of the OSC sequences relating to modem
control. Unlike other OSC sequences, only tasks should send these OSC sequences
to the TSC. An operator at a terminal should never send them.

Esc] M: A

,

Esc\

W-2761

Q

H

wait = A

H

Appendix C Controlling Terminal I/O282

Where:

M: Indicates that this sequence applies to a modem. Include the : (colon)
after the M.

A Causes the TSC to answer the phone (DTR active). This indicates that
the task is ready to send or receive data.

H Uses the TSC to hang up the phone (DTR clear). This breaks the phone
link.

Q Queries the TSC for the status of the modem. In response, the TSC
sends an APC sequence in this form:

Esc _ M:x Esc\

Where x is either A if the modem is answered (DTR active) or H if the
modem is hung up (DTR clear).

WAIT Requests the TSC to notify the task when the modem is in the proper
state (only the W is required). W = A requests notification when DTR
becomes active. W = H requests notification when DTR becomes clear.

When the modem is in the proper state, the TSC inserts an APC
sequence of the following form in the input stream:

Esc _ M:x Esc\

Where x is either A if the modem has been answered (DTR active) or H
if the modem has been hung up (DTR clear).

The following example illustrates how a task can use the OSC modem sequences to
communicate with a terminal using a modem.

Assume that one task is dedicated to monitoring the modem and communicating
through it. Assume further that the task has a connection to the modem and that the
connection is open for both reading and writing. Typical protocol using the
connection is the following:

1. The task writes the following OSC sequence to the terminal:

Esc] M:H Esc\

This sequence hangs up the phone (breaks the link). It is an initialization step.

Driver Programming Concepts Appendix C 283

2. The task writes the following OSC sequence to the terminal:

Esc] C:T=1,E=1 Esc\

This sets transparent mode so the task can later read a certain number of
characters or wait until they appear and turns off echoing to the terminal's screen.
These changes are for this connection only, not for other connections to the
modem.

3. The task writes the following OSC sequence to the terminal:

Esc] M:WAIT=A Esc\

This requests that the TSC return a notification (an APC sequence) when the
modem has been answered (DTR active).

4. The task issues a read request to read seven characters from the terminal.
Eventually, when DTR becomes active, the TSC inserts an APC sequence of the
following form in the input stream:

Esc_ M:A Esc\

This message means a terminal user has dialed up the modem and is ready to
communicate.

5. The task writes the following OSC sequence to the terminal:

Esc] M:WAIT=H Esc\

This causes the TSC to send the APC sequence Esc_ M:H Esc\ to the task
when the terminal user hangs up.

6. The terminal and the task communicate as if on a dedicated line for as long as is
necessary. However, whenever the task receives input, it must scan the input for
the APC sequence Esc_ M:H Esc\.

During this time, the task should operate the modem in transparent or flush
mode, not line-edit mode. In line-edit mode, each line received from the modem
must be terminated with a line terminator (such as a carriage return/line feed).
However, the last set of characters (the APC sequence) will probably not be
followed by a line terminator. Therefore, if the connection is operating in line-
edit mode, the application task will never receive the final hangup message from
the TSC.

7. Eventually, the operator hangs up the phone. When this happens, the TSC
inserts the following APC sequence in the input stream:

Esc_ M:H Esc\

This means the terminal user has hung up and the link is broken.

Appendix C Controlling Terminal I/O284

8. The task returns to step 2.

This protocol is a model and is not the only one possible.

✏ Note
Only the task, and never the terminal, should send OSC sequences
to the TSC for modem control. This restriction does not apply to
other OSC sequences.

Under some circumstances, a task needs to find out whether a terminal is ready to
talk to the task using the modem. The task can ascertain the state of the modem
(answered or hung up) by performing the following steps, in order:

1. Call a_write to send the following OSC sequence to the modem:

Esc] C:T=1,E=1 Esc\

This sets transparent mode (disabling line editing) and turns off the echoing to
the terminal's screen. This is for this connection only, not for other connections
to the modem.

2. Call a_write to send the following OSC sequence to the modem:

Esc] M:Q Esc\

This requests information about the status of the modem; that is, answered, A, or
hung up, H.

3. Call a_read to read seven characters from the modem. This receives from the
TSC an APC sequence of the form:

Esc_ M:x Esc\

Where x is A if the modem is answered and H if the modem is hung up. This
technique will work because the TSC places the APC sequence, without a line
terminator, at the front of the line buffer for the connection where data is
awaiting input requests from the task.

After performing these steps, the task can restore the connection's line editing and
echo modes to their original states.

Driver Programming Concepts Appendix C 285

Obtaining Information about a Terminal
You can use OSC sequences to request information about the terminal's current
settings. The syntax of the Terminal Query OSC sequence that requests information
about the terminal is as follows:

Esc] Q Esc\

W-2762

Where:

Q Indicates that this sequence is a query for information.

In response, the TSC sends an APC sequence that lists the current values of all modes
for a terminal and all modes for the connection through which the request was made.
However, the TSC does not return information about the escape-sequence/terminal-
character-sequence pairings or about the input/output control character assignments.

A task obtains the query information by doing the following steps, in order:

1. Call a_write to send the following OSC sequence to the terminal:

Esc] Q Esc\

This queries the TSC for information about the terminal. In response, the TSC
returns information in the form of an APC sequence without a line terminator at
the front of the type-ahead buffer for the connection. If echoing mode is
enabled, this information will echo at the terminal when the task reads it.

2. Call a_read to read the appropriate number of characters from the connection.
The number of characters returned depends on the values of the modes, and
some of these modes, such as the input baud rate (I) for the terminal, can vary in
length. Allow two spaces for the Esc_ at the beginning, two spaces for the Esc\
at the end, and enough spaces for the modes in between. A safe way to obtain
this data is to read one byte at a time, until Esc\ appears. The modes are
separated by commas and packed together without blanks. An example of a
returned APC sequence follows:

Esc_ C:T=2,E=0,R=0,W=1,O=0,C=0;T:L=0,H=0,M=0,R=2,W=2,T=1,F=0,

I=9600,O=0,S=18,X=64,Y=24,U=80,V=16,G=1,J=0,K=0,P=0,Q=0 Esc\

Appendix C Controlling Terminal I/O286

Restricting the Use of a Terminal to One Connection
If there are multiple connections to a terminal, you can send OSC sequences using
any one of the connections to lock the terminal. When you do this, the terminal
temporarily cannot communicate using any other connection.

Tasks that communicate using the first connection can use the connection according
to how it was opened, and I/O requests through that connection are processed
normally. However, if tasks make I/O requests using the locked-out connections, the
TSC queues those I/O requests until the terminal is unlocked.

The syntax of the Lock and Unlock OSC sequences are as follows:

Esc]

U

Esc\

W-2763

L

Where:

L Locks the terminal, temporarily preventing I/O on other connections.

U Unlocks the terminal, allowing I/O on all connections to the terminal.

The only way to lock a terminal is for a task or a terminal operator to send the Lock
OSC sequence. However, there are two ways to unlock a terminal:

• A task (using the connection that locked the terminal) or the terminal operator
can send the Unlock OSC sequence.

• A task can close the connection used to lock the terminal.

After a terminal is unlocked, the queued I/O requests are processed in the order in
which they were queued.

✏ Note
If there is a chance of a terminal becoming locked, tasks should use
BIOS system calls to communicate using other connections to the
terminal. If the tasks invoke system calls such as a_read and
a_write without specifying a response mailbox, a deadlock can
occur.

Driver Programming Concepts Appendix C 287

Programmatically Stuffing Data into a Terminal's Input
Stream

A task can use an OSC sequence to stuff (insert) data into a terminal's input stream.
This process is useful when operators must enter large blocks of data that vary only
slightly from one occurrence to the next. The syntax of the Stuffing OSC sequence is
as follows:

Esc] S:

W-2764

text Esc\

Where:

S: Indicates that this sequence stuffs data into the input stream. Include
the : (colon) after the S.

text A maximum of 126 characters to be placed in the terminal's input
stream. If the connection's echo mode is enabled, the stuffed text
displays on the screen. If the connection's line-editing mode is enabled,
the operator can edit the stuffed text.

If you send composite OSC sequences, the composite sequence can contain only one
Stuffing OSC sequence, and that subsequence must be the last subsequence.

■■ ■■ ■■

Appendix C Controlling Terminal I/O288

Driver Programming Concepts Appendix D 289

Interpreting Bad Track Information D
Older hard disk drives record information about which tracks or sectors of the disk
are unreliable and should not be used. The device driver can read the bad track
information and map out the unreliable areas when formatting the disk. Modern disk
drives do this automatically, so no action is required.

To help you add this mapping capability to the drivers you write, this appendix
describes the format used when writing the bad track information. Any hard disk
drivers you write should be able to obtain this bad track information and map out the
bad tracks whenever they format the disks.

This appendix provides two bad track information standards for hard disk drives:
non-ESDI and ESDI. A non-ESDI drive has only the non-ESDI form of bad track
information. An ESDI drive using a 221 controller should have both the ESDI and
non-ESDI forms present.

Non-ESDI Bad Track Information
Non-ESDI bad track information is recorded on the highest-numbered cylinder - 1
(the highest-numbered cylinder is reserved for diagnostic tracks). The last four tracks
of that cylinder contain the bad track information. Each track contains the same
information but is formatted with a different sector size:

Track Sector Size
Last cylinder - 1, Last surface 128 bytes/sector
Last cylinder - 1, Last surface - 1 256 bytes/sector
Last cylinder - 1, Last surface - 2 512 bytes/sector
Last cylinder - 1, Last surface - 3 1024 bytes/sector

If a disk has less than four recording surfaces (and therefore less than four tracks per
cylinder), the tracks on the next cylinder (last cylinder - 2) are used for the remaining
bad track information.

290 Appendix D Interpreting Bad Track Information

Recording the information in four different sector sizes allows the driver to access the
information during format time, regardless of the sector size chosen by the user. For
example, if the user decides to format the disk with a volume granularity (sector size)
of 512 bytes, the driver sets up the controller for 512-byte sectors and accesses the
bad track information from the location (last cylinder - 1, last surface - 2). Likewise,
when formatting in 1024-byte sectors, the driver obtains the bad track information
from the location (last cylinder - 1, last surface - 3).

On each of those tracks, 1024 bytes of bad track information is recorded four times,
starting at sector 0, with a 1024-byte gap between each recording. The multiple
occurrences are insurance against bad spots in this area of the disk. If an error occurs
when the driver attempts to access the first occurrence of the bad track information, it
tries again with the second occurrence, and so forth.

The non-ESDI bad track header information has the following format:

Type Description
16-bits Must contain the value 0ABCDH
16-bits Number of bad tracks in this list

(max 255)

The Non-ESDI Bad Track Defect Record Information for each bad track contains the
following information:

Type Description
16-bits Cylinder number of bad track
8-bits Surface number of bad track
8-bits Set to 0

Figure D-1 illustrates the position of this bad track information on the disk.

Driver Programming Concepts Appendix D 291

Surface 0

Surface n (128-byte sectors)

Surface n-2 (512-byte sectors)

Surface n-3 (1024-byte sectors)

Surface n-4 (alternate tracks)

Surface 0 (alternate tracks)

Surface n-1 (256-byte sectors)

16

8

8

16

32 48

2

4

4 6

12

24

Sector numbers at which
bad track or sector information begins

0

0

0

0 Last
cylinder-1

Last
cylinder
(diagnostic
cylinder)

W-2784

Surface n

Surface n-1

Surface n-2

Surface n-3

Figure D-1. Format of Bad Track Information

ESDI Bad Track Information
ESDI bad track information is recorded on the highest-numbered cylinder - 2 (the
highest-numbered cylinder is reserved for diagnostic tracks). The defect list is
written at 1024 bytes per sector only. Defect information found on any surface are
defects for that surface only. Each track contains four copies of the 1024 byte bad
track information block, with a 1024 byte gap between each recording. The four
redundant 1024 blocks will be found at sectors 0, 2, 4, and 6. The multiple
occurrences are insurance against bad spots in this area of the disk. If an error occurs
when the driver attempts to access the first occurrence of the bad track information, it
tries again with the second occurrence, and so forth.

292 Appendix D Interpreting Bad Track Information

The ESDI bad track header information on each surface has the following format:

Type Description
16-bits Must contain the value C5DFH
16-bits Must contain the value 3031H
8-bits Surface number (0 through n-1; n is the total surfaces)
8-bits Must contain 0

The ESDI Bad Track Defect Record Information for each bad track contains the
following information:

Type Description
8-bits Cylinder number most significant byte (MSB)
8-bits Cylinder number least significant byte (LSB)
8-bits Bytes from which MSB (set to 0)
8-bits Bytes from which LSB (set to 0)
8-bits Error length (set to 0)

■■ ■■ ■■

Driver Programming Concepts Appendix E 293

Supporting the Standard
Diskette Format

Standard format is only required for booting Multibus I systems and is not
recommended for any other use. Use uniform format, in which all tracks of a
diskette have the same format, whenever possible.

Standard formatting means the supplied device drivers can format the beginning
tracks of all diskettes in the same manner, regardless of the format of the remainder
of the diskette.

The standard formatting for cylinder 0 on diskettes is as follows:

For 5-1/4" diskettes

• Cylinder 0, side 0 is formatted with 128-byte sectors, single density, 16
sectors per track.

• If the diskette is double-sided, cylinder 0, side 1 is formatted like the rest of
the tracks on the diskette.

For 8" diskettes

• Cylinder 0, side 0 is formatted with 128-byte sectors, single density, 26
sectors per track.

• If the diskette is double-sided, cylinder 0, side 1 is formatted with 256-byte
sectors, double density, 26 sectors per track.

The flags field in a device's DUIB indicates whether that device expects (reads,
writes, and formats) diskettes in standard or uniform format.

To be consistent with the supplied drivers, and to be able to correctly access standard
format diskettes from other systems, random access diskette drivers that you write
must be able to read, write, and format diskettes in this standard format.

To access standard-formatted diskettes, a device driver must be able to translate a
logical block number (as supplied to it in the dev_loc field of the IORS by the I/O
System) into a physical address (cylinder, head, and sector). It must take into
consideration that track 0 might be formatted differently than the rest of the diskette,
and that there might be a different number of logical blocks on track 0.

E

294 Appendix E Supporting the Standard Diskette Format

Use the following algorithm to calculate the physical address for 5-1/4" flexible
diskette requests. It assumes the program has access to the IORS and the DUIB. Use
a similar algorithm for 8" diskettes including the special formatting of cylinder 0,
side 1 on double-sided diskettes.

/* Calculate the number of logical blocks on the standard-

* formatted track 0 using the standard granularity and

* standard number of sectors per track.

*/

track-0-blocks = (128 bytes/sector x 16 sectors/track)

(device-granularity in bytes/sector)

/* Calculate the number of blocks missing from track 0

* (those that would be there if the diskette were uniformly

* formatted). The normal track size equals the number of

* sectors per track on the rest of the disk (obtained from

* the driver-specific unit information table).

*/

track-0-blocks-missing = normal-track-size - track-0-blocks

/* If the logical block number of this request indicates a track 0

* request, calculate the address.

*/

IF block-number < track-0-blocks THEN

DO

/* Set the cylinder and head number to 0 because this is

* track 0

*/

cylinder-num = 0

head-num = 0

/* Add 1 to this equation because diskette sectors start at

* 1, not 0

*/

sector-num = (block-number x device-granularity) + 1

(128 bytes/sector)

Driver Programming Concepts Appendix E 295

/* See if the request goes beyond track 0

*/

IF (bytes-requested) > (track-0-blocks - block-number) THEN

(device-granularity)

DO

/* If the request goes beyond track 0, then calculate the

* number of bytes to read or write that are past track 0.

* Save the number until track 0 operations are complete.

* Then use the number to complete the read or write

* operation.

*/

remainder = bytes-requested - (track-0-blocks - block-number)

x device-granularity

END

/*

* Calculation of physical address is complete for

* requests that access track 0.

*/

RETURN

END

ELSE

DO

/*

* If the request is past track 0, adjust the block number

* for this request by adding the number of logical blocks

* missing from track 0 and calculating the cylinder, head,

* and sector as if this were a uniformly-formatted flexible

* disk.

*/

296 Appendix E Supporting the Standard Diskette Format

adjust-block-num = block-number + track-0-blocks-missing

/*

* First calculate the cylinder number of this request

*/

cylinder-num = adjust-block-num_______

(total-num-of-heads x track-size)

/*

* Next calculate the head number

*/

IF total-num-of-heads = 1 THEN

DO

/*

* This is a one-sided flexible diskette

*/

head-num = 0

END

ELSE

DO

/*

* This is a double-sided flexible diskette

*/

temp = adjust-block-num MOD (track-size x 2)

head-num = temp___

track-size

END

/*

* Finally, calculate sector number for this request,

* adding 1 because flexible diskette sectors start at 1.

*/

sector-num = temp MOD track-size + 1

END

■■ ■■ ■■

Driver Programming Concepts Index 297

Index

<Ctrl-O> character, 241
<Ctrl-P> character, 240
<Ctrl-Q> character, 241
<Ctrl-R> character, 239
<Ctrl-S> character, 241
<Ctrl-T> character, 239
<Ctrl-U> character, 239
<Ctrl-W> character, 241
<Ctrl-X> character, 239
<Ctrl-Z> character, 242

A
a_physical_attach_device call, 59, 84
a_physical_detach_device call, 84
a_special call

to recover from nonfunctional terminal, 116
absolute physical addresses, 72
adding

device driver to application system, 169
device drivers, example, 204

addresses
absolute physical, 72
converting logical to physical, 73
logical, 72

APC sequences, 242
assigning control character functions, 279
AT COMn serial port driver, 175
attach device command, 170
attach procedures, 24
attach_device IORS, 18
auto-answer modem, 281
axes

sequence and orientation, 251
sequence control, 124

B
bad tracks and sectors, 166, 289

ESDI, 291
non-ESDI, 289

baud rate
input, 124, 251
output, 251

begin_long_term_op procedure, 111
binding

device driver, 180
bios_get_address procedure, 73

example, 74
board ID, 95
buffered devices,, 83
buffered_device_data structure, 132
buffers

EIOS maximum number, 58
line-edit, 115
number of, 58
raw-input, 114
terminal input, 114
TSC, 115
type-ahead, 115
using for terminal input, 114

bypass mode
processing terminal input, 116
terminal, 114

C
cancel_io procedure, 6, 57, 79, 84

for interrupt-driven devices, 221
for message-based devices, 234

closing
files, 162

common device
definition, 9
described by DUIB, 9

common device drivers, 6, 57, 83
and IORS structure, 62

298 Index

DUIB different from random access
devices, 84

high-level device driver procedures, 10
required tables, 61
supplied procedures, 57
writing, DUIB and IORS fields, 68

COMPACT segmentation model, 170
compiling

device driver, 180
configuration files, 175
configuration module, 27, 28
configuring

device drivers with the ICU, 183
connection modes, 243
connections

flags, 123
terminal mode, changing, 243
to restrict terminal use, 286

control characters, 256
default for terminal output, 240
output, 246
redefining, 279
syntax, 279
terminal output, 240

control functions
entered from terminal under CLI, 237
for terminal line-editing mode, 237
for terminal output, 237

controlling
modem, syntax, 281

converting
logical addresses to physical addresses, 73

current line, definition, 237
cursor

addressing offset, 252
positioning, 276

custom device drivers
advantages and disadvantages, 8
and IORS structure, 62
and UINFO table, 58
definition, 8
necessary procedures, 57
reasons for writing, 75
required procedures, 75
required tables, 61
writing and DINFO table, 57
writing, DUIB and IORS fields, 68

D
data

flow to terminal, using control functions,
237

default mode for terminal output, 240
define_duib macro, 177
delete character, 238
deleting lines, 239
device data storage area, 98
device drivers

adding as loadable device, 169
adding without modifying ICU, 200
adding, example, 204
common, 9, 57

high-level device driver procedures,
10

compiling/assembling and binding, 180
configuring with the ICU, 183
definition, 3
for interrupt-driven terminals, 113
for message-driven terminals, 113
loadable, 170
procedures, 215
random access, 9, 57, 58

high-level device driver procedures,
10

shared by devices, 98
source code, 169
terminal, 57, 58, 62

definition, 11
types, 6
writing

and DUIB fields, 68
and IORS fields, 68
and IORS fields, 62
common or random access, 61
terminal, 61

device granularity, 56
device information (DINFO) table, 57, 92, 119

interrupt-driven, 119
message-based, 120

device information screens for UDS utility, 192
device name, extended physical, 18
device_finish procedure, 94, 101
device_init procedure, 94, 100
device_interrupt procedure, 95, 104, 105

Driver Programming Concepts Index 299

device_start procedure, 94, 102
device_stop procedure, 95, 103
devices

common, definition, 9
random access, definition, 9

device-unit information block, 118
Device-unit Information Block, 51
Device-Unit Information Block, 9
device-unit information screens of UDS utility,

193
device-unit number, 4
DINFO table, 90

defining, 175
for interrupt-driven devices, 119
for message-based devices, 120
for terminal device driver, 119
structure of, 92

discarding
mode, 240
output, 241

disk free space
subfunction of a_special call, 168

disk mirroring
subfunction of a_special call, 168

diskettes
characteristics, 56
format, standard, 293

DMA controller, 72
doubly-linked list, 80
drive characteristics, 163
DUIB, 51, 90

creating, 61
defining, 175
describes type of device, 9
for terminal device driver, macro, 118
generic SCSI, 46, 61
multiple for one device, 59
operation of, 59
structure of, 53
using, 59
writing for common device drivers, 68
writing for custom drivers, 68
writing for random access drivers, 68

duplex, 124, 249
dynamic DUIB, 18

E
echoing, 245
EDOS file driver, 14
emptying type-ahead buffer, 239
end of file character, 239
end_long_term_op procedure, 112
escape sequences, 256, 259, 260, 265
example algorithms, 39
examples

adding device drivers, 204
bios_get_address procedure, 74
initialization front-end code, 180
interrupt-driven device, 215
message-based device, 227
simulation, 264
translation, 262

explicit seeks, 97
exported procedures, 170
extended disk free space

subfunction of a_special call, 168
extended physical device name, 18

F
f_attach requests, 161
f_close requests, 162
f_detach requests, 161
f_open requests, 162
f_read requests, 160
f_seek requests, 161
f_special requests, 162
f_write requests, 161
far pointers

to device driver procedures, 170
FDSC, 5

library modules, 27
FDSC

utility procedure, 29
file drivers, 3, 5, 55, 66

actions, 39
code, 27
configuration table, 15, 20, 28
data table, 15, 28
dispatch table, 20
I/O procedures, 26
ID, 14, 27

300 Index

info table, 15, 22
interface procedures, 23, 24, 39
number, 14
support code (FDSC), 5
type, 19
validation table, 20

file I/O procedures, 24
file marks, 165
File System Type, 17
finish_io procedure, 57, 77

for interrupt-driven devices, 217
for message-based devices, 230

finish_io procedure 1, 6
flow control, 252
flush mode, 245
flush terminal input mode, 115, 116
format command, 46, 61, 114
formatting

tracks, 162
fs_format_track requests, 162
fs_get_bad_info requests, 166
fs_get_drive_data requests, 163
fs_get_terminal_attributes requests, 164
fs_notify requests, 163
fs_query requests, 163
fs_read_file_mark requests, 165
fs_retention_tape requests, 165
fs_rewind requests, 165
fs_satisfy requests, 163
Fs_set_bad_info requests, 166
fs_set_signal requests, 164
fs_set_terminal_attributes requests, 164
fs_write_file_mark requests, 165

G
g_delay procedure, 156
generic I/O task, 23
get_file_driver_status call, 14
get_iors procedure, 113
granularity

device, 56

H
handling

interrupts, 86

handling interrupts, 215, 227
hard disk drives

bad track information, 289
high water mark, special, 256

I
I/O device

description, 4
I/O interface mailbox, 23
I/O processing, sequence of calls and procedures,

84
I/O Request/Result Segment, 62
I/O Request/Result Segment /t, 51
I/O requests, 9, 157
I/O systems

functions supported, 157
I/O task, 23
ICU

ICUMRG (ICU Merge) utility, 184
UDS (User Device Support) utility, 184
using to configure device drivers, 183

ilfd.lib file, 29
ilfdr.lib file, 29
implied seeks, 97
init_io procedure, 6, 57, 76, 84, 98

for interrupt-driven devices, 215
for message-based devices, 228

initialization front-end program
description, 179
for device driver, 169

initialization procedure, 23
input baud rate, 124, 251
input buffer

for raw-input, 115
for Terminal Support Code, 115

input parity, 124, 246, 249
inserting data into the input stream, 287
install_duibs call, 59
install_file_driver, 20, 22, 27
install_file_driver call, 14
installing a file driver, 27
interface procedures, 24
interrupt handler, 86
interrupt task, 222

priority, 94
interrupt_task, 86

Driver Programming Concepts Index 301

interrupt-driven devices, 83
cancel_io procedure, 221
finish_io procedure, 217
init_io procedure, 215
queue_io procedure, 219
random access support procedures, 215

interrupts, 83, 121
level, 121

invoking
UDS utility, 193

IORS
description, 62
fixed_update field, 58
funct and subfunct fields, 159
num_buffers field, 58
structure, 62
update_timeout field, 58
writing for common device drivers, 68
writing for custom drivers, 68
writing for random access drivers, 68

IORS (I/O Request/Result Segment), 51

L
limitations

EIOS maximum number of buffers, 58
line editing control, 123
line protocol, 249

indicator, 124
line terminator, 238

special, 239
line-edit

buffer, 115
terminal input mode, 115

line-editing
functions, 237
mode, 245

loadable device drivers
front-end subroutines included, 180

loadable file driver, 27
loadable file drivers, 5

data structures, 15
Loadable file drivers, 13
locking the terminal, 286
logical addresses, 72

converting to physical addresses, 73
long-term operations, 111

low water mark, 254

M
Main module, 27
mapping

bad track information, 289
Master Loadable File Driver Table, 15
message, 83, 150

structure, 106
message task, 234

description, 88
message-based devices, 83

cancel_io procedure, 234
finish_io procedure, 230
init_io procedure, 228
queue_io procedure, 232
random access support procedures, 227

Message-based devices, 83
mode

connection, 243
special character, 140
terminal, 247
terminal in flush, 245
terminal in line-editing, 245
terminal in transparent, 245

modem, 124, 281
control syntax, 281
indicator, 249

N
Named file driver, 14
Native AT Floppy driver, 172
native DOS file driver, 14
notify procedure, 109
notify requests, 163
num_buffers field

differences between common and random
access devices, 84

O
opening

files, 162
OSC control, 246
OSC sequences, 259

302 Index

syntax diagram, general, 242
syntax, assigning control characters to

control functions, 279
syntax, changing terminal connection mode,

248
syntax, changing terminal connections

mode, 243
syntax, controlling modem, 281
syntax, establishing escape-sequence, 260
syntax, locking and unlocking terminals,

286
syntax, restricting terminal connection, 286
syntax, stuffing data into terminal's input

stream, 287
output baud rate, 251
output control characters, 246

table of, 241
output medium, 124, 249
output parity, 124, 246, 250
output queue

output to terminal discarded, 240
to terminal, 240

overflow offset, 252

P
parity

input, 246, 249
output, 246, 250

physical file driver, 14
physical link, 255
positioning the cursor, 276
procedures

begin_long_term_op, 111, 112
bios_get_address, 73
called by terminal drivers, 113
cancel_io, 6, 57, 79, 84

for interrupt-driven devices, 221
for message-based devices, 234

device_finish, 101
device_init, 100
device_interrupt, 104, 105
device_start, 102, 103
device_stop, 103, 104
end_long_term_op, 112
far pointers to, 170
finish_io, 6, 57, 77

for interrupt-driven devices, 217
for message-based devices, 230

for long-term operations, 111
for RAM disk driver, 171
g_delay, 156
get_iors, 113
init_io, 6, 57, 76, 84, 98

for interrupt-driven devices, 215
for message-based devices, 228

notify, 109
queue_io, 6, 57, 78, 84

for interrupt-driven devices, 219
for message-based devices, 232

random
access drivers must call, 109
access drivers must supply, 99

required in custom device driver, 75
seek_complete, 97, 110
supplied by I/O System, 84, 117
term_answer, 145
term_check, 150
term_finish, 143
term_hangup, 146
term_init, 142, 143
term_null, 141
term_out, 152
term_setup, 143, 145
term_utility, 154
terminal device drivers must supply, 141
ts_mutex_unit, 155
ts_set_out_buf_size, 155
xts_set_output_waiting, 156

processing I/O, sequence of calls and procedures,
84

public name, 25

Q
query requests, 163
queue

size, 95
queue_io procedure, 6, 57, 78, 84

for interrupt-driven devices, 219
for message-based devices, 232

quoting character, 238

Driver Programming Concepts Index 303

R
RAM

driver front-end source, 170
RAM-disk

driver, procedures, 171
random access device

definition, 9
described by DUIB, 9

random access device driver, 6, 57, 83
and IORS structure, 62
and UINFO table, 58
DUIB different from common devices, 84
required tables, 61
writing, DUIB and IORS fields, 68

random access device drivers
high-level device driver procedures, 10
procedures to call, 109
procedures to supply, 99
supplied procedures, 57

random access support procedures
for interrupt-driven devices, 215
for message-based devices, 227

raw-input buffer, 114, 131
nonbuffered terminal device, 115
size for buffered terminal, 115
size for nonbuffered terminal, 115

read requests, 160
reading

bad track information, 289
redefining control characters, 279
redisplaying lines, 239
Remote file driver, 14, 18
request queue, 80
Resident file drivers, 13
rq_a_physical_attach_device call, 59, 84, 215
rq_a_physical_detach_device call, 84, 217, 221
rq_a_special call

to recover from nonfunctional terminal, 116
rq_get_file_driver_status call, 14
rq_install_duibs call, 59
rq_install_file_driver call, 14
rq_s_open call, 58
rqe_create_descriptor call, 74
rqe_get_address call, 73

S
s_open call, 58
satisfy requests, 163
screen height, 252
screen width, 252
scrolling mode, 241
scrolling number, 124, 252
seek_complete procedure, 97, 110
seeking, 161

explicit, 97
implied, 97

sending
information to terminal, with APC

sequence, 242
service information, inside back cover
setting

terminal mode with system calls, 242
signal characters, 164
signal_interrupt call, 86
simulation, 258, 263
Soft-Scope debugger, 170
source code

for device driver initialization front-ends,
169

for loadable ramdrv device driver, 169
special array, 257
special character mode, 140
special characters, 253
special high water mark, 140, 256
special line terminator, 239
stack size, 94, 121
standard diskette format, 293
starting

output, 241
start-up code, 180
stop bits, 255
stopping output, 241
stream file driver, 14
stuffing data into the input stream, 287
submit file

functions, 180
subroutines in loadable device driver front-end,

180
subsystem declaration, 171
syntax of APC sequences, 242
syntax of OSC sequences

304 Index

assigning control characters to control
functions, 279

changing terminal connection mode, 243,
248

controlling modem, 281
establishing escape-sequence, 260
general, 242
locking and unlocking terminals, 286
restricting terminal connection, 286
stuffing data into terminal's input stream,

287
terminal query, 285

sysload command, 5, 13, 27, 169, 170

T
tape requests, 165
tasks

interrupt, 86
message, 88

term_answer procedure, 145
term_check procedure, 150
term_finish procedure, 143
term_hangup procedure, 146
term_init procedure, 143
term_null procedure, 141
term_out procedure, 152
term_setup procedure, 145
term_utility procedure, 154
terminal connection

mode OSC syntax, 248
terminal device drivers, 6, 11, 57, 62

and UINFO table, 58
procedures to supply, 141
required tables, 61
supplied procedures, 57

terminal I/O, 114
cancelling, 167
resuming, 168

terminal input
application task buffer, 114
bypass mode, 116
flush mode, 115
line-edit mode, 115
line-editing functions, 237
raw-input buffer, 114
stuffing data into stream, 287

transparent mode, 115
TSC input buffer, 114

terminal mode, 245
changing, OSC sequence, 248
depending on the connection to terminal,

242
depending on the type of terminal, 247
sending information in an APC sequence,

242
setting with system calls, 242
syntax diagram, 242

terminal output, 240
control characters, 240
default mode, 240
lines scrolled from queue, 240
placed in queue, 240

Terminal Support Code /t, 11
terminals

answer procedure, 121, 145
attributes, 164
character sequence, 258, 274
check procedure, 121, 147
connections, changing mode, 243
deadlock, avoiding, 286
finish procedure, 121, 143
flags, 124
hangup procedure, 121, 146
initialization procedure, 121, 142
interrupt types, 129
lock OSC sequence syntax, 286
mutual exclusion procedure, 155
output procedure, 121, 151
query OSC sequence syntax, 285
raw-input buffer, 115
set output buffer size procedure, 155
set output waiting procedure, 156
settings, query syntax, 285
setup procedure, 121, 143
status, 167
unlock OSC sequence syntax, 286
utility procedure, 121, 152

time delay procedure, 156
track

size, 96
track

formatting, 162
translation, 250, 258, 261

Driver Programming Concepts Index 305

transparent mode terminal, 115, 116
transparent mode, terminal, 245
ts_mutex_unit procedure, 155
ts_set_out_buf_size procedure, 155
TSC, 113

data area, 125
data area structure, 127
definition, 11
input buffer, 115

type-ahead buffer, 115

U
UDS (User Device Support) utility

creating input files, 186
device information screens, 192
device-unit information screens, 193
error messages, 195
invoking, 193
steps to use, 186
unit information screens, 192

UDS utility, 184
UINFO (unit information) table, 58, 90, 96, 130

defining, 175
structure, 96, 122

uninstall, file driver, 27
unit information screens of UDS utility, 192
unit information table /t, 58

unit number, 4
unlocking the terminal, 286
update procedure, 24
User Device Support utility, 184

W
write requests, 161
writing

common and random access device drivers,
9, 61

custom device driver and DINFO table, 57
custom device driver, advantages, 8
custom device driver, disadvantages, 8
custom device driver, reasons, 75
device drivers for interrupt-driven terminals,

113
device drivers for message-driven terminals,

113
device drivers, and DUIB, 68
device drivers, and IORS, 62, 68
terminal device drivers, 11, 61

X
xts_set_output_waiting procedure, 156

	iRMX® Driver Programming Concepts
	Quick Contents
	Notational Conventions

	Contents
	Chapter 1: Introduction
	Reader Level
	What Is a Device Driver?
	What Does an I/O Device Consist of?

	What is a File Driver?
	Three Types of Device Drivers
	Custom Drivers
	Random Access and Common Drivers
	Terminal Drivers

	The Driver Development Process
	Advantages of a Standard Driver Interface

	Chapter 2: Writing Loadable File Drivers
	File Driver IDs
	Using File Driver IDs

	File Driver Data Structures
	File Driver Data Table
	File Driver Configuration Table

	File Driver Components
	Initialization Procedure
	I/O Task Procedure
	File Driver Interface Procedures
	File I/O Procedures

	Building a Loadable File Driver
	Main Module
	Configuration Module
	File Driver Support Code Library
	Example File Driver Algorithms

	Chapter 3: DUIB and IORS: Device Driver Interfaces
	Interface Between a Device Driver and the I/O System
	DUIB Data Structure Definition
	IORS Data Structure Definition

	DUIB and IORS Fields Used by Device Drivers
	Interface Between a Driver and the Device
	DMA Device Considerations

	Chapter 4: Writing Custom Device Drivers
	What You Must Provide
	Init_io Procedure
	Call Syntax

	Finish_io Procedure
	Call Syntax

	Queue_io Procedure
	Call Syntax

	Cancel_io Procedure
	Call Syntax

	Implementing a Request Queue

	Chapter 5: Writing Common or Random Access Device Drivers
	I/O System-supplied Procedures and Tasks
	When the I/O System Calls Driver Procedures
	Interrupt Task
	Message Task

	Data Structures Supporting Random Access I/O
	DINFO Table Structure for Random Access Driver
	UINFO Table Structure for Random Access Driver

	Device Data Storage Area
	Procedures Random Access Drivers Must Supply
	Device_init Procedure
	Device_finish Procedure
	Device_start Procedure
	Device_stop Procedure
	Device_interrupt Procedure

	Utility Procedures Random Access Drivers�Must Call
	Notify Procedure
	Seek_complete Procedure

	Procedures for Long-Term Operations
	Begin_long_term_op Procedure
	End_long_term_op Procedure
	Get_iors Procedure

	Formatting Random Access Devices

	Chapter 6: Writing Terminal Drivers
	Terminal I/O Concepts
	Raw-input Buffer Determined by Type of Terminal Driver
	TSC Input Buffer Determined by Terminal Mode

	I/O System-supplied Procedures and Tasks
	Data Structures Supporting Terminal I/O
	DUIB Structure for Terminal Driver
	DINFO Table Structure for Terminal Driver
	UINFO Table Structure for Terminal Driver
	TSC Data Area Structure

	Procedures Terminal Drivers Must Supply
	Term_init Procedure
	Term_finish Procedure
	Term_setup Procedure
	Term_answer Procedure
	Term_hangup Procedure
	Term_check Procedure
	Term_out Procedure
	Term_utility Procedure

	TSC Utility Procedures Supplied to Drivers
	Ts_mutex_unit Procedure
	Ts_set_out_buf_size Procedure
	Xts_set_output_waiting Procedure
	G_delay Procedure

	Chapter 7: Handling I/O Requests
	I/O System Responses to I/O System Calls
	Actions Required of a Device Driver
	F_read??Function Code 0
	F_write??Function Code 1
	F_seek??Function Code 2
	F_attach??Function Code 4
	F_detach??Function Code 5
	F_open??Function Code 6
	F_close??Function Code 7
	F_special??Function Code 3

	Chapter 8: Making a Device Driver Loadable
	How to Make a Device Driver Loadable
	Making Driver Procedures Callable as Far Procedures
	Adding Far Pointer Elements to DINFO Table Declarations
	Preparing the Needed DUIB, DINFO, and UINFO Tables
	Preparing an Initialization Front-end
	Compiling/Assembling and Binding Your Device Driver Code

	Chapter 9: Using the ICU to Configure Your Device Driver
	Adding Drivers with the UDS and ICUMRG Utilities
	UDS Utility
	ICUMRG Utility

	Adding Your Driver as a Custom Driver
	Example of Adding an Existing Driver as a Custom Driver

	Appendix A: Random Access Support for Interrupt Driven Devices
	Init_io Procedure
	Finish_io Procedure
	Queue_io Procedure
	Cancel_io Procedure
	Interrupt Task

	Appendix B: Random Access Support for Message Based Devices
	Init_io Procedure
	Finish_io Procedure
	Queue_io Procedure
	Cancel_io Procedure
	Message Task

	Appendix C: Controlling Terminal I/O
	Line-editing Functions
	Controlling Output to a Terminal

	OSC Sequences
	Connection Modes
	Terminal Modes
	Translation and Simulation
	Escape Sequences
	Terminal Character Sequences
	Control Character Redefinition
	Using an Auto-answer Modem with a Terminal
	Obtaining Information about a Terminal
	Restricting the Use of a Terminal to One Connection
	Programmatically Stuffing Data into a Terminal's Input Stream

	Appendix D: Interpreting Bad Track Information
	Non-ESDI Bad Track Information
	ESDI Bad Track Information

	Appendix E: Supporting the Standard Diskette Format
	Index

