
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

iRMX®

System Concepts

07-0635-01
December 1999

ii

EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
is a trademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright 1999 by RadiSys Corporation

All rights reserved.

System Concepts iii

Quick Contents

Nucleus Programming Concepts
Chapter 1 - Chapter 13

iRMK Kernel Programming Concepts
Chapter 14

I/O Systems Programming Concepts
Chapter 15 - Chapter 21

Application Loader Programming Concepts
Chapter 22 - Chapter 24

Human Interface Programming Concepts
Chapter 25 - Chapter 31

OS Extension Example
Appendix A

Index

iv

Notational Conventions
Most of the references to system calls in the text and graphics use C syntax instead of
PL/M (for example, the system call send_message instead of send$message). If you
are working in C, you must use the C header files, rmx_c.h, udi_c.h and rmx_err.h.
If you are working in PL/M, you must use dollar signs ($) and use the rmxplm.ext and
error.lit header files.

This manual uses the following conventions:

• Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

• All numbers are decimal unless otherwise stated. Hexadecimal numbers include
the H radix character (for example, 0FFH). Binary numbers include the B radix
character (for example, 11011000B).

• Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

• Data structures and syntax strings appear in this font.

• System call names and command names appear in this font.

• PL/M data types such as BYTE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C data types are lower case except
those that represent data structures.

• Whenever this manual describes I/O operations, it assumes that tasks use BIOS
calls (such as rq_a_read, rq_a_write, and rq_a_special). Although not
mentioned, tasks can also use the equivalent EIOS calls (such as rq_s_read,
rq_s_write, and rq_s_special) or UDI calls (dq_read or dq_write) to do the
same operations.

✏ Note
Notes indicate important information.

▲▲! CAUTION
Cautions indicate situations which may damage hardware or data.

System Concepts Contents v

Contents

Section I: NUCLEUS PROGRAMMING CONCEPTS

1 Jobs
What is a Job?.. 25

Job Hierarchy ... 25
Job Types.. 26

What Does a Job Contain?... 27
Creating a Job .. 28

Resource Sharing.. 28
Specifying Resources ... 29
The Parameter Object... 29
The Initial Task .. 30

Deleting a Job .. 30
Job System Calls.. 31
How to Use Job System Calls.. 32

2 Tasks
What is a Task? ... 33

Task Types ... 34
Task Attributes ... 34

Creating a Task.. 35
Deleting a Task.. 35
Task Execution States.. 36

Task Execution State Transitions ... 37
Suspending and Resuming Tasks.. 38

Prioritizing Tasks... 39
Task Priority Level ... 39

Interrupt Task Priority Level ... 40
Round-robin Scheduling... 40

Communicating Between Tasks .. 44
Using Mailboxes and Ports... 44

vi Contents

Advantages and Disadvantages of Mailboxes 44
Advantages and Disadvantages of Ports.. 45

Using Semaphores and Regions ... 45
Task and Message Queues.. 46

Task System Calls ... 47
How to Use Task System Calls ... 48

3 Mailboxes
What is a Mailbox?.. 49

Object Mailboxes ... 49
Data Mailboxes .. 49

Creating a Mailbox.. 50
Mailbox Queues ... 50

Queues For Object Mailboxes... 50
Queues For Data Mailboxes .. 50

Reconfiguration Mailboxes .. 51
Deleting a Mailbox.. 51
Exchanges Between Tasks in the Same Job .. 51

Using send_message... 53
Using receive_message .. 53

Exchanging Data Between Tasks in Different Jobs... 54
Using send_data ... 55
Using receive_data ... 55

Mailbox System Calls.. 56
How to Use Mailbox System Calls.. 57

4 Semaphores
What is a Semaphore? ... 59
Creating a Semaphore.. 59

Task Queue... 59
Deleting a Semaphore.. 59
Binary Semaphores and Mutual Exclusion.. 60

Priority Bottlenecks and Blocking.. 60
Multi-unit Semaphores .. 62

Using send_units .. 64
Using receive_units .. 64

Semaphore System Calls ... 65
How to Use Semaphore System Calls ... 66

System Concepts Contents vii

5 Regions
What is a Region?.. 67

Deletion and Suspension Protection ... 67
Priority Adjustment .. 67

Creating a Region .. 68
Task Queue... 68

Deleting a Region .. 68
Misusing Regions .. 68
Nesting Regions... 69

Prevention... 69
Using receive_control... 70
Using accept_control .. 70

Region System Calls.. 71
How to Use Region System Calls.. 72

6 Ports
What is a Port?... 73

What is a Service? .. 73
Ports in Multibus II Systems .. 74

Why Use a Port? .. 75
Using Heaps and Buffer Pools at Ports... 75

Creating a Port... 76
Fragments in Large Data Messages.. 76

Deleting a Port... 76
Identifying a Port ... 77
Sending Data Messages ... 78

Using send .. 78
Using receive.. 79

Sending Request / Response Messages.. 80
Control and Control / Data Format ... 80
Transaction Pairs .. 81
Basic Request / Response Transactions.. 82
Fragmented Response Transactions.. 83
Fragmented Request Transactions .. 84

Using send_rsvp .. 84
Using receive_fragment .. 85
Using send_reply... 85
Using receive_reply... 86
Using broadcast ... 86
Using cancel .. 86

Setting Up Special Ports .. 87
Forwarding Messages from Sink Ports ... 87

viii Contents

Using attach_port and detach_port .. 88
Using connect.. 88

Port System Calls .. 89
How to Use Port System Calls .. 91

7 Memory Pools, Memory Segments, Heaps, and Buffer
Pools
Flat Memory Models ... 93
What is a Memory Pool? ... 93

Creating a Memory Pool .. 94
Allocating Memory .. 95
Borrowing Memory.. 95

Using rqe_get_pool_attrib ... 96
What is a Memory Segment?... 97

Creating a Segment .. 97
Boundary Alignment ... 97

Deleting a Segment .. 98
Access Rights and Hardware Types ... 98

Heap Management... 99
What is a Buffer Pool? .. 99

Creating and Initializing a Buffer Pool... 100
Using Data Chains... 101
Using attach_buffer_pool .. 103
Using detach_buffer_pool ... 103
Using request_buffer ... 103
Using release_buffer ... 104

Deleting a Buffer Pool.. 104
Memory Management System Calls.. 105
How to Use Memory Management System Calls.. 108

8 Object Directories
What is an Object Directory? .. 111
Creating a Job Object Directory .. 111
Deleting a Job Object Directory .. 111
Using an Object Directory... 112

Using catalog_object .. 112
Using lookup_object... 112
Using rqe_inspect_directory... 112
Using uncatalog_object .. 113

Object Directory System Calls .. 113
How to Use Object Directory System Calls .. 114

System Concepts Contents ix

8 Exception Handling and System Accounting
Exception Handling ... 115

Exception Handler Actions... 116
Exception Handler Modes .. 117
Condition Code Values and Mnemonics .. 117
Handling Exceptions Inline .. 118
Assigning an Exception Handler .. 119
OS-Assisted Handling of Hardware Exceptions....................................... 119

TagFaultInfo structure... 120
Writing Your Own Exception Handler ... 121

Handler Prototype ... 122
Handler Contents... 123
Compiling Your Exception Handler .. 124
Parameters Used With Hardware Traps .. 125

Exception Handler System Calls .. 127
System Accounting.. 127

Enabling and Disabling CPU Tracking... 127
Returning Information About a Task.. 128
Returning Task Creation and Duration Statistics...................................... 128
System Accounting System Calls ... 128

10 Interrupts
How Do Interrupts Work? ... 131

Interrupt Controllers and Interrupt Lines.. 131
PC-compatible Mode... 132

Interrupt Levels .. 133
Interrupt Descriptor Table .. 133
Assigning Interrupt Levels to External Sources 134

Interrupt Handlers and Interrupt Tasks .. 135
System Calls and Interrupt Handlers .. 135
Writing an Interrupt Handler .. 136
Using set_interrupt With a Handler Only ... 136

What the OS Does With a Handler Only... 137
Using an Interrupt Handler and an Interrupt Task 137

Using set_interrupt With a Handler and Task.................................... 138
Using rqe_timed_interrupt or wait_interrupt 139
Shared Interrupts ... 139
Interrupt Task Priorities... 140

Using iRMK Kernel Calls in iRMX Interrupt Handlers 142
Creating the Service Task.. 142
Things to do from the Service Task... 142

x Contents

Things to do from the Handler .. 142
Example Using iRMK Kernel Calls in iRMX Interrupt Handlers..... 143

Interrupt Servicing Patterns.. 144
Single Buffer Example.. 146
Multiple Buffer Example .. 147
Disabling Interrupts... 150
Enabling Interrupt Levels from within a Task................................... 153

Handling Spurious Interrupts... 154
Calling get_level .. 155
Judicious Selection of Interrupt Levels .. 155
Examining the In-service Register ... 155

Interrupt System Calls ... 156
How to Use Interrupt System Calls ... 157

11 Descriptors
What is a Descriptor? .. 158
Advanced Uses for Descriptors ... 159

Descriptors for Undefined Memory ... 159
Descriptors with Aliases... 160
Using rqe_create_descriptor ... 160
Using rqe_delete_descriptor ... 160
Using rqe_change_descriptor ... 160

Descriptor System Calls .. 161

12 Other Nucleus Features
Date and Time Subsystem ... 163
Live Insertion Support ... 163

Watchdog Timer... 163
Reconfiguration Mailboxes .. 165
Failure Handling... 165

Internal Failure Recovery.. 166
Application Failure Recovery ... 166

Configuring the Watchdog Timer... 168
What is Interconnect Space?.. 169
How the OS Uses Interconnect Space ... 169
How an Application Uses Interconnect Space... 169

Referencing Interconnect Space ... 170
Reading and Writing Interconnect Space ... 170

Interconnect Register System Calls ... 171

System Concepts Contents xi

13 OS Extensions and Type Managers
How Do You Add a System Call? ... 173

Creating an OS Extension... 174
Interface Procedures.. 175
Function Procedures .. 176
Entry Procedures ... 176

Exception Handling for Custom System Calls ... 179
RQERROR and NUCERROR Procedures .. 179
Writing Your Own RQERROR or NUCERROR Procedure 181
Handling Exceptions Inline ... 181
Custom Condition Codes... 184

Linking the Procedures... 184
Including OS Extensions .. 185
System Calls for OS Extensions ... 186

Protecting Objects From Deletion ... 187
System Calls for Deletion Immunity .. 188

Type Managers and Custom Objects ... 189
Creating New Objects... 189
Deleting Composite Objects and Extension Types 190

Using delete_job.. 191
Using delete_extension.. 193
Deleting Nested Composites ... 193

Writing a Type Manager .. 194
Type Manager System Calls... 195

Section II: KERNEL PROGRAMMING CONCEPTS

14 iRMX Kernel Programming Concepts
What Does the Kernel Provide?... 197
Kernel Object Management... 198

Kernel Semaphores... 199
Creating and Deleting Semaphores ... 199
Sending and Receiving Semaphore Units.. 199
Using Region Semaphores .. 200
Priority Adjustment ... 200
Kernel Semaphore System Calls ... 200

Mailboxes ... 201
Creating and Deleting Mailboxes .. 201
Sending and Receiving Mailbox Messages 201
Handling Mailbox Overflow ... 202
Kernel Mailbox System Calls.. 203

xii Contents

Kernel Time Management... 204
Using the Kernel Tick Ratio... 204
Using Alarms ... 205
Using Sleep .. 206
Time Management System Calls.. 206

Kernel Task Management.. 207
Controlling Task State Transitions ... 208
Using Task Handlers .. 209

Installing and Removing Task Handlers.. 210
Task Management System Calls .. 211

iRMX Memory Management for Kernel System Calls 212
Aligning Application or malloc Allocated Memory................................. 212
Using malloc .. 213

Demo Files for the Kernel ... 214
Include Files for the Kernel ... 215
Kernel Memory Management.. 215

Creating Memory Pools and Areas... 216
Deleting Memory Pools and Areas... 216
Pool and Area Overhead... 217
Performance Issues... 217
Getting Information about a Pool ... 218
Allocating Memory in an Interrupt Handler ... 218
Kernel Memory Management System Calls... 219

Section II: I/O SYSTEMS PROGRAMMING CONCEPTS

15 I/O System Basic Concepts
System Programming (BIOS)... 214
Synchronous and Asynchronous Calls... 214

Asynchronous Call Order of Operations .. 215
Using Asynchronous Calls ... 218
Condition Codes for Asynchronous Calls... 219
Creating I/O Buffers... 219

Device Controllers and Device Units .. 220
Setting Mass Storage Device Granularity... 220
File Granularity Example ... 221
Volumes ... 221

File Types.. 222
Communication Between Tasks and Device Units.. 223
Logical Names... 225
Path_ptr Parameters and Default Prefixes (EIOS)... 225
I/O Jobs (EIOS)... 226

System Concepts Contents xiii

16 I/O Jobs and Connections
Creating I/O Jobs ... 227
Creating Device Connections .. 228

Using BIOS System Calls... 228
Using EIOS System Calls... 229
Using a Logical Device with BIOS System Calls..................................... 229

Creating File Connections ... 230
Using BIOS System Calls... 230
Using EIOS System Calls... 231
Moving File Pointers .. 232

17 Named Files
Using Prefixes, Subpaths and File Paths in System Calls 234

Subpaths ... 234
Prefixes... 235
Using the Default Prefix... 235
Specifying Paths in System Calls ... 236
Using Connections.. 238

Controlling File Access ... 239
Users... 239

User Ids ... 239
User Objects ... 240
File Access List .. 241
Computing Access for File Connections .. 242
File Access Rights Example ... 244

Getting and Setting Extension Data ... 245
Maintaining Disk Integrity... 246

Attach Flags.. 246
Fnode Checksum Field ... 246
Getting and Setting the Bad Track/Block Information 247

Accessing Remote Files... 248
Systems that Include iRMX-NET... 248
Dynamic Logon and iRMX-NET ... 250

Accessing NFS Files.. 251
Volume Names... 251
File Names ... 251
File Ownership ... 252
User ID Translation .. 253
File and Directory Creation .. 253
File Access Rights .. 253

Accessing EDOS Files... 255

xiv Contents

Directories.. 255
File Attributes... 255
File Names ... 255
Time Stamps .. 255
File Ownership ... 255

Accessing DOS Files... 256
Directories.. 256
File Attributes... 256
File Names ... 256
Time Stamps .. 256
File Ownership ... 256

Accessing CDROM Files .. 257
Directories.. 257
File Attributes... 257
File Names ... 257
File Ownership ... 257

Using Nucleus System Calls for the Default User and Default Prefix............. 258
System Calls for Named Files ... 258

BIOS and EIOS System Calls for Named Files.. 259
Call Sequence for Named Files ... 266

18 Physical Files
Situations Requiring Physical Files ... 269
Maintaining Physical File Independence ... 269

BIOS Calls for Physical Files... 270
EIOS Calls for Physical Files ... 271

Call Sequence for Physical Files ... 274

19 Stream Files
Maintaining Stream File Independence ... 275

Creating the File ... 275
BIOS Calls for Creating Stream Files ... 275
EIOS Calls for Creating Stream Files ... 276

Writing the File .. 276
BIOS Calls for Writing Stream Files .. 276
EIOS Calls for Writing Stream Files... 277

Reading the File ... 278
BIOS Calls for Reading Stream Files.. 278
EIOS Calls for Reading Stream Files.. 279

Call Sequences for Stream Files.. 280

System Concepts Contents xv

20 Connections and Objects 20 283
Cataloging Connections... 283
Cataloging Objects .. 284

21 UDI Basic Concepts and System Calls
UDI System Calls .. 286

UDI Memory Management System Calls... 286
Using Program Control Calls.. 287
Using Utility and Command-parsing Calls... 287
Using Condition Codes and Exception-handling Calls 288

Overriding the <Ctrl-C> handler ... 289
Writing Portable Programs Using the UDI .. 289
Call Sequence for File-Handling System Calls.. 290

Section IV: APPLICATION LOADER PROGRAMMING
CONCEPTS

22 Application Loader Basic Concepts
Object Code ... 291
Synchronous and Asynchronous System Calls .. 291
Situations Requiring an I/O Job... 292
Overlays... 292
Device Independence and the AL.. 293
Configuring the AL ... 293

23 Preparing Code for Loading
Specifying Pool Sizes for I/O Jobs .. 295
Producing an STL Object File ... 297

Specifying Stack Requirements with SEGSIZE Control 298
Specifying Dynamic Memory Allocation with DYNAMICMEM Option 298

24 Application Loader System Calls
AL System Calls Requiring an I/O Job.. 299
a_load Does Not Require an I/O Job ... 300
Synchronous System Calls... 300

Using rqe_s_load_io_job and s_load_io_job .. 301
Loading Overlays with s_overlay ... 301

xvi Contents

Asynchronous System Calls .. 302
Asynchronous Call Order of Operations .. 302
Response Mailbox Functions.. 303

Section V: HUMAN INTERFACE PROGRAMMING CONCEPTS

25 Human Interface Basic Concepts
Sample Code ... 307
Resident HI Commands... 307
CLI: The Initial Program.. 308
Loading Other Initial Programs... 308
Logon .. 309

Validation... 309
Environments ... 310
Network Access ... 310
Logging Off.. 311

Multiuser Support.. 311
Recovery/Resident User .. 312
Wildcards .. 312
Human Interface System Calls .. 313
Human Interface Operations.. 313

26 The Command Line Interpreter
CLI Features.. 316
Initializing the CLI .. 317
Invoking and Executing Commands.. 318
Adding User Extensions to the CLI... 319

Creating User Extensions ... 319
Initialization Procedure ... 319
Processing Procedure .. 320
Epilog Procedure... 320
Error Handling .. 320

Demonstration Program - User Extension.. 321
Binding a User Extension... 322

Creating a Loadable Command Interface .. 323

27 Writing and Parsing Commands
Standard Command-line Structure .. 326

Command-line Structure Parameters.. 326

System Concepts Contents xvii

Command-line Structure Parameter Formats ... 328
Command-line Structure Special Characters .. 329

Parsing the Command Line ... 331
Parsing Input and Output Pathnames ... 332

File Connection Demo Programs.. 333
Wildcard Characters In Input/Output Pathnames 333

Parsing Other Parameters .. 334
Parsing Nonstandard Command Lines... 336

Variations on the Standard Command Line.. 336
Other Nonstandard Command Lines .. 337

Switching To Another Parsing Buffer ... 338
Obtaining the Command Name ... 340

28 Communicating with the User
Establishing Input and Output Connections... 341

Using c_get_input_connection.. 341
Using c_get_output_connection.. 342

Communicating With the User's Terminal .. 344
c_send_co_response System Call ... 344
c_send_eo_response System Call ... 345

Formatting Messages Based on Condition Codes.. 346
c_format_exception System Call .. 346

29 Invoking HI Commands Programmatically
Creating a Command Connection.. 349
Sending Command Lines to the Command Connection and Invoking the Command 350

Priority Considerations ... 351
Deleting the Command Connection.. 351
Command Connection Calls Demo Programs .. 351

30 Writing a <Ctrl-C> Handler
How the Default <Ctrl-C> Works ... 353
Providing Your Own <Ctrl-C>.. 354

Using Inline Processing .. 354
Using a <Ctrl-C> Task ... 355
Returning to the Default Handler ... 356

<Ctrl-C> Task Demo Programs... 356

xviii Contents

31 Creating Human Interface Commands
Elements of a Human Interface Command.. 358

Parsing the Command Line .. 359
System Calls and Objects to Avoid .. 359
Terminating the Command... 360
Include Files ... 360

Producing a 16-bit Executable Command ... 361
Producing a 32-Bit Executable Command... 363

32 INtime® 2.0 Compatibility and Interoperablilty
Becoming a Remote INtime Node... 365

33 Windows NT Host Cross-Development Environment 367

A OS Extension Example
Ring Buffer Manager... 369

Initialization ... 372
The Interface Library ... 374
The Create Ring Buffer Procedure ... 379
The Delete Ring Buffer Procedure ... 382
The Put Byte Procedure.. 383
The Get Byte Procedure ... 385
Epilogue ... 386

Index 387

System Concepts Contents xix

Tables
Table 1-1. Job System Calls.. 31
Table 2-1. Task System Calls ... 47
Table 3-1. Mailbox System Calls.. 56
Table 4-1. Semaphore System Calls ... 65
Table 5-1. Region System Calls.. 71
Table 6-1. Port System Calls .. 89
Table 6-1. Port System Calls (continued) ... 90
Table 8-1. Object Directory System Calls .. 113
Table 9-1 Condition Code Ranges ... 118
Table 9-2 Exception Handler System Calls .. 127
Table 9-3 Accounting System Calls.. 129
Table 10-1. Allocation of Interrupt Entries ... 134
Table 10-2. Interrupt Level and Task Priority Information... 141
Table 10-3. Handler and Task Interaction through Time .. 149
Table 10-4. Interrupt Levels Disabled for Running Task.. 152
Table 10-5. Interrupt System Calls ... 156
Table 10-5. Interrupt System Calls (continued) .. 157
Table 11-1. Descriptor System Calls .. 161
Table 12-1. Interconnect Register System Calls ... 171
Table 13-1. Comparing Techniques for Creating System Calls 173
Table 13-2. OS Extension System Calls ... 186
Table 13-3. Deletion Immunity System Calls ... 188
Table 13-4. Type Manager System Calls .. 195
Table 14-1. Kernel Semaphore System Calls.. 200
Table 14-2. Kernel Mailbox System Calls .. 203
Table 14-3. Time Management System Calls ... 207
Table 14-4. Task Management System Calls.. 211
Table 14-5. Kernel Include Files... 215
Table 14-6. Management System Calls... 219
Table 17-1. Getting and Deleting Connections ... 259
Table 17-2. Getting and Setting Default Prefixes ... 259
Table 17-3. User Objects .. 260
Table 17-4. Using Data ... 261
Table 17-5. Getting Status .. 262
Table 17-6. Reading Directory Entries ... 262
Table 17-7. Deleting and Renaming Files... 263
Table 17-8. Changing Access ... 263
Table 17-9. Identifying a File's Name... 263
Table 17-10. Changing Extension Data .. 264
Table 17-11. Detecting Changes in Device Status .. 264
Table 17-12. Deleting Connections... 264

xx Contents

Table 17-13. Using Logical Names .. 265
Table 17-14. Creating and Deleting I/O Jobs.. 265
Table 17-15. Miscellaneous Functions.. 266
Table 23-1. OS Stack Sizes... 298
Table 27-1. Parsing System Calls ... 331
Table 27-2. Parsing Buffer System Calls.. 331
Table 29-1. Command Invocation System Calls... 349

System Concepts Contents xxi

Figures
Figure 1-1. Resource Sharing in Jobs.. 28
Figure 1-2. Job System Call Order.. 32
Figure 2-1. Task Execution States .. 36
Figure 2-2. The Round-robin Priority Threshold .. 41
Figure 2-3. Round-robin and Priority-based Scheduling within the Ready Queue........ 42
Figure 2-4. Task System Call Order ... 48
Figure 3-1. Exchanging Objects Between Tasks in the Same Job................................. 52
Figure 3-2. Exchanges Between Tasks in Different Jobs .. 54
Figure 3-3. Mailbox System Call Order.. 57
Figure 4-1. Mutual Exclusion Using a Binary Semaphore.. 60
Figure 4-2. Priority Inversion Bottleneck with Semaphores ... 61
Figure 4-3. Multi-unit and Binary Semaphores Allocating Buffers 63
Figure 4-4. Semaphore System Call Order ... 66
Figure 5-1. Deadlock and Nested Regions .. 69
Figure 5-2. Preventing Deadlock in Nested Regions... 70
Figure 5-3. Region System Call Order.. 72
Figure 6-1. Basic Request / Response Using Ports ... 82
Figure 6-2. Fragmented Response Using Ports ... 83
Figure 6-3. Fragmented Request, Example ... 84
Figure 6-4. Forwarding Messages Using Ports ... 87
Figure 6-5. Port System Call Order... 91
Figure 7-1. Consequences of Minimum-Maximum Memory Pool Values 94
Figure 7-2. Borrowing Memory From the Parent Job... 95
Figure 7-3. Buffer Pool with Associated Buffers.. 100
Figure 7-4. Structure of a Chain Block ... 102
Figure 7-5. Relationship of Buffer Pool and Port.. 103
Figure 7-6. Segment System Calls .. 108
Figure 7-7. Buffer Pool System Calls ... 109
Figure 8-1. Object Directory System Calls ... 114
Figure 10-1. Processor and PIC Interrupt Lines in Native Mode 132
Figure 10-2. Flow Chart of Interrupt Handling ... 145
Figure 10-3. Single-Buffer Interrupt Servicing... 146
Figure 10-4. Multiple-Buffer Interrupt Servicing ... 148
Figure 10-5. Interrupt System Calls .. 157
Figure 11-1. Descriptor and Offset Used To Access a Segment's Physical Memory.... 158
Figure 13-1. OS Extension Using Interface and Function Procedures 174
Figure 13-2. OS Extensions with Entry Procedure.. 177
Figure 13-3. Summary of Duties of Procedures in OS Extensions 178
Figure 13-4. Handling Exceptions with an iRMX Exception Handler 180
Figure 13-5. Control Flow for Handling Exceptions Inline... 182

xxii Contents

Figure 13-6. Composite Object System Call Order .. 190
Figure 13-7. Type Manager Involvement in Delete_job ... 192
Figure 14-1. Kernel Invoking of Task Handlers ... 210
Figure 14-2. Memory Pools and Areas ... 218
Figure 15-1. Behavior of an Asynchronous System Call .. 217
Figure 15-2. Hardware and Software Layers Between Tasks and a Device 223
Figure 17-1. User and User ID Relationship... 240
Figure 17-2. Computing the Access Mask for a File Connection 243
Figure 17-3. Example of Public and Private Files in an iRMX-NET System 249
Figure 17-4. Sequence of Frequently Used System Calls for Named Files 267
Figure 18-1. Sequence of System Calls for Physical Files.. 274
Figure 21-1. The Application Software-Hardware Model .. 285
Figure 21-2. Sequence of System Calls for UDI... 290
Figure 25-1. Multiuser Support under the HI.. 311
Figure 28-1. c_get_input_connection and c_get_output_connection Example 343
Figure 28-2. Using c_send_co_response... 344
Figure A-1. A Ring Buffer.. 370

NUCLEUS PROGRAMMING CONCEPTS

This section documents the iRMX Nucleus subsystem. Its functions include:

• Providing objects for communication and resource access control

• Scheduling tasks based on priority

• Handling interrupts based on interrupt level

The Nucleus consists of:

Kernel Provides low level interfaces and primitives.

Resident Nucleus Provides high level interfaces, memory protection and
validation.

Nucleus Messaging
Service (NMS)

Provides high level message passing

Interface libraries Provide communication between OS layers.

These are the chapters in this section:

Chapter 1. Jobs

Chapter 2. Tasks

Chapter 3. Mailboxes

Chapter 4. Semaphores

Chapter 5. Regions

Chapter 6. Ports

Chapter 7. Memory Pools, Memory Segments, and Buffer Pools

Chapter 8. Object Directories

Chapter 9. Exception Handling and System Accounting

Chapter 10. Interrupts

Chapter 11. Descriptors

Chapter 12. Other Nucleus Features

Chapter 13. OS Extensions and Type Managers

2

System Concepts Chapter 1 25

Jobs 1
What is a Job?

A job consists of a set of tasks and the resources they use, in a shared address space:
the job's memory pool. Tasks within a job use and share the job's resources to do
their work. A job isolates its tasks and resources from other jobs because jobs cannot
share memory pools.

When you have tasks and resources that need to be isolated, create a separate job for
them.

Job Hierarchy
Jobs are arranged in a hierarchy; the root job is always topmost; other jobs descend
from the root job. A parent job is a job that contains tasks that create other jobs. The
created jobs are child jobs.

The Nucleus maintains the job hierarchy, keeping track of the relationships of parent
and child jobs.

See also: Jobs, Introducing the iRMX Operating Systems, for basic information
on job hierarchy

26 Chapter 1 Jobs

Job Types
The iRMX OS supports several kinds of jobs.

Job Type Description

Root job Created by the Nucleus at system initialization. All jobs
in the system descend from the root job.

First level job Created by the Nucleus at system initialization. First level
jobs are child jobs of the root job. The BIOS and EIOS,
for example, are first-level jobs. In
ICU-configurable (Interactive Configuration Utility)
systems, you can specify your application as a first-level
job.

Loadable job Loadable jobs are child jobs of the HI. You can create
your applications as one or more loadable jobs. Other
loadable jobs are the shared C library, network jobs, I/O
jobs, and device and file drivers.

System job System jobs include servers and networking.

In ICU-configurable systems, system jobs are first-level
jobs created by the Nucleus at system initialization. They
are child jobs of the root job. You can use the ICU to
specify which of the system jobs supplied by Intel to
include in your system.

You can load some system jobs using the loadinfo file
rather than making them first-level jobs with the ICU.

Dependent/child job Descend from other jobs. They are created dynamically
as the system runs. Parent jobs create dependent child
jobs. Most of the jobs you create are dependent jobs.

I/O jobs Dependent jobs that provide the environment for EIOS
system calls. You create I/O jobs for tasks that use these
calls. I/O jobs are child jobs of the EIOS and HI.

Your application will probably contain more than one first-level or dependent job
because you will have tasks and resources that need isolation. The number of jobs
depends on the complexity of the application and the modularity of your design.

See also: I/O jobs, in this manual;
system jobs and loadable jobs, System Configuration and
Administration

System Concepts Chapter 1 27

What Does a Job Contain?
A job can contain these resources:

Resource/Object Description

Task A thread of execution. Tasks do the work of the system.
A job may contain several tasks. One is the initial task
created by the Nucleus. The remainder are created by the
initial task. You group related tasks in the same job.

Object directory A list of object names and tokens which tasks in jobs
share with each other. You catalog objects in the object
directory.

Memory pool A pool of up to 4 Gbytes that provides the memory that
tasks share and use to do their work within the job. You
specify the size of the memory pool.

Memory segment A contiguous sequence of bytes that tasks use for any
purpose. You have to create and delete segments.

Buffer pool Dynamically allocable memory. First you create the
buffer pool and load it with segments. Then to allocate
memory you only need to specify the buffer pool's token
and how much memory you need. The Nucleus allocates
and returns memory to the buffer pool.

Mailbox Passes messages or data between tasks. You can pass
messages and data between tasks in different jobs.

Semaphore Synchronizes tasks. A semaphore is a counter.

Region A one-unit semaphore with special suspension, deletion
and priority-adjustment features. Regions provide mutual
exclusion. Only one task can access a region at a time.

Port Passes messages between tasks in the same or different
jobs. Synchronizes operations between boards in a
Multibus II system.

Exception handler Specifies what to do when a hardware, programmer or
environmental error occurs.

Each object you create uses an entry in the Global Descriptor Table (GDT).

See also: Individual objects and exception handling in Introducing the iRMX
Operating Systems;
individual object chapters in this manual

28 Chapter 1 Jobs

Creating a Job
When you create a job using create_job or rqe_create_job, you specify its
resources, which is a parameter object the parent job can pass to the child, and an
initial task. These resources are taken from the parent job's memory pool.

Resource Sharing
When you create a job that will have an extensive hierarchy beneath it, be sure you
specify enough resources (memory, object directory entries, tasks and objects) in the
new job because all of the tasks in the new job and any subsequent child jobs will
share the resources of the new job. Since a child job gets its resources from its parent
job, resources in child jobs cannot exceed those of the parent, as shown in Figure 1-1.

➁

OM02859

Task limit

Object limit

A

B

C➂

➀

➃

1. The memory pools for child tasks B and C are allocated from the memory pools of their

parent jobs.

2. Any objects cataloged by child jobs in the parent job's object directory reduce the number

of entries remaining to be made in the parent job.

3. Any tasks created by the child jobs reduce the number of tasks remaining to be created in

the parent job.

4. Any objects created by the child jobs reduce the number of objects remaining to be created

in the parent job.

Figure 1-1. Resource Sharing in Jobs

System Concepts Chapter 1 29

Specifying Resources
These are the resources you specify when you create a job:

• Maximum number of entries allowed in the job's object directory. Alternatively,
you can specify no object directory if tasks do not share objects.

• Maximum and minimum sizes of the job's memory pool, to be shared by all tasks
in the job and any child jobs they create.

See also: Borrowing memory, in this manual

• Maximum number of objects that tasks in the job can create. You can specify
that an unlimited number of objects can be created by tasks in the job.

• Maximum number of tasks allowed to exist within the job at a given time. Since
the Nucleus always creates an initial task, you cannot specify 0. You can specify
that an unlimited number of tasks can be created.

• Maximum (numerically lowest) task priority at which any task contained in the
job can execute. You can specify that the child job inherits the maximum task
priority of its parent. You cannot specify a maximum task priority that exceeds
the maximum task priority in the parent job.

• Exception handler to use for tasks in the job and when to pass control to it.
Alternatively, you can use the default exception handler, which deletes the job.

• Whether the Nucleus should validate system call parameters for calls made
within the job's tasks and in child jobs. You can enable parameter validation in a
child job even if you disabled it in the parent job.

The Parameter Object
When you create a child job, the parent job can pass a parameter object to the child
job, if needed. The parameter object can be of any object type and can be used for
any purpose. For example it can be a segment containing data, arranged in a
predefined format, which the child job needs. The child job accesses the parameter
object by getting its token with the get_task_tokens system call.

If there is no need to pass a parameter object, don't specify one.

30 Chapter 1 Jobs

The Initial Task
The Nucleus creates the initial task for the new job. This task reduces by one the
maximum number of tasks in the parent job.

You program the initial task to do initializing or housekeeping needed when the job
starts running. You can program the initial task to either delete itself or continue to
exist as a regular task, perhaps doing other housekeeping operations.

You supply the same information to the Nucleus about the initial task as you do when
you create a task yourself:

• The priority of the initial task, which must not exceed the new job's maximum
task priority. Alternatively, you can specify that the task use the job's maximum
task priority.

• A pointer to the initial task's start address.

• A token for the initial task's data segment. Or you can let the Nucleus assign the
segment.

• A pointer to the initial task's stack. Unless you have a specific reason to do so,
let the Nucleus create the stack and assign the stack pointer. Otherwise,
particularly in first-level jobs, results may be unpredictable.

• The size of the stack.

See also: Stack size, Programming Techniques

• Whether the initial task contains floating-point instructions.

Deleting a Job
Before you delete a job using delete_job, you have to delete all its child jobs and its
extension objects, if any exist.

Use the rqe_offspring system call to find the child jobs. Delete jobs starting from
the bottom of the job's hierarchy, beginning with childless jobs. After you have
deleted all child jobs, delete the job itself; all the job's objects are deleted too, even if
tasks in other jobs have access to them. The deleted job's memory is returned to the
parent job.

Use the delete_extension system call to delete extension objects and their composite
objects.

System Concepts Chapter 1 31

Job System Calls
These are the system calls that relate directly to jobs:

rqe_create_job
create_job
delete_job
end_init_task (ICU-configurable systems only)
rqe_offspring
get_task_tokens
set_pool_min
rqe_set_max_priority

Table 1-1 lists common operations related to jobs and the Nucleus system calls that
do the operations.

Table 1-1. Job System Calls

Operation Description

create job Rqe_create_job and create_job create a job with an initial task
and returns a token for the job.

delete job Delete_job deletes a job that has no child jobs or extension
objects.

signal Nucleus Use end_init_task in the initial task to signal the Nucleus that
initialization is complete.

get token
for object

Get_task_tokens gets a token for a parameter object or for the
task's job, parent job or root job so you can catalog objects.

find child jobs Rqe_offspring gets tokens for all child jobs so you can delete
them. It returns the list in a structure you supply.

set minimum
size of job's
memory pool

Set_pool_min changes the minimum size of the job's memory
pool from its creation size. If the new minimum is greater,
memory will be obtained from the job's memory pool if possible.*

set maximum
priority of
tasks in job

Rqe_set_max_priority dynamically changes the maximum
priority of a task in a job. The new maximum task priority must
not be greater than (numerically less than) the job's maximum
task priority.

* The amount actually allocated depends on the current allocation, the requested minimum and
maximum, granularity of units allocated, and how memory is already allocated from the memory
pool. The minimum pool size must not exceed the maximum pool size.

See also: Nucleus system calls, System Call Reference

32 Chapter 1 Jobs

How to Use Job System Calls
Figure 1-2 shows the order in which you make job system calls and mentions calls
that tasks in jobs frequently use.

rqe_create_job
catalog_object

get_task_tokens
set_pool_min
rqe_set_max_priority

rqe_offspring
delete_task
delete_extension

set_interrupt
wait_interrupt or
rqe_timed_interrupt
reset_interrupt

create_task
end_init_task

delete_job

➀ ➁ ➂

➃➄➅
OM02860

1. Make these calls from the task that needs to create the new job.

2. Make these calls from the initial task created by the Nucleus.

3. Make these calls from the job's interrupt tasks.

4. Make these calls from any tasks in the job. You will also use calls that:

- Create, catalog, manipulate, and delete objects

- Change a task's priority or execution state

5. Make these calls from the initial task or another housekeeping task.

6. Make this call from the task that created the job.

Figure 1-2. Job System Call Order

■■ ■■ ■■

System Concepts Chapter 2 33

Tasks 2
What is a Task?

A task is a thread of execution that does the work of the system. It is only active
object in the system. It runs a sequence of instructions to manipulate data and
objects. It is the active object within a job.

You will probably have several tasks in one job. One will be the initial task which
you specified in the create_job call and which the Nucleus created to initialize the
job environment. You may create other tasks and group them together in one job
environment because:

• They have similar or related purposes.

• They share resources.

• They exist for similar lengths of time.

There is no hierarchy among iRMX tasks: all tasks in a job belong to the job, even if
one task has created the others. All objects in a job belong to the job, not to the tasks
that created them.

The executable part of a task is a procedure without parameters that never returns,
similar to main() in C programs. A task makes system calls and may call other
procedures. You can write a procedure specifically for one task, or share it among
several tasks.

The Nucleus schedules tasks so that each task sees itself as having its code executed
continuously. Depending on the needs of the application, a task may execute in
these, or other, ways:

• Execute once, then delete itself

• Execute in an infinite loop, spending most of its time waiting for an event to
occur, such as a message arrival, an interrupt, or an elapsed time interval

• Execute in an infinite loop, spending most of its time performing its function

34 Chapter 2 Tasks

Task Types
These are the basic types of tasks.

Type Task Function

initial Initializes the job environment and creates one or more tasks for the job.
It is created by the Nucleus and is the first task to run in a new job. It
may exist for the life of the job, performing housekeeping and other
functions or execute once.

ordinary Typically responds to internal events. Does work required of the
application.

interrupt Services incoming interrupts.

Task Attributes
A task inherits some attributes from its parent job, such as its exception handler and
exception mode. It also has these attributes of its own:

• An instruction pointer that points to the currently executing instruction in the
task

• The task state at initialization and the current execution state

See also: Task execution states in this section

• The current suspension depth of the task

See also: Task execution states in this section

• Whether the task is an interrupt task

• The parent job

• The code, data and stack segment register context

Once you create a task, the Nucleus keeps track of these attributes.

System Concepts Chapter 2 35

Creating a Task
When you create a task using create_task, the Nucleus takes resources that it needs
(such as memory for a stack) from the parent job. These are the resources you
specify when you create a task:

• The priority of the task, which must not exceed the job's maximum task priority.
Alternatively, you can specify that the task use the job's maximum task priority.

• A pointer to the task's start address.

• A token for the task's data segment. Or you can let the Nucleus assign the
segment.

• A pointer to the task's stack. Unless you have a specific reason to do so, let the
Nucleus create the stack and assign the stack pointer. Otherwise, particularly in
first-level jobs, results may be unpredictable.

• The size of the stack.

See also: Stack size, Programming Techniques

• Whether the task contains floating-point instructions.

These are the system calls for creating the three types of tasks:

Task Type System Call
initial create_job
ordinary create_task
interrupt create_task followed by set_interrupt called from within

the new task, which will become the interrupt task

Deleting a Task
When you delete a task using delete_task, the task is disassociated from its parent
job, and any stack segments created for it are reclaimed for allocation to new tasks.
The task's resources are returned to the parent job. These are the system calls to
delete the three kinds of tasks:

Task Type System Call
initial delete_task
ordinary delete_task
interrupt reset_interrupt; when an interrupt task is reset,

delete_task is automatically called

If a task makes C library calls, call c_stop before calling delete_task.

36 Chapter 2 Tasks

Task Execution States
A task exists in one of the execution states shown in Figure 2-1.

➂

Asleep/
SuspendedAsleep Suspended

➂Ready

Running

➀

➁

➂ ➃ ➄

OM02708-3

1. A task is usually created in the ready state. It is not running, asleep, and/or suspended.

Tasks created in I/O jobs can start in suspended state.

2. The task's instructions are being executed; only one task can execute at a time.

3. The task is voluntarily waiting for something to wake it up; it controls the length of time it

stays asleep. A task goes to sleep because:

- It makes a request that cannot be done at once and it will wait (forever if necessary).

- It puts itself to sleep for a specified time. The task will not specify sleep forever.

The asleep state is the most common state for tasks waiting for an event. A task may not

put another task to sleep.

4. The sleeping task is suspended. The suspension depth increases by one each time the

task is suspended. If the task's sleep time expires first, it enters the suspended state. If

the task is resumed first, it enters the asleep state.

5. The task had its execution postponed because it has suspended itself by waiting for an

event or interrupt or has been suspended by another task. The suspension depth

increases by one each time the task is suspended.

Figure 2-1. Task Execution States

System Concepts Chapter 2 37

Task Execution State Transitions
As an application runs, a task often transitions from one execution state to another. A
task in any state except ready cannot run, even if it has the highest priority. You can
delete a task from any state. Creating a task instantly makes it ready.

Transition Reason

Ready to running The task becomes ready, has the highest priority of all ready
tasks and one of these:
• It has a higher priority than the running task.
• The running task is suspended, put in the sleep state, or

deleted.
• The running task's time quota has expired, and the ready

task is next in the queue.

Running to ready
One of these:
• A higher priority task becomes ready.
• The task uses all of its time quota in round-robin

scheduling.

Running to asleep
One of these:
• The task puts itself to sleep for a specified time.
• The task requests something that cannot be done

immediately and it can wait.

Asleep to ready, or
asleep-suspended to
suspended

One of these:
• The sleep time expires.
• The sleep time expires before a request is granted.
• The request is granted because another task sends a

message and the message is received.
• The object the task is waiting at is deleted.

Running to
suspended

The task suspends itself.

Ready to suspended
or asleep to asleep-
suspended

The task is suspended by another task. The suspension
depth increases by one each time the task is suspended.

Suspended to ready
or asleep-suspended
to asleep

The suspension depth is one and the task is resumed by
another task.

38 Chapter 2 Tasks

These are the system calls that cause execution state transitions:

catalog_object receive_units
create_job receive_task
create_task send
enable send_control
enable_deletion send_data
end_init_task send_reply
force_delete send_message
lookup_object send_rsvp
receive send_signal
receive_control send_units
receive_data sleep
receive_fragment suspend_task
receive_message timed_interrupt
receive_reply wait_interrupt
receive_signal

Suspending and Resuming Tasks
You will not encounter problems when a task uses suspend_task to suspend itself.
You may get unpredictable results when using suspend_task to suspend another task
for synchronization. Whenever possible, use a semaphore or mailbox to synchronize
tasks instead.

Each time you call suspend_task, the suspension depth increases by one. The
Nucleus keeps track of the task's suspension depth, up to 255. The larger the number
of calls made, the greater the depth. When the suspension depth is >0, you must
make a corresponding number of resume_task calls to bring the task out of
suspension. You cannot obtain the suspension depth of a task from the Nucleus.

You need to make multiple calls to resume_task from another task to make a task
ready when the suspension depth is >1. Each time you call resume_task, the
suspension depth decreases by one. You do not have to make the resume_task calls
from the task that suspended the task.

See also: suspend_task example, Programming Techniques

System Concepts Chapter 2 39

Prioritizing Tasks
The Nucleus handles task scheduling, based on priority or interrupt level; what job a
task belongs to has no effect on scheduling. The Nucleus always executes the highest
priority running task until it is interrupted, is preempted by a higher priority ready
task, or it puts itself to sleep, suspends itself, or completes and relinquishes control.

Task Priority Level
The priority level of a task determines its importance in relation to other tasks and
interrupts. You specify a task's static priority when you create it or later using
set_priority if you need to. The task’s priority may be adjusted by the OS when
using a region (described later); this is called dynamic priority. The priority is an
integer value from 0 through 255, with 0 being the highest priority.

Range Used For

0 - 16 Used by the OS for servicing hardware exceptions.

17 - 127 Used by the OS for servicing external interrupts.

Let the Nucleus assign these levels to handlers and interrupt tasks,
based on the order in which you attached your external interrupt sources
to the PICs.

In general, don't create tasks in this range. A task running in this range
masks everything numerically lower, meaning response time to external
interrupts is slower and interrupts may be lost.

128 - 130 Use for tasks that communicate with interrupt tasks. These tasks may,
for example, do some asynchronous processing that is related to, but
not required for servicing the interrupt.

131 - 255 Use for tasks that handle internal events, like message passing and
computation. Typically, you don't assign a task to every level in this
range.

You might put important tasks, such as mailbox managers, in the range
140 - 160. Leave some gaps if you plan to add features and tasks later
on.

You can usually start using round-robin scheduling at about 200.

See also: Round-robin Scheduling in this section

40 Chapter 2 Tasks

Interrupt Task Priority Level

Interrupt tasks are tasks that you create, using the create_task call; assign the default
priority for the task's job. Then associate the task to an interrupt handler using the
set_interrupt call. You may use the rqe_set_max_priority call to adjust the job's
maximum task priority, if needed.

Typically, you create interrupt tasks in related jobs. If you are using the I/O System,
however, interrupt tasks are created within the BIOS job.

See also: Managing Interrupts in this manual for more information on interrupt
handling

Round-robin Scheduling
You can assign the same priority level to more than one task and let the tasks take
turns running. Typically you do not do this with important tasks.

Unless you use round-robin scheduling, the first task, Task A, at any given priority
level can run until interrupted or put in the ready state by a higher-priority task. Task
A will regain control after the interrupt has been serviced or the higher-priority task
completes. Other tasks assigned the same priority level can be left waiting
indefinitely unless Task A voluntarily gives up control of the CPU. This could be
disastrous in a multiuser environment.

See also: Introducing the iRMX Operating Systems for basics on round-robin
scheduling

The default round-robin level is 140. You set two parameters that affect round-robin
scheduling: the threshold priority level and the time quota each task can run before it
is preempted. In an ICU-configurable system, you can use the Nucleus screen to set
the RRP and RRT parameters; otherwise you use the rmx.ini file to set them.

See also: RRP and RRT, ICU User's Guide and Quick Reference;
Loadtime parameters, RRP and RRT, System Configuration and
Administration

System Concepts Chapter 2 41

Figure 2-2 illustrates round-robin scheduling and the priority threshold.

➀

➁

➂

OM02863

No Round-robin

Round-robin

Priority threshold

Priority 0

Priority 255

1. At or above the priority threshold, no round-robin scheduling occurs.

2. You set the priority threshold at configuration.

3. Below the priority threshold, round-robin scheduling automatically occurs between tasks of

equal priority.

Figure 2-2. The Round-robin Priority Threshold

42 Chapter 2 Tasks

Figure 2-3 shows how round-robin scheduling works with priority-based scheduling.

OM02867

➀

Ready queue

Running

ReadyB

Asleep DC

PT

➁ Ready

B

PT

Running Asleep DC

➂ Ready

B

PT

Running Asleep CD

➃ Running

ReadyB

Asleep DC

PT

➄ Running

ReadyA

Asleep DC

PT

B

A

A

A

A

PT = Priority Threshold

Figure 2-3. Round-robin and Priority-based Scheduling within the Ready Queue

The priority threshold in the figure is 200. There are tasks A, B, C, and D with these
priorities in the figure:

Priority Tasks

System Concepts Chapter 2 43

130 Task C
140 Task D
200 Tasks A and B

1. Task A runs for 2 clock ticks when Task C becomes ready.

2. Task C has higher priority than A and B, so it gains control and runs until done.
In the meantime, Task D becomes ready.

3. Task D has higher priority than A and B, so it gains control and runs until done.

4. Task A runs again for its remaining 3 clock ticks, then relinquishes control to
Task B.

5. Task B runs until it has used all of its 5 clock ticks or completed. It relinquishes
control. Task A begins running for another 5 clock ticks.

44 Chapter 2 Tasks

Communicating Between Tasks
Tasks communicate with each other to exchange data and synchronize execution.
The OS provides four exchange objects used in exchanging data and synchronizing
tasks. They are:

• Mailbox

• Port

• Semaphore

• Region

See also: Chapters about each object, in this manual;
Designing an Application, Programming Techniques;
examples in /rmx386/demo/c/intro directory

For tasks to share the exchange objects, you must create them, then catalog them
from the creating task using catalog_object. Then other tasks can use
lookup_object to get the object's token so they can access the object.

Using Mailboxes and Ports
Tasks commonly use mailboxes or ports to request a service from another task. The
client task sends a message that specifies parameters for the service call; the service
task receives the message and provides the specified service. The service task can
return results of the service, if any, to the client using a mailbox or port.

See also: Mailboxes and ports, Introducing the iRMX Operating Systems;
Chapters about mailboxes and ports, in this manual

Advantages and Disadvantages of Mailboxes

You use a mailbox to send variably-sized messages between tasks in the same or
different jobs on the same host processor. A mailbox is easy to use for
single-message exchanges. A data mailbox, on the other hand, requires iRMX
support at both the sending and receiving task. Additionally, a message arriving at a
mailbox where no task is waiting is copied by the OS into buffer space in the mailbox
message queue; this is the first copy. When a task arrives to receive the message, the
message is copied by the OS from the mailbox queue into the task's message buffer;
this is the second copy. There is no copying with message-type mailboxes, which
pass tokens only.

System Concepts Chapter 2 45

Advantages and Disadvantages of Ports

A port transmits large messages between tasks on the same processor (short-circuit
message passing) and communicates between tasks on different processors in a
Multibus II system. A port provides access to non-iRMX applications using the
Multibus II transport protocol.

A port provides a transaction-based protocol; request messages are tied to specific
response messages. This enables a task to send messages to many tasks and to
distinguish the replies from one another. Tying the request to the response is handled
automatically by the iRMX OS.

A port copies a message only once. If a message arrives at a port where no task is
waiting, the message is copied into buffer space (which you must allocate) in the
port's buffer pool; this is the only copy. When a task arrives to receive the message,
the OS gives the task a pointer to the message buffer. A second copy of the message
is not made.

Using Semaphores and Regions
Both semaphores and regions provide mutual exclusion to shared resources.

See also: Semaphores and regions, Introducing the iRMX Operating Systems;
Chapters about semaphores and regions, in this manual

You can use a semaphore with more than one unit as a general purpose counter to
synchronize the actions of multiple tasks. A semaphore with one unit can also
provide mutual exclusion of tasks, but without the dynamic priority adjustment and
deletion protection provided by regions. Semaphores do not enforce synchronization
or mutual exclusion. Semaphores provide more flexibility in waiting for access to
resources than regions; you can specify a time limit for waiting in the task queue. A
task using a region cannot set a time limit.

Tasks use regions to enforce mutual exclusion to a specific resource or data. Only
one task at a time can control a region. The task that is controlling the region cannot
be deleted or suspended. If the region has a priority-based task queue, the task in the
region will have its priority dynamically adjusted so that it is always at least as high
as the highest priority task waiting in the queue. When a task gains control of several
regions, then gives up control of the regions one at a time, the task's dynamic priority
is not readjusted to its static priority until the task gives up control of the last region;
this improves performance.

46 Chapter 2 Tasks

Task and Message Queues
If a task makes a request that cannot be filled immediately and the task is willing to
wait, the task stops executing, goes into a task queue and goes to sleep. More than
one task can wait in a queue. You specify whether the OS places tasks in the queue
in either a first-in-first-out (FIFO) or a priority-based manner when you create the
exchange object.

• In a FIFO queue, tasks are queued in the order they arrive at the exchange object.

• In a priority queue, the highest priority tasks move to the head of the queue.
Tasks of equal priority are arranged in order of arrival.

You specify the maximum length of time the task can wait in the queue when you tell
the task to receive data or a message, a signal, or semaphore units.

Besides the task queues maintained by all exchange objects, mailboxes and ports also
have message queues to hold incoming messages for tasks. Message queues are
always FIFO-based.

System Concepts Chapter 2 47

Task System Calls
These are the system calls that relate directly to tasks:

create_task
delete_task
reset_interrupt
sleep
suspend_task
resume_task
get_priority
set_priority
get_task_tokens

Table 2-1 describes common operations on tasks and the system calls that perform
the operations.

Table 2-1. Task System Calls

Operation Description

create task Create_task creates a new task and returns a token for it.

delete task Delete_task deletes the specified task. It calls reset_interrupt
for interrupt tasks.

put task to
sleep

Sleep puts the calling task to sleep for a specified time. One
task may not put another to sleep.

suspend
task

Suspend_task lets tasks suspend themselves and other tasks.
Suspend_task increases the suspension depth by one.

resume task Resume_task decreases the suspension depth by one.

modify task
priority

Get_priority checks the priority of the specified task.
Set_priority sets task priority to the specified level, which must
be
• Equal to or greater than the parent job's priority level
• Within the allowable range of priorities (0 to 255)
You cannot change the priority level of interrupt tasks.

obtain
specific
token

Get_task_tokens finds out the token for any one of these
objects:
• Task's own token
• Task's job
• Parameter object of the task's job
• Parent job of the task's job
• Root job of the system

See also: Nucleus system calls, System Call Reference;
examples in the /rmx386/demo/c/intro directory

48 Chapter 2 Tasks

How to Use Task System Calls
Figure 2-4 shows the order in which you make task system calls and mentions calls
that tasks frequently use.

create_task
catalog_object

set_interrupt
wait_interrupt or
rqe_timed interrupt
reset_interrupt

➀
➁

➃➄
OM02868

get_task_tokens
lookup_object
sleep
suspend_task
resume_task

➂

get_priority
set_priority

delete_task

1. Make these calls from the task that needs to create the new task.

2. Make these calls if the new task is to be an interrupt task.

3. Make the get_task_tokens and lookup_object calls from the new task to obtain tokens

for other jobs, tasks and objects in the system. Make the sleep call if the task needs to

wait. Make the suspend_task call from a task that has completed and no longer needs to

run. Make the resume_task call from another task.

You will also use calls that create, catalog, manipulate and delete objects.

4. Make these calls from the new task to change its own or another task's priority.

5. Make this call from the task that created the task.

Figure 2-4. Task System Call Order

■■ ■■ ■■

System Concepts Chapter 3 49

Mailboxes 3
What is a Mailbox?

Tasks exchange information by sending messages to and receiving messages from
mailboxes. A message may be either an object token or a stream of data.

You can create two kinds of mailboxes: object (usually for object tokens) or data.
The choice depends on the information your tasks need to exchange. An object
mailbox cannot pass data (except in segments).

Sending and receiving data uses different system calls than sending and receiving
object tokens.

See also: Nucleus system calls, System Call Reference;
examples in the /rmx386/demo/c/intro directory

Object Mailboxes
You use an object mailbox to pass an object token, usually a segment token, to
another task. To use an object mailbox to send a segment, you must create the
segment, then send the segment's token to an object mailbox. An object mailbox is
also called a message mailbox.

Data Mailboxes
Use data mailboxes for passing small amounts of information. You won't have to
create and delete segments or dereference a segment token after a task receives it.

Although the amount of data per message is limited to 128 bytes, the data can be a
pointer to a larger area. Passing data instead of objects can be important in systems
where the GDT is almost full, because each object uses an entry in the GDT.

Chapter 3 Mailboxes50

Creating a Mailbox
When you create a mailbox using create_mailbox, the Nucleus takes resources that it
needs from the task's parent job. These are the parameters you specify when you
create a mailbox:

• Whether the mailbox passes data or objects.

• For object mailboxes, the number of objects that can be in the high-performance
message queue. By default, the OS creates a high-performance queue of eight
objects. For data mailboxes, you do not specify the size of the queue.

• Whether the task queue is FIFO or priority based.

Mailbox Queues
Each mailbox has two queues: a task queue and a message queue. At any given
time, at least one of the queues is empty, because the Nucleus sees that waiting tasks
receive messages as soon as they are available.

See also: Task and message queues in Chapter 2

Queues For Object Mailboxes

By specifying a high-performance queue that is large enough to contain all the
objects queued during normal operations, you improve the performance of
send_message and receive_message when these calls get or place objects in the
queue. The Nucleus permanently allocates memory for a high-performance queue
even if no objects are stored in it, so memory does not have to be allocated
dynamically.

The Nucleus automatically handles overflow. When more objects arrive than the
high-performance queue can hold, the Nucleus creates a temporary overflow queue
that holds up to four messages. The overflow queue is not deleted until it empties.
Because the overflow queue is created once for every additional four messages,
performance is only affected when a send_message system call causes the allocation
of an overflow queue. Then, extra time is required for the allocation.

Queues For Data Mailboxes

The default queue for data mailboxes is three messages, 128 bytes each. When more
messages arrive than the queue can hold, the Nucleus creates a temporary overflow
queue that holds up to 400 bytes. The overflow queue is not deleted until it empties.

System Concepts Chapter 3 51

Reconfiguration Mailboxes
Multibus II systems that are configured with the watchdog timer to support live
insertion use reconfiguration mailboxes in the iRMX OS. The watchdog timer sends
messages to these mailboxes to indicate board failures or resets. You create a
reconfiguration mailbox by first creating a mailbox with create_mailbox. Then, you
use the add_reconfig_mailbox system call to specify the mailbox as a
reconfiguration mailbox. A reconfiguration mailbox must be a data mailbox.

See also: add_reconfig_mailbox system call, System Call Reference;
Live Insertion, Chapter 12

Deleting a Mailbox
When you delete a mailbox using delete_mailbox, the Nucleus:

• Awakens any tasks waiting at the mailbox with an E_EXIST condition code

• Discards any messages in the queue

Exchanges Between Tasks in the Same Job
Figure 3-1 on page 52 illustrates an exchange between two tasks in a single job.
When tasks in the same job use mailboxes, they can use object mailboxes.

In this figure, Task A is an interrupt task associated with an interrupt handler; Task B
is an ordinary task. If Task A sends messages to the mailbox faster than Task B can
receive them, the messages will be queued at the mailbox until Task B can get to
them. This is a good situation to use a high-performance queue.

Chapter 3 Mailboxes52

➀

➁ ➂

➃

OM02872

A B

Handler

Interrupt

1. Interrupt Task A creates a segment to store the data it expects to receive from the interrupt

handler using create_segment.

2. Interrupt Task A creates an object mailbox using create_mailbox and catalogs it using

catalog_object. Task A goes to sleep by waiting for a signal from an interrupt handler,

using wait_interrupt.

Task B looks up Task A's mailbox using lookup_object. Task B goes to sleep by waiting

for a message at the mailbox, using receive_message. (If the tasks share a common

data segment, you could store the mailbox token there and avoid using lookup_object.)

When Task A receives the signal from the interrupt handler, it wakes up, places data into

the segment and sends the token to Task B using send_message.

Task A then creates a new segment for the next interrupt and waits.

3. Task B wakes up and receives the token in the mailbox.

4. Task B processes the segment, then deletes the segment.

Figure 3-1. Exchanging Objects Between Tasks in the Same Job

System Concepts Chapter 3 53

Using send_message
Send_message sends a single object to a mailbox and enables a task to request
acknowledgment from the receiving task.

When you send a message:

• If a task is waiting, it receives the message immediately. If the receiving task
has been asleep, it moves either from asleep to ready or from asleep-suspended
to suspended.

• If no task is waiting, the message is placed at the tail of the message queue.
Message queues are processed as FIFO, so the message remains in the queue
until it moves to the head of the queue and is given to a task.

Using receive_message
When a task is waiting to receive a message:

• If there is a message in the queue when a task arrives at a mailbox, the task
receives the message immediately.

• If there is no message in the queue, the task may or may not wait in a task queue.

– If the receive_message call indicates that the task can wait, it is placed in
the task queue and goes to sleep. This is how you use mailboxes to
synchronize tasks as well as pass messages. A sleeping task wakes when a
message arrives or when a specified time limit expires.

The task receives an E_TIME condition code if the designated waiting
period elapses before the task gets a message.

– If the receive_message call specifies that the task cannot wait, the task
remains ready and immediately receives an E_TIME condition code.

If you use receive_message, check to see if an acknowledgment has been requested.

Chapter 3 Mailboxes54

Exchanging Data Between Tasks in Different Jobs
Figure 3-2 shows a server task that does similar services for several client tasks in
different jobs. The server and clients have their own mailboxes. The server should
catalog its mailbox in the root job's object directory. Each client sends the token for
its mailbox to the server so the server will know where to reply.

➁

w-2836

➁

➂

➃

➀

= Request

= Reply

A

B

S

1. The Server Task S creates a data mailbox using create_mailbox and catalogs it in the

root job's object directory using catalog_object. The Server Task puts itself to sleep using

receive_data.

2. Each Client Task creates its own mailbox. Each Client Task looks up the token for the

server task's mailbox using lookup_object.

3. When either client (Task B in this example) sends data using send_data, the client

includes the token for its mailbox in the call.

4. When a message from either client arrives, the Server Task wakes up and processes the

data. It sends a reply to the appropriate client task's mailbox (Task B in this example)

using the mailbox token included in the send_data call.

Figure 3-2. Exchanges Between Tasks in Different Jobs

System Concepts Chapter 3 55

Using send_data
The maximum amount of data transferred by the send_data system call is 128 bytes.
You must create a send buffer for the data and pass a token or a pointer to it. Pass a
token if you have created a segment using the create_segment call or a pointer if you
have declared a data structure in a portion of the DS.

The original data area becomes available for re-use after send_data returns.

You cannot request acknowledgment from the receiving task when you use
send_data.

If there is a task waiting at the mailbox when the message arrives, the message is
copied directly to the task's receive buffer. Otherwise the message is copied into the
Nucleus-provided message queue.

Using receive_data
The receive_data call requests a message from a mailbox. Always specify a buffer
of at least 128 bytes in the receive_data system call. You must create a receive
buffer; you can create a segment or declare a data structure in a portion of the DS.

If the task calling receive_data is waiting at the mailbox when the message arrives,
the message is copied directly to the waiting task's receive buffer. Otherwise the
message is copied into the Nucleus-provided message queue.

When a task is waiting to receive data:

• When a message arrives at the mailbox, the data is copied from the send buffer
into the task's receive buffer. It does not go into the message queue.

• If there is no message, the receiving task goes into the task queue. The task goes
to sleep for the specified time limit or until a message arrives, whichever comes
first. If the message arrives, it is copied from the send buffer to the receive
buffer. If no message arrives during the time limit, the task will awaken with an
E_TIME condition code.

When a message is waiting to be received:

• The receiving task receives the message without going into the task queue.

• If no task is waiting, the message goes into the message queue.

The amount of time necessary to receive a message can potentially be longer than the
specified time limit. A time-out error will not occur after the message transmission
into the receiver's segment begins. The transmission time is significant only for very
long messages.

Chapter 3 Mailboxes56

Mailbox System Calls
These are the system calls that relate directly to mailboxes:

add_reconfig_mailbox
create_mailbox
delete_mailbox
send_data
receive_data
send_message
receive_message

Table 3-1 lists common operations on mailboxes and the mailbox system calls that do
the operations.

See also: Nucleus system calls, System Call Reference

Table 3-1. Mailbox System Calls

Operation Description

create
mailbox

Create_mailbox creates a new mailbox and returns a token for
the mailbox.

specify
reconfiguratio
n mailbox

Add_reconfig_mailbox specifies an existing data mailbox as a
reconfiguration mailbox (used with the watchdog timer).

delete
mailbox

Delete_mailbox takes a token for a mailbox and deletes the
mailbox.

send data Send_data sends up to 128 bytes of data to a data mailbox.

receive data Receive_data receives up to 128 bytes of data from a data
mailbox.

send
message

Send_message sends an object token to a mailbox.

receive
message

Receive_message receives an object token from a mailbox.

See also: Nucleus system calls, System Call Reference;
examples in the /rmx386/demo/c/intro directory

System Concepts Chapter 3 57

How to Use Mailbox System Calls
These are the rules for mailboxes:

• A task can send a message to any mailbox for which it has a token.

• A mailbox can receive a message from any task that has its token.

• The size of a data message is limited to 128 bytes.

Figure 3-3 shows the order in which you make mailbox system calls.

create_mailbox
catalog_object

send_data
receive_data

send_message
receive_message

lookup_object

➀ ➁
➂

➃

OM02869

uncatalog_object
delete_mailbox

1. Make these calls from a task in the job that needs to receive messages from the new

mailbox.

2. Make this call from the task that needs to send information to the mailbox.

3. Make the receive_ calls from a task in the job that created the mailbox. Make the

send_ calls from any task that has the mailbox token.

4. Make these calls from the task that created the mailbox.

Figure 3-3. Mailbox System Call Order

Use the send_data and receive_data system calls with data mailboxes. Use the
send_message and receive_message with object mailboxes. If you try to pass
information with the wrong system call, for example sending a object with
send_data, the Nucleus issues an E_TYPE condition code.

■■ ■■ ■■

Chapter 3 Mailboxes58

System Concepts Chapter 4 59

Semaphores 4
What is a Semaphore?

A semaphore is a counter that takes positive integer values called units. Tasks send
units to and receive units from the semaphore. A semaphore can:

• Synchronize a task's actions with other tasks

• Provide mutual exclusion from data or a resource

See also: Semaphores, Introducing the iRMX Operating Systems;
Examples in the /rmx386/demo/c/intro directory

Creating a Semaphore
These are the parameters you specify when you create a semaphore using
create_semaphore:

• The initial number of units in the custody of the new semaphore.

• The maximum number of units the semaphore can have in custody at any given
time. The lower limit is automatically 0.

• Whether the task queue is FIFO or priority based.

Task Queue
Use a priority-based queue so high-priority tasks do not wait behind lower-priority
tasks in the queue. Within a priority-based queue, tasks of equal priority are FIFO
queued.

See also: Priority Bottlenecks and Blocking, in this chapter

Deleting a Semaphore
When you use delete_semaphore, the Nucleus awakens any tasks waiting to receive
units at the semaphore with an E_EXIST condition code.

60 Chapter 4 Semaphores

Binary Semaphores and Mutual Exclusion
If a task asks a binary (single-unit) semaphore for a unit to gain access to a resource
and a unit is not available, it means some other task is using the resource. The
requesting task can't access the resource until the unit is returned.

Figure 4-1 illustrates a binary semaphore guarding a resource. Tasks queue up for
access to the resource; in general, use a priority-based queue in your applications.

OM02706

A

➀

B

➁

➂

Create the semaphore with one initial unit and a maximum of one unit, using

create_semaphore.

1. Task A requests a unit from the semaphore using receive_units. The semaphore sends

the unit. Task B also requests a unit from the semaphore using receive_units and

specifies it is willing to wait. Task B goes to sleep by waiting in the queue until Task A has

returned the unit.

2. Task A accesses the resource. No other task can access the resource at the same time.

When Task A is done using the resource, it returns the unit to the semaphore using

send_units.

3. Now Task B will wake up and receive the unit. If Task B has a higher priority than A, it will

begin running. Otherwise it will be ready.

Figure 4-1. Mutual Exclusion Using a Binary Semaphore

Priority Bottlenecks and Blocking
You may encounter several problems when you use semaphores for mutual exclusion
of shared data. To eliminate the problems, use regions rather than semaphores to
control shared resources.

See also: Regions, in this manual

System Concepts Chapter 4 61

The first bottleneck is a high priority ready task blocked by a lower priority running
task. This occurs if the lower-priority task obtained the required units before the
higher-priority task became ready. The running task, regardless of priority, controls
the resource until it returns the units to the semaphore.

The second bottleneck, priority inversion, occurs when a low priority task obtains the
required units to access a resource, then is preempted by a medium-priority task,
which is then preempted by a high-priority task that needs to access the resource.
Figure 4-2 shows what could happen:

➂

OM02870

A

➁

➀

B

C

1. Low priority Task A is running and obtains a unit from a binary semaphore to access some

data. It starts accessing the data.

2. Task B, a medium priority task, preempts A.

3. Higher priority Task C preempts B, but cannot access the data while the low priority task

holds the unit. The low priority Task A cannot complete its operation and return the unit

because it is preempted by B.

Figure 4-2. Priority Inversion Bottleneck with Semaphores

The third bottleneck occurs when a task holding a semaphore unit and using shared
data is suspended or deleted; no other task can gain access to the shared data. Only
after the suspended task is resumed and returns the semaphore can the data be used
by the other tasks. In the case of a deleted task, the semaphore prevents any other
tasks from ever using the shared data.

62 Chapter 4 Semaphores

Multi-unit Semaphores
You typically use a multi-unit semaphore as a counter, for example managing the
available space in a circular buffer. A task can request more than one unit from a
multi-unit semaphore and the semaphore tries to satisfy the request.

The semaphore either sends all the units requested or none at all. So, a multi-unit
semaphore might have tasks waiting for units and also have units that have not been
granted available, but not enough to satisfy the task at the head of the task queue.
This is a possible scenario:

Two tasks are queued waiting for units.
Task A is first in the queue and wants three units.
Task B is second in the queue and wants one unit.
The semaphore has zero units available when the requests are made.

These are possible outcomes for a FIFO queue:

• The semaphore receives three units. Task A receives the units, awakens and
runs while B remains asleep in the queue.

• The semaphore receives two units. Both tasks remain asleep. There aren't
enough units for Task A and Task B's request cannot be satisfied, because Task
A is still ahead of it in the queue.

• The semaphore receives four units. Both A and B receive their requested units
and are awakened. Task A runs first because it is first in the queue.

These are possible outcomes for a priority queue, with Task B having a higher
priority than A:

• The semaphore receives two or three units. Task B receives a unit, awakens and
runs while A remains asleep in the queue.

• The semaphore receives four units. Both A and B receive their requested units
and are awakened. Task B runs first because it is higher priority.

System Concepts Chapter 4 63

Figure 4-3 shows how tasks can share a fixed-length list of buffers using two
semaphores: one binary and one multi-unit counting semaphore.

• The binary semaphore prevents two different tasks taking buffers from the list at
the same time.

• The counting semaphore prevents a task spending time searching the list for an
available buffer when there is none.

A

➀

➁

➂

D

B

C

➃

OM02890

Create a binary semaphore B that provides mutually-exclusive access to the buffer list using

create_semaphore.

Create a counting semaphore C that tracks the number of available buffers, eight in this

example, using create_semaphore. Set the initial units and maximum units equal to the

number of buffers: eight.

1. Task A requests the only unit from semaphore B using receive_units. The semaphore

sends the unit. Now, only task A can request units from semaphore C.

2. Task A requests three units from semaphore C using receive_units. The semaphore

sends the units. Now task A has access to three buffers in the shared list. Task A then

returns the unit to semaphore B using send_units.

3. Task D requests the unit from semaphore B using receive_units and receives it.

4. Task D can now request four units from semaphore C. Since the semaphore has enough

remaining units to satisfy the request, Task D will receive them. If it had not, D would have

waited.

All tasks should return their units to C as soon as possible to free resources for other tasks.

Figure 4-3. Multi-unit and Binary Semaphores Allocating Buffers

64 Chapter 4 Semaphores

Using send_units
A task does not have to receive a unit from a semaphore in order to send a unit to it.

When a task sends units to a semaphore, and no task of equal or higher priority is
waiting, the task remains running. If a higher priority task is waiting for the unit, it
preempts the lower priority task.

The semaphore returns an E_LIMIT condition code when:

• You try to send zero units.

• You try to send more units than the maximum number of units the semaphore is
allowed to have. In this case, the number of units in the custody of the
semaphore remains unchanged.

Using receive_units
Use receive_units to find out how many units are available by specifying 0 in the
units parameter.

You can specify how long a task using receive_units will wait for a semaphore unit.
Two factors determine whether the task receives the units and how soon: how many
units the task asks for, and where the task is in the queue.

• If the number of units requested is within the semaphore's current supply of units
and the specified maximum for that semaphore, the request is valid.

– If the task is at the front of the queue, the request is granted immediately,
and the task stays running.

– If a request is valid but cannot be granted immediately, the task can either
wait or not.

If the receive_units call specifies that it can wait, the task goes into the task
queue and goes to sleep by waiting. If the time elapses before the task gets
the units it asked for, the task awakens and receives an E_TIME condition
code.

If the receive_units call specifies that the task cannot wait, the task receives
an E_TIME condition code.

• If the task asks for more units than the maximum number allowed for a
particular semaphore, the request is invalid and the semaphore returns an
E_LIMIT condition code.

System Concepts Chapter 4 65

Semaphore System Calls
These are the system calls that relate directly to semaphores:

create_semaphore
delete_semaphore
send_units
receive_units

Table 4-1 lists common operations on semaphores and the semaphore system calls
that do the operations.

Table 4-1. Semaphore System Calls

Operation Description

create Create_semaphore creates a new semaphore and returns a
token for it.

delete Delete_semaphore deletes the semaphore.

send units
to semaphore

Send_units gives a specified number of units to a semaphore.

receive
units from
semaphore

Request units from a semaphore with the receive_units system
call.

See also: Nucleus system calls, System Call Reference

66 Chapter 4 Semaphores

How to Use Semaphore System Calls
These are the rules for semaphores:

• A task does not have to receive a unit from a semaphore in order to send a unit to
it.

• A semaphore cannot receive more units than the maximum specified when it was
created.

Figure 4-4 shows the order in which you make semaphore system calls.

create_semaphore
catalog_object

send_units
receive_units

➀ ➁ ➂
OM02871

uncatalog_object
delete_semaphore

1. Make these calls from the task that has the resource that needs to be shared.

2. Make these calls from the tasks that need to use the resource.

3. Make these calls from the task that created the semaphore.

Figure 4-4. Semaphore System Call Order

■■ ■■ ■■

System Concepts Chapter 5 67

Regions 5
What is a Region?

A region is a binary semaphore with special suspension, deletion, and priority-
adjustment features. Regions provide mutual exclusion from resources; only one task
may control a region at a time; only the task in control of the region can access the
resource.

Deletion and Suspension Protection
Tasks that have control of a region, or are queued at a region, cannot be deleted or
suspended by other tasks until they give up control of the region.

Tasks in control of a region cannot be preempted by other tasks wanting control of
the region. A task can, however, be preempted by a higher-priority task that does not
want control of the region.

Priority Adjustment
If you use a priority-based queue, the priority of the task controlling the region will
be dynamically raised whenever the task at the head of the region's task queue has a
priority higher than that of the controlling task. The priority of the controlling task is
raised to match that of the queued task. This priority adjustment prevents the priority
inversion bottleneck that can occur when tasks use semaphores to obtain mutual
exclusion.

Once a task's priority is raised in this way, the priority is not lowered until the task
gives up control of all regions. It is not sufficient to give up control of the region that
raised the priority, if the task still controls another region.

68 Chapter 5 Regions

Creating a Region
The only parameter you specify when you create a region using create_region is
whether the task queue is FIFO or priority based.

Task Queue
Tasks of equal priority in a priority-based queue are queued in a FIFO manner.

A task in the region's task queue sleeps until the region becomes available; it can wait
indefinitely.

Deleting a Region
When you delete a region using delete_region, the Nucleus awakens any tasks
waiting for control of a region with an E_EXIST condition code.

A task cannot delete a region it controls. It must give up control of the region first.
Otherwise, an E_CONTEXT condition code returns.

Misusing Regions
Misuse of regions can corrupt the interaction between tasks in an application system.
Before writing a program using regions, you must have a complete understanding of
regions, the OS, and the entire application system. Avoid these problems:

Deadlock This occurs if two tasks need control of two regions for access to the
same two resources at the same time and each task has control of one
region.

Since there is no time limit on waiting for control, deadlocked tasks can
remain so indefinitely. Any other tasks entering the region's task queue
will also become deadlocked.

Deletion immunity
If you create and a task obtains control of the region, the task will be
immune to deletion until it gives up control of the region. If the task
never gives up control, it can never be deleted.

No time limit
If control is not immediately available, there are two options. If the
task cannot wait, it receives a condition code. If the task waits, it may
never run again. If these are not acceptable, use a semaphore instead.

See also: Semaphores, in this manual

System Concepts Chapter 5 69

Nesting Regions
A task can take control of more than one region at a time, which is called nesting
regions. Regions are released in a last-obtained, first-released order. When a task
releases control of a region and has control of multiple regions, the most recently
obtained region is released first.

Deadlock occurs with multiple nested regions as shown in Figure 5-1. The example
uses the receive_control system call to gain control of the regions.

A B
➁

➀

OM02960

X

Y

1. Task A requests and obtains control of Region X. It also needs control of Region Y.

2. Task B preempts Task A. It requests and obtains control of Region Y. It also needs

control of Region X.

Neither task can run. Neither task can be deleted. If any other tasks try to obtain control of

either region, they will also become deadlocked.

Figure 5-1. Deadlock and Nested Regions

Prevention
There are two ways to prevent deadlock in nested regions:

• Use the accept_control system call. Tasks using accept_control cannot
deadlock at a region unless they keep trying endlessly to accept control.

• If you use receive_control, have all tasks request control in a consistent order; it
doesn't matter what order as long as all tasks obey it. List the names of all
regions in any order and label them in sequential order. As you program a task
that nests any of the regions, be sure the task requests control in ascending order
and releases the regions in descending order. If you follow this rule consistently,
you can safely nest regions to any depth. Figure 5-2 on page 70 shows how
sequential ordering works.

70 Chapter 5 Regions

A B

➁
➀

OM02892

➂

Y

C

➃X

1. Task A, priority 140, requests and obtains control of region X. It also needs control of

Region Y.

2. Task B, priority 135, preempts Task A. It requests control of region X. Task A's priority is

raised to equal B's. Task B can't obtain control so it enters the task queue.

3 Task A requests and obtains control of region Y.

4. Task C, priority 130, preempts Task A. It requests control of region X. Task A's priority is

raised to equal C's. Task C can't obtain control so it enters the task queue.

Task A runs and then releases region Y, followed by region X. Then, its priority is adjusted to

its static level, 140. Task C will then wake up, preempt A, and obtain control of both regions.

Figure 5-2. Preventing Deadlock in Nested Regions

If a task has control of several regions, and multiple tasks with different priorities are
waiting for the regions, the priority of the controlling task may be raised more than
once. But the controlling task must surrender control of all the regions it controls
before its priority reverts to its original static value.

Using receive_control
The receive_control system call enables a task to wait for a region to become
available. But if access never becomes available, the task never runs again. An error
occurs if a task requests control of a region it already controls.

Using accept_control
If control is not immediately available, the task does not wait at the region. Instead,
it receives a condition code and remains ready. To gain control, the task must make
repeated calls to accept_control.

System Concepts Chapter 5 71

Region System Calls
These are the system calls related to regions.

create_region
delete_region
receive_control
send_control
accept_control

Table 5-1 lists common operations on regions and the region system calls that do the
operations.

Table 5-1. Region System Calls

Operation Description

create region Create_region creates a new region and returns a token for it.

delete region Delete_region takes a token for a region and deletes the region.

get control
of region

Receive_control gives a task control of a region when it becomes
available. The task sleeps in the task queue until control is
granted.

give up
control

Send_control informs the Nucleus that the calling task is giving
up control of the last region it controlled. A different task can then
be given access to the shared data.

get control
immediately

Accept_control allows a task to gain access to shared data when
access is immediately available.

See also: Nucleus system calls, System Call Reference;
examples in the /rmx386/demo/c/intro directory

72 Chapter 5 Regions

How to Use Region System Calls
These are the rules for regions:

• Do not let a task suspend itself when it controls a region. Unless the task is
resumed by another task, the region may permanently exclude other tasks from a
shared resource.

In addition, the task will never run again and its memory will not be returned to
the memory pool. Tasks in the region’s task queue are also immune to deletion
and will encounter the same memory pool problems.

• Do not use regions in Human Interface applications. If a task in an HI
application uses regions, the application cannot be stopped asynchronously
(using <Ctrl-C> entered at a terminal) while the task is accessing data guarded
by the region.

• When the running task no longer needs control, it should release control of the
region, which enables a waiting task to access the resource.

• A task cannot delete a region it controls without first releasing the region.

• Use an arbitrary order for all tasks accessing regions when you use nested
regions and the receive_control system call.

Figure 5-3 shows the order in which you make region system calls.

create_region
catalog_object

receive_control
accept_control

➀ ➁ ➃
OM02875

uncatalog_object
delete_regionsend_control

➂

1. Make these calls from the task that has the resource that needs to be shared.

2. Make these calls from the tasks that need to obtain control of the region to access the

resource.

3. Make this call to give up control of the region.

4. Make these calls from the task that created the region.

Figure 5-3. Region System Call Order

■■ ■■ ■■

System Concepts Chapter 6 73

Ports 6
What is a Port?

Ports were initially implemented for Multibus II systems as an access point to the
Nucleus Communication Service, but they have been extended to be an access point
to any service. A task can pass messages to a service through its port. If the service
connects different tasks then another task can receive that message.

When you use ports, the sending task sends the message through its port and the
receiving task receives the message through its port. You can create a buffer pool or
heap and attach it to the port to provide fast storage allocation for messages received
at a port.

A message consists of a control part and optionally a data part. The control part
contains data which usually definies what to do with the data part (if any). Control
messages do not require special buffer arrangements (such as pools or heaps) but data
messages do.

What is a Service?
A service is a module which processes messages from ports. Services can range from
complex subsystems, such as the Nucleus Communication Service, or the IP module
of the TCP/IP stack, to simple hardware interfaces, such as a low-level serial device
driver. All services process messages received via ports from tasks, and they also
process messages from an interface, which may be a hardware interface or another
object, such as a mailbox or evan another port.

For example, the serial driver service manages the hardware interface using
interrupts, and processes messages from tasks using the service. The Nucleus
Commumication Service processes messages from tasks using the system, and also
messages to and from the Multibus II interface.

74 Chapter 6 Ports

Ports in Multibus II Systems
For two tasks on different boards to exchange messages, each must have access to a
Nucleus Communication Service port on its own board. Each port is an access point
to the message-passing protocol of the Multibus II Transport Protocol Specification.

If you use a port to communicate with a board that is running another OS, the other
OS must also support the Multibus II Transport Protocol Specification.

System Concepts Chapter 6 75

Why Use a Port?
These are the advantages of using ports:

Variable message size
Each message passed to a port may be a different size, from a few bytes
in a control message, to include data messages of many Megabytes.
Storage is allocated per message, and the message size does not have to
be pre-determined.

Linking request to response
A client task sending a message can specify a response buffer so it can
receive a response tied specifically to the request. This corresponds to
the client-server model of task interactions used by the Nucleus.

Providing current status
Each message that a task receives includes status information about
whether an exceptional condition prevented successful transmission (for
example, a Multibus II transmission error, or insufficient buffer space at
the server). Transaction IDs bind status messages to data message
transmissions.

Short-circuit message passing
This feature can be used where messages are passed from task to task
on the same host. The message is copied directly from the sending task
to the receive buffer of the receiving task. Because the interface is
gerneally the same for communicating on the same processor or
between processors, applications that use ports can migrate from a
single host to a system with multiple hosts.

Using Heaps and Buffer Pools at Ports
Most incoming messages to a server require that you create a heap or buffer pool and
attach it to the port. When a message arrives at a port, a buffer is automatically
allocated from the attached object to receive the data. The receiving task can access
this buffer directly, and return it to the pool or heap when it has finished with the
message.

In the case of a buffer pool, depending on the message size and the buffer pool, an
incoming message may be copied into a single buffer or into a series of buffers called
a data chain. The Nucleus gives the receiving task a pointer either to a single buffer
or to a data chain block that holds pointers to all buffers in the chain.

A heap or buffer pool can be attached and detached during the existence of the port.

See also: Buffer pools and heaps, in this manual

76 Chapter 6 Ports

Creating a Port
These are the parameters you specify when you use the create_port system call.

• The name of the service to be used.

• The port's ID. In general some of the port IDs are reserved by the service.
The Nucleus can assign the port ID for you if you specify a special null
value (usually zero). You can create a port with no ID, called an unbound
port.

• The number of simultaneous transactions allowed at this port.

• Whether the task queue is FIFO or priority based.

• Whether fragmentation is enabled or disabled.

• Whether the port is to have an ID assigned to it (in other words, whether the
port is to be bound).

Fragments in Large Data Messages
When a message is delivered, the receiving port must supply storage. Whether the
data is transmitted in one piece depends on the buffering capacity of the port.

The Nucleus can break up the data portion of messages that are too large to be
delivered in one piece into smaller pieces, if the service supports fragmentation, and
the port has enabled this feature. The Nucleus Communication Service (NCS) will
send the message in fragments when the receiving buffers are too small to receive the
entire message. Each of the fragments specifies the same transaction ID.

The NCS on the server delivers a single reply to the client task. The client task
receives a condition code only if fragmentation fails.

The NCS expects that the server in a client-server transaction will control
fragmentation whether it occurred in a request from a client or a response to a client.

If fragmentation is disabled, the sending task will receive a condition code when
there is not enough buffer space at the receiving end.

Deleting a Port
When you delete a port using delete_port, the Nucleus deletes all messages queued
at the port and cancels all outstanding transactions for the port. The Nucleus deletes
message buffers allocated from the port's buffer pool and awakens any task waiting
for a message at the port with an E_EXIST condition code. If you delete a sink port
(described later) that is attached to one or more ordinary ports, the Nucleus detaches
them.

System Concepts Chapter 6 77

Identifying a Port
In a multiprocessor system, each port must be uniquely identified. The paragraphs
below describe the ways a port is identified.

Identifier How It Is Used
genaddr A genaddr (general address) is a structure which combines the port ID with

the service interface address (defined by the service). This uniquely defines
a port across all the hosts accessed by the service. For example a port at an
Ethernet service will have a port ID and the 48-bit MAC address defined by
the Ethernet specification.
An address is defined as follows:

DECLARE GENADDR STRUCTURE (

port_id WORD_16,

address_len BYTE,

unused BYTE,

address BYTE(*));

or in C,

typedef struct genaddr {

unsigned short port_id;

unsigned char address_len;

unsigned char unused;

unsigned char address[];

} GENADDR;

Socket (NCS only) A socket is a 32-bit number that combines the host ID and port
ID. It is special to the Nucleus Communication Service and is retained for
legacy reasons.

These lines of code define a socket:

DECLARE SOCKET STRUCTURE(

host_id WORD_16,

port_id WORD_16);

or in C,

typedef struct socket_struct {

unsigned short host_id;

unsigned short port_id;

} SOCKET_STRUCT;

78 Chapter 6 Ports

Port ID The port ID identifies the port among all those on a given processor board
in a given service. In a multiprocessor system, more than one port can have
the same port ID as long as the ports reside on separate processor boards.
Any board that supports the Multibus II Transport Protocol will specify
port IDs for its ports, whether running the iRMX OS or another OS. This
lets boards communicate with each other regardless of the OS being used.

Host ID The host ID is a logical address for the host, a number in the range 1 to 254
that uniquely identifies the host. It is a 16-bit value, usually equal to the
slot number in a Multibus II backplane.

Address len Defines the number of bytes in the address which are valid. Usually fixed
for a given service. Adresses of up to 28 bytes are supported by iRMX.

Address An array of bytes defining the interface address for a given service.
Token The token is specific to the iRMX OS. iRMX tasks use the token to catalog

the port in the object directory, attach the port to a sink port, or delete the
port.

See also: Multibus II Transport Protocol Specification and Designer's Guide

Sending Data Messages
These messages follow the mailbox model. The client uses the send call to send the
message. The server uses the receive call to receive the data at its port. The client
does not expect a response; the server doesn't send one.

Using send
Use send to send data from a client to a server without expecting a reply. You must
specify a valid pointer to some control information, even if your application doesn't
use the information. You can optionally provide a pointer and a length for a data
component. If you do, specify if the data component can be in a single segment or in
a data chain.

You can specify that the message transmission be synchronous or asynchronous: if
synchronous, send does not return until the message has been sent; if asynchronous,
the system call returns immediately, letting the task continue processing while the
message is being sent. A status message will be delivered to the port later if the
transmission fails. Optionally a service will send a status message on the completion
of every asynchromous transmission.

System Concepts Chapter 6 79

Using receive
Use receive for servers to receive messages from clients. Receive requires that you
have created a buffer pool using create_buffer_pool, released buffers (segments you
have created) to it using release_buffer, and have attached it using
attach_buffer_pool. Receive returns a pointer to the data component of the message
if there is a data component.

You must identify the receiving port. You must specify how long the task will wait
for the message at the port. The calling task goes to sleep by waiting for a message at
a port. If no message arrives before the specified time limit expires, the task will
awaken with an E_TIME condition code.

You must supply a pointer to a structure that receive fills with information about the
transmission.

80 Chapter 6 Ports

Sending Request / Response Messages
Transaction pairs provide a client-server communication model. Clients send request
messages to servers and servers send responses back. This model includes the ability
to:

• Use either a control or control/data format for messages

• Identify message pairs as transactions

Control and Control / Data Format
The iRMX implementation of the Multibus II Transport Protocol Specification
defines two kinds of message format: control and control/data.

Control
message

A short, unsolicited message conveying control information; you do
not have to create a buffer pool in the receiving task prior to sending a
control message. The control message can contain application-
specific control information. Control messages are delivered faster
than control/data messages.

Control/data
message

A message with a control portion and a data portion. Usually, you
have to create a buffer pool in the receiving task prior to sending a
control/data message (the exception is a client receiving a response
from a server).

System Concepts Chapter 6 81

Although control and data portions are combined when sent in a control/data message
transaction, they are stored differently at the receiving port.

• The receiving port's message queue provides storage for the control portions of
incoming messages.

• The receiving port stores data portions of a message differently depending on
whether they are part of a client request or of a server response.

– For request messages, the Nucleus allocates storage from a buffer pool you
attach to the server's receiving port. The Nucleus rejects data portions sent
to a port without a pool or with insufficient pool resources.

– For response messages from servers to clients, the data portions are
delivered to a specific response buffer supplied by the client task; the
response buffer cannot be a data chain.

Transaction Pairs
The Nucleus uses transaction ID numbers to match responses to requests.

The request is delivered to the server's port, where the control portion of the message
is copied into a control message queue, and the data is transferred into space
allocated from the buffer pool you created. The server acts on the request and
prepares a response that may include control and data information. The NCS uses the
response buffer supplied by the client as the destination for the data portion of the
response message.

The client supplies a pointer to a response buffer if it expects a data message in
response. The client task allocates response buffer space based on memory in the
client task's job; the response buffer is not allocated from the client port's buffer pool.

82 Chapter 6 Ports

Basic Request / Response Transactions
The client sends a control/data message that tells the server to perform a service on
the data (for example, write it out to disk). The data component in this example is
1 Kbyte long. All buffers in the example are 1 Kbyte. Figure 6-1 shows this
transaction.

OM02864

➁

➀

C S SC

1. The client Task C calls the send_rsvp system call. Then the client calls receive_reply

and goes to sleep by waiting for the response.

The server Task S has previously called receive and is waiting for the message. The

message goes through Port C and arrives at the server's port, Port S. Because the

receive buffer in the port's buffer pool is large enough, the message is delivered. The

server Task S receives the message and begins processing the data. The server also

receives a transaction ID that the Nucleus uses to match the server's response to this

request.

2. When it is done processing, Task S calls send_reply to send a reply to the client; the

server includes the transaction ID supplied in the original request. Task C receives the

reply in its response buffer and, having previously called receive_reply, wakes up; the

transaction is complete.

Figure 6-1. Basic Request / Response Using Ports

System Concepts Chapter 6 83

Fragmented Response Transactions
Figure 6-2 shows a fragmented response. Three buffers in the example are 1 Kbyte;
the request is for 3 Kbytes and the response buffer is 3 Kbytes.

OM02877

➀
AA

➁

➂
➃

BB

1. The client Task A uses send_rsvp to send a request to read 3 Kbytes from a disk to the

server, Task B. Task A passes a pointer to a 3 Kbyte response buffer so it can receive the

entire response in one block. The client calls receive_reply and goes to sleep by waiting

for the response.

2. The server, Task B, receives the request message, having previously called receive, and

initiates the service.

3. This server has a 1 Kbyte buffer limit, so the server cannot send the entire 3 Kbyte

response message in one operation. The server fragments the response message,

repeatedly calling the send_reply system call with 1 Kbyte fragments until the entire

message is sent.

Send_reply parameters include an EOT (end-of-transaction) indicator. As long as the

server is sending fragments, it sets the EOT field to FALSE so the transaction remains

open. When it sends the last fragment, the server sets EOT to TRUE.

4. Only the control part of the last fragment, EOT=TRUE, is sent to the receiver.

At that point, the client, Task A, will awaken from the receive_reply system call with

3 Kbytes of data in the response buffer, and the transaction ends.

Figure 6-2. Fragmented Response Using Ports

84 Chapter 6 Ports

Fragmented Request Transactions
In Figure 6-3, the client sends a control/data message to the server that includes
3 Kbytes of data. This server can receive data only in 1 Kbyte blocks, so the message
must be fragmented before it can be received. The client will not be aware that this
transmission was fragmented.

OM02878

➀
A

A ➁

➂

➃

B

➄

B

1. The client, Task A, calls the send_rsvp system call. The client calls receive_reply and

goes to sleep by waiting for the response.

2. When the server, Task B, tries to receive the incoming data message using receive, it will

receive an E_NO_LOCAL_BUFFER status message. The message includes the length of

the data message.

3. A loop in the server task calls the receive_fragment system call three times to receive the

3 Kbyte data message in 1 Kbyte fragments.

4. When the server has called receive_fragment often enough to receive the entire

message, it calls send_reply to send a response to the client. The transaction ID matches

the response to the request.

5. The client, Task A, awakens from the receive_reply system call and the transaction ends.

Figure 6-3. Fragmented Request, Example

Using send_rsvp

Use send_rsvp for a client to send a request to a server, expecting a response. You
must identify the receiving port. You must specify a valid pointer to some control
information; you can optionally provide a pointer and a length for a data component.
If you do, specify if the data component can be in a single segment or in a data chain.

You must specify whether to use the receive or receive_reply system call for
receiving the response from the server. Use receive when a client task initiates
multiple transactions from a task; you might also have a separate task use receive to
pick up the responses.

System Concepts Chapter 6 85

Specify the size of the client's response buffer and a pointer to it. The response
buffer cannot be a data chain; it must be a contiguous block.

Specify whether to use synchronous or asynchronous transmission. If you specify
synchronous when you call send_rsvp, the client task will wait until all the fragments
have been received. Otherwise, the client will go on with other processing.

Using receive_fragment

Use receive_fragment for servers to receive messages from clients when insufficient
buffer space is available to receive a message in one piece. If the receive status code
is E_NO_LOCAL_BUFFER, you need to code a loop that makes calls to
receive_fragment to receive fragments.

The info_ptr structure of the receive call will contain the length of the data
message received, the transaction ID, and the sending socket. When you use
receive_fragment, you specify the size of fragments according to the how the
server's buffer pool is set up. You are responsible for determining how many times
to call receive_fragment, based on the size of the message and the size of the buffers
available for receiving the fragments.

Using send_reply

Use send_reply for a server to send a response to a client. The message goes to the
response buffer supplied by the client, not its heap or buffer pool.

You must supply the transaction ID; this is the trans_id parameter in the
send_rsvp system being answered.

You must identify the receiving port. You must specify a valid pointer to some
control information; you can optionally provide a pointer and a length for a data
component. If you do, specify whether the data component can be in a single
segment or in a data chain.

You must specify whether the transmission is synchronous or asynchronous. If the
reply is fragmented, you must specify whether this is the last fragment.

86 Chapter 6 Ports

Using receive_reply

Receive_reply enables a client to wait for a response from a server. The data
component is received in the response buffer originally specified in the send_rsvp
call.

You must supply the same port_token and rsvp_trans_id parameters you used
in the send_rsvp call. You must also specify how long the client task will wait for
the message at the port. The client task goes to sleep by waiting for a message at a
port. If no message becomes available before the specified time limit expires, the
task will awaken with an E_TIME condition code.

Using broadcast

This call is commonly used by Multibus II hosts to broadcast status information
system-wide to dedicated ports with the same port ID on each host in a system. You
can dedicate a task on each host to wait for messages at the agreed-upon port.

You can also use this call to locate servers in the system. The clients can send a
broadcast message to the server port ID. The server sends a message back to the
sender, and the client obtains the server's host ID from the message.

In general, indicate to a service that you want to broadcast by setting the
BROADCAST flag in the rqe_send call. The broadcast call is specific to the Nucleus
Communication Service.

Using cancel

You can cancel send or send_reply control/data messages, but not control-only
messages. You can also cancel a send_rsvp message, which disassociates the
response buffer from the source port. You specify the transaction ID and the port ID
for the operation to be canceled. Cancel is a local operation only, affecting only the
specified port. It does not notify the remote socket involved in the transaction.

System Concepts Chapter 6 87

Setting Up Special Ports
This section describes attaching and detaching a sink port to ordinary ports and
connecting a port to a default remote socket.

Forwarding Messages from Sink Ports
Message forwarding allows messages from several connected ports to be received by
a single task waiting at a sink port. Sink ports help avoid duplication of code in
several tasks. All messages come to the sink port, which forwards them to the
appropriate task. The sink port must be on the same host as the receiving task. The
sink port must be of the same service as all of its forwarding ports, or it must be an
anonymous sync port, created by specifying a null service name in rqe_create_port.

The example in Figure 6-4 is an I/O Server that receives messages at two different
sockets and accesses a single hard disk to fill the requests. The example illustrates
using only ordinary ports (on the left) and using a sink port (on the right).

➀

BA

A B

OM02876

S

C D

E

➁

1. Ports A and B receive a request and passes data to the receiving Tasks A and B. A and B

both write data to disk, so there is duplication of code.

2. Ports C and D are forwarded to a single sink port. The sink port determines which of the

ports forwarded the message to it (so it can send a reply) and sends the data to Task E.

Task E handles requests from both ports C and D.

Figure 6-4. Forwarding Messages Using Ports

88 Chapter 6 Ports

Using attach_port and detach_port

The attach_port system call enables you to attach ordinary ports to a sink port. An
ordinary port can be attached only to one sink port.

After you attach a port to a sink port, all subsequent messages to the ordinary port are
forwarded to the sink port. Messages that were queued at the ordinary port at the
time of the attachment remain queued at the ordinary port and are not forwarded, so
you must ensure that the queue is empty before attaching the sink port. A task that
was queued to receive a message at an ordinary port with an empty message queue
will remain in the task queue until it times out or until the sink port is detached and a
message arrives at the ordinary port.

Only a single level of forwarding is supported; a sink port may not be attached to
another sink port.

When you detach a sink port using detach_port, subsequent messages to the ordinary
port will not be forwarded to the sink port. Messages previously forwarded to the
sink port remain queued at the sink port until they are removed with a receive
operation or the port is deleted.

Using connect

You can use connect to connect a port on the host to a default remote address, which
you specify, so that messages sent from the host port are automatically routed to that
particular address on the remote host. While the connection exists, the port on the
client can only receive messages from the specified socket. The connection is active
when you specify a default remote socket with the connect system call

To disconnect the default remote socket, specify a 0 for the default remote socket
with the connect system call. Once disconnected, the port remains disconnected until
specifically connected again. A port can be connected to a remote socket more than
once, with the most recent connection overriding all previous connections.

System Concepts Chapter 6 89

Port System Calls
Operations on ports fall into two broad categories: setup and message passing.

These are the system calls that relate directly to ports.

Setup calls create_port
delete_port
connect
attach_port
detach_port
get_port_attributes

Message-
passing calls

send
send_rsvp
send_reply
receive
receive_reply
receive_fragment
cancel

Table 6-1 describes operations on a port and what the related system calls are.

Table 6-1. Port System Calls

Operation Description

create port Create_port creates a new port and returns a token for the port.

delete port Delete_port deletes the port.

connect port Connect connects a specified port with a specified socket.

attach sink Attach_port attaches a specified port to a specified sink port.

detach sink Detach_port detaches the specified port from its sink port.

get port
attributes

Get_port_attributes fills in a data structure containing the
specified port's attributes. Supply a pointer to a port_attrib
structure.

send, no
reply

Send sends a message and returns a transaction ID.

receive Receive receives a message at a specified port.

receive
message
in fragments

Receive_fragment receives a fragment of a request message. It
is typically used by a server when insufficient buffer space is
available to receive a message in one piece.

continued

90 Chapter 6 Ports

Table 6-1. Port System Calls (continued)

Operation Description

send, expect
reply

Send_rsvp sends a message from a client to a server with an
implied request for a response from the server.

send
response

Send_reply sends a reply from a server to a client in response to
an earlier send_rsvp message.

receive
response

Receive_reply call receives a reply to an earlier send_rsvp
message.

broadcast a
message

Broadcast sends a message from a specified port to a specified
socket on every host processor in the system. Broadcast
ignores the host ID, so the call effectively sends a message to the
specified port ID on every host.

cancel
message

Cancel cancels synchronous or asynchronous send_rsvp
messages.

See also: Nucleus system calls, System Call Reference;
examples in the /rmx386/demo/c/intro directory

System Concepts Chapter 6 91

How to Use Port System Calls
Figure 6-5 shows the order in which you make port system calls.

create_port
catalog_object

➀

➅

OM02879

send
send_rsvp
broadcast
cancel
receive_reply

➃

uncatalog_object
delete_port

connect

➁

attach_port
detach_port

➂

get_port_attributes
receive
receive_reply
receive_fragment
send_reply

➄

1. Make these calls from the client or sending task.

2. Make this call from the client or sending task to connect to a default remote socket.

3. Make these calls to attach an ordinary port to a sink port. The sink port and ordinary ports

must reside on the same host.

4. Make these calls from the client or sending task.

5. Make these calls from the receiving or server task.

6. Make these calls from the task that created the port.

Figure 6-5. Port System Call Order

■■ ■■ ■■

92 Chapter 6 Ports

System Concepts Chapter 7 93

Memory Pools, Memory
Segments, Heaps, and Buffer Pools

Tasks satisfy their memory needs by using Nucleus system calls to allocate and
deallocate memory. Memory includes:

• Memory pools, which control memory allocation and management in the iRMX
OS. Memory pools are maintained by the Nucleus.

• Memory segments, which are the fundamental building blocks of the OS; they
are maintained by your application.

• Buffer pools, which provide a way to allocate a set of segments so they will be
available quickly and dependably during time-sensitive operations; after you
create them, buffer pools are maintained by the Nucleus.

Flat Memory Models
The flat memory model is a 32-bit memory model where an application runs entirely
in a single segment. Memory management differs between flat memory model
applications and 32-bit segmented memory models. This chapter focuses on the 32-
bit segmented memory model.

See also: Using the Flat Memory Model, Programming Techniques for
information on the flat memory model, the paging subsystem that
supports this model, and the system calls used in managing memory.

What is a Memory Pool?
The iRMX OS allocates a contiguous block of memory to a job from free space
memory; you specify the minimum and maximum size. Each job has one memory
pool, which is the source of memory for objects created within the job. When you
create the job, the Nucleus creates a minimum size memory pool by allocating
memory from the parent memory pool. There is a tree-structured hierarchy of
memory pools, identical in structure to the hierarchy of jobs.

Memory that a job subsequently borrows from its parent remains in the pool of the
parent but is temporarily allocated to the child. Until the child job releases the
borrowed memory, it is only available to tasks in the child job, not to tasks in the
parent job.

7

94 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

A memory pool for a job does not have a token. You cannot refer to a memory pool
explicitly or manipulate it like an object.

Creating a Memory Pool
You create a memory pool when you use the rqe_create_job call to create a job.
Two parameters of the rqe_create_job system call, pool_min and pool_max, set
the size range. The upper limit of both pool_min and pool_max is 4 Gbytes. The
job begins with the specified minimum amount of memory, and it can borrow
memory from the parent memory pool up to the specified maximum size. You delete
a memory pool by deleting the job.

Initially, a job's memory pool is a physically contiguous block equal to the specified
pool minimum. If the job borrows memory from its parent job, the borrowed
memory is also a contiguous memory block, but not contiguous to the initial memory
pool. The maximum amount of memory that a job may borrow is equal to pool_max
- pool_min. It is possible that a memory request in a pool can fail even if the pool has
not reached its specified maximum limit.

Figure 7-1 shows two jobs that have been allocated from the same parent memory
pool.

OM02865

maximum

maximum

minimum

➀

minimum

➁

P

P is the parent pool. Its size is 512 K.

1. Job 1 has a minimum of 200 K and a maximum of 300 K.

2. Job 2 has a minimum of 200 K and a maximum of 350 K.

Since the total minimum size for the jobs is 400 K, both jobs can be created. Since the total

maximum size is 650 K, the pools will not be able to reach their maximum sizes simultaneously.

Figure 7-1. Consequences of Minimum-Maximum Memory Pool Values

System Concepts Chapter 7 95

Allocating Memory
Memory in a job is unallocated unless it has been requested by tasks in the job or is
on loan to a child job. A request for memory is explicit when you call the
create_segment system call and implicit when you create any other object.

The amount of memory actually allocated to objects is between 18 and 33 bytes
longer than the specified size. These extra bytes are for internal use by the Nucleus.
However, each returned selector points to the first address available to the task.

Borrowing Memory
When you try to create a segment or other object, and the unallocated part of the job's
pool is too small to satisfy the request, the Nucleus tries to borrow more memory, up
to the pool's specified maximum, from the job's parent and on up the job hierarchy if
necessary. Figure 7-2 illustrates borrowing memory.

OM02866

Allocated memory

P

➀
A

➁

Unallocated memory

C

1. Task A creates a segment object using create_segment. The memory is available from

Job C. When Task A no longer needs this segment, it should delete it using

delete_segment. The memory returns to Job C's pool.

2. Task A creates another segment. This time, the memory is not available in Job C's pool,

so it is borrowed from the parent job's pool, P. When Task A no longer needs this

segment, it should delete it using delete_segment. The memory returns to pool P.

When Job C is deleted, the memory in its pool becomes unallocated, and it is available to the

parent job.

Figure 7-2. Borrowing Memory From the Parent Job

96 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

Borrowing increases the pool size of the job that is doing the borrowing and is
restricted to the job's maximum. If a job has equal pool minimum and maximum
attributes, its pool is fixed at that common value, and the job cannot borrow memory
from its parent.

Using rqe_get_pool_attrib

You can determine the source pool for a job by getting the attributes of the job's
memory pool using rqe_get_pool_attrib. Supply a pointer to the attrib_ptr data
structure when calling rqe_get_pool_attrib, and the system call fills in the fields of
the structure with the pool's attributes.

Pool attributes include: minimum and maximum allowable pool size, initial pool
minimum size, number of allocated paragraphs of memory, number of available
paragraphs (not including memory that could be borrowed from the parent job), the
parent job token, and the amount of memory borrowed.

System Concepts Chapter 7 97

What is a Memory Segment?
A memory segment is a contiguous sequence of bytes, ranging in size from 1 byte to
4 Gbytes.

There are no restrictions on what you can use memory segments for; you can create
segments to hold data of whatever size and internal structure you need. The Nucleus
itself creates segments in response to a wide range of system calls; all the iRMX
objects are constructed from segments.

Creating a Segment
The only parameter you specify in the create_segment system call is the size of the
new segment. If enough memory is available, the Nucleus returns a token for the
segment.

A segment's physical starting address is on a 16-byte (paragraph) boundary. The
Nucleus assigns each segment a slot in the Global Descriptor Table (GDT). That
GDT slot multiplied by 8 serves as the segment token.

You can use the segment token when you use send_message to send a message, for
example. You can also use the token for a segment as the selector portion of a
pointer to the segment when placing data into the segment. The SELECTOR data
type is especially useful in referring to the segment.

You can use the rqe_change_object_access call to change data segments to read-
only and read/write for data segments or execute-only or execute/read. You can use
get_size to get a segment's size in bytes.

See also: Data types, Nucleus examples, System Call Reference

Boundary Alignment

In a Multibus II system, solicited messages pass across the system bus more
efficiently if buffers are aligned on a 4 byte boundary. Both the base address of the
segment and its length are multiples of four. The create_segment system call
automatically creates buffers that adhere to this convention. Because of the 4 byte
boundary, Direct Memory Access (DMA) can be done in one cycle (fly-by mode), in
which the DMA controller directly transfers data between the Message Passing
Coprocessor (MPC) and memory. The Nucleus Communication Subsystem (NCS)
supports one-cycle transfers for aligned buffers.

See also: MCO, MCT, and MDC parameters on the MBII screen, ICU User's
Guide and Quick Reference

98 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

If the buffer is not aligned on a 4 byte boundary, each DMA operation requires two
cycles: one to place the information in the DMA controller's buffer and another to
move it to the desired destination.

For example, on an SBC 486/125 or 486/150 board, solicited data can be transferred
at 13.3 Mbytes per second using one-cycle transfers; using two-cycle transfers, the
rate is 4 Mbytes per second. On SBC 386/133, 486/125, or 486/133SE or MIX
n86/020A, 486SX33, 486DX33, or 486DX66 boards, alignment on a 16-byte
boundary and length allows even faster DMA burst mode. For example, on an SBC
486/125 or 486/150 board, solicited data can be transferred at 20 Mbytes per second
using burst mode. The NCS picks the fastest mode possible.

Deleting a Segment
You delete a segment using delete_segment; any task that knows the segment's token
can make the call.

Access Rights and Hardware Types
When the microprocessor is operating in protected mode, a segment's access bytes
define the way the segment can be used by instructions in other segments.

When you create an object, its corresponding segment is assigned a read/write access
type. Before the OS performs any operation, the processor checks the access type. If
you have entered the wrong access type, the processor causes a hardware exception.

You can check an object's type using rqe_get_object_access. Provide a pointer to
the access_ptr data structure and the system call fills in the results.

You can change an object's access type for segment objects, descriptor objects, or
composite objects using rqe_change_object_access. Access rights for all other
objects cannot be changed. This system call uses the access byte format provided by
the microprocessor for both code and data segment descriptors.

See also: rqe_get_object_access and rqe_change_object_access, System Call
Reference;
the user's manual for your microprocessor

▲▲! CAUTION
Do not change bits in a token. This can cause a hardware
exception.

System Concepts Chapter 7 99

Heap Management
The iRMX III OS includes a memory object called a heap. The interfaces described
in the following subsections provide the object management interface for heap
objects.

A heap is created, then buffers may be requested from and subsequently released to
the heap. Finally, the heap is deleted, which also deletes the underlying segment.
Two additional interfaces are provided: one finds the size of a buffer allocated from a
heap given the heap token and the buffer pointer, and one interrogates the heap object
to determine how much of its resources have been used.

When buffers are requested (allocated) from the heap, a full pointer is returned and
the base (segment) of the pointer is used to validate the buffer when it is returned to
the heap. If a flat-model application creates a heap, that heap’s segment is mapped
into the job’s virtual segment.

No reference is returned to the user, because no direct access of the segment is
intended. When buffers are allocated from the segment, the interface library must
adjust the buffer offset according to the task’s mapping of the heap segment so that a
valid pointer is returned to the caller. If a heap token is used by a flat-model job
which did not create it, the heap object must be mapped into the new job’s virtual
segment and an internal reference of this mapping be kept by the object. This has two
purposes:

• To allow a buffer allocated to a task in the new job to be mapped correctly, and

• If the heap object is deleted, the mappings may be deleted from each job's virtual
segment.

What is a Buffer Pool?
A buffer pool manages a preallocated set of segments that you can allocate
dynamically so they will be available quickly and dependably during time-sensitive
operations. The Nucleus maintains the buffer pool, and your application maintains
the segments that it holds. You reference a buffer pool with its token.

The pool can maintain eight different sizes of segments. The buffer pool maintains a
linked list of buffers for each size of segment; all segments in a given list have the
same size. Each linked list can contain as many segments as you need.

After you create and fill a buffer pool, you just specify a token to identify the pool
and how much memory you need. The Nucleus automatically takes care of the rest.

Figure 7-3 shows a buffer pool and its associated buffers.

100 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

OM02880

➀ ➁

➂

1. This area is the linked list for each of eight segment sizes. Each linked list can have as

many buffers as you need.

2. This area holds the buffers. The individual buffers are segments with read and write

access enabled.

3. During its existence, a pool gives buffers to tasks when they call request_buffer. When

the pool delivers a buffer to a requesting task, the buffer is removed from the list of

available buffers. The task releases the buffer back to the pool using release_buffer.

Figure 7-3. Buffer Pool with Associated Buffers

Creating and Initializing a Buffer Pool
These are the parameters you specify when you use the create_buffer_pool system
call to create the buffer pool.

• The maximum number of buffers that can exist at one time in the buffer pool

• Whether data chains are supported, or only contiguous buffers

A newly created pool is an object with a set of attributes that defines its capabilities.
Buffer pools incur a certain amount of system overhead in their creation. This
formula defines the amount of resources required.

(Max Buffers * 4) + 108 bytes = memory used by a buffer pool

Buffers are not allocated for a buffer pool at creation. You must allocate a set of
segments for the buffer pool. Create the segments using the create_segment system
call. You can create as many segments as you need in up to eight different sizes.

System Concepts Chapter 7 101

Then, you place the segments in the buffer pool using release_buffer. This process
is called initializing the buffer pool. Do it early in your program rather than in the
middle of real-time operation. Do not release segments created in different jobs to
the buffer pool.

Using Data Chains

✏ Note
You can use data chains only in the iRMX III OS. The
configuration of DOSRMX and iRMX for PCs does not allow the
use of data chains.

If you enable data chaining, a message may be copied into a data chain instead of a
single buffer, depending on its size. The NCS strings small buffers together to fill a
large request made in request_buffer. If the pool constructs a data chain, it returns a
selector to a data chain block that holds pointers to the segments that make up the
chain. The buffer pool also returns the E_DATA_CHAIN condition code to
request_buffer so the requesting task will know it has received a chain block.

The amount of data in the message determines the number of buffers used. When a
data chain is created, the required number of buffers are removed from the buffer
pool and made into the chain. One additional buffer is taken from the buffer pool and
used as the chain block, which contains a list of all the buffers in the chain.

102 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

Figure 7-4 on page 102 shows the structure of a chain block.

OM02886

Buffer
segment

Buffer
segment

Buffer
segment

0

1

n

Buffer pointer

Reserved byte

Byte count = 0

Byte count

Byte count

Buffer pointer

Buffer pointer

Reserved byte

Reserved byte

Byte count

The buffer pointer is a selector:offset pair with 16-bit offset (not 32-bit). To use as a pointer in

PL/M-386, use this: buf$p = build$ptr(chain(n).base, chain(n).off)

The byte count data type is WORD_16; each component buffer cannot exceed 64 Kbytes in

length.

Byte count = 0 is the chain terminator.

Figure 7-4. Structure of a Chain Block

The minimum buffer size for data chains is 1Kbyte in length, and you must request at
least one buffer to enable the system to build the data chain block.

• The minimum data chain block size is (max_elements*8) + 2 BYTES.

• The maximum number of elements is a configuration option. At least one 1026
byte buffer will be available in the buffer pool for chain allocation.

See also: MCE parameter on the NUC screen, ICU User's Guide
and Quick Reference

✏ Note
Data chains are not supported as message passing buffers on the
SBC 486DX33 and SBC 486SX25 boards.

System Concepts Chapter 7 103

Using attach_buffer_pool

If you have created the buffer pool to use with a port, you have to attach it to the port
with the attach_buffer_pool system call. When the NCS delivers a message to the
port, it will automatically store data messages coming to the port in buffers from the
pool. The NCS requests buffers at the same time it receives a buffer request. The
NCS grants the request, using buffers from the attached pool. The buffer or buffers
are then passed to the task that receives the message. Even if the buffer pool is
attached to a port, you can still use the buffer pool token to perform operations on the
buffer pool.

Figure 7-5 shows the relationship of a buffer pool and an attached port. It also shows
how a pointer to a buffer is passed to a task receiving a message at the port.

OM02881

➀
AA

➁

➂
M

B B

1. Task A sends a message through port A to port B.

2. The NCS requests a buffer from the pool attached to port B and places the message

directly into the buffer. A pointer M to the message buffer is placed into the message

queue of the port.

3. Task B receives the pointer to the message buffer and accesses it. Task B should release

the buffer back to the pool when finished with the message.

Figure 7-5. Relationship of Buffer Pool and Port

Using detach_buffer_pool

This call does not delete the buffer pool, it only removes the association to the port.
If no buffer pool is attached, the E_STATE condition code returns.

Using request_buffer

You can use request_buffer when you need a buffer from a pool for any purpose.
The NCS calls request_buffer when it needs space to store an incoming data
message at a port.

The pool returns a pointer to the smallest buffer that fills the request; the buffer may
be equal to or larger than the requested size.

104 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

If no single buffer is large enough to fill the request, and data chaining is enabled, the
NCS attempts to create a data chain and returns a pointer to the data chain block
along with the E_DATA_CHAIN condition code.

Using release_buffer

Use release_buffer to return the buffer back to the pool when the task is done with
the information in the message. Otherwise the buffer is not available to the pool.

Release_buffer adds the segment to one of the lists of buffers in the pool. If the size
of the segment is different from any of the sizes currently maintained by the pool, the
pool creates a new list for segments of that size. Up to eight lists are supported.

If you are releasing a chain block, a single call to release_buffer releases all data
chain buffers to the pool, including the data chain block buffer. Use the flags
parameter to indicate whether the segment is a single buffer or a data chain block.

Deleting a Buffer Pool
You cannot delete a buffer pool using delete_buffer_pool while it is attached to a
port; you must first detach it using detach_buffer_pool. A task attempting to delete
an attached pool will receive an E_STATE condition code.

System Concepts Chapter 7 105

Memory Management System Calls
These are the system calls that relate directly to memory management.

Memory pool call

Segment calls

rqe_get_pool_attrib

create_segment
delete_segment
get_size
rqe_get_object_access
rqe_change_object_access
rqe_get_address

Buffer pool calls create_buffer_pool
delete_buffer_pool
request_buffer
release_buffer
attach_buffer_pool
detach_buffer_pool

Heap management calls create_heap
delete_heap
rqe_request_buffer
rqe_release_buffer
get_heap_info
get_buffer_size

These are the rules for buffer pools:

• You can attach a buffer pool to more than one port.

• You cannot attach a port to more than one buffer pool.

• A port must be in the same job as the attached buffer pool.

106 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

Table 7-1 lists the operations used to manage memory segments and buffer pools and
the system calls that do the operations.

Table 7-1. Memory Management System Calls

Operation Description

get pool
attributes

Rqe_get_pool_attrib gets information about pool status or use of
its job's memory pool or another job's memory pool.

create
segment

Create_segment creates a segment and returns a selector to a
new segment.

delete
segment

Delete_segment deletes a segment and returns the memory to
the job's memory pool from which it was allocated.

get size Get_size returns the size of a segment in bytes.

change
access rights

Rqe_change_object_access changes the access rights of the
segment.

check
access rights

Rqe_get_object_access returns an object's access rights.

get physical
address

Rqe_get_address converts an object's logical address into its
physical address, which may be needed for device drivers or for
creating aliases.

create
buffer pool

Create_buffer_pool creates a buffer pool and returns a token for
the pool.

delete
buffer pool

Delete_buffer_pool accepts a token for a buffer pool and deletes
the pool and any buffer segments it contains.

request
buffer

Request_buffer gets a buffer from a pool that has been created
using the create_buffer_pool system call.

release
buffer

Release_buffer adds a segment to one of the lists of buffers in
the pool, either to initially fill the buffer pool or to return a segment
to the buffer pool.

attach buffer
pool to port

Attach_buffer_pool accepts a token for a buffer pool and a token
for a port and associates the buffer pool with the port.

detach
buffer pool

Detach_buffer_pool accepts a token for a port and detaches the
buffer pool that is currently attached.

create
heap

Create_heap creates a heap and returns a token for the heap.

delete
heap

Delete_heap accepts a token for a heap and deletes the heap.

rqe request
buffer

Rqe_request_buffer gets a buffer from a heap that has been
created using the create_heap system call, or from a pool that
has been created using the create_buffer_pool system call.

System Concepts Chapter 7 107

rqe release
buffer

Rqe_release_buffer returns a preciously allocated buffer space to
the specified buffer pool or heap.

get heap
info

Get_heap_info returns a structure containing information about a
heap object.

Get buffer
size

Get_buffer_size returns the size of a buffer previously allocated
from a heap

See also: Nucleus system calls, System Call Reference

108 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

How to Use Memory Management System Calls
Figure 7-6 shows the order in which you make memory segment system calls.

➀

OM02883

get_size

➁

delete_segment

➃

create_segment

➂

rqe_get_object_access
rqe_change_object_access
rqe_get_address

1. Make this call from the task that needs a memory segment.

2. Make this call from any task that needs to know the size of the segment.

3. Make these calls if you need to change the segment's access rights.

4. Make this call from any task that knows the segment's token.

Figure 7-6. Segment System Calls

System Concepts Chapter 7 109

Figure 7-7 shows the order in which you make buffer pool system calls.

create_buffer_pool

➀

➄
OM02882

create_segment
release_buffer

➁

attach_buffer_pool

➂

detach_buffer_pool
delete_buffer_pool

➃

request_buffer
release_buffer

1. Make this call from the task that needs a buffer pool.

2. These calls fill the buffer pool with buffers. Make these calls from the task that created the

buffer pool.

3. Make this call if the creating task has a port that needs a buffer pool.

4. Make these calls from the creating task.

5. Make this call from the task that created the buffer pool.

Figure 7-7. Buffer Pool System Calls

■■ ■■ ■■

110 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

System Concepts Chapter 8 111

Object Directories 8
What is an Object Directory?

An object directory contains a list of object names and corresponding tokens.

• The name contains from 1 to 12 characters; a character is a 1-byte value from 0
to 0FFH. Some tasks may know objects only by name.

• The token is a 16-bit selector or handle for objects.

The object directory enables tasks to use symbolic names to share access to objects.

Creating a Job Object Directory
The Nucleus creates an object directory for each job as you create it, using
rqe_create_job. You specify the number of entries allowed in an object directory in
the directory_size parameter of the rqe_create_job system call.

Deleting a Job Object Directory
You delete the job object directory when you call delete_job.

112 Chapter 8 Object Directories

Using an Object Directory
Typically, one task creates an object and catalogs its token and name. Another task
uses that name to look up the token for the object. Two or more tasks can share an
object that is cataloged in an object directory.

✏ Note
The object directory is case-sensitive: upper- and lower-case
alphabetic characters are interpreted differently. The Nucleus,
however, sees the name as just a string of bytes; it does not
interpret these bytes as ASCII characters.

Using catalog_object
Use the catalog_object system call to put the object into an object directory. You
specify the job in which to catalog the object, the object's token, and a name for the
object. If the object directory is full, the task receives an E_LIMIT condition code.

You can catalog the object in the task's job or in any job for which you have the
token. Each job has an object directory, including the root job. To make an object
accessible to all tasks in the system, catalog it in the root job. Call get_task_tokens
to obtain the token of the root job.

You can use any byte values except null in the name. You can catalog the object
under several different names, all with the same token, if your application needs this.
The Nucleus will return a condition code if you try to catalog an object using a name
that is already cataloged in the directory.

Using lookup_object
Use lookup_object to get an object's token so a task can access the object. You
specify the token of the job whose object directory you want to search, the name of
the object and the amount of time the task can wait. If the object is not cataloged, the
task goes to sleep by waiting for the specified time or until the name is cataloged,
whichever comes first.

The call returns the object's token, or an E_TIME condition code if the object is not
cataloged during the specified wait time. If the object directory is full and the task
specified no wait time, it receives an E_LIMIT condition code instead.

Using rqe_inspect_directory
Use rqe_inspect_directory to view the contents of a job's object directory in a
single operation. You specify the token of the job whose object directory you want to

System Concepts Chapter 8 113

inspect and a pointer to a structure in which the contents of the objectory will be
returned. The structure also contains the maximum number of entries to be returned.

Using uncatalog_object
You remove entries from a directory using the uncatalog_object system call.

Object Directory System Calls
These are the system calls that relate directly to object directories.

catalog_object
get_type
inspect_directory
lookup_object
uncatalog_object
get_task_tokens

Table 8-1 lists common operations on objects in object directories and the system
calls that perform the operations. Tasks can use the object directory for their job or
another job.

Table 8-1. Object Directory System Calls

Operation Description

enter object
in directory

Catalog_object catalogs the specified object in an object
directory.

get type of
object

Get_type accepts a token for an object and returns its type code.
This enables you to use the appropriate calls for the object.

inspect
contents of
entire object
directory

Rqe_Inspect_Directory fills a passed in structure with the entries
in the specified object directory.

look up name
of object

Lookup_object returns the token of the named object.

remove
directory
entry

Uncatalog_object removes the entry for the specified name. The
name becomes available for re-use.

get token
for object

Get_task_tokens gets a token for a parameter object or for the
task's job, parent job or root job in order to catalog objects.

See also: Nucleus system calls, System Call Reference

114 Chapter 8 Object Directories

How to Use Object Directory System Calls
Figure 8-1 shows the order in which you make object directory system calls.

➀
OM02884

uncatalog_objectcatalog_object

➁ ➂

lookup_object
get_type
get_task_tokens

1. Make this call from the task that created the object.

2. Make these calls from tasks that need to access the object.

3. Make this call from the task that created the object.

Figure 8-1. Object Directory System Calls

■■ ■■ ■■

System Concepts Chapter 9 115

Exception Handling and
System Accounting

This chapter describes how to handle the condition codes, or exceptions, that are
returned from iRMX system calls. The primary method is to use exception handlers,
either those provided with the OS or handlers you write. After handling an
exception, you may want your application to investigate the state of the system by
using a set of calls that return system accounting information.

Exception Handling
Whenever a task makes a system call, the system returns a condition code to the task
to communicate the success or failure of the call. For example, a task may request
memory that is not available. Conditions that represent failure or incomplete success
are called exceptional conditions.

These are sources of exceptions:

• Hardware exceptions, such as trying to execute a read/write data segment. These
occur as a result of violating a hardware protection feature.

• "Environmental errors, such as trying to write to a printer that is off-line. These
conditions arise outside the control of the calling task.

• Programmer errors, such as making a mistake in a system call. These are
conditions that the calling task can prevent.

See also: Nucleus interrupt and exception handling, Introducing the iRMX
Operating Systems;
List of condition codes, System Call Reference

You assign an exception handler for a job when you use the rqe_create_job call:
either the parent job’s current exception handler, which normally deletes the job in
which the error occurred, or a custom handler you write. You also assign the
exception mode: when to transfer control to the exception handler. If you do not set
a job's exception mode to transfer control to the job's exception handler, the tasks in
the job must deal with exceptions either by handling them inline or by specifying
their own exception handler using set_exception_handler or
rqe_set_exception_handler. In either case, you must write code to handle the
exception.

9

116 Chapter 9 Exception Handling and System Accounting

Exception Handler Actions
The Nucleus supports exception handlers for programmer errors in tasks. You decide
how an exception handler should deal with a condition. In general, a handler does
one of these:

• Corrects the cause of the exception and continues.

• Logs the error and continues.

• Deletes the job containing the task that erred.

• Deletes the task that erred.

• Suspends the task that erred.

• Ignores the error. (Note that hardware exceptions cannot be ignored.) If you
choose this option, the system continues as if no error had occurred. This is
generally unwise.

You can specify the System Debug Monitor (SDM) as the default exception handler
when debugging an ICU-configurable system. Then SDM takes control of all the
supported hardware exceptions except those from the Numeric Processor Extension
(NPX). When you specify SDM as the default exception handler, hardware
exceptions cause a break to SDM and send a message to the console. This is the
default for systems that are not ICU-configurable.

See also: Nucleus screen, ICU User's Guide and Quick Reference;
sdb.job, System Configuration and Administration;
Writing Exception Handlers, later in this chapter

Rather than allowing SDM to take over on a hardware exception, you can write
exception handlers that test for and handle these hardware traps. Since your handler
is also called for programmer and environmental exceptions (unless these exceptions
are handled inline), the handler must first determine the type of error and act
accordingly.

✏ Note
Because exception handlers can now process hardware traps, you
must modify existing custom exception handlers to test for and
process hardware traps.

See also: Writing Exception Handlers, later in this chapter

System Concepts Chapter 9 117

Exception Handler Modes
An exception handler normally receives control when an exceptional condition
occurs, but it may not, depending on the exception mode. These are the exception-
mode circumstances under which the handler gets control:

• Programmer errors only (all other errors handled inline)

• Environmental conditions only (all other errors handled inline)

• Always

• Never (all errors handled inline)

After detecting that a system call has encountered an exceptional condition, the
Nucleus compares the condition with the calling task's exception mode. The Nucleus
determines whether to pass control to the exception handler based on the mode. The
exception handler then deals with the problem and returns control to the task, unless
the exception handler deleted the job, deleted the task, or suspended the task. When
the exception handler returns, the system call's except_ptr parameter points to the
condition code. While the exception handler is executing, the task in which the error
occurred is still the running task. The exception handler task uses the stack and
environment of the task that made the system call.

✏ Note
The only deviation from this behavior occurs for hardware traps.
When a hardware trap occurs the current assigned exception
handler is called regardless of the exception handler mode.

Condition Code Values and Mnemonics
Condition codes are numeric values that represent unique conditions. Each code also
has a mnemonic such as E_OK, which indicates successful completion or E_MEM
which indicates not enough memory.

When you write tasks, you can refer to the condition codes by their mnemonics. The
OS installs include files that contain literal declarations for iRMX condition codes.

See also: Condition code numeric values and mnemonics for specific system
calls, System Call Reference

118 Chapter 9 Exception Handling and System Accounting

The values of condition codes fall into ranges based on the iRMX layer that first
detects the condition and the type of exception. Table 9-1 shows the ranges based on
the type of error and the layer detecting the condition. Numeric values appear in
hexadecimal.

Table 9-1 Condition Code Ranges

Hardware Exceptions 8100H to 8111H

Numeric Processor Extension Exceptions 8007H (NPX Error)

All Other Programming and Environmental Exceptions

Layer
Environmental
Conditions

Programming
Errors

Nucleus 0H to 0FH 8000H to 800FH

I/O Systems 20H to 5FH 8020H to 805FH

Application Loader 60H to 7FH 8060H to 807FH

Human Interface 80H to AFH 8080H to 80AFH

Universal Development Interface C0H to DFH 80C0H to 80DFH

Comm Service E0H to EFH 80E0H to 80EFH

Reserved for Intel F0H to 2CFH 80F0H to 82CFH

iNA Networking 2D0H to 3FFH 82D0H to 83FFH

Reserved for RadiSysl 400H to 3FFFH 8400H to BFFFH

Available for applications 4000H to 7FF0H C000H to FFF0H

Handling Exceptions Inline
You can write tasks that handle exceptions inline.

Each system call has except_ptr as its last parameter. After a system call, the
Nucleus returns the resulting condition code to this parameter. By checking this
parameter after each system call, you can determine if the call was successful or
which exceptional condition occurred. This information can sometimes enable the
task to recover. In other cases, more information is needed.

If a system call returns an exception code to indicate an unsuccessful call, all other
output parameters of that system call are undefined.

See also: Condition codes for each system call, System Call Reference

System Concepts Chapter 9 119

Assigning an Exception Handler
Use the set_exception_handler system call to enable a task to use its own exception
handler and exception mode. Otherwise, the task inherits the exception handler and
mode of its job.

You can also use the rqe_set_exception_handler system call to set or modify the
exception handler or exception mode for the current task's job or for the system.

Exception handlers execute in the context of the task that caused the problem.

OS-Assisted Handling of Hardware Exceptions
As an alternative to writing a custom hardware exception handler, the iRMX nucleus
creates a system-wide data mailbox during initialization and catalogs it in the root
job’s object directory with a name of HW_FAULT_MBX. If the active system
hardware exception mode is either Delete the Job, Delete the Task, or Suspend the
Task, then the Nucleus handles hardware exceptions as shown in this figure:

iRMX nucleus
sends data to

HW_FAULT_MBX

2

Task awakes
and executes
instructions

3

HW exception
occurs

Task waits at
HW_FAULT_MBX

1

1 An application task waits at the HW_FAULT_MBX for a message.

2 When a hardware exception occurs and Soft-Scope is inactive, the iRMX
nucleus sends a message to this mailbox in the format listed in the tagFaultInfo
structure.

3 When a message arrives, the task awakes and executes its instructions.

You can set up hardware exception handling in these ways:

• System-wide: When a message arrives at HW_FAULT_MBX, you can call
rqgettype to determine the system hardware exception mode, and thus
determine the state of the offending task:

• If the task and job are valid, then the offending task is suspended.

120 Chapter 9 Exception Handling and System Accounting

• If the job is valid but the task is not, then the offending task has been
deleted.

• If both the task and the job are invalid, then the offending task’s job has been
deleted.

• Job-specific: You can set up your application to create its own data mailbox and
catalog it in its object directory with a name of HW_FAULT_MBX. Then the
iRMX nucleus sends the message to this mailbox as well as to the system-wide
HW_FAULT_MBX. When the message arrives, you can determine the
offending job’s state as described above and, since you are in the job whose
member just experienced the hardware fault, you can instruct the program to
remedy the situation.

TagFaultInfo structure

If the system hardware exception handler is set to Delete Job, Delete Task, or
Suspend Task, and a hardware exception handler is encountered, the iRMX nucleus
sends a message to the HW_FAULT_MBOX with this form:

typedef struct tagFaultInfo {

TOKEN task;

TOKEN job;

UINT_16 exception;

UNIT_32 faulting_eip;

TOKEN faulting_cs;

} FAULT_INFO;

Where:

task Is the TOKEN of the task which encountered the hardware fault.

job Is the job that contains the task which encountered the hardware fault.

exception Is a WORD that contains the hardware fault exception as follows:
EH_ZERO_DIVIDE
EH_SINGLE_STEP
EH_NMI
EH_DEBUG_TRAP

EH_OVERFLOW
EH_ARRAY_BOUNDS
EH_INVALID_OPCODE
EH_DEVICE_NOT_PRESENT

EH_DOUBLE_FAULT
EH_DEVICE_ERROR
EH_INVALID_TSS
EH_SEGMENT_NOT_PRESENT

8100H
8101H
8102H
8103H

8104H
8105H
8106H
8107H

8108H
8109H
810AH
810BH

Divide by zero error
Single step trap
Non-maskable interrupt
Debug interrupt

Overflow error
Array bounds error
Invalid op code error
No numerics device error

Double fault error
Device error
Invalid TSS error
Segment not present error

System Concepts Chapter 9 121

EH_STACK_FAULT
EH_GENERAL_PROTECTION

EH_PAGE_FAULT
EH_RESERVED_INT15
EH_DEVICE_ERROR1
EH_ALIGNMENT_CHECK

810CH
810DH

810EH
810FH
8110H
8111H

Stack fault error
General protection error

Page fault error
Reserved
Device 1 error
Alignment check error

Faulting_eip Is the OFFSET of the instruction which caused the hardware
exception.

Faulting_cs Is the SELECTOR of the instruction which caused the hardware
exception.

Writing Your Own Exception Handler
You need to consider several things when you write your own exception handler. For
example, 32-bit code requires 32-bit exception handlers, and 16-bit code requires 16-
bit exception handlers. The only time this is not true is if the exception handler
deletes the offending job, deletes the offending task, or suspends the offending task.

Another consideration is the type of exception you are processing. As of release 2.2
of the iRMX OS, you can write exception handlers that process hardware traps. This
means that your handler can process three groups of errors:

• Hardware traps

• Numeric Processor Extension (NPX) exceptions

• All other programming and environmental conditions

Also, the exception handler executes in the context of the task that caused the
problem. Because of this, deleting the task will kill the exception handler.

Finally, if you set the system’s default exception handler in the ICU on the (NUC)
Nucleus screen by setting DSH equal to "User", your exception handler module must
have these characteristics:

• The public entry point must be named rqsysex

• It must be 32-bit code

• It must be compiled as Near using Intel OMF386 tools (iC-386, PL/M-386, or
ASM386)

122 Chapter 9 Exception Handling and System Accounting

Handler Prototype

You can create your exception handler to determine the type of problem and act
accordingly by creating a FAR, typed procedure that follows this prototype
definition:

UINT_8 _Fparam far my_exception_hndlr(

(UINT_16) err_code,

(UINT_16) param_num,

(UINT_16) param_1,

(UINT_32) param_2);

Where:

err_code Indicates the type of error. Values from 8100H through 8111H
represent hardware traps. A value of 8007H represents an NPX
exception. The ranges shown in Table 9-1 on page 118 represent all
other programming errors and environmental conditions.

param_num Represents the offending parameter number of the call that caused the
problem. param_num is not valid for hardware traps or NPX
exceptions.

param_1 For hardware traps, param_1 is the selector part of the pointer to the
CPU_FRAME_STRUCT structure (see CPU_FRAME_STRUCT later
in this chapter). For all other exceptions, param_1 is meaningless.

param_2 For hardware traps, param_2 is the offset part of the pointer to the
CPU_FRAME_STRUCT structure (see CPU_FRAME_STRUCT later
in this chapter). For NPX exceptions, param_2 is an NPX status. For
all other programming errors and environmental conditions, param_2 is
meaningless.

System Concepts Chapter 9 123

Handler Contents

The first task your new handler (and all existing user-written handlers) must perform
is to examine the value of err_code. Next, the handler must perform one of the
following, based on the type of error:

• Use the BUILDPTR function to build a pointer (frame_p) out of param_1 and
param_2 that points to the CPU_FRAME_STRUCT if the exception is a
hardware trap.

• Derive the NPX status from param_2 if the exception is from the Numeric
Processor Extension.

• Ignore param_1 and param_2 if the error is a programming error or
environmental condition.

Once your handler determines the type of exception and casts the parameters to the
right types, it must process the error. Usually this involves correcting, logging, or
reporting the condition. However, for hardware exceptions you have two choices
after processing the error:

• Return to the task that caused the exception. If you write the handler to do this
your handler must also fix the task’s problem.

• Prevent the task from running again by either deleting or suspending it. Because
the operating system already has handlers that delete tasks, delete jobs, and
suspend tasks, you can write your handler to return to the appropriate system
exception handler.

The value returned in the AX register by your typed exception handler procedure
determines which of these two options is taken. A returned value of 0 causes the
exception handler dispatcher to call the currently active system hardware trap handler
to deal with the offending task. Returning a value of 0FFH causes the exception
handler dispatcher to return to the offending task at the code segment (CS:EIP)
present in the CPU_FRAME_STRUCT structure.

124 Chapter 9 Exception Handling and System Accounting

The following pseudo-code example shows how to handle any exceptional condition.
The first conditional handles NPX conditions. The second conditional handles
hardware traps. The default condition handles all other programming and
environmental exceptions.

if err_code is 8007H then {

derive NPX status as follows:

NPX_status = (UINT_16) param_2 ;

Correct, log, or report the condition ;

return ;

}

if err_code ranges from 8100H through 8111H then {

generate pointer using the built_in BUILDPTR as follows:

frame_p = BUILDPTR((selector)param_1),

(void near *)param_2) ;

Log or report the condition ;

If calling active system handler then {

return (0) ;

}

else if returning to the offending task then {

return (0FFH);

}

}

else exception is env/prog error, handle normally {

Correct, log, or report the condition ;

return ;

}

Compiling Your Exception Handler

If you are writing your own exception handlers, compile them as far procedures by
EXPORTING the procedure with the PUBLIC attribute.

System Concepts Chapter 9 125

Parameters Used With Hardware Traps

When the value for the err_code parameter is in the range 8100H to 8111H, a
hardware trap has occurred. As shown earlier, your handler must generate the pointer
frame_p that points to the CPU_FRAME_STRUCT structure when processing a
hardware trap. The type definition of this structure is as follows:

typedef struct{

SELECTOR running_task;

UINT_16 fill0;

UINT_32 reg_cr2;

SELECTOR reg_gs;

UINT_16 fill1;

SELECTOR reg_fs;

UINT_16 fill2;

SELECTOR reg_es;

UINT_16 fill3;

SELECTOR reg_ds;

UINT_16 fill4;

SELECTOR reg_ldt;

UINT_16 fill5;

UINT_32 reg_edi;

UINT_32 reg_esi;

UINT_32 reg_ebp;

UINT_32 reg_esp;

UINT_32 reg_ebx;

UINT_32 reg_edx;

UINT_32 reg_ecx;

UINT_32 reg_eax;

UINT_32 error_code;

UINT_32 ret_eip

SELECTOR ret_cs;

UINT_16 fill6;

UINT_32 eflags;

UINT_32 ret_esp;

SELECTOR ret_ss;

UINT_16 fill7;

} CPU_FRAME_STRUCT;

126 Chapter 9 Exception Handling and System Accounting

where:

fill<n> Reserved

running_task
The token of the task whose CPU register state is being provided.

reg_cr2 The task’s CR2 register; reg_cr2 is only valid in the context of an
exception handler.

reg_gs The task’s GS register.

reg_fs The task’s FS register.

reg_es The task’s ES register.

reg_ds The task’s DS register.

reg_ldt The task’s LDTR register.

reg_edi The task’s EDI register.

reg_esi The task’s ESI register.

reg_ebp The task’s EBP register.

reg_esp The task’s ESP register.

reg_ebx The task’s EBX register.

reg_edx The task’s EDX register.

reg_ecx The task’s ECX register.

reg_eax The task’s EAX register.

error_code
The error code returned by the processor; error_code is only valid in
the context of an exception handler.

ret_eip The task’s EIP register.

ret_cs The task’s CS register.

eflags The task’s EFLAGS register.

ret_esp The task’s ESP register.

ret_ss The task’s SS register.

System Concepts Chapter 9 127

Exception Handler System Calls
These are the system calls that relate directly to exception handlers.

get_exception_handler
set_exception_handler
rqe_get_exception_handler
rqe_set_exception_handler

Table 9-2 lists common operations on exception handlers and the system calls that
perform the operations.

Table 9-2 Exception Handler System Calls

Operation Description

set handler Set_exception_handler sets the exception handler and exception
mode attributes of the calling task. Rqe_set_exception_handler
sets or modifies the exception handler and exception mode for
any task, job, or the system.

get handler
attributes

Get_exception_handler returns to the calling task the current
task’s exception handler and exception mode attributes.
Rqe_get_exception_handler returns to the calling task the
current exception handler and mode for any task, job, or the
system.

See also: Nucleus system calls, System Call Reference

System Accounting
Several system calls allow you to check on the state of tasks, the CPU, and other
high-level system information. These calls can be useful at any time but are
particularly useful after exceptions occur. The calls allow you to:

• Return information about the execution state and CPU registers of a task

• Return information about when a task was created and how long it has run

• Enable and disable tracking of CPU use by the operating system

Enabling and Disabling CPU Tracking
Use the system_accounting system call to enable or disable tracking of CPU usage
by the operating system. Accounting must be enabled to use the
get_task_accounting call.

See also: Nucleus System Calls, System Call Reference

128 Chapter 9 Exception Handling and System Accounting

Returning Information About a Task
Use the get_task_info system call to return high-level information such as task
priority, exception handler, the containing job, and execution state. For a more
detailed look at the state of a task, use the get_task_state system call. This call
returns information about the state of any task in the system, including such items as
the execution state and the CPU registers for the task’s execution context.

✏ Note
CPU context is only available for tasks that are suspended by a task
other than itself.

See also: Nucleus System Calls, System Call Reference

Returning Task Creation and Duration Statistics
Use the get_task_accounting system call to find out when a task was created and
how long it has run. This call can be useful in debugging a system when exceptions
cause a task to be suspended.

See also: Nucleus System Calls, System Call Reference

System Accounting System Calls
These are the system calls that relate directly to system accounting.

get_task_info
get_task_state
get_task_accounting
system_accounting

System Concepts Chapter 9 129

Table 9-3 lists the type of system accounting you can perform with these calls.

Table 9-3 Accounting System Calls

Operation Description

get high-level
task information

Get_task_info returns high-level information about the
target task.

get CPU
information

Get_task_state returns some high-level information
about the target task. This call also returns CPU register
context for suspended tasks.

get accounting
information

Get_task_accounting returns accounting information for
the target task.

enable or disable
accounting

System_accounting enables or disables tracking of
CPU use.

See also: Nucleus system calls, System Call Reference

■■ ■■ ■■

130 Chapter 9 Exception Handling and System Accounting

System Concepts Chapter 10 131

Interrupts 10
How Do Interrupts Work?

Many different events can cause an interrupt. An interrupt which signals the
occurrence of an external event, triggers an implicit call using an address supplied in
the IDT. This directs control to an interrupt handler.

If handling the interrupt takes little time and requires no system calls other than
certain interrupt-related system calls, the interrupt handler can process the interrupt
itself; the interrupt handler executes in the context of the task running when the
interrupt occurred. Otherwise, the handler should invoke an interrupt task to finish
processing the interrupt. Interrupt tasks have their own context and are not dependent
on the context of the task that was interrupted.

After the interrupt has been serviced by either the interrupt handler or the interrupt
task, control returns to the interrupted task.

Interrupt Controllers and Interrupt Lines
External interrupts pass through programmable interrupt controllers (PICs) such as
the 8259A PIC. The master PIC can manage interrupts from as many as eight
external sources, one being the system clock. But the iRMX OS supports a cascaded
environment in which up to seven input lines of one master PIC are connected to
slave PICs, each with eight input lines.

A cascaded environment in native mode (non-PC architecture) lets the OS manage
interrupts from up to 56 external sources as well as the system clock in native mode.
Figure 10-1 on page 132 illustrates the concept.

132 Chapter 10 Interrupts

10---
11---
12---
13---
14---
15---
16---

77---

70---
71---
72---
73---
74---
75---
76---

W-2828

17---

Master
PIC

Slave 1
PIC

Slave 7
PIC

M0---
M1---
M2---
M3---
M4---
M5---
M6---
M7---

Microprocessor

Numeric
coprocessor,

if present

System
clock is
usually
here

➀

➁

CPU
traps

1. If your system includes an Intel387 numeric processor, do not connect the NPX to a PIC.

The Intel386 processor uses CPU interrupt traps 7 and 16 to communicate directly with the

Intel387 numeric processor.

2. The interrupt lines on the master PIC are numbered M0 through M7. The interrupt lines on

the slave PICs are numbered n1 through n7. You can connect a master PIC input line

either to an external interrupt or to a slave PIC, but not to both.

Figure 10-1. Processor and PIC Interrupt Lines in Native Mode

PC-compatible Mode

In PC-compatible mode, attach the keyboard to M1, attach the only slave PIC to level
M2 and attach the NPX to line 5 on the slave PIC.

See also: PIC, ICU User's Guide and Quick Reference

System Concepts Chapter 10 133

Interrupt Levels
The interrupt lines of the master and slave PICs are associated with interrupt levels.
An interrupt level names an interrupt line and indicates the priority of the line: the
lower the number, the higher the priority.

Lower-numbered lines like M2 (or lines from the slave PIC connected to it) have
higher priority than higher-level lines like M5 (or lines from the slave PIC connected
to it). If two interrupts occur simultaneously, the PIC informs the CPU of the higher-
priority interrupt first. The Nucleus often disables low-priority interrupts to service
high-priority interrupts.

Interrupt Descriptor Table
The processor uses the IDT entry as a pointer to the interrupt handler to execute for
the specific interrupt. Each IDT entry contains the physical address of the interrupt
handler.

The hardware assigns a number to the cause of each interrupt and gives it an entry in
the IDT. The IDT is composed of up to 256 entries, numbered 0-255. In an ICU-
configurable system, you specify the number of IDT entries your application needs
using the NIE parameter. You will probably not need more than 128 entries. If, for
example, your system has only the 8259A master PIC with no slaves, the first 64
entries are enough. The Nucleus does not use entries 128-255. The entries are
allocated as shown in Table 10-1 on page 134.

See also: IDT, user's guide for your microprocessor;
NIE parameter, ICU User's Guide and Quick Reference

134 Chapter 10 Interrupts

Table 10-1. Allocation of Interrupt Entries

IDT Entry Description

0 divide by zero

1 single step (used by the SDM monitor)

2 power failure (nonmaskable interrupt, used by the SDM monitor)

3 one-byte interrupt instruction (used by the SDM monitor)

4 interrupt on overflow

5 run-time array bounds error

6 undefined opcode

7 NPX not present/NPX task switch

8 double fault

9 NPX segment overrun

10 invalid TSS

11 segment not present

12 stack exception

13 general protection

14-15 reserved

16 NPX error

17-55 reserved

56-63 8259A PIC master (external interrupts)

64-127 8259A PIC slaves (external interrupts)

128-255 unused

Assigning Interrupt Levels to External Sources
To assign interrupt levels to external sources, use these guidelines:

• Assign the system clock to a master interrupt level, usually M0.

• Assign the most critical interrupts to the lowest-numbered levels. To provide
preemptive, priority-based scheduling, the Nucleus usually disables less-
important interrupts.

• You cannot attach both an interrupting device and a slave PIC to the same master
level. Suppose you physically attach a device to level M3: entry 59 decimal of
the IDT contains the address of the interrupt handler for the device; entries 88
through 95 decimal of the IDT (the slave level entries that correspond to master
level M3) will not be available.

System Concepts Chapter 10 135

• You cannot connect a slave PIC to M0 if an interrupting device connects directly
to any other master level. If you assign the system clock to level M0, you can
connect seven slave PICs. If you assign the system clock to another interrupt
level, you can connect at most six slave PICs to the master PIC.

• The Intel387 NPX does not require a dedicated interrupt line in native mode. In
PC-compatible mode, it uses M2, level 25.

See also: PIC, ICU User's Guide and Quick Reference

Interrupt Handlers and Interrupt Tasks
Whether an interrupt handler services an interrupt level by itself or invokes an
interrupt task to service the interrupt depends on the system calls (these are limited)
and the amount of time needed. An interrupt signal disables all interrupts; they
remain disabled until the interrupt handler either services the interrupt and exits, or
invokes an interrupt task. Invoking an interrupt task enables higher priority interrupts
(and in some cases, the same priority interrupts) to be accepted.

See also: Random access support for interrupt-driven devices for examples of
interrupt tasks, Driver Programming Concepts

System Calls and Interrupt Handlers
When writing an interrupt handler, you need to keep these points in mind:

• Interrupt handlers can make only the Nucleus enter_interrupt, exit_interrupt,
get_level, disable, and signal_interrupt system calls. If you need other system
calls to service the interrupt, create an interrupt task.

• Interrupt handlers should not use C library calls that perform high-level I/O
operations such as printf(). These types of C library calls may be unsafe for use
by handlers because they use signaling or blocking objects or they use
high-level I/O.

• Interrupt handlers can use system calls that signal the Kernel such as
KN_send_units. However, the handler must take steps to prevent a task switch.

See also: Using iRMX Kernel Calls in iRMX Interrupt Handlers later in this
chapter

136 Chapter 10 Interrupts

Writing an Interrupt Handler
Interrupt handlers are generally written as C or PL/M interrupt procedures, but they
can be written in assembly language. If you use assembly language, you must save
and restore all register values.

An interrupt handler uses the stack of the interrupted task.

If an interrupt handler services interrupts for a given level without invoking an
interrupt task, it must do these things:

1. Save all register contents (C and PL/M do it for you when the procedure is given
the INTERRUPT attribute).

2. If the handler can load its own DS register with the data segment selector, do so.
If the handler requires a special data segment, call enter_interrupt.

3. Service the interrupt.

4. Call exit_interrupt. This sends an end-of-interrupt (EOI) signal to the
hardware.

5. Restore all register contents.

6. Return using an IRETD instruction.

See also: Designing an Application, Programming Techniques;
examples in /rmx386/demo/c/int directory

Using set_interrupt With a Handler Only
Before an interrupt handler can service an interrupt level, a task must invoke the
set_interrupt system call to bind the handler to the interrupt level. Set_interrupt
places a pointer to the first instruction of the handler in the appropriate entry in the
IDT.

These are the parameters you supply in set_interrupt:

• Use the interrupt_handler parameter to specify the starting address of the
interrupt handler. When an interrupt of that level occurs, control automatically
transfers through the IDT to the handler.

• Set the interrupt_task_flag parameter to 0, to specify that there is no
interrupt task for the level.

• Set the interrupt_handler_ds parameter to null to specify that the handler
loads its own data segment. (Interrupt handlers written in PL/M, including
COMPACT model, have their DS registers loaded automatically on invocation.)

System Concepts Chapter 10 137

What the OS Does With a Handler Only

1. When an iRMX application system starts running, all interrupt levels are
disabled.

2. When set_interrupt binds an interrupt handler to a level, the Nucleus enables
the level immediately.

3. When an interrupt occurs, the processor automatically transfers control to the
handler. The handler executes in the context of the interrupted task with all
interrupts disabled.

4. When the handler calls exit_interrupt, this sends an end-of-interrupt (EOI)
signal to the hardware. Control returns to the interrupted task when the handler
issues an IRETD instruction.

Use reset_interrupt to cancel the assignment of a handler by clearing out the
appropriate entry in the IDT. The call also disables the specified level.

Using an Interrupt Handler and an Interrupt Task
If an interrupt handler invokes an interrupt task, it must do these things.

1. Save all register contents (C and PL/M do it for you when the procedure is given
the INTERRUPT attribute).

2. If the handler needs to pass information to the interrupt task in a special data
segment, call enter_interrupt. Usually the interrupt handler and interrupt task
are in the same system and share the same data areas.

3. Possibly begin servicing the interrupt.

4. Do one of these:

Call signal_interrupt to start the interrupt task and enable higher (and possibly
equal) priority interrupts.

or

Call exit_interrupt. This sends an end-of-interrupt (EOI) signal to the
hardware.

5. Restore all register contents.

6. Return using an IRETD instruction.

138 Chapter 10 Interrupts

An interrupt task must perform these functions in the indicated order, although the
first two functions may be interchanged:

1. Do any required task initialization, such as preloading variables.

2. Call set_interrupt.

3. Enter a loop which:

a. Calls rqe_timed_interrupt or wait_interrupt.

b. Services the interrupt when notified by a signal_interrupt call from the
handler.

c. Returns to step a.

An interrupt task, once initialized, is always in one of two modes: either servicing an
interrupt or waiting for notification of an interrupt. However, the Nucleus does not
enable the level or any lower levels until the task invokes the wait_interrupt or
rqe_timed_interrupt system call.

The interrupt task has its own resources and runs in its own environment. The
interrupt task can use exception handlers, whereas the interrupt handler always
handles exceptions inline.

Using set_interrupt With a Handler and Task

These are the parameters you supply in set_interrupt:

• Use the interrupt_handler parameter to specify the starting address of the
interrupt handler.

• Set the interrupt_task_flag parameter to not 0, to specify that there is an
interrupt task for the level and to indicate how many pending interrupts can be
queued before E_INTERRUPT_SATURATION occurs: the interrupt limit.

• Use the interrupt_handler_ds parameter to specify the data segment for the
interrupt task. The interrupt handler can later load this data segment into the DS
register by calling enter_interrupt. In most cases, an interrupt handler and an
interrupt task are in the same subsystem and share the same data areas.
(Interrupt handlers written in high-level languages that have a FAR interface,
have their DS registers loaded automatically on invocation.)

See also: EXPORT control for PL/M Compact subsystems

While the interrupt task is processing, the Nucleus disables all lower interrupt levels.
The associated interrupt level is either disabled or enabled, depending on the
interrupt_task_flag parameter.

System Concepts Chapter 10 139

If the number of pending interrupts is less than the interrupt limit specified, the
associated interrupt level is enabled. All signal_interrupt calls that the handler
makes (up to the limit specified) are logged.

If the associated interrupt level is disabled (the number of pending interrupts is equal
to the pending interrupt limit) while the interrupt task is running, the call to
wait_interrupt enables that level.

Using rqe_timed_interrupt or wait_interrupt

You should call rqe_timed_interrupt or wait_interrupt from interrupt tasks
immediately after initializing and immediately after servicing interrupts. These calls
suspend the interrupt task until the interrupt handler for the same level resumes it by
invoking signal_interrupt.

If the number of pending interrupts from signal_interrupt calls is greater than 0
when the interrupt task calls rqe_timed_interrupt or wait_interrupt the task is not
suspended. Instead, it continues processing the next signal_interrupt request.

Shared Interrupts

The PCI bus architecture as used in the PC allows less flexibility to the system
designer regarding how interrupts are routed and separated from other sources. While
it may be possible on a system consisting of a PCI Local Bus architecture to separate
PCI device interrupts from each other, as soon as a bridge is added, and more buses
connected, then it is almost impossible to avoid the possibility that different devices
may be sharing the same interrupt line.

The iRMX III.2.3 OS provides support to allow different devices to share the same
interrupt line by providing generic interrupt handlers internally, which call out to
user-supplied, device-specific handlers. When an interrupt occurs on such a line, all
the handlers installed for that hardware interrupt level are called in sequence, starting
with the first installed. This results in a little extra overhead over standard handlers,
so use of this feature should be restricted to situations where you cannot guarantee
exclusive access to an interrupt line.

Another consequence of interrupt sharing is that the interrupt signals are level-
triggered. That is, the PIC is programmed to recognize an interrupt condition
whenever the interrupt line is asserted. Non-PCI (non-shared) interrupts are edge-
triggered; the PIC recognizes when the interrupt line changes state to active. The
practical consequence of this level triggering is that if the device is not instructed to
de-assert its interrupt line before the CPU exits from the handler, then the interrupt
condition is still asserted, and the handler is immediately re-entered. Against that,
remember that while the CPU is executing an interrupt handler, no other interrupt
will occur until the CPU interrupt mask is cleared. Thus we want to minimize the

140 Chapter 10 Interrupts

time spent in each shared interrupt handler, but do sufficient work to remove the
interrupt condition.

To install a shared handler, use the rqe_set_interrupt system call, and specify that
this is to be a shared interrupt handler by setting bit 15 of the hardware interrupt level
parameter.

As you write an interrupt handler that will be used with a shared interrupt level, take
into account that some interrupt system calls will have no effect. For example,
signal_interrupt is ignored for shared handlers, since this action is taken
automatically after all handlers have been called.

Shared interrupt handlers should not call get_level since the return value is
meaningless in shared handler context. The encoded interrupt level is supplied as a
parameter to the handler. Calling enter_interrupt is also superfluous since the
process context is already set up on shared handler entry.

Interrupt Task Priorities

When a task becomes an interrupt task by calling set_interrupt, the Nucleus assigns
a priority to it according to the interrupt level to be serviced. Table 10-2 on page 141
shows the relationship between the encoded level (the value used for the level
parameter of set_interrupt), the Master and Slave interrupt levels, the IDT slot and
the priorities of tasks that service those levels.

✏ Note
If an interrupt task's priority exceeds the maximum priority
attribute of its job, the interrupt task fails to set up and the Nucleus
returns an exceptional condition code. Prevent this by increasing
the job's maximum task priority using rqe_set_max_priority

System Concepts Chapter 10 141

Table 10-2. Interrupt Level and Task Priority Information

iRMX
Encodin

g

PIC Level
Master Slave

IDT
Slot

Interrup
t

Task
Priority

iRMX
Encoding

PIC Level
Master
Slave

IDT
Slot

Interrup
t

Task
Priority

00H 00 64 4 40H 40 96 68

01H 01 65 6 41H 41 97 70

02H 02 66 8 42H 42 98 72

03H 03 67 10 43H 43 99 74

04H 04 68 12 44H 44 100 76

05H 05 69 14 45H 45 101 78

06H 06 70 16 46H 46 102 80

07H 07 71 18 47H 47 103 82

08H M0 56 18 48H M4 60 82

10H 10 72 20 50H 50 104 84

11H 11 73 22 51H 51 105 86

12H 12 74 24 52H 52 106 88

13H 13 75 26 53H 53 107 90

14H 14 76 28 54H 54 108 92

15H 15 77 30 55H 55 109 94

16H 16 78 32 56H 56 110 96

17H 17 79 34 57H 57 111 98

18H M1 57 34 58H M5 61 98

20H 20 80 36 60H 60 112 100

21H 21 81 38 61H 61 113 102

22H 22 82 40 62H 62 114 104

23H 23 83 42 63H 63 115 106

24H 24 84 44 64H 64 116 108

25H 25 85 46 65H 65 117 110

26H 26 86 48 66H 66 118 112

27H 27 87 50 67H 67 119 114

28H M2 58 50 68H M6 62 114

30H 30 88 52 70H 70 120 116

31H 31 89 54 71H 71 121 118

32H 32 90 56 72H 72 122 120

33H 33 91 58 73H 73 123 122

34H 34 92 60 74H 74 124 124

35H 35 93 62 75H 75 125 126

36H 36 94 64 76H 76 126 128

37H 37 95 66 77H 77 127 130

38H M3 59 66 78H M7 63 130

142 Chapter 10 Interrupts

Using iRMK Kernel Calls in iRMX Interrupt Handlers
The Nucleus assigns priorities to iRMX interrupt tasks based on the handler's
interrupt level. Less important interrupts are disabled when an interrupt task is
running and can be missed. If this is a problem for your application, you can use
iRMK calls to signal an ordinary or non-interrupt task. This enables you to control
the task's priority. When you use iRMK Kernel calls in an iRMX interrupt handler,
you need to create the service task, cause the service task to perform specific
functions, and cause the handler to perform specific functions.

Creating the Service Task

You need to create a task to handle the interrupt. When creating the task, set the task
priority so that it will not disable lower-level interrupts.

Things to do from the Service Task

From the service task you need to do the following:

1. Use KN_create_semaphore or KN_create_mailbox to create a Kernel
semaphore or mailbox. Store the token in your application's global memory
referenced by the DS.

2. Call set_interrupt with interrupt_task_flag set to 0. This indicates there
is no associated iRMX interrupt task.

Specify in interrupt_handler_ds whether the handler's DS is self-loaded
(null selector) or loaded using enter_interrupt.

3. Enter an infinite loop in which you wait at the Kernel semaphore or mailbox for
notification of an interrupt. Process the interrupt then wait again, etc.

Things to do from the Handler

From the interrupt handler you need to do the following:

1. Load your own DS or use enter_interrupt to load DS from which you access
the Kernel semaphore or mailbox which will signal your service task.

2. Obtain a scheduling lock by using KN_stop_scheduling prior to signaling the
task. This prevents a task switch from immediately occurring as a result of the
signaling call. If a task is waiting, it will be made ready but will not run
immediately.

3. After doing the required handler-level processing use KN_send_unit or
KN_send_data to signal the task that handles the interrupt.

4. Send an End of Interrupt (EOI) to the interrupt controller by using the
exit_interrupt call.

System Concepts Chapter 10 143

5. Release the scheduling lock by using KN_start_scheduling. This call resumes
normal scheduling. Under normal scheduling the highest priority ready task
runs. If KN_start_scheduling causes an immediate task switch, the remainder
of KN_start_scheduling and the rest of the handler code will not execute until
the originally interrupted task gets to run again. For this reason, you should
place the KN_start_scheduling call just prior to the interrupt return (IRET).

Example Using iRMK Kernel Calls in iRMX Interrupt Handlers

The following code shows how you can use iRMK Kernel Calls in iRMX interrupt
handlers:

void interrupt IntHdlr(void)

{

UINT_16 local_status;

/*

* Call RQ_enter_interrupt if the handler requires access to a

* specific application Data Segment. The segment is specified in the

* call to RQ_set_interrupt, which establishes the handler.

*/

/*

* perform any handler level interrupt processing here

*/

/*

* The handler will now signal an ordinary iRMX task which is waiting at

* a Kernel semaphore.

* Get scheduling lock prior to making the signaling call.

*/

KN_stop_scheduling();

/*

* The KN_stop_scheduling call prevents a task switch from immediately

* occurring as a result of KN_send_unit.

* If a task is waiting at knsemaphore, it will be made ready but will

* not run immediately.

*/

KN_send_unit(knsemaphore); /* signal ordinary task */

/*

144 Chapter 10 Interrupts

* The rq_exit_interrupt call sends an End of Interrupt (EOI) to the

* interrupt controller.

*/

rq_exit_interrupt(IntLevel,&local_status);

/*

* Release the scheduling lock and resume normal scheduling.

* At this point the highest priority ready task will run, possibly

* even before the return from KN_start_scheduling.

*

* If KN_start_scheduling causes an immediate task switch, the remainder

* of KN_start_scheduling and the rest of the handler code will not be

* executed until the *interrupted* task gets to run again. For this

* reason, the KN_start_scheduling call should be the very last call in

* the handler, just prior to the interrupt return (IRET).

*/

KN_start_scheduling();

}

Interrupt Servicing Patterns
Figure 10-2 on page 145 illustrates the relationships between the servicing patterns of
interrupt handlers and interrupt tasks.

The handler performs the simple, less time-consuming functions; it signals the
interrupt task to perform more complicated functions. The handler sends information
to the task in data buffers. The number of pending interrupts influences when and
how interrupts are disabled.

An interrupt handler might call an interrupt task sometimes, but not every time. For
example, an interrupt handler may put characters entered at a terminal into a buffer.
If the character is an end-of-line character, or if the character count maintained by the
interrupt handler indicates the buffer is full, the interrupt handler calls
signal_interrupt to activate the interrupt task to process the contents of the buffer.
Otherwise, the interrupt handler calls exit_interrupt and then returns control to
application tasks.

System Concepts Chapter 10 145

Need
a new

DS value
?

No Yes

Control returns to the
interrupted application task

OM02964

Need
to invoke
interrupt

task
?

Interrupt
handler
starts

Interrupt
handler

does some
interrupt
servicing

Call
rq_enter_interrupt

Interrupt task calls
rq_wait_interrupt or
rqe_timed_interrupt

DS
is known
to handler

?

No

Load DS
from CS

YesYes

Interrupt
handler calls

rq_signal_interrupt

Interrupt
handler calls

rqe_exit_interrupt

Save
current

task
content

No

signal

Figure 10-2. Flow Chart of Interrupt Handling

146 Chapter 10 Interrupts

Single Buffer Example

An interrupt handler that reads data from an external device, character by character,
and places the characters into a buffer is an example of a single-buffer interrupt
handler. When the buffer fills, the handler calls signal_interrupt to signal an
interrupt task to further process the data. There is only one buffer for the data, so the
interrupt level associated with the interrupt task must be disabled while the task is
processing.

Because the task called set_interrupt with max_interrupts equal to 1, the OS
automatically disables the interrupt level when the handler invokes signal_interrupt.

This prevents the interrupt handler from destroying the contents of the buffer by
continuing to place data into an already full buffer. Figure 10-3 illustrates single
buffering.

➀ ➁Interrupt

W-2824

I
Int.

handler

➂

1. The handler places data into the buffer.

2. When the buffer is full, the handler calls signal_interrupt to start the task.

3. Upon completion, the task calls wait_interrupt or rqe_timed_interrupt.

Figure 10-3. Single-Buffer Interrupt Servicing

If you require only single buffering in interrupt servicing, specify 1 for the
interrupt_task_flag parameter in set_interrupt.

System Concepts Chapter 10 147

Multiple Buffer Example

In this example, the interrupt handler and the interrupt task provide the same
functions as in the previous example, but they use multiple buffers. In this case, the
interrupt level associated with the task need not always be disabled while the task
runs. Instead, the task can process a full buffer while the handler continues to accept
interrupts. When the handler fills a buffer, it calls signal_interrupt to start the
interrupt task, as in the first example. However, because the
interrupt_task_flag is greater than 1, the interrupt level is not disabled.
Instead, the handler continues to accept interrupts, placing the data into the next
empty buffer.

While this occurs, the interrupt task processes the full buffer. When the task
completes the processing, it calls wait_interrupt or rqe_timed_interrupt to indicate
that it is ready to accept another signal_interrupt request (another full buffer) and to
indicate that the buffer it just finished processing is available for
re-use by the handler.

Because the handler and the task are running somewhat independently, the handler
may fill a buffer and call signal_interrupt before the task has finished processing the
previous buffer. To prevent the signal_interrupt request from becoming lost, the OS
maintains a count of pending interrupt requests. Each time the handler calls
signal_interrupt, the count of pending interrupts is incremented by one. Each time
the task calls wait_interrupt or rqe_timed_interrupt, the count of pending
interrupts decrements by one. You can use the SDB vt command to view an interrupt
task and the count of pending interrupts.

See also: vt command, System Debugger Reference

If the count of pending interrupts is still greater than 0 after the interrupt task calls
wait_interrupt or rqe_timed_interrupt, the task does not wait for the next
signal_interrupt to occur before resuming execution. Instead, it immediately starts
processing the next full buffer. Neither the interrupt task nor the interrupt handler
has to wait for the other. The interrupt handler can continually respond to interrupts
without having the task disable the interrupt level. The interrupt task can continually
process full buffers of data without waiting for the handler to call signal_interrupt.

148 Chapter 10 Interrupts

Figure 10-4 illustrates this multiple buffering handler.

OM02885

➀
A

➃

➁ ➂

➄

Interrupt Int.
handler

1. The interrupt handler starts filling the empty buffer.

2. The handler calls signal_interrupt to start the task on processing the full buffer.

3. The interrupt task processes the full buffer, then calls wait_interrupt or

rqe_timed_interrupt to wait for the next full buffer.

4. The handler keeps filling buffers.

5. The task keeps processing them and calling wait_interrupt or rqe_timed_interrupt.

Figure 10-4. Multiple-Buffer Interrupt Servicing

System Concepts Chapter 10 149

Table 10-3 describes the actions of the handler and the task. The table is divided into
three parts: actions of the interrupt handler, actions of the interrupt task, and the
count of pending interrupts specified in the interrupt_task_flag parameter of
signal_interrupt. The count is set to three. The table shows the actions of both the
handler and the task through time, and the change in value of the count.

Table 10-3. Handler and Task Interaction through Time

Time Interrupt Handler Interrupt Task Count

Task A calls set_interrupt to set
handler and task for level, setting
interrupt_task_flag to 3.

0

A calls wait_interrupt to wait for
first request from handler.

0

Intrpt Handler processes interrupt, starts
filling first buffer.

Intrpt Process interrupt. Buffer is full. Call
signal_interrupt.

A starts processing 1st full buffer. 1

Intrpt Process interrupt. Start filling next
buffer.

Intrpt Process interrupt. Buffer is full. Call
signal_interrupt.

2

Intrpt Process interrupt. Start filling next
buffer.

2

Intrpt Process interrupt. Buffer is full. Call
signal_interrupt. Count is 3.
Interrupt level is disabled.

3

Call wait_interrupt. Start
processing next buffer.

2

Intrpt Process interrupt. Buffer is full. Call
signal_interrupt.

3

Call wait_interrupt. Start
processing next full buffer.

2

150 Chapter 10 Interrupts

The interrupt task, when it initially calls set_interrupt, specifies the number of
pending interrupt requests in the interrupt_task_flag parameter. When the
interrupt handler calls signal_interrupt, causing the number of pending interrupts to
be incremented to the maximum:

• The interrupt level is disabled; the handler won't receive further interrupts until
the interrupt task makes a wait_interrupt or rqe_timed_interrupt call, which
reduces the number of pending interrupts below the maximum. The OS then
enables the level.

• The E_INTERRUPT_SATURATION condition code returns from
signal_interrupt to the handler, indicating that the number of pending interrupts
limit has been reached. The only exception to this rule is if the set_interrupt
call limit is 1; then signal_interrupt will not return the
E_INTERRUPT_SATURATION condition code. The level is disabled until the
task calls wait_interrupt or rqe_timed_interrupt and decrements the number
of pending interrupts below the limit specified in interrupt_task_flag in
set_interrupt. The interrupt level is enabled, allowing the handler to resume
accepting interrupts.

Always set interrupt_task_flag equal to the number of buffers that the task and
handler use. If the task sets interrupt_task_flag larger than the number of
buffers, the handler will accept interrupts when no buffers are available and data will
be lost. If the task sets interrupt_task_flag smaller than the number of buffers,
there will always be empty buffers and space will be wasted.

For example, if you need one buffer, set interrupt_task_flag to one. In this
case, the Nucleus disables the interrupt level while the task is processing the buffer.
If you need two buffers, set interrupt_task_flag to two. Then, the handler can
fill one buffer while the task is processing the other. Additional buffers require
correspondingly higher limits. However, if the task sets the limit to 0, the interrupt
handler operates without an interrupt task.

Disabling Interrupts

The Nucleus masks less important interrupts automatically while the interrupt task is
running. Occasionally you may want to prevent interrupt signals from causing an
immediate interrupt at the task's own level. For example, in a device driver finish
procedure, you may want to disable interrupts from the device before deleting
resources an interrupt handler or task would require. You can disable each interrupt
level except the system clock. You disable a level by using the disable system call.
Or you can set the interrupt_task_flag parameter in set_interrupt to 1.

System Concepts Chapter 10 151

If the level is disabled, the interrupt signal is blocked until the level is enabled, at
which time the signal is recognized by the CPU. However, if the signal is no longer
emanating from its source, it is not recognized and the interrupt is not handled.

If the associated interrupt level is disabled while the interrupt task is running and the
number of outstanding signal_interrupt requests is less than the limit you specified
in interrupt_task_flag, the call to rqe_timed_interrupt or wait_interrupt
enables that level.

An interrupt level can be disabled in these ways:

• A task can disable a specific interrupt level by calling disable, then re-enable the
level by calling enable.

• The number of pending interrupts received can reach the limit you set in the
set_interrupt system call. Whenever this happens, the OS automatically
disables the interrupt level until the number of pending interrupts falls below the
maximum.

• When a task calls reset_interrupt to cancel the assignment of a particular
interrupt handler to a particular interrupt level, the OS automatically disables that
interrupt level. If there is an interrupt task for the level, reset_interrupt deletes
it. Delete_task does not delete interrupt tasks.

• To provide preemptive priority-based scheduling, the OS can automatically
disable or re-enable some interrupt levels whenever a task begins running,
depending on the priority of the new running task and the priority of the interrupt
level. This enables high-priority tasks to run faster, without interrupts from
lower-priority external devices. Table 10-4 on page 152 shows the correlation
between the levels disabled and the priority of the running task.

152 Chapter 10 Interrupts

Table 10-4. Interrupt Levels Disabled for Running Task

Task
Priority

Disabled Levels
Slave Master

Task
Priority

Disabled Levels
Slave Master

0-2 00 - 77 M0 - M7 65-66 40 - 77 M4 - M7

3-4 01 - 77 M1 - M7 67-68 41 - 77 M5 - M7

5-6 02 - 77 M1 - M7 69-70 42 - 77 M5 - M7

7-8 03 - 77 M1 - M7 71-72 43 - 77 M5 - M7

9-10 04 - 77 M1 - M7 73-74 44 - 77 M5 - M7

11-12 05 - 77 M1 - M7 75-76 45 - 77 M5 - M7

13-14 06 - 77 M1 - M7 77-78 46 - 77 M5 - M7

15-16 07 - 77 M1 - M7 79-80 47 - 77 M5 - M7

17-18 10 - 77 M1 - M7 81-82 50 - 77 M5 - M7

19-20 11 - 77 M2 - M7 83-84 51 - 77 M6 - M7

21-22 12 - 77 M2 - M7 85-86 52 - 77 M6 - M7

23-24 13 - 77 M2 - M7 87-88 53 - 77 M6 - M7

25-26 14 - 77 M2 - M7 89-90 54 - 77 M6 - M7

27-28 15 - 77 M2 - M7 91-92 55 - 77 M6 - M7

29-30 16 - 77 M2 - M7 93-94 56 - 77 M6 - M7

31-32 17 - 77 M2 - M7 95-96 57 - 77 M6 - M7

33-34 20 - 77 M2 - M7 97-98 60 - 77 M6 - M7

35-36 21 - 77 M3 - M7 99-100 61 - 77 M7

37-38 22 - 77 M3 - M7 101-102 62 - 77 M7

39-40 23 - 77 M3 - M7 103-104 63 - 77 M7

41-42 24 - 77 M3 - M7 105-106 64 - 77 M7

43-44 25 - 77 M3 - M7 107-108 65 - 77 M7

45-46 26 - 77 M3 - M7 109-110 66 - 77 M7

47-48 27 - 77 M3 - M7 111-112 67 - 77 M7

49-50 30 - 77 M3 - M7 113-114 70 - 77 M7

51-52 31 - 77 M4 - M7 115-116 71 - 77 None

53-54 32 - 77 M4 - M7 117-118 72 - 77 None

55-56 33 - 77 M4 - M7 119-120 73 - 77 None

57-58 34 - 77 M4 - M7 121-122 74 - 77 None

59-60 35 - 77 M4 - M7 123-124 75 - 77 None

61-62 36 - 77 M4 - M7 125-126 76 - 77 None

63-64 37 - 77 M4 - M7 127-128 77 None

System Concepts Chapter 10 153

Enabling Interrupt Levels from within a Task

Sometimes, an interrupt task may finish with a buffer of data before it finishes its
processing. An example of this is a task that processes a buffer and then waits at a
mailbox, possibly for a message from a user terminal, before calling wait_interrupt.
If other buffers of data are available to the handler (the number of pending interrupts
has not reached the limit), this does not present a problem. The handler can continue
accepting interrupts and filling empty buffers. However, if the interrupt task is
processing the last available buffer (i.e., the limit has been reached), the interrupt
handler will not receive further interrupts because the interrupt level is disabled. This
may be an undesirable situation if the interrupt task takes a long time before calling
wait_interrupt.

To prevent this situation, the interrupt task can call enable immediately after it
processes the buffer, enabling its associated interrupt level. This means that while
the task engages in its time-consuming activities, the interrupt handler can accept
further interrupts and place the data into the buffer just released by the task. You can
use this technique whenever the limit is 1, whether or not you use a buffer.

However, if the interrupt handler fills the buffer and calls signal_interrupt before
the task calls wait_interrupt, these events occur:

• The count of outstanding signal_interrupt requests is incremented, causing it to
exceed the limit you specified.

• The condition code E_INTERRUPT_OVERFLOW is returned to the interrupt
handler to indicate this overflow.

• The interrupt level is again disabled. The interrupt task cannot explicitly enable
the level again until the count falls to or below the limit.

If the interrupt task calls enable when the count is below the limit, nothing happens
and no exception code is returned. However, if the interrupt task tries to enable the
interrupt level when the count is greater than the limit, the enable system call returns
the E_CONTEXT condition code.

154 Chapter 10 Interrupts

If a task other than an interrupt task tries to enable the level, one of three events may
occur:

• If the level is already enabled, the enable system call returns the E_CONTEXT
condition code.

• If the noninterrupt task tries to enable the level (presumably following a disable)
and the interrupt task is not running (i.e., the interrupt task has called
wait_interrupt and is waiting for a service request), the level is enabled
immediately.

• If the interrupt task is running, the enable does not take affect until the interrupt
task next invokes wait_interrupt.

Handling Spurious Interrupts
When a PIC receives a signal from an interrupting device, it informs the iRMX OS of
the interrupt level. If the interrupting device sends interrupt signals of short duration
(that is, the input line is active for very short periods), the interrupt signal might be
gone when the PIC tries to determine the interrupt level. If this happens, the PIC
cannot determine the interrupt level and thus treats the interrupt as a spurious
interrupt.

Each time the PIC detects a spurious interrupt, it responds as if a level 7 interrupt had
occurred. Thus, if a master PIC detects a spurious interrupt, it responds as if the
interrupt occurred on level M7. If a slave PIC detects a spurious interrupt (for
example, a slave connected to master level M3), it responds as if the corresponding
level 7 interrupt occurred (in this case, level 37).

A spurious interrupt indicates a problem; the PIC detected an interrupt signal but was
unable to determine the level.

Your application system should provide some means of isolating spurious interrupts
to prevent further problems (such as falsely responding to a level 7 interrupt). This
involves judiciously selecting interrupt levels and adding code to all level 7 interrupt
handlers (handlers that service master level M7 or slave levels x7, where x ranges
from 0 through 7). Once the spurious interrupt has been isolated, the level 7 interrupt
handler can either attempt to correct the problem or ignore the spurious interrupt and
resume system processing.

In either case, before the handler returns control it should call exit_interrupt to clear
the hardware.

These sections describe several options for isolating spurious interrupts.

System Concepts Chapter 10 155

Calling get_level
One way that a level 7 interrupt handler can check for spurious interrupts is by
invoking the get_level system call as soon as the handler starts running. Get_level
returns the level of the highest priority interrupt that a handler has started but not yet
finished processing. If the level returned is not the level associated with the interrupt
handler, the interrupt is spurious.

This method is simple to implement, but it does take more handler time to execute
get_level. Your handlers may have speed requirements that prohibit the use of
get_level.

Judicious Selection of Interrupt Levels
Another way to isolate spurious interrupts is to avoid connecting devices to level 7
interrupts (master level M7 and slave levels x7, where x ranges from 0 to 7). If you
have no devices connected to these levels, and thus no handlers servicing them,
spurious interrupts will not affect system operation. Instead, each time a spurious
interrupt occurs, the PIC reacts as if a level 7 interrupt had occurred and sends control
to the appropriate interrupt table entry. Because no handler is associated with level 7,
that entry contains a pointer to the default handler, which returns control to the
interrupted task.

Examining the In-service Register
Another way that a level 7 interrupt handler can check for spurious interrupts is by
immediately reading the ISR (In-Service Register) of the corresponding PIC. If the
BYTE value obtained from that register does not have a 1 in the high-order bit, the
interrupt is spurious. To read the value, the handler must know the port address of
the ISR. In PL/M, these lines perform this check when placed at the beginning of the
interrupt handler:

if ((inbyte (port address of ISR)) & 0x80) == 0

interrupt is spurious

Only use this method of isolating spurious interrupts as a last resort. It requires the
handler to know the address of the ISR, which may vary from system to system.

156 Chapter 10 Interrupts

Interrupt System Calls
These are the system calls that relate directly to interrupts.

set_interrupt
rqe_set_interrupt
reset_interrupt
exit_interrupt
signal_interrupt
rqe_timed_interrupt
wait_interrupt
enable
disable
get_level
enter_interrupt

Table 10-5 lists common operations for interrupts and the system calls that perform
the operations.

Table 10-5. Interrupt System Calls

Operation Description

assign handler Set_interrupt assigns an interrupt handler and, if desired, assigns an
interrupt task to an interrupt level.

assign shared
handler

Rqe_set_interrupt assigns an interrupt handler and, if desired, assigns
an interrupt task to an interrupt level which is being shared by multiple
devices.

remove
interrupt level

Reset_interrupt cancels the assignment made to a level by
set_interrupt and, if applicable, deletes the interrupt task for that level.

send EOI Exit_interrupt sends an EOI signal to the PICs. *

invoke task Signal_interrupt invokes interrupt tasks and sends an EOI signal to
PICs. *

put task to
sleep

Rqe_timed_interrupt puts the calling interrupt task to sleep for a
specified time. The task awakens either when the specified time elapses
or signal_interrupt is called.

suspend task Wait_interrupt suspends the calling interrupt task until it is called by an
interrupt handler using signal_interrupt.

enable level Enable enables an external interrupt level.

disable level Disable disables an external interrupt level.

continued
* If the interrupt is on a slave, this call sends the EOI to the slave and the master.

System Concepts Chapter 10 157

Table 10-5. Interrupt System Calls (continued)

Operation Description

get current
level

Get_level returns the interrupt level of highest priority for which an
interrupt handler has started but has not yet finished processing.

set up segment Enter_interrupt sets up a previously designated data segment base
address for the calling interrupt handler.

See also: Nucleus system calls, System Call Reference

How to Use Interrupt System Calls
Figure 10-5 shows the order in which you make interrupt system calls.

1. Make this call from the interrupt task.

2. Make these calls from the interrupt task.

3. Make these calls from the interrupt handler.

4. Make these calls from the interrupt task.

5. Make this call from the interrupt task.

Figure 10-5. Interrupt System Calls

■■ ■■ ■■

set_interrupt

➀

OM02943

enter_interrupt
signal_interrupt
exit_interrupt
get_level

➃

reset_interrupt

➁
➂

➄

wait_interrupt
rqe_timed_interrupt

disable
enable

158 Chapter 10 Interrupts

System Concepts Chapter 11 159

Descriptors 11
What is a Descriptor?

The Nucleus assigns each object a descriptor when it is created. Each descriptor is an
entry in the Global Descriptor Table (GDT); it contains the physical base address, the
access rights, and the segment size of a given segment. The descriptors are managed
by the OS, which uses them to address an area of memory. Every segment must have
at least one descriptor, or the segment is not addressable. Figure 11-1 shows how the
16-bit selector indicates an entry in the Global Descriptor Table. The descriptor
contains a base address, to which the processor adds the offset part of the logical
address, forming an address in physical memory.

Segment

Descriptor Table

+

W-2834

Selector Offset

Base address

Memory operand

Figure 11-1. Descriptor and Offset Used To Access a Segment's Physical Memory

✏ Note
The paging mechanism that you use with flat model applications
forms addresses differently than in the previous figure.

See also: Segments, in this manual

160 Chapter 11 Descriptors

Advanced Uses for Descriptors
The OS enables you to access physical memory anyplace you want to.

▲▲! CAUTION
Descriptors are very powerful. If misused, they can affect the
integrity of the entire OS and can corrupt the interaction between
tasks in an application system. Do not use descriptors unless you
are an experienced programmer with full understanding of iRMX
addressing.

You can create, change, and delete descriptors just like segments. To the OS, they
look like segments. If you call get_type and specify a descriptor, the type code
returned is for a segment.

Advanced uses of descriptors are:

• To address areas of memory that are not defined when the system is configured
and are therefore excluded from the OS. You might do this for a VGA
controller. A device driver can access the controller using a descriptor you
create.

• To create aliases for existing segments. Aliases enable you to define a different
segment type or different access rights for the same segment. You might have a
piece of code that requires changing in the course of processing. You could
create a read/write segment that you write a change to in the course of
processing. After the change, you could use a descriptor to create an alias for the
segment so you could execute it.

Descriptors for Undefined Memory
When you configure the OS, you specify which areas of memory the it uses. The
memory pools for dynamic allocation to jobs comes from this memory. You can use
descriptors to address areas of memory that were not defined when the system was
configured. These memory areas are not allocated from the Free Space Manager
(FSM), or from the job's memory pool. When you create them, they do not reduce
the size of the job's memory pool, nor do they reduce the size of free space. When
you delete them, only the GDT entry is affected; the memory that was referenced by
the descriptor remains outside of the control of the OS.

See also: Memory pools, in this manual

System Concepts Chapter 11 161

Descriptors with Aliases
You can use descriptors to alias existing segments. Aliases provide segments with
alternate names and access rights.

Using rqe_create_descriptor

▲▲! CAUTION
Only use rqe_create_descriptor when you need to alias memory
already allocated to a job as an object, usually a segment, or when
you need to access memory outside the FSM.

Be careful! You can create a descriptor for any physical address; if
you make an error in calculating the address, you may corrupt
system and user data and overwrite program code.

You specify the full 32-bit physical base address and the segment size in
rqe_create_descriptor. The segment can lie anywhere in available memory, even
outside the range managed by the OS. The memory can overlap that contained in
other segments, if desired. The OS automatically sets up the new segment as a data
segment with read/write access.

When you create a descriptor, the Nucleus assigns a slot in the GDT with the physical
address and marks the object as a descriptor.

Using rqe_delete_descriptor
When you call rqe_delete_descriptor, the Nucleus removes the association between
the GDT slot and the memory but does not delete the memory addressed by the
descriptor. The system call returns the GDT slot to the OS for re-use.

Using rqe_change_descriptor
This system call is intended for system programs that need to access areas of memory
in special ways. You can use rqe_change_descriptor to access areas of memory
that are not part of the OS and to alias segments, giving you the ability to change
segments that were originally read/write segments to execute segments.

162 Chapter 11 Descriptors

Descriptor System Calls
These are the system calls that relate directly to descriptors.

rqe_create_descriptor
rqe_delete_descriptor
rqe_change_descriptor

Table 11-1 describes operations on descriptors and what the related system calls are.

Table 11-1. Descriptor System Calls

Operation Description

return token
for segment

Rqe_create_descriptor places a descriptor, including the base physical
address and segment size, in the GDT.

delete
descriptor

Rqe_delete_descriptor removes the association between a GDT slot and
an area of memory and returns the slot to the OS for re-use.

change
address or
segment size

Rqe_change_descriptor changes the base address contained in the GDT
and/or the size of the segment described.

See also: Nucleus system calls, System Call Reference

■■ ■■ ■■

System Concepts Chapter 12 163

Other Nucleus Features

Date and Time Subsystem
The iRMX III.2.3 Nucleus provides a Year 2000 compliant date/time system call that
allows applications the ability to set and get time and date information from both the
local CPU clock as well as from some external Real-Time Clock (RTC) devices.

See: rqe_time system call, System Call Reference;

Live Insertion Support
The iRMX OS supports the live insertion capability of Multibus II systems. Live
insertion allows you to replace or add a Multibus II board in a system with the power
on and with minimal disruption to the other boards.

Multibus II live insertion requires a particular Central Services Module (CSM) and
backplane. If you are uncertain whether your hardware supports live insertion,
contact the manufacturer(s) or the Multibus Manufacturer’s Group for information.

In a Multibus II live insertion environment, if an OS on one board depends on
another board (such as a file server) or communicates with another board, it must
know if that board fails or is reset. The iRMX OS contains mechanisms to detect
these conditions and notify your application. Once the application is notified of
board failure or reset, it can take action based on recovery procedures specific to your
requirements.

Watchdog Timer
The watchdog timer is the main component of iRMX live insertion support. The
watchdog timer detects when another board fails or is reset and informs applications
of the event.

The watchdog timer on each board performs the following functions:

• Periodically broadcasts an existence message to inform other boards in the
system that this board exists.

• Monitors the existence messages of other boards in the system to determine
when they fail or are reset.

• After receiving an existence message from a board, sets an alarm period and
waits for the next existence message. If the board’s alarm period expires before

12

Chapter 12 Multibus II Live Insertion Support and Interconnect Space164

the expected existence message arrives, the watchdog timer assumes that the
remote board has failed and notifies applications on its own board.

System Concepts Chapter 12 165

• Examines each incoming existence message to determine the slot ID of the
sender. If the sending board has an alarm associated with it, the watchdog timer
deletes the alarm before it expires. The watchdog timer checks the incarnation
number in the existence message to determine if the remote board has been reset.
If the remote board has been reset, the watchdog timer notifies applications on its
own board and creates an alarm for the remote board.

Existence messages include the board ID (slot ID) and incarnation number. The
incarnation number gives the watchdog timer enough information to determine if a
remote board has been reset since the last existence message.

Reconfiguration Mailboxes
Reconfiguration mailboxes let your application receive notification of board failure
or reset in the system. You can design a recovery task in your application to act on
the type of failure.

To create a reconfiguration mailbox, first create a data mailbox with the
rq_create_mailbox system call. Then use the rq_add_reconfig_mailbox system
call to assign it as a reconfiguration mailbox.

See also: rq_add_reconfig_mailbox, rq_create_mailbox system calls, System
Call Reference;
Reconfiguration Mailboxes; Chapter 3

Failure Handling
The watchdog timer on one board can detect that any board in the Multibus II system
has either failed or been reset, if those other boards have also enabled a watchdog
timer.

If the watchdog timer detects a failure, it informs all reconfiguration mailboxes on its
board with the appropriate message:

• For a remote host failure, it sends out a WD_HOST_FAILURE message to all
reconfiguration mailboxes on its own board. The WD_HOST_FAILURE
message indicates that the alarm expired without receiving an existence message
from the remote board.

Chapter 12 Multibus II Live Insertion Support and Interconnect Space166

• For a remote host reset, it first sends out a WD_HOST_FAILURE message to all
reconfiguration mailboxes for all incarnations of that board starting with the last
known incarnation and up to but not including the current incarnation number.
Following this message is a WD_HOST_RESET for the current incarnation.
The WD_HOST_RESET indicates that the incarnation number in the existence
message is not the same as previously received from the remote board.

See also: rq_add_reconfig_mailbox, System Call Reference

Internal Failure Recovery

The operating system has internal procedures to handle WD_HOST_FAILURE
messages and WD_HOST_RESET messages. Currently, the ATCS 279/ARC server
and client(s) use this mechanism.

Application Failure Recovery

You can assign any data mailbox as a reconfiguration mailbox by using the
rq_add_reconfig_mailbox system call. Write a recovery procedure to wait at each
reconfiguration mailbox. When the watchdog timer sends a message to
reconfiguration mailboxes on a host, your recovery procedure can respond as
required.

For example, suppose you have a client weather station that receives weather data
from a number of server collection stations. You could write a procedure that would
keep your client from asking for data from a server that was not operating, and that
would begin asking for data from that server again after it came back on line. The
following pseudocode example shows how you might create a reconfiguration
mailbox and use it to begin such a recovery procedure.

System Concepts Chapter 12 167

monitor_task()

{

RQ_TOKEN mbox;

UINT_32 msg_size;

RQ_RECONFIG_MSG_STRUC message;

mbox=RQ_create_mailbox(0x20,&exception);

RQ_add_reconfig_mailbox(mbox,&exception);

/*wait for failure or reset message*/

FOR (;;)

{

msg_size=RQ_receive_data(mbox,&message,RQ_WAIT_FOREVER,

&exception);

/* If get failure message, perform server failure

procedure*/

IF (message.msg_type==RQ_HOST_FAILURE)

server_fail(message.host);

/* If get reset message, perform server recovery

procedure*/

ELSE IF (message.msg_type==RQ_HOST_RESET)

server_recover(message.host);

}

}

See also: rq_add_reconfig_mailbox system call, System Call Reference;
Reconfiguration Mailboxes, Chapter 3

Chapter 12 Multibus II Live Insertion Support and Interconnect Space168

Configuring the Watchdog Timer
You set up the watchdog timer on the (MBII) Multibus II hardware screen of the
ICU. From this screen you can:

• Enable or disable the watchdog timer.

• Specify the number of reconfiguration mailboxes that can be in use
simultaneously. Allow enough for any ARC server and each ARC client on your
board in addition to the number needed by your application.

• Set the time the board waits between each broadcast of its existence message.

• Set the time the board waits for the next existence message from other boards
before notifying the reconfiguration mailboxes that the other board failed.
Broadcasts of existence messages must occur more often than wait periods. A
good ratio to use is two broadcasts for every wait period.

See also: MBII screen, ICU User’s Guide and Quick Reference

System Concepts Chapter 12 169

What is Interconnect Space?
Interconnect space is a collection of 512 one-byte registers on every board in a
Multibus II system. The registers contain information about the board: the
manufacturer, model number, memory configuration, and other board-specific
information. The first 32 interconnect registers of every board have an Intel-
specified format and are called the header record. The hardware specification for the
board defines the format of the rest of the interconnect registers.

See also: Architecture of interconnect space, Multibus II Interconnect
Interface Specification;
the hardware reference manual for your board

How the OS Uses Interconnect Space
The OS uses interconnect space to automate board identification on the parallel
system bus (PSB) at system start-up. The interconnect registers configure a board
dynamically, replacing many functions previously handled by onboard jumpers. The
OS uses interconnect space to determine the available resources and load system
utilities as necessary. Most registers are set during system initialization and remain
unchanged until the board is reset.

The OS also uses interconnect space when the watchdog timer has been configured
into the system. The watchdog timer detects board failures and resets by monitoring
certain interconnect space registers.

How an Application Uses Interconnect Space

▲▲! CAUTION
The interconnect registers are not intended for general run-time
communication. Using the interconnect registers during normal
system operations may have a severe impact on the system
response.

You can corrupt the operation of the board or the system by
specifying incorrect values in interconnect registers.

Chapter 12 Multibus II Live Insertion Support and Interconnect Space170

You can read the interconnect registers to determine current board configuration and
set them to modify identification, configuration, and diagnostic information. The
registers are organized modularly. A group of contiguous registers, called a record,
describes a single function. To access registers at the record level, you access each
register in a record individually. The Nucleus Communication Subsystem (NCS)
provides direct read and write access to individual interconnect registers in the
system. The NCS provides mutual exclusion on the access to any single interconnect
register.

If you want to read or write a series of registers arranged as a record, you must
provide mutual exclusion by using a semaphore or region. You must access multiple
interconnect registers in a well-known record format.

Referencing Interconnect Space
You reference interconnect space for each board using the board's slot ID in the PSB
backplane; the slot number of a host is equal to its host ID. Using slot 31 specifies
the host of the calling task, so a task can access registers on its board without
knowing the slot number. You also specify the register number.

Reading and Writing Interconnect Space
You can read or write interconnect space from the command line using the ic
command. This command performs several functions, such as displaying the slot ID
and product code for each board in the system and displaying register contents.

See also: ic command, Command Reference

System Concepts Chapter 12 171

Interconnect Register System Calls
These are the system calls that you use to access interconnect registers.

set_interconnect
get_interconnect

Table 12-1 lists operations on interconnect registers and what the related system calls
are.

Table 12-1. Interconnect Register System Calls

Operation Description

get settings Get_interconnect gets the value of a specified interconnect
register on a host in the specified slot number.

change
settings

Set_interconnect sets the value of a specified interconnect
register on a host in the specified slot number. It will not write a
read-only register, but will not return a condition code. Check the
general status register, 24, for results.

See also: Nucleus system calls, System Call Reference

■■ ■■ ■■

Chapter 12 Multibus II Live Insertion Support and Interconnect Space172

System Concepts Chapter 13 173

OS Extensions and Type Managers13
How Do You Add a System Call?

If more than one job in your application system requires a function that is not
supplied by the OS, you can add the function in these ways:

• Write the function as a procedure and add it to the OS. Invoke the function with
a system call you write. This is called extending the OS; the procedures you add
are OS extensions. This alternative is the subject of this chapter.

• Write the function as a procedure and place it in a library, using the LIB386
librarian utility. After compiling each job that requires the function, bind the
library to the object module for the job.

• Write the function as a task and allow application tasks to invoke the function
through a mailbox interface.

Table 13-1 compares the ways of adding functions.

Table 13-1. Comparing Techniques for Creating System Calls

OS Extension Library Task

Difficulty Simple Simple Complex

Performance Fair (slow functions)
Good (slow functions)

Good (all functions) Poor (quick functions)
Fair (quick functions)

System calls Both asynchronous
and synchronous

Both asynchronous and
synchronous

Asynchronous only

Programmer System Application Application

Duplicate code Avoided automatically Hard to avoid Easy to avoid

Relinking Not required Required Not required

New objects Supported Not supported Not supported

174 Chapter 13 OS Extensions and Type Managers

Creating an OS Extension
Every OS extension consists of an interface and a function procedure. An entry
procedure is optional. Figure 13-1 shows the simplest arrangement of an extension.
The figure shows two OS extensions, each containing one system call. There is no
entry procedure.

OM02874

➀

➁

➂

ZY

BA

BA

➃

1. The application tasks are linked to the interface procedures.

2. The interface procedures are part of the application software.

3. The interface procedures pass control to the function procedures by using a call gate.

4. The function procedures are part of the system software.

Figure 13-1. OS Extension Using Interface and Function Procedures

Call gates redirect flow within a task from one code segment to another. Each
system call uses a call gate to transfer control to the requested function. This makes
it possible to go directly from the interface procedure to the function procedure. In
an ICU-configurable system, you can specify the GDT slot reserved for call gates
using the GSN parameter; in iRMX for PCs and DOSRMX, use the OSX parameter
in the rmx.ini file. For compatibility between the OSs, use consecutive slots starting
with 440.

See also: GSN parameter, ICU User's Guide and Quick Reference;
OSX parameter, System Configuration and Administration

System Concepts Chapter 13 175

Interface Procedures

An interface procedure connects your application code to an OS extension call gate.
Since they are very small, you can provide an interface procedure for each supported
compilation model. The OS provides a library of interface procedures for various
compilation models of the Intel iC-386, Watcom C, Microsoft C, and PL/M
compilers.

For example, to issue a new_function system call, your task executes a statement
like

new_function (......);

This is a call to an interface procedure, named new_function, which transfers control
to the OS. For each system call in your OS extension, you must write a reentrant
interface procedure.

1. The interface procedure uses a call gate to transfer control from the task that
invoked the call to a function procedure.

For example, when transferring control to a function procedure whose call gate
number is 441H, the interface procedure is bound to a .GAT file produced by
BLD386 and then calls GATE 0441, which is the PUBLIC name for this gate.
You can find a gate's PUBLIC name in the mp2 file generated by BLD386.

2. If an entry procedure exists, the interface procedure must give a code to the entry
procedure that identifies the function procedure to call. The interface procedure
does this by loading the code into a previously designated register or onto the
stack of the calling task.

3. The entry procedure, when invoked, extracts the code from this register or the
stack.

See also: Assembly Language Reference

176 Chapter 13 OS Extensions and Type Managers

Function Procedures

The duties of the function procedure are mainly to do what the calling task asks. One
function procedure is required for each customized system call. If there is no entry
procedure, the function procedure should inform the interface procedure of the
system call's exception status by setting CX and DL. Function procedures should be
reentrant and can be written in any high-level language or in assembly language.

These are the ways to specify a call gate:

• Using the .GAT file created by BLD386

• Using an assembly language macro

See also: Developing applications in assembly language, OS extension example,
Programming Techniques

Entry Procedures

The entry procedure is associated with a call gate. Each OS extension with multiple
system calls assigned to it must include a reentrant entry procedure. Its main purpose
is to route the call from the interface procedure to the appropriate function procedure.
This procedure is optional.

Write the entry procedure in assembly language so you can directly access the stack
and the registers. This gives you access to the input parameters passed by the calling
task and the interface procedure. It also enables you to set the CX and DL registers
in the event of an exceptional condition.

The entry procedure must send a code identifying the function procedure called by
the task. The interface procedure does this by loading the code into a previously
designated register or onto the stack of the calling task.

Other possible functions of entry procedures are:

• To set up exception handling for the OS extension, if this is needed.

• To perform a routine common to all system calls in this OS extension.

• To transmit the exception incurred by the function procedure back to the
interface routine in the CX and DL registers.

System Concepts Chapter 13 177

Figure 13-2 shows a single OS extension with an entry procedure.

OM02873

➀

➁

➂

➃

A B

Y Z

BA

➄

➅

1. The application tasks are linked to the interface procedures.

2. The interface procedures are part of the application software.

3. The interface procedures pass control to the entry procedure by using a call gate.

4. There is one entry procedure for the OS extension.

5. The entry procedure passes control to the designated function procedure.

6. The function procedures are part of the system software.

Figure 13-2. OS Extensions with Entry Procedure

178 Chapter 13 OS Extensions and Type Managers

Figure 13-3 summarizes, in algorithmic form, what the procedures do.

Or

Or

Interface
rocedure

Calling
Task

(Optional)
Entry

rocedure

Function
rocedure

Load into a specific pair of registers a pointer to the
 parameters on the task's stack
If there is an entry procedure, then
 load into a specific register a code identifying the function
 being called
Call a call gate to call the entry procedure or a function
 procedure
Examine the CX register
If the CX contains a nonzero value, then call RQERROR to
 inform the task of the exception
Store CX register contents in a word pointed to by status_p
Return (RET)

W-2815

If using default RQERROR procedure and if desired, then save
 task's exception handler (get_exception_handler) and
 set up a temporary replacement
 (set_exception_handler)
If possible then
 do processing common to all function procedures in this
 OS extension
Get function code stored by interface procedure
Call the designated function procedure
If exception handlers were switched earlier then restore
 original (set_exception_handler)
If notified of an exception by a function procedure, then place
 condition code in CX register
 Place parameter number In DL register
Return (RET)

Do some processing
Call an interface procedure
Do more processing

Obtain input parameters
Perform actions expected by calling task
Return condition code and any values expected
 By Calling Task
Return (RET)

Figure 13-3. Summary of Duties of Procedures in OS Extensions

Exception Handling for Custom System Calls
Exception handling for custom calls usually results in the OS extension calling iRMX
system calls. This section lists the appropriate calls.

The interface procedure must inform the calling task (or its exception handler) of any
exceptional conditions that occurred:

1. The function procedure places the condition code in the CX register and the
number of the parameter that caused the error in the DL register.

2. The interface procedure then checks the CX register for the condition code. If
this register contains a value other than 0 (E_OK), an exceptional condition
occurred.

System Concepts Chapter 13 179

3. The interface procedure calls RQERROR, NUCERROR, or a custom exception
handler you write, or it handles exceptions inline.

RQERROR and NUCERROR Procedures

RQERROR is a procedure in the iRMX OS that is called by the interface procedures
of all iRMX layers except the Nucleus. For example:

1. If a task calls create_file and incurs an exceptional condition, the I/O System
returns control to the I/O System interface library linked to that task.

2. The interface procedure in that library calls RQERROR to process the error.

3. RQERROR gets the condition code and parameter number from the CX and DL
registers and then makes a signal_exception system call to inform the calling
task (or its exception handler) of the exception.

4. When signal_exception returns to the RQERROR procedure, RQERROR
restores CX and DL with the condition code and parameter number and places a
value of 0FFFFH in the AX register.

You should link RQERROR to your tasks to ensure that their exception handlers
are called when exceptional conditions occur.

NUCERROR performs the same functions for Nucleus interface procedures as
RQERROR, except it does not call signal_exception. Instead, when a Nucleus
system call returns with an exceptional condition, the stack contains extra UINT_16s
used to process the exception. They include the exception mode and a pointer to the
exception handler. If the mode specifies calling the handler, NUCERROR calls the
exception handler directly. Figure 13-4 on page 180 shows the flow of control from
an application task to an exception handler when the task incurs an exception.

180 Chapter 13 OS Extensions and Type Managers

Nucleus interface library

Nucleus

rq_send_messageNucleus callgate

NUCERROR procedure

Call exception handler

Pop bytes
Return

Interface procedure

rq_send_message

Exception occurs

A

Save registers

Restore registers

Call NUCERROR
Return

Exception handler

Return

OM02941

➀

➁
➂

➄

➅

➃

➆

1. The task makes a call which goes through the interface procedure and call gate.

2. The function procedure is called.

3. An exception occurs and control passes to NUCERROR.

4. NUCERROR saves the CX and DL registers.

5. NUCERROR calls the exception handler to process the exception.

6. The exception handler returns. NUCERROR restores CX and DL and places 0FFFFH in

AX.

7. NUCERROR returns, cleaning the stack.

Figure 13-4. Handling Exceptions with an iRMX Exception Handler

System Concepts Chapter 13 181

Writing Your Own RQERROR or NUCERROR Procedure

If you do not want to use the default RQERROR or NUCERROR procedure provided
by the OS, you can write your own. Your procedure can do any functions needed to
inform the application task of the exceptional condition, as long as you do this:

• Your RQERROR procedure should place 0FFFFH in AX and then issue a
RETURN, returning control directly to the application task to avoid the task's
normal exception handler.

• You must always clear three stack words (12 bytes for 32-bit code and 6 bytes
for 16-bit code) on return.

• To ensure that your procedure instead of the default version is called, link it
directly to the interface procedure or include it in a library with the rest of your
interface procedures. When linking modules together, this library should always
precede the Nucleus interface library in the link sequence.

The function procedure must change the exception handler from that of the calling
task to an exception handler for the OS extension. To make this change:

1. The function procedure should first call get_exception_handler or
rqe_get_exception_handler to get and save the task's exception handler address
and exception mode.

2. It should call set_exception_handler or rqe_set_exception_handler to set new
values for these entities.

3. Just before returning control to the interface, the function procedure should call
set_exception_handler or rqe_set_exception_handler to restore the original
values. In the case of an entry procedure, the entry procedure saves and restores
the exception handler and mode.

Handling Exceptions Inline

If you want the OS extension to handle exceptions inline, you can follow the above
steps, calling either set_exception_handler or rqe_set_exception_handler with the
exception_mode parameter set to NEVER. This is the simplest and most
straightforward method. However, it uses the three Nucleus calls listed above upon
entry and exit from the function procedure.

Another way of handling exceptions inline is to link your OS extension to your own
version of RQERROR or NUCERROR. The RQERROR procedure may simply
place 0FFFFH in the AX register (so that 0FFFFH is returned for system calls that
are invoked as functions) and then do a RETURN, to return control directly to the
interface library. The interface library then returns control to your OS extension,
allowing the OS extension to process the exception inline.

182 Chapter 13 OS Extensions and Type Managers

Figure 13-5 illustrates the flow of control for an OS extension that incurs an
exceptional condition, processes the exception inline, and then returns an exception to
the application task that called it. Notice that both the OS extension and the
application task, although not linked together, are linked to interface libraries and an
RQERROR procedure. The RQERROR procedure linked to the OS extension returns
control to the OS extension.

OS Extension
Interface Library

Place 0FFFFH in AX
Pop bytes

Return

Nucleus

Transfer to
exception handler

Nucleus Interface Library
Customized system

call interface procedure

Return

Save registers

Call to nucleus

rq_signal_exception

Restore

Return

Call to
OS extension

Call to nucleus
Call NUCERROR

Return

Exception
occurred

Interface procedure

rq_signal_exception

Call RQERROR

RQERROR procedure

Nucleus system call

NUCERROR
procedure

OS extension

Return

A

Exception handler

Return

15

14

13

12

11

10 7

4

5

6

1

OM02942

2
3

89

Follow the numbered arrows. These are descriptions of some steps.

6. NUCERROR places 0FFFFH in AX.

7. NUCERROR clears three stack words on return.

10. RQERROR saves the CX and DL registers.

13. RQERROR restores CX and DL places 0FFFFH in AX.

Figure 13-5. Control Flow for Handling Exceptions Inline

Overriding NUCERROR

To override NUCERROR with your own procedure, return from your version of the
NUCERROR procedure by popping three stack words using RET 12 for 32-bit or
RET 6 for 16-bit code. These words were placed on the stack to use for the call to
rq_signal_exception.

Even though your OS extension processes its own exceptions inline, you should
return exceptions to tasks (or other OS extensions) that invoke the custom system
calls. The function procedure of your OS extension should place the condition code

System Concepts Chapter 13 183

and parameter number in CX and DL, and return to the interface linked to the
application task.

Overriding RQERROR

You can provide your own RQERROR routine and bind it to your programs.

✏ Note
Your routine must contain a public procedure named RQERROR
and you must bind the routine to application code before binding
the UDI or RMX interface library.

In the BND statement, place the name of the file containing your RQERROR routine
before the name of the interface library. This causes your RQERROR routine to be
bound in place of the default routine. Your RQERROR routine must adhere to the
model of segmentation you used in the application program itself.

The source code of the default UDI RQERROR routine is available in the
/rmx386/udi directory. You can use this source code as an example when building
your own RQERROR routine. The file UCERR.A38 applies only to COMPACT
applications.

When the RQERROR procedure invokes signal_exception, control can pass to an
exception handler. If the default exception handler is in effect, it displays the
appropriate error message at the console and can terminate the application.

Establish your own exception handler by calling rq_set_exception_handler or
dq_trap_exception. The new exception handler will be called whenever you invoke
rq_signal_exception.

184 Chapter 13 OS Extensions and Type Managers

After an exceptional condition occurs and before your exception handler gains
control, the iRMX OS:

1. Pushes the condition code on the stack of the program that made the system call
generating the condition code.

2. Pushes the number of the parameter that caused the exception on the stack (1 for
the first parameter, 2 for the second, etc.).

3. Pushes a UINT_16 on the stack (reserved).

4. Pushes a UINT_16 for the NPX on the stack.

5. Initiates a far call to the exception handler.

If the exceptional condition was not caused by an erroneous parameter, the
responsible parameter number is 0. If the condition code is E_NDP_ERROR, the
fourth item pushed onto the stack is the NPX status word. The NPX exceptions are
cleared.

Custom Condition Codes

When you add your own system calls, you may need to add your own exceptional
conditions and condition codes. You can use values 4000H to 7FF0H for
environmental conditions and 0C000H to 0FFF0H for programmer errors.

Linking the Procedures
For each OS extension, you should produce one library of interface procedures for
each segmentation model in which the calling task can be written. Within each
library, you should have one interface procedure for each custom system call. Each
module in your system should be linked to the appropriate interface library for each
OS extension that it calls.

For each OS extension, link all the function procedures (and the entry procedures, if
any) along with any OS interface libraries that the procedures need. Do not link them
to any application code because they are connected to the application tasks with call
gates.

Any RQERROR or NUCERROR procedure that you write should be linked to the
appropriate routines:

• To inform the application task of an exception, place your RQERROR procedure
in the interface library you create.

• To process exceptions that your OS extension incurs, link your RQERROR or
NUCERROR procedure directly to the function procedures.

System Concepts Chapter 13 185

• Link the iRMX OS interface library, and the interface libraries for any of the
other subsystems that you use, to the application task and/or the OS extension,
whichever uses these subsystems. If you provide your own RQERROR or
NUCERROR procedure, either for your interface procedures to call or to process
exceptions in your OS extension, this procedure must precede the iRMX OS
interface library in the link sequence.

Including OS Extensions
Before an interface procedure can successfully transfer control to an OS extension,
you must establish an entry point. You can add your OS extension to the OS at build
time using the ICU or you can add it at boot time using the sysload command from
the :config:loadinfo file or you can add it dynamically.

• For ICU-configurable systems:

– To only reserve the gate number when you configure the system, enter the
next available OS extension slot in the GSN parameter and leave the EPN
field blank.

– To have the OS assign your OS extension to a call gate at build time, fill in
both the GSN and EPN parameters.

• For non-ICU-configurable systems, use the OSX loadtime parameter in the
rmx.ini file to reserve your OS extension slot.

• Use the system call rqe_set_os_extension to include extensions dynamically.
When you invoke the call, enter the gate number and the start address of the first
instruction of your entry or function procedure. You cannot use the same call
gate for more than one OS extension simultaneously.

▲▲! CAUTION
Always reset the OS extension with a null value in the
start_address parameter first. Then issue the call again with
the desired start_address. Otherwise, the system will not
initialize on a warm reset.

See also: GSN and EPN parameters, ICU User's Guide and Quick Reference;
OSX loadtime parameter, System Configuration and Administration

186 Chapter 13 OS Extensions and Type Managers

System Calls for OS Extensions
These system calls are used extensively by OS extensions:

rqe_set_os_extension
signal_exception

Table 13-2 lists operations on OS extension system calls and what the related system
calls are.

Table 13-2. OS Extension System Calls

Operation Description

attach call
gate

Rqe_set_os_extension attaches the entry point address of the
OS extension to a call gate.

signal error Signal_exception advises a task that an exceptional condition
has occurred in an OS extension.

See also: Nucleus system calls, System Call Reference

System Concepts Chapter 13 187

Protecting Objects From Deletion
Normally, you delete an object by a call to the delete_ system call corresponding to
the object's type. However, you can use the disable_deletion system call to make the
object immune to this kind of deletion. A subsequent call to enable_deletion
removes the immunity. You can use deletion immunity anywhere in your
application, not just in OS extensions.

An object can have its deletion disabled more than once. An object's disabling depth
is the number of times the object has had its deletion disabled.

Each call to disable_deletion must be countered by a call to enable_deletion before
the object can be deleted.

Usually, an object cannot be deleted until its disabling depth is 0. The only exception
is that a call to force_delete deletes objects whose disabling depth is one. Also,
calling enable_deletion for an object whose deletion depth is 0 results in the
E_CONTEXT condition code.

▲▲! CAUTION
When you attempt to delete an object whose disabling depth is too
high to permit deletion, the deleting task goes to sleep. The task
remains asleep until the object's deletion depth becomes small
enough to permit deletion. At that time, the object is deleted and
the deleting task is awakened. Because these circumstances can
cause system deadlock, be careful when deleting objects and when
disabling deletion.

Never disable deletion in applications that rely on <Ctrl-C> for
program termination.

188 Chapter 13 OS Extensions and Type Managers

System Calls for Deletion Immunity
These system calls are used for deletion immunity:

force_delete
enable_deletion
disable_deletion

Table 13-3 lists deletion immunity operations and what the related system calls are.

Table 13-3. Deletion Immunity System Calls

Operation Description

delete object Force_delete deletes objects whose disabling depths are 0 or 1.

increase
disabling

Disable_deletion increases the deletion disabling depth of an
object by one.

enable
deletion

Enable_deletion removes one level of deletion disabling from an
object.

System Concepts Chapter 13 189

Type Managers and Custom Objects
Some applications require both custom objects and system calls for manipulating
them. A type manager is an OS extension that provides these services. If you require
custom objects, you must write a manager for each type. The duties of type
managers are:

• Creating objects of the new type.

• Deleting objects of the new type.

• Optionally providing the system calls that your tasks can invoke to create,
manipulate, and delete objects of the new type.

This section describes creating and deleting objects of a new type.

See also: Appendix A for an example that creates and deletes objects of a new
type;
Extending iRMX, Real-Time and Systems Programming for PCs by
Christopher Vickery

Creating New Objects
Creating custom objects requires:

• Creating the type

• Creating objects of that type

In create_extension, you specify the type code for the new object and whether you
want a deletion mailbox. If you specify a mailbox, delete_extension and delete_job
will send composite objects to the mailbox for the type manager to delete.
Otherwise, delete_extension and delete_job will delete composite objects. The
create_extension system call returns a token for the new type. The token represents
a license to create objects of the new type.

The create_composite system call creates objects of the new type; it accepts the
token returned from create_extension as a parameter. Create_composite also
accepts a list of tokens for the component objects that will compose the new object.
It returns a token for the new object, called a composite object. Figure 13-6 on page
190 shows the order for creating composite objects.

OM02887

create_extension create_composite

Figure 13-6. Composite Object System Call Order

190 Chapter 13 OS Extensions and Type Managers

When you create a composite object:

• Its component objects are all iRMX objects, either provided by the iRMX OS or
by other objects you have created.

• No structure is imposed on composite objects of a given extension type. Two
objects of the same extension type can be completely different in structure or in
the number of component objects they comprise. This feature allows for
maximum flexibility in the creation of new objects.

Once a type manager creates a new object type by calling create_extension, the type
manager owns the type. Only the type manager can create composite objects of that
type. In addition, when it creates composite objects, the type manager can request
that a token for the composite object be sent back to the type manager when the
object has to be deleted.

Deleting Composite Objects and Extension Types
Delete_composite deletes a particular composite object, but not its components.
Delete_extension deletes a specified extension type, and either deletes all composites
of that type or sends them to a deletion mailbox, in which case the type manager must
delete them.

Delete_job, also deletes composite objects as a part of its processing. Although
delete_job cannot delete extension types (it returns an exception code if the job
contains any extension objects), it can delete composites or send tokens for them to
deletion mailboxes where their type managers delete them.

System Concepts Chapter 13 191

Using delete_job

When a task calls delete_job, the Nucleus normally deletes every object in the job.
However, if the job contains a composite object whose extension has a deletion
mailbox, the Nucleus sends the token for the composite object to the deletion
mailbox. The Nucleus then waits until the type manager calls delete_composite
before continuing the deletion process. In that case:

1. The type manager must wait at the deletion mailbox to receive the tokens for the
objects to be deleted.

2. It must perform any special processing required to delete the composite object.
For example, it might want to wait until all tasks have stopped using the
composite.

3. It has the option of deleting those component objects not contained in the job
being deleted. It cannot, however, delete any objects contained in the job being
deleted or it will incur an exceptional condition. (This is not a problem because
the objects in the job being deleted will automatically be deleted during the
delete_job call.)

4. It must call delete_composite, which deletes the composite object (but not the
component objects) and informs the Nucleus that the type manager has finished
the special processing that deletes the composite object. After the type manager
calls delete_composite, the Nucleus resumes the delete_job processing. If the
type manager fails to call delete_composite, the delete_job system call will not
finish processing.

192 Chapter 13 OS Extensions and Type Managers

Figure 13-7 shows the type manager's involvement in the delete_job process.

OM02888

delete_job

➀

➃

➁

➂

delete_composite
A

1. The task calls delete_job.

2. The Nucleus sends the composites to the deletion mailbox.

3. The type manager waits at the mailbox. It performs any cleanup required and calls

delete_composite.

4. Control returns to delete_job.

Figure 13-7. Type Manager Involvement in Delete_job

The type manager is not required to delete all objects. The Nucleus sends the tokens
for all other composite objects to their own deletion mailboxes, where their type
managers are responsible for deletion. Therefore, all the component objects are
eventually deleted, as long as they are in the job being deleted.

In the course of delete_job, the Nucleus deletes any Nucleus objects in the job. It
sends the tokens for any I/O System, EIOS, or Human Interface objects to their
respective deletion mailboxes, where the subsystems themselves delete the objects.

Using delete_extension

You can call delete_extension to delete an extension type. Use this call when you no
longer need to create composite objects of a given extension type. When you call
delete_extension and the extension has a deletion mailbox, the Nucleus sends the
tokens for all composite objects of that extension type to the deletion mailbox. Then
the Nucleus waits until the type manager calls delete_composite before sending the
next composite to the mailbox. The type manager has responsibilities during
delete_extension similar to delete_job:

System Concepts Chapter 13 193

1. First, it waits at the deletion mailbox for the objects' tokens.

2. Then, it handles any special processing necessary to delete the object.

3. Finally, it calls delete_composite to delete the composite. The type manager
must call delete_composite for each token it receives at the deletion mailbox. If
it does not, the delete_extension system call will not finish processing.

However, unlike delete_job processing, the type manager has the choice during
delete_extension of whether or not to delete individual component objects. If it
wishes to delete the component objects, the type manager must explicitly delete them.
Delete_extension does not delete any component objects.

Deleting Nested Composites

A composite object can contain objects of any type, and as a result, some of its
component objects may be composite objects themselves. This can cause problems
for type managers when they delete the composite objects if the type manager for any
of the composite objects depends on the existence of any of the other composite
objects to complete its processing.

For example, suppose objects A and B are composites in the same job. They have
different extension types, and B is a component of A. Each composite has a type
manager that performs special cleanup functions before it can delete the
corresponding composite. If neither type manager requires information contained in
the other composite to perform its special processing, the deletion process can
proceed without difficulty.

However, if the type manager for composite A requires some information contained
in composite B to complete its processing, the deletion process becomes more
complex. For this deletion scheme to work, you must guarantee that composite A
will be deleted before composite B. Thus, you must know the order in which the
delete_job call deletes objects and sends composites to deletion mailboxes, so that
you can set up your composites correctly.

194 Chapter 13 OS Extensions and Type Managers

Delete_job deletes composite objects before it deletes non-composite objects. It
deletes composite objects on a last-in-first-out basis; that is, in the reverse order from
which they were created. Therefore, a type manager can depend on receiving the
tokens for composite objects that it creates before the Nucleus deletes the component
objects contained in them. The only exception is when a composite (composite A) is
created before another composite (composite B), and composite B is inserted as a
component into composite A using alter_composite. In this case, composite B will
be deleted first, and the type manager of composite A cannot rely on the existence of
composite B when it receives composite A’s token for deletion.

Writing a Type Manager
A type manager consists of two parts:

• The initialization part creates the type and optionally creates a deletion mailbox
to which the system can send tokens for objects when deleting either jobs or the
type itself.

• The service part provides system calls so tasks can create and manipulate objects
of the type.

Because the initialization phase must be completed before any task attempts to obtain
tokens for objects, you should execute the initialization part early in the life of the
system.

• In an ICU-configurable system, the task should be part of the initialization task
of a first-level user job to ensure early execution.

• In non-ICU-configurable systems, make the type manager part of the first
sysloaded job. Add the -w option (synchronization), to the sysload command
and implement the necessary synchronization steps in the type manager's
initialization module.

Write the service part of the type manager as an OS extension.

See also: USERJ screen, ICU User's Guide and Quick Reference;
sysload command, Command Reference

System Concepts Chapter 13 195

Type Manager System Calls
These are the system calls that you use to manipulate extensions and composite
objects:

create_extension
delete_extension
create_composite
inspect_composite
alter_composite
delete_composite

Table 13-4 lists operations on extensions and composite objects and what the related
system calls are.

Table 13-4. Type Manager System Calls

Operation Description

create
extension

Create_extension creates an extension object that you may use
as a license for creating composite objects.

delete
extension

Delete_extension deletes an extension object and optionally,
sends all composite objects of that extension type to the
associated deletion mailbox.

create
composite

Create_composite creates a composite object of a specified
extension type.

list
components

Inspect_composite returns a list of the component object tokens
contained in a composite object.

replace
component

Alter_composite replaces a component in a composite object
with either a null or another object.

delete
composite

Delete_composite deletes a composite object.

See also: Nucleus system calls, System Call Reference

■■ ■■ ■■

196 Chapter 13 OS Extensions and Type Managers

iRMX Kernel Programming Concepts14
The iRMX Kernel is a part of the Nucleus that provides high performance task and
time management and message passing; it enhances the OS. This chapter describes
how to use the Kernel within the iRMX OS.

The Kernel does not provide the protection and validation features available in the
Nucleus:

• Kernel system calls do not validate parameters. Use Nucleus system calls
instead, if you need parameter validation.

• The Kernel assumes that all memory reference pointers it receives are valid.

• Kernel objects are not protected against unexpected deletion.

• The Kernel uses the flat, 4 Gbyte addressing capabilities of the microprocessor.
It does not use segmentation.

Use the Kernel in these situations:

• Only for very well-tested code

• For isolated parts of the application

• When performance is critical

It is a good idea to write, test, and debug your application using Nucleus system calls.
When the application is correct, substitute Kernel system calls where appropriate.

What Does the Kernel Provide?
Object
management

Includes creating, deleting, and manipulating object types defined
by the Kernel. You must provide memory for Kernel objects and
may allocate memory beyond the Kernel's needs to store
application-specific state information associated with the object.

Time
management

Includes a real-time clock, alarms that simulate timer interrupts,
and the ability to put tasks to sleep.

198 Chapter 14 iRMX Kernel Programming Concepts

Task
management

Includes scheduling locks that protect the currently running task
from being preempted and task handlers, which perform
additional functions during task creation, deletion, and transition.

Memory
management

Implements memory pools from which it allocates memory in
response to application requests.

Kernel Object Management
Each Kernel object type has its own set of operations and unique attributes. The
Kernel defines these object types:

• Semaphores

• Mailboxes

• Memory Pools

✏ Note
A Kernel object is not the same as an iRMX object. You cannot
use iRMX calls with Kernel objects. Conversely, you cannot use
Kernel calls with iRMX objects.

You can create objects anywhere in the application's memory space. You must
provide sufficient memory to contain the data structures that define the object.
Literals declared in the Kernel's include files specify the amount of memory the
Kernel needs for each object type. You may allocate extra memory for the object, to
be used by the application.

When you create an object, the Kernel returns a 32-bit kn_token that identifies the
object. Thereafter you access the object by passing the kn_token to the appropriate
system call.

The Kernel provides system calls to delete objects that you no longer need. Deleting
an object removes the Kernel's association of state data with an object.

▲▲! CAUTION
The Kernel does not protect itself against unexpected object
deletion. Do not attempt to access objects either while they are
being deleted or after they have been deleted.

System Concepts Chapter 14 199

Kernel Semaphores
The kinds of Kernel semaphores are:

• FIFO semaphores, which enable tasks to queue in First-In, First-Out order.

• Priority semaphores, which enable tasks to queue in priority order.

• Region semaphores, which are a special type of semaphore with priority
adjustment capabilities. Region semaphores are useful for mutual exclusion.

FIFO and Priority semaphores are general-purpose semaphores that can have up to
65,535 units.

See also: Semaphores, Chapter 4

Creating and Deleting Semaphores

Create semaphores with the KN_create_semaphore system call and delete them
with the KN_delete_semaphore system call. To create a semaphore specify:

• The memory area for the semaphore object.

• The kind (priority-based or FIFO task queue, or region semaphore).

• The initial number of units in the semaphore, 0 or 1. If a region is created with 0
initial units, the creating task is the owner of the region and the region cannot be
used by other tasks until the creating task sends a unit.

To provide additional units to a semaphore after creation, use the KN_send_unit
system call once for each additional unit you need. Region semaphores cannot accept
more than one unit.

If a semaphore is deleted, all tasks in the semaphore's task queue are awakened with
an E_NONEXIST status code.

Sending and Receiving Semaphore Units

Request a unit from a semaphore with the KN_receive_unit system call; you must
repeat the call for each unit you need. If the semaphore contains units, the count of
units decrements by one and the task proceeds. If the semaphore has no units and the
task is willing to wait, the task goes to sleep in the semaphore's task queue. Send a
unit to a semaphore with the KN_send_unit system call. If tasks are waiting at the
semaphore, the task at the head of the queue is awakened.

200 Chapter 14 iRMX Kernel Programming Concepts

Using Region Semaphores

A region semaphore can provide mutual exclusion and synchronization. If a task
must get a unit from a region before entering a critical section, and if it returns the
unit when leaving the area, only one task will ever execute in the critical section at a
time. Region semaphores contain a maximum of one unit and support priority
adjustment.

Kernel region semaphores are similar to iRMX regions. iRMX regions additionally
protect a task inside the region from being suspended or deleted.

See also: Regions, Chapter 5

Priority Adjustment

The same priority bottleneck and inversion problems may arise when using non-
region Kernel semaphores as Nucleus semaphores. Region semaphores, like Nucleus
regions, provide dynamic priority adjustment to avoid blocking a high priority task.

Kernel Semaphore System Calls

These are the system calls you use to manage Kernel semaphores:

KN_create_semaphore
KN_delete_semaphore
KN_receive_unit
KN_send_unit

Table 14-1 lists operations on semaphores and what the related system calls are.

Table 14-1. Kernel Semaphore System Calls

Operation Description

create
semaphore

KN_create_semaphore creates a semaphore of the specified
type with 0 or 1 initial units.

delete
semaphore

KN_delete_semaphore deletes the specified semaphore.

request unit KN_receive_unit requests a unit from the specified semaphore.

return unit KN_send_unit adds a unit to the specified semaphore.

System Concepts Chapter 14 201

Mailboxes
When you create a Kernel mailbox, you may reserve one of the slots in the mailbox
message queue for a high priority message. This enables the mailbox to
accommodate at least one high priority message even if the queue is full.

Creating and Deleting Mailboxes

Create mailboxes with the KN_create_mailbox system call and delete them with the
KN_delete_mailbox system call. To create a mailbox specify:

• The memory area for the mailbox.

• The message size for the mailbox.

• The maximum number of messages the mailbox can hold.

• Whether the task queue will be priority based or FIFO.

• Whether the mailbox will reserve a slot for a high priority message.

If you delete a mailbox and there are tasks waiting for messages, all tasks are
awakened with an E_NONEXIST status code and all messages queued at the mailbox
are lost.

Sending and Receiving Mailbox Messages

Send ordinary messages to a mailbox with the KN_send_data system call. If a task
is waiting at the mailbox, it receives the message. Otherwise, the message is queued.
If the mailbox is full, an exception returns.

Send high priority messages with the KN_send_priority_data system call. If a task
is waiting at the mailbox, it receives the message. Otherwise, the message is placed
at the head of the queue. If the mailbox is full, an exception returns.

Specify the actual message size, which must be less than or equal to the maximum
message size for the mailbox. The maximum message size is the size you specified
when creating the mailbox. The KN_send_data and KN_send_priority_data
system calls return a status value indicating either that the message was accepted or
the mailbox was full.

Receive data from a mailbox with the KN_receive_data system call. If the mailbox
contains at least one message, the message at the head of the queue is returned to the
caller. This is either the oldest message or the latest high-priority message. You
must provide a message area equal to the maximum message size of the mailbox for
the task.

202 Chapter 14 iRMX Kernel Programming Concepts

The call returns the actual size of the received message and a status value indicating:

• The task received a message.

• The time limit expired while the task was waiting.

• The mailbox was deleted while the task was waiting.

If no messages are available and the task is willing to wait, the task is put to sleep in
the task queue.

Handling Mailbox Overflow

If a mailbox contains its maximum number of messages when a message is sent, the
Kernel returns an exception stating that the mailbox limit was exceeded. The
mailbox enforces flow control by rejecting messages when the queue is full.
Depending on your application, there are several ways to handle mailbox overflow:

• Design the application so mailboxes never overflow.

• Consider mailbox overflow a fatal system error.

• Abort the activity causing the overflow.

• Send the message again, if you know that a task received a message, creating
room in the message queue.

If you reserved a slot for a high priority message, mailbox overflow may be indicated
when sending an ordinary message, even though the mailbox can still accept a high
priority message.

System Concepts Chapter 14 203

Kernel Mailbox System Calls

These are the system calls you use to manage mailboxes:

KN_create_mailbox
KN_delete_mailbox
KN_receive_data
KN_send_data
KN_send_priority_data

Table 14-2 lists operations on mailboxes and what the related system calls are.

Table 14-2. Kernel Mailbox System Calls

Operation Description

create KN_create_mailbox creates a mailbox in the specified area.

delete KN_delete_mailbox deletes the specified mailbox.

get message KN_receive_data requests a message from the specified
mailbox.

send message KN_send_data sends a message to the specified mailbox.
KN_send_priority_data sends a high priority message to the
specified mailbox.

204 Chapter 14 iRMX Kernel Programming Concepts

Kernel Time Management
The Kernel provides time management calls that allow tasks to create alarms (virtual
timers) and to sleep for a specified amount of time. The Kernel also provides a real-
time clock.

Using the Kernel Tick Ratio
The Kernel uses the Nucleus to provide an external source of periodic signals to
implement its time management facilities. All time values in the Kernel are specified
in units of clock ticks. You decide the frequency of the clock ticks.

You can use the Kernel Tick Ratio (KTR) parameter to configure support for timed
events at a granularity of less than 10 milliseconds (the Nucleus clock tick interval).
To use this feature, you must adhere to these rules:

1. You must use Kernel calls when you need an event granularity of < 10 ms. The
Nucleus event granularity is still 10 ms.

2. When mixing Kernel and iRMX system calls, remember that a Nucleus tick
interval may not equal a Kernel tick interval.

3. The smaller the Kernel tick interval, the higher the system overhead for handling
clock interrupts. This does not affect average and maximum interrupt latency.

See also: KTR parameter, ICU User's Guide and Quick Reference and System
Configuration and Administration;
RQSYSINFO structure, System Call Reference, to programmatically get
the KTR value

The KTR parameter sets the ratio of the Nucleus tick interval (10 milliseconds) to the
Kernel tick interval.

KTR Kernel tick
01 10 milliseconds (default)
02 05 milliseconds
05 02 milliseconds
10 01 millisecond
20 500 microseconds

Do not change the default value of KTR unless you need a Kernel tick interval
smaller than 10 milliseconds. The KTR parameter only affects the tick interval in
Kernel system calls. The value of KTR does not affect timed wait operations using
Nucleus calls.

The Kernel provides a real-time clock by counting clock ticks. The KN_get_time
and KNE_get_time system calls return the current value of the counter. The value of

System Concepts Chapter 14 205

the real time clock is set to 0 at initialization. You may set the count to any value by
using the KN_set_time or KNE_set_time system calls.

You can measure elapsed time by reading the real-time clock with the KN_get_time
or KNE_get_time system calls at the beginning and end of the interval to be
measured. By subtracting, you determine the elapsed time.

Using Alarms
The Kernel lets you to create alarms to simulate timer interrupts. Alarms invoke
alarm handlers that you write. Alarm handlers operate in similar fashion to iRMX
interrupt handlers. You cannot make blocking calls from them. Alarm handlers run
in the context of the timer interrupt handler. Your alarm handler should be as short
as possible since it is called with interrupts disabled and scheduling stopped.

Two kinds of alarms exist: single-shot alarms and repetitive alarms. A single-shot
alarm invokes its alarm handler once when its time interval elapses. The alarm then
becomes inactive and its memory can be re-used. A repetitive alarm invokes its
alarm handler after its time interval elapses and then resets itself for the same time
interval. It continues to invoke its handler until the alarm is explicitly deleted.

✏ Note
You cannot write alarm handlers in applications that use the flat
memory model.

Create an alarm with the KN_create_alarm system call and delete it with the
KN_delete_alarm system call. To create an alarm specify:

• The memory area in which the alarm object will exist.

• Whether it is a single shot or a repetitive alarm.

• The time interval for which the alarm is set.

• A pointer to the application handler that the alarm invokes when the time period
elapses.

After a task calls the KN_delete_alarm system call, the handler associated with that
alarm will no longer be invoked and the memory that the alarm occupies can be re-
used. Alarms may be deleted whether or not they have invoked the associated alarm
handler. This means that deleting an alarm does not have to be synchronized with the
expiration of the alarm.

The KN_reset_alarm system call resets an alarm, returning it to its initial state.
KN_reset_alarm uses the alarm's kn_token; the alarm parameters are not required.
Both single shot and repetitive alarms can be reset. Regardless of whether the alarm's
time limit has expired, resetting an alarm returns it to its creation state and starts it

206 Chapter 14 iRMX Kernel Programming Concepts

running as if it were just set. Resetting a single shot alarm after it has gone off is
equivalent to setting the alarm again.

Using Sleep
The Kernel enables tasks to sleep for a specified time, using the KN_sleep system
call. The amount of time the task will be in the asleep state can vary from no time to
forever. If the specified time is KN_DONT_WAIT, the task will not go to sleep. A
KN_DONT_WAIT time limit gives the processor to another task of equal priority, if
one exists.

KN_WAIT_FOREVER means the task will never wake up. When a task sleeps
forever, it is effectively deleted, but its memory is not released. Use the
KN_WAIT_FOREVER literal only with blocking system calls, indicating that the
task will wait until an event occurs to wake it. For example, a task might wait
forever until a message arrives at a mailbox.

Time Management System Calls
These are the system calls you use to manage time:

KN_create_alarm
KN_reset_alarm
KN_delete_alarm
KN_get_time
KN_set_time
KN_sleep
KNE_get_time
KNE_set_time

System Concepts Chapter 14 207

Table 14-3 lists operations on alarms and time and their related system calls.

Table 14-3. Time Management System Calls

Operation Description

create alarm KN_create_alarm creates and starts a virtual alarm clock.

delete alarm KN_delete_alarm deletes an existing alarm.

get elapsed
time

KN_get_time returns the number of clock ticks that have
occurred. KNE_get_time is an extended version that allows use
of 32-bit data types.

reset alarm KN_reset_alarm returns an existing alarm to its creation state.

reset time KN_set_time sets the counter that the Kernel uses to count the
clock ticks that have occurred. KNE_set_time is an extended
version that allows use of 32-bit data types.

put task to
sleep

KN_sleep puts the calling task in the asleep state for the specified
number of clock ticks.

Kernel Task Management
The Kernel uses the same scheme of preemptive, priority-based scheduling as the
Nucleus. In addition, it provides ways for controlling or monitoring task switches.

You can protect the currently running task from being preempted by performing a
scheduling lock. A scheduling lock provides protection for the running task; the
running task can make other tasks ready without losing control of the processor. The
Kernel delays a task switch to the running state until the task releases the scheduling
lock. Then the running task may be preempted.

✏ Note
Scheduling locks delay the preemptive, priority-based scheduling
of the OS. Only use them if absolutely necessary and be very
careful.

To lock scheduling, use the KN_stop_scheduling system call. Calling
KN_stop_scheduling multiple times causes multiple scheduling locks to be in effect.
Any scheduler task state transitions that would move a task from the running state to
the ready state are delayed until scheduling is resumed. KN_stop_scheduling does
not prevent a task switch if the running task becomes blocked or calls one of the
rescheduling system calls.

208 Chapter 14 iRMX Kernel Programming Concepts

To resume scheduling, call KN_start_scheduling. You must call
KN_start_scheduling once for each lock in effect. Normal task switching resumes
after you remove all scheduling locks. Tasks signaled into operation by interrupt
handlers won't run until scheduling is resumed.

✏ Note
A scheduling lock does not prevent task switching in all cases. A
system call that causes blocking or rescheduling can initiate a task
switch even if there is a scheduling lock.

Disabling interrupts and locking scheduling can cause the system to
be less responsive.

Controlling Task State Transitions
Before making a system call, you must determine whether a task switch is
appropriate and perform a scheduling lock if necessary. Kernel system calls can be
classified into four categories, based on their ability to cause state transitions:

• Non-scheduling system calls never cause state transitions.
KN_create_semaphore is an example of a non-scheduling system call.

• Signaling system calls can put tasks into the ready queue and potentially cause
state transitions. KN_send_unit is an example of a signaling system call. If
invoking such a system call would cause a higher priority task to become ready,
the running task can use a scheduling lock to keep control of the processor.

• Blocking system calls will cause the Kernel to put the running task to sleep
(block) and thus initiate a state transition. KN_receive_unit is an example of a
blocking system call. When you use KN_receive_unit, rescheduling occurs
unless the unit is actually available. A scheduling lock does not prevent a system
call in this category from causing rescheduling.

• Rescheduling system calls always cause rescheduling or will cause rescheduling
when invoked on the running task, regardless of a scheduling lock. For example,
KN_sleep always causes rescheduling.

System Concepts Chapter 14 209

Using Task Handlers
You may configure the Kernel to invoke application procedures, called task handlers,
which you write to perform additional functions during these situations:

• Task creation

• Task deletion

• Task switching

Your handlers can enhance the Kernel operations. By writing these procedures, you
can add functionality and/or handle error situations. For example, if your application
requires a hierarchical structure for tasks, you can write a task handler to implement
the setup when the task is created.

These are the task handlers you can write:

• create_task_handler

• delete_task_handler

• task_switch_handler

Task handlers may invoke non-blocking Kernel system calls to perform various
functions. The Kernel expects these procedures to be as correct as one of its own
internal calls.

✏ Note
Incorrect task handler code can impact performance and can
corrupt application operation. The duration of these handlers can
adversely affect system performance and interrupt latency.

The Kernel invokes task handlers when the task makes a system call such as the
Nucleus system calls rq_create_task or rq_delete_task, or when a system call
causes a task switch or change in priority of a task. All handlers are invoked with
interrupts disabled and scheduling locked. Handlers cannot enable interrupts or
unlock scheduling.

210 Chapter 14 iRMX Kernel Programming Concepts

Figure 14-1 illustrates the interrelation between the Kernel and task handlers. The
application has installed task handlers. When any task creation, deletion or switching
occurs after the handlers have been installed, the Kernel calls the appropriate handler.

OM01095

Application
Task

handlers

Nucleus

Kernel

Figure 14-1. Kernel Invoking of Task Handlers

Installing and Removing Task Handlers

You install task handlers dynamically with the KN_set_handler system call. You
may install multiple handlers of each type. The KN_reset_handler system call
dynamically removes your task handler.

✏ Note
Multiple task handlers degrade the performance of your system;
remove them using KN_reset_handler when they are not needed.

This example describes Kernel operation using task creation handlers.

1. With no task creation handlers installed, the application calls the Nucleus system
call rq_create_task. No handlers are invoked.

2. Using KN_set_handler, the application installs two task creation handlers
(createA_hdlr and createB_hdlr).

3. Then, when an application calls the rq_create_task system call, the Kernel
initializes the new task. Before the task is allowed to execute, the Kernel calls
createA_hdlr, then createB_hdlr. Finally, it enables the task to execute.

4. Next, the application calls KN_reset_handler to remove createA_hdlr.
When rq_create_task is next called, the Kernel initializes the new task. It calls
createB_hdlr, then enables the task to execute.

System Concepts Chapter 14 211

5. Now the application reinstalls createA_hdlr using KN_set_handler. When
rq_create_task is called, the Kernel initializes the new task, calls
createB_hdlr, then createA_hdlr, then enables the new task to execute.

6. Finally, the application removes both task creation handlers using
KN_reset_handler. When rq_create_task is called, the Kernel performs only
its standard create_task functions.

See also: Kernel system calls and handlers, System Call Reference

Task Management System Calls
These are the system calls you use to manage tasks:

KN_start_scheduling
KN_stop_scheduling
KN_set_handler
KN_reset_handler

Table 14-4 lists Kernel task operations and their related system calls.

Table 14-4. Task Management System Calls

Operation Description

restart
scheduling

KN_start_scheduling cancels one scheduling lock imposed by
KN_stop_scheduling. When it cancels the last outstanding
schedule lock, the Kernel carries out all delayed task state
transitions.

lock
scheduling

KN_stop_scheduling temporarily locks (or places an additional
lock on) scheduling for the running task.

install task
handler

KN_set_handler dynamically installs your task handler. You may
install multiple task handlers of each type by invoking
KN_set_handler multiple times.

remove task
handler

KN_reset_handler dynamically removes your task handler.

212 Chapter 14 iRMX Kernel Programming Concepts

iRMX Memory Management for Kernel System Calls
In an iRMX system, you can obtain memory for the Kernel to use as a memory pool
in these ways:

• Call rq_create_segment, which returns a token for a 16-byte aligned memory
segment. This method gives the best performance since the memory specified in
the Kernel area_ptr parameter should be aligned on a 4-byte boundary.

• Exclude the memory from free space memory using the ICU or the rmx.ini file
and then create a descriptor for the excluded memory.

In either case, supply a pointer to the memory, token:0, and use this pointer in
Kernel object creation system calls, which require an area_ptr parameter. If you
use the iRMX OS to manage memory, specify:

area_ptr = token:0

or
area_ptr = malloc (size)

If you use your application to manage memory, specify:

mem_array [n] UINT_8

area_ptr = &mem_array

Aligning Application or malloc Allocated Memory
If you provide memory directly from your application's data segment or using
malloc, you may need additional steps to align the memory, for these reasons:

• The size literals supplied by the Kernel in the literal declarations files are
specified in units of bytes, causing the areas to be declared as byte arrays.

• Compilers do not necessarily align byte arrays that appear in the data segment.

To force the compiler to align arrays on 4-byte boundaries, declare memory
allocations as integer arrays. An integer is 4 bytes, so you should declare one-fourth
the number of array elements. For example, when declaring memory to be used by
an alarm object for the KN_create_alarm call, you might use these statements in C:

int alarm_area [KN_ALARM_SIZE/4];

KN_create_alarm (alarm_area,...)

System Concepts Chapter 14 213

To align an 80-byte array that you need to access in byte values rather than in integer
values, you might use these statements:

int y[20];

char *x;

x = y;

This guideline of using an integer declaration works for all compilers. There are
other methods, such as declaring the array at the beginning of a structure, or testing
the alignment of the pointer and adjusting it. If you already use another technique to
align memory, make sure it still works if you change compilers.

Using malloc
If you use malloc, you will need to test the alignment of the pointer and adjust it
yourself. To do so, request a size 3 bytes larger than you need for a particular
area_ptr. Then adjust the area_ptr to be 4-byte aligned using code similar to
this:

char *array;

UINT_32 align_factor;

UINT_32 kn_sema_t;

array = malloc (KN_SEMAPHORE_SIZE + 3);

align_factor = ((long)(near *) array) & 3;

kn_sema_t = KN_create_semaphore(

UINT_32 *) &array[align_factor], /* area_ptr */

(KN_FIFO_QUEUEING | KN_ZERO_UNITS)); /* flags */

214 Chapter 14 iRMX Kernel Programming Concepts

Demo Files for the Kernel
There are two files installed with the OS that create a demo program for the Kernel:

• A makefile to use with the make command to generate the demo.

• sr.c, the C language demo source code.

Make requires that you load clib.job. If it is not already loaded (for example, by
your :config:loadinfo file), enter this command:

sysload /rmx386/jobs/clib.job <CR>

To generate the demo enter:

cd /rmx386/demo/c/rmk/src <CR>

make <CR>

These commands generate the executable file sr. The sr program performs a
send/receive semaphore test, first using the Nucleus and then using the Kernel. Use
this syntax to run the demo:

sr <priority> <iteration_count> [k]

where:

<priority> is the priority of tasks in the demo

<iteration_count>
is the count of iterations of sends and receives.

[k] indicates that both the iRMX and iRMX semaphore functions are used.
If you don’t specify that both types of functions are used, only iRMX
semaphore functions will be used by the demonstration program.

For example, to run the demo, enter:

- sr 128 100000 K <CR>

System Concepts Chapter 14 215

Include Files for the Kernel
The files in this table are for compatibility with existing code that makes Kernel calls.
For example, if your C code already includes the files listed under rmk.h in Table 14-
5, you need not include file rmk.h (it includes the other files itself). Compilers
automatically include only the code needed from include files.

Table 14-5. Kernel Include Files

PL/M C Assembler

rmk.h
rmk_type.lit rmk_type.l rmk_type.equ
rmk_ex.lit rmk_ex.equ
rmk_base.lit rmk_base.l rmk_base.equ
rmk_base.ext rmk_base.h rmk_base.edf

For C applications, also include rmk_ex.l for definitions of exception codes.

Kernel Memory Management
This section is provided for compatibility with existing Kernel applications. It is not
necessary that you create Kernel pools and areas to use the Kernel system calls for
object, time, and task management.

The Kernel Memory Manager defines and implements memory pools, providing
Kernel applications with a physical memory management facility.

▲▲! CAUTION
The Kernel Memory Manager does not protect memory areas from
unauthorized access. Any task could ignore the rules and access
memory given to another task, sometimes with disastrous results.

216 Chapter 14 iRMX Kernel Programming Concepts

Creating Memory Pools and Areas
Use the KN_create_pool system call to create a memory pool in a specific range of
memory. Specify where in memory to create the memory pool object and the size of
the pool, including overhead.

To use the memory in a memory pool, invoke the KN_create_area system call.
Specify the memory pool's kn_token and the size of the requested area, including area
overhead. If the requested space is available in the pool, the Kernel Memory
Manager returns a pointer to the area. Use this pointer to access the area, to create a
segment descriptor to the area, or to create a memory sub-pool from the area. If the
request cannot be filled, KN_create_area returns a null pointer.

✏ Note
If a memory pool is created on a 4-byte boundary, all areas created
from that pool will be on a 4-byte boundary. To align the memory,
the pool can be the start of a Builder-defined segment or a large
array of integers defined statically in your application.

Deleting Memory Pools and Areas
When the application is through using an area, call KN_delete_area, specifying the
area to be released and the pool from which the area came. The KN_delete_area
system call returns the memory to the memory pool, making it available for re-use.

When an application no longer needs a memory pool, call the KN_delete_pool
system call. The KN_delete_pool call does not require all of the areas to be returned
in order to delete a pool. However, if an area is still in use when the pool is deleted,
there is a chance that the same memory could be used simultaneously for two
purposes, with undefined results.

✏ Note
When using memory pools, do not access memory within the pool
except for areas allocated by the KN_create_area system call. Do
not invoke memory pool system calls on a memory pool after
invoking the KN_delete_pool system call on it.

System Concepts Chapter 14 217

Pool and Area Overhead
A memory pool occupies exactly the size specified when it is created. There is a
minimum size that can be requested, represented by the literal
KN_MINIMUM_POOL_SIZE. This size is the minimum number of bytes that the
Kernel requires for a memory pool. It includes overhead data structures whose
memory cannot be allocated from the pool. The usable space for a pool is actually
the requested size minus the pool overhead. The literal KN_POOL_OVERHEAD
defines the number of bytes in the overhead. To create a pool of size n, the total
number of bytes required would be n + KN_POOL_OVERHEAD.

The literal KN_MINIMUM_AREA_SIZE designates the smallest area that can be
allocated from a memory pool. If an application requests an area smaller than the
minimum size, the memory manager rounds the requested size up to the minimum
size. There is also an overhead associated with each area created from a memory
pool. The literal KN_AREA_OVERHEAD defines this amount. Thus, if an area of
size n is desired, n + KN_AREA_OVERHEAD bytes are required.

Performance Issues
You gain the highest level of performance from a memory pool if you allocate
memory areas of the same size. In addition to minimizing wasted space, the times to
allocate and deallocate fixed-size areas are less.

Allocating memory areas on 4-byte boundaries enables Kernel system calls to
execute faster because the objects created in the areas are also aligned on 4-byte
boundaries. Memory pool properties provide that, if a memory pool is created
aligned on a 4-byte boundary, all areas allocated from within that pool are also
aligned on 4-byte boundaries.

To create a pool that can allocate exactly n areas all of size m, the area required is as
follows:

n * (m + KN_AREA_OVERHEAD) + KN_POOL_OVERHEAD

If m is less than KN_MINIMUM_AREA_SIZE, replace m with
KN_MINIMUM_AREA_SIZE in the expression.

218 Chapter 14 iRMX Kernel Programming Concepts

Figure 14-2 shows the relationship between a memory pool and memory areas.
Although areas may be different sizes, access to the areas is more efficient if all areas
in a pool are the same size.

Memory Pool

Pool overhead

Area
overhead

Area

Area
overhead

Area

Area
overhead

Area

OM02862

Figure 14-2. Memory Pools and Areas

Getting Information about a Pool
Using the KN_get_pool_attributes system call, you can get this information about a
specific memory pool:

• The size of the pool

• The total available space in the pool

• The largest contiguous available area in the pool

Allocating Memory in an Interrupt Handler
In general, managing memory from within an interrupt handler is unwise because it
impacts performance. The KN_create_area and KN_delete_area system calls use
an internal semaphore for mutual exclusion and may cause tasks to go to sleep.
Interrupt handlers may safely use these system calls on a pool only if you perform all
operations on the memory pool (by either the interrupt handler or any other
procedure) with interrupts disabled. This ensures that the memory pool will always
be accessible when the interrupt handler invokes a system call on it.

System Concepts Chapter 14 219

Kernel Memory Management System Calls
These are the system calls you use to manage memory:

KN_create_area
KN_delete_area
KN_create_pool
KN_delete_pool
KN_get_pool_attributes

Table 14-6 lists operations on memory and the related system calls.

Table 14-6. Management System Calls

Operation Description

create area KN_create_area allocates an area of memory of specified size
from a specified memory pool.

create pool KN_create_pool creates a memory pool in a specified range of
memory.

delete area KN_delete_area returns an area to the memory pool it was
allocated from.

delete pool KN_delete_pool deletes a memory pool.

get available
space

KN_get_pool_attributes returns the size of the pool, the total
size in the pool, and the largest contiguous available area in the
pool.

■■ ■■ ■■

220 Chapter 14 iRMX Kernel Programming Concepts

221

I/O SYSTEMS PROGRAMMING CONCEPTS

This section describes the Basic I/O System, the Extended I/O System, and the
Universal Development Interface.

See also: System call descriptions, System Call Reference;
I/O System, and UDI overviews, Introducing the iRMX Operating
Systems

Chapter 15. I/O System Basic Concepts

Chapter 16. I/O Jobs and Connections

Chapter 17. Named Files

Chapter 18. Physical Files

Chapter 19. Stream Files

Chapter 20. Connections and Objects

Chapter 21. UDI Basic Concepts and System Calls

222

System Concepts Chapter 15 213

I/O System Basic Concepts 15
This chapter introduces concepts which apply to both the Basic I/O System (BIOS)
and the EIOS (EIOS), as well as those that apply only to the BIOS or the EIOS.

See also: BIOS and EIOS, Introducing the iRMX Operating Systems

The concepts presented in this chapter are:

• System programming (BIOS only)

• Synchronous and asynchronous calls

• Device controllers and device units

• Volumes

• Files

• Communication between tasks and device units

• Logical Names

• Path_ptr parameters and default prefixes (EIOS only)

• I/O Jobs (EIOS only)

Chapter 15 I/O System Basic Concepts214

System Programming (BIOS)
There are two programming roles associated with the iRMX OSs: application
programming and system programming.

System programming affects the performance and security of the entire system;
application programming has a more limited effect because it involves individual
jobs. Although the roles have different names, separate people are not required. One
individual can perform both roles.

The BIOS system call descriptions include notes for system calls that, if misused, can
have serious consequences for an application system. These system calls should be
used by the designated system programmer.

Synchronous and Asynchronous Calls
The I/O System provides synchronous and asynchronous system calls. Both the
BIOS and the EIOS provide synchronous calls; only the BIOS provides asynchronous
calls.

Synchronous calls begin running as soon as the application invokes them and
continue running until they detect an error or complete. While a synchronous system
call is running, the calling task cannot run. It resumes running only after the
synchronous call has either failed or succeeded. Synchronous calls act like
subroutines.

Asynchronous calls complete their operation by using tasks that run concurrently
with the application. The application can accomplish some work while the BIOS
accesses disk drives or tape drives, for example.

Each asynchronous system call has two parts: one sequential and one concurrent.

• The sequential part behaves in much the same way that synchronous system calls
do. It verifies parameters, checks conditions, and prepares the concurrent part of
the system call. If any problem is detected during the sequential part, an
exception code returns to the caller and the concurrent part does not start. If no
error is detected, an E_OK condition code returns to the caller and the concurrent
part starts.

• The concurrent part runs as an iRMX task. This task is readied by the sequential
part of the call and runs only when the priority-based scheduling of the OS gives
it the processor. The concurrent part also returns a condition code as part of an
I/O Request/Result Segment (IORS) sent to the response mailbox specified in the
asynchronous call.

See also: BIOS and EIOS Layer Specific Information, System Call Reference

System Concepts Chapter 15 215

Asynchronous Call Order of Operations
This example shows how an application can use an asynchronous call to retrieve
some information stored on disk. Figure 15-1 on page 217 illustrates how the
sequential and concurrent parts of the call relate.

1. The application issues a_read and specifies a response mailbox for
communicating with the concurrent part of the system call.

2. The sequential part of a_read begins to run. This part checks the parameters for
validity. These operations execute in context of the application code. Figure 15-
1 on page 217 labels this area as “sync”.

3. The sequential part returns a condition code. If it is E_OK, the BIOS readies the
concurrent part of the call to perform the read; otherwise, it does not.

4. The application receives control and tests the sequential condition code. If it is
E_OK, the application continues running until it needs the information from
disk. Now, the application can take advantage of the asynchronous and
concurrent behavior of the BIOS to perform other tasks. Figure 15-1 on page
217 labels the asynchronous area as “async”.

For example, the application can implement multiple buffering by issuing other
a_read calls while waiting for the first call to complete. Alternatively, the
application can use this overlapping processing to perform computations.

For the balance of this example, assume that the sequential part of the system
call returned E_OK. (If the sequential condition code is not E_OK, the
application must respond appropriately.)

5. Before taking the information from the buffer, the application verifies that the
concurrent part of a_read ran successfully. There are three ways the task can do
this.

One way is to issue a receive_message call to check the response mailbox
specified in a_read. In this case, the application obtains an IORS that contains a
condition code for the concurrent part of the system call. If it is E_OK, the
application can get the data from the buffer. Otherwise, the application should
analyze the code to determine why the read was not successful.

See also: IORS, System Call Reference;
Accessing the IORS, Programming Techniques

Chapter 15 I/O System Basic Concepts216

Another way, which can be used only after a_read, a_write, or a_seek, is to
issue wait_io, which passes a token for the response mailbox to the application.
In this way, the application can receive the condition code directly for the
concurrent part of the system call. In addition, if the concurrent condition code
is E_OK, the application also receives the number of bytes successfully read.
Otherwise, the number of bytes returned has no significance.

The final way is used for flat applications. This way calls wait_iors. You could
use either of the previous methods with a flat application but you can’t do
anything practical with the returned IORS structure.

See also: wait_iors call, System Call Reference

System Concepts Chapter 15 217

W-2795

Yes

No

E_OK

No

Yes

No

Yes

Application Code I/O System Code

Do Error
Processing

Test For
Validity

Make I/O
Task Ready

Examine
Exception Code

Do
Concurrent Processing

Examine Status

E_OK
Do Error

Processing

Get Data
From Buffer

I/O Task
Performs I/O

Return With
Exception Code

Valid
?

Return With
E_OK

Put Status of
Operation in Message

Receives Message
From Response Mailbox

Await Next I/O Request
For This Connection

Send Message To
Response Mailbox

Invoke
a_read

Sync

Async

Figure 15-1. Behavior of an Asynchronous System Call

Chapter 15 I/O System Basic Concepts218

Using Asynchronous Calls
These explanations apply to all asynchronous calls.

• All of the asynchronous system calls consist of two parts: one sequential and
one concurrent. The BIOS activates the concurrent part only if the sequential
part runs successfully and returns E_OK.

• Every asynchronous system call requires a response mailbox for communication
with the concurrent part of the system call. Use the create_mailbox system call
to create a message mailbox.

• Whenever the sequential part of an asynchronous system call returns a condition
code other than E_OK, the application should not attempt to receive a message
from the response mailbox nor should it call wait_io. Doing so can cause the
application to wait indefinitely. The BIOS cannot run the concurrent part of the
system call.

• Whenever the sequential part of an asynchronous system call returns E_OK, the
BIOS runs the concurrent part of the system call. The application can take
advantage of the concurrency by doing some processing before receiving the
message at the response mailbox or calling wait_io.

• After the concurrent part of a system call runs, the BIOS signals its completion
by sending an object to the response mailbox. The precise nature of the object
depends upon which system call the application invoked. Use receive_message
to receive the message. The application can determine the returned object type
by calling get_type.

• The application, with one exception, must delete the IORS when it is no longer
needed. The BIOS uses memory for such segments so if the application fails to
delete the IORS, it might run short of memory. Use delete_segment to delete
the IORS.

The exception is when the application calls wait_io. The application does not
have access to the IORS and cannot delete it. This enables the BIOS to maintain
a supply of IORSs that it can use repeatedly. Because most I/O-related
operations are reads, writes, or seeks, this means a significant performance
enhancement for the application.

System Concepts Chapter 15 219

Condition Codes for Asynchronous Calls
For those system calls that require a response mailbox parameter, the BIOS returns a
condition code for the sequential portion of the call to the word pointed to by the
except_ptr parameter and a condition code for the concurrent portion of the call to
the status field of the IORS.

See also: IORS, System Call Reference;
Accessing the IORS, Programming Techniques

Some calls can return a connection instead of an IORS. If a sequential exceptional
condition occurs, the BIOS either returns control to the calling task or passes control
to an exception handler. It does not process the asynchronous portion of the call. If a
concurrent exceptional condition occurs, the calling task must signal the exception
handler or process the exceptional condition inline.

If the application handles the exception inline, use the Nucleus get_type system call
to obtain the type of object returned, for example an IORS.

See also: get_type, System Call Reference;
exception handling, in this manual

Creating I/O Buffers
A_read, s_read_move, a_write, and s_write_move each require a buffer to read
from or write to while performing I/O. When you create these buffers, these
restrictions apply:

• The memory segments used for the I/O buffers must have the appropriate access
rights: be readable for read operations or writable for write operations.

• Once the I/O operation has been invoked, the application tasks should not change
the contents of the buffer until the BIOS finishes the operation.

• Do not delete an iRMX segment used as a buffer while an I/O operation is in
progress.

Using segments from one job as buffers for I/O operations in a different job can
cause unintentional deletion. If Job A owns an iRMX segment, that segment is
automatically deleted when the job is deleted. If Job B uses this segment as a
buffer for I/O, the buffer will be deleted even if Job B has I/O in progress.

Chapter 15 I/O System Basic Concepts220

Device Controllers and Device Units
The iRMX OS distinguishes between device units and device controllers.

A device unit is a hardware entity that tasks use to read or write information, or both.
Device units include diskette drives, hard disk drives, tape drives, printers, and
terminals.

A device controller is a hardware entity that talks directly with iRMX software and
controls device units. Typically, a device controller enables iRMX applications to
communicate with several device units. For example, a 2215 SCSI Disk Controller
acts as an interface between an application program and several disk drives (device
units).

Setting Mass Storage Device Granularity
When information is stored on a mass storage device, space is allocated in granules
and the block size is called granularity. If your device supports multiple device
granularities, selecting the larger value usually gives higher performance, but you
may waste storage space due to large granules containing only a few bytes of data.

See also: Granularity, Introducing the iRMX Operating Systems

Use these guidelines when setting granularity:

• For diskettes, always set the volume granularity equal to the device granularity,
unless you plan to store many large files on the volume. Don't select a volume
granularity larger than 1 Kbyte.

• For hard disks, set the volume granularity equal to the device granularity, unless
the device granularity is less than 1 Kbyte. Then set the volume granularity to
1 Kbyte.

• For sequential file access, larger granularity sizes generally improve access time.
Each access can handle more data.

• For random file access, smaller granularity sizes generally improve access time.
Each access handles only that data that is needed, thereby spending less time
transferring needless data.

• When creating a large file, assign a large file granularity to minimize the number
of noncontiguous blocks that make up the file. This decreases the fragmentation
of the volume.

• For smaller files, set the file granularity equal to the volume granularity to
minimize wasted space on the volume.

System Concepts Chapter 15 221

File Granularity Example
This example uses only one small mass storage unit containing a file of 20,010 bytes.
It illustrates how performance interacts with use of space. Performance may not be
critical if you do not use the device often enough for the data transfer rate to have
much impact.

1. If the granularity is 10,000 bytes, the file occupies three granules. The first two
granules are full and the third contains only 10 useful bytes.

Although this file wastes 9,990 bytes of storage space, the data transfer rate is
quicker than with a similar file of smaller granularity.

2. If the file granularity is 200 bytes, the file occupies 101 granules. Each of the
first 100 granules is full, while the last granule contains only 10 useful bytes.

The file now wastes only 190 bytes of storage space, but the data transfer rate is
slower than with a granularity of 10,000 bytes.

If the application system has many mass storage units and space is readily available,
a large file granularity will give faster average transfer rates and shorter access times,
at the expense of device space.

Volumes
A volume is the medium used to store the information on a device unit. For example,
if the device unit is a diskette drive, the volume is a diskette; if the device unit is a
multi-platter hard disk drive, the volume is the disk pack; if the device unit is a tape
drive, the volume is the cartridge tape.

Chapter 15 I/O System Basic Concepts222

File Types
The I/O System defines a file to be information, not a device. The BIOS and EIOS
provide these types of files:

• Named files allow random access, hierarchical file structure, and access control.

• EDOS (Encapsulated DOS) and DOS files are DOS files accessible to
DOSRMX and iRMX for PCs applications using EIOS and BIOS system calls.

✏ Note
The EDOS and DOS file drivers are mutually exclusive.
DOSRMX provides the EDOS file driver. iRMX for Pcs and the
iRMX III OS provide the DOS file driver.

• Remote files are named files that exist on another system and are accessed on an
iNA 960/iRMX-NET network.

• Network File System (NFS) files are files that exist on another system and are
accessed on a TCP/IP network using NFS. NFS files are accessible between
systems using different operating systems.

• Physical files allow more direct hardware control over a device.

• Stream files allow one task to write to a file while another reads it.

Each kind of file has characteristics that make it unique. Regardless of the kind of
file, the BIOS and EIOS provide information to applications as a string of bytes,
rather than as a collection of records.

See also: Named Files, Physical Files, and Stream Files chapters in this section
for more information on files;
remote files, Network User's Guide and Reference;
NFS chapters, TCP/IP and NFS for the iRMX Operating System

System Concepts Chapter 15 223

Communication Between Tasks and Device Units
Several layers of software and hardware must be bound together before
communication between application tasks and device units can occur. Figure 15-2
shows these layers.

W-2796

Application Software

File Driver

Device Driver

Device Controller

Device Unit

Software

Hardware

Tasks TasksTasks

Figure 15-2. Hardware and Software Layers Between Tasks and a Device

There are several kinds of bonds:

• The bond between the application tasks and the file driver is supplied during the
linking or binding process. A file driver provides the interface between the
BIOS and a device driver. The information needed to perform the binding
process is specified at configuration time. Loadable file drivers provide almost
the same function as using the ICU.

• The bond between a device driver and a device controller is data residing in a
data structure called a Device Unit Information Block (DUIB). Data for DUIBs
is specified at configuration time. Critical data involves the DUIB parameters
update_timeout and fixed_update. Loadable device drivers provide
almost the same function as using the ICU.

Chapter 15 I/O System Basic Concepts224

• The bond between the device controller and the device units is a physical bond,
typically wires or cables.

See also: Loadable file and device drivers, System Configuration and
Administration;
File and device drivers and DUIB data structure definition, Driver
Programming Concepts

The tasks access files and devices through connections. Two kinds of system calls
produce connections: one kind produces a device connection and the other produces
a file connection. Before a task can use a file, it must invoke both of these kinds of
calls.

See also: I/O Jobs and Connections, in this section

Device connections are like conduits (pipes); file connections like wires through the
conduits. These descriptions apply to device and file connections.

• Device connections extend from the application software to the individual device
units and each passes through only one file driver.

• There is only one device connection to each connected device. However,
multiple file connections can share the same device connection.

• There is only one device connection through the stream file driver, because one
logical device contains all stream files.

• Unconnected device units are not connected to the application software.

• Different device units with the same controller can be connected by different file
drivers.

• Tasks can share access to the same device unit through the physical file driver
and they can share access to the same files on the same device unit through the
named file driver.

An application task must attach a device before accessing the files on that device and
must establish a connection to the file before accessing the data in that file.

System Concepts Chapter 15 225

Logical Names
You can use logical names to identify file connections or device connections. A
logical name is an iRMX STRING of 12 or fewer characters with a unique syntax.

Every I/O job has three distinct object directories in which objects can be cataloged.
When looking up a logical name, the EIOS searches these directories in this order
and stops when it finds the name.

• The object directory of the local job

• The object directory of the global job for a user session

• The object directory of the root job

See also: Logical names, Command Reference;
Connections and Objects in this section

Path_ptr Parameters and Default Prefixes (EIOS)
Some EIOS calls refer to files rather than to connections. All such calls require a
path_ptr parameter to identify the file to be attached, created, or otherwise used.

One aspect of the path_ptr parameter applies to all kinds of files. If the parameter
is set to null, or if it points to a null String (an iRMX STRING containing 0
characters), the EIOS selects the file based on the default prefix of the calling task's
job.

The default prefix is an attribute of an I/O job and it is a logical name for a device or
a file connection. It is cataloged under the name $ in either the local or the global
object directory for the job. Whenever a task invokes a system call but does not
specify a logical name, the EIOS looks up the default prefix and uses the associated
connection.

The complete interpretation of the path_ptr parameter depends upon the kind of
file being accessed.

See also: Named Files, paths, prefixes and subpaths in this section

Chapter 15 I/O System Basic Concepts226

I/O Jobs (EIOS)
Any job using EIOS calls must be an I/O job. The advantage of using EIOS calls is
that they perform many functions automatically, making them simpler to use than
BIOS calls.

I/O jobs can be created when programs are running and, for ICU-configurable
systems, when the system is initialized. An I/O job must have:

A global job A token for the user session’s global job must be cataloged in
the I/O job's object directory under the name rqglobal.

A default prefix The default prefix is a connection cataloged under the name $
in either the local job object directory or the global job object
directory.

A default user object This user object is required to access named files using EIOS
calls and must be cataloged in the I/O job's object directory
under the name.

See also: Named Files, default prefix, default user object in this section

For ICU-configurable systems, specify the characteristics of I/O jobs that are created
when the system is initialized.

■■ ■■ ■■

System Concepts Chapter 16 227

I/O Jobs and Connections 16
Creating I/O Jobs

I/O jobs differ from other jobs in these ways.

• Many of the parameters required by the Nucleus' create_job system call are not
required by the EIOS job creation system calls. Instead, some of these values are
specified at system configuration time. These parameters include:

directory_size

param_object

max_objects

max_tasks

max_priority

• The EIOS calls automatically initialize the new job with a default user object,
global job for that user session, and default prefix, inherited from the parent job.

• The EIOS system calls allow the new job to send a termination message to the
parent job.

• The rqe_create_io_job system call creates I/O jobs while the system is running
and reserves memory for the job's memory pool.

See also: EIOS calls, System Call Reference

Any task that invokes this system call must be running within an I/O job. For
ICU-configurable systems, you can create the initial I/O job during system
configuration. For iRMX for PCs and DOSRMX systems, the initial I/O job is
already configured into the system.

228 Chapter 16 I/O Jobs and Connections

Creating Device Connections
These system calls apply to device connections:

a_physical_attach_device (BIOS) logical_attach_device (EIOS)

a_physical_detach_device (BIOS) logical_detach_device (EIOS)

The device connection is the application's only pathway to the device. There can be
only one device connection between a device unit and all of the application tasks that
need to use that device.

See also: Named Files, Physical Files, Stream Files, and call sequences in this
section

Using BIOS System Calls
To attach a device for BIOS calls, use a_physical_attach_device, which:

• Creates a device connection that represents the device.

• Identifies the owner of the device connection, to prevent other users from
detaching devices that they do not own.

Use this call only once for each device because devices cannot be attached multiple
times. Only one or a few selected tasks should call a_physical_attach_device.
These tasks can be in one these forms:

• An initialization task can create all of the device connections and catalog them in
the root object directory. Then all required device connections are available to
all application tasks that need them.

• Several tasks can make the device connection available to selected application
tasks by sending the connection to certain mailboxes or by cataloging it in certain
object directories.

Use a_physical_detach_device to delete the device connection when the device is no
longer needed by the application.

The OS keeps track of the number of tasks using the device. It does not detach the
device until it is no longer being used by any task.

System Concepts Chapter 16 229

Using EIOS System Calls
To attach a device for EIOS calls, use logical_attach_device. This system call

• Creates a device connection that represents the device.

• Catalogs a token for the connection under the specified logical name, which the
EIOS uses to access the device.

• Identifies the owner of the device connection, to prevent other users from
detaching devices that they do not own.

Use this call only once for each device because devices cannot be attached multiple
times.

Logical_attach_device calls a_physical_attach_device, but may not do so
immediately. Instead, physical attachment occurs transparently during processing of
any system call that references the logical device object. This timing can be an issue
when BIOS system calls use logical device objects, as described in the next section.

When the device is no longer needed by the application, use logical_detach_device
to delete the device connection.

The OS keeps track of the number of tasks using the device. It does not detach the
device until it is no longer being used by any task.

Using a Logical Device with BIOS System Calls
You can assign a logical name to any device with logical_attach_device. Typically,
you use these logical device objects with EIOS calls. However, BIOS calls also
permit the prefix parameter to be a logical device object; it is a shorthand way to
traverse the directory structure.

When you use a logical device object in BIOS calls, the BIOS examines the logical
device object to determine the device connection. In such cases, you could receive
the E_DEV_OFF_LINE condition code. If the device is online, the device has not
yet been physically attached with a_physical_attach_device.

You can correct this situation by invoking at least one EIOS system call that refers to
the logical device by its logical name. The calling task must reside in an I/O Job
before it can invoke EIOS system calls.

230 Chapter 16 I/O Jobs and Connections

Creating File Connections
When an application task is ready to use a file, it establishes a connection to that file.
These system calls apply to file connections:

a_attach_file (BIOS) s_attach_file (EIOS)

a_create_file (BIOS) s_create_file (EIOS)

a_open (BIOS) s_open (EIOS)

a_seek (BIOS) s_seek (EIOS)

Unlike device connections, there can be multiple file connections to a single file.
This allows different tasks, if necessary, to have different kinds of access to the same
file at the same time.

Using BIOS System Calls
Use a_create_file to obtain a file connection:

• When the task does not know if the file already exists.

• When the task knows that the file does not yet exist.

If the file already exists, use a_attach_file.

In either case, the I/O System returns a connection to the physical file.

▲▲! CAUTION
It is possible to use a_create_file to obtain a file connection for a
file that already exists, however the file will be truncated to 0
length in the process. Other tasks having other connections to that
file will lose access to data because the end-of-file marker will
have moved to the beginning of the file.

The distinction between the file creation and the file attachment system calls enables
the application to work with named files as well as physical files.

After receiving a file connection, use a_open to open the connection. Use the mode
parameter to specify if the connection is open for reading only, for writing only, or
for both reading and writing. Use the share parameter to specify if other
connections to the file can be opened for reading only, for writing only, or for both
reading and writing.

System Concepts Chapter 16 231

Using EIOS System Calls
Use s_create_file to obtain a file connection:

• When the task does not know if the file already exists.

• When the task knows that the file does not yet exist.

If the file already exists, use s_attach_file.

In either case, the I/O System returns a connection to the physical file.

▲▲! CAUTION
It is possible to use s_create_file to obtain a file connection for a
file that already exists, however the file will be truncated to 0
length in the process. Other tasks having other connections to that
file will lose access to data because the end-of-file marker will
have moved to the beginning of the file.

The distinction between the file creation and the file attachment system calls enables
the application to work with named files as well as physical files.

After receiving a file connection, use s_open to open the connection. Use the mode
parameter to specify if the connection is open for reading only, for writing only, or
for both reading and writing. Also specify if other connections to the file can be
opened for reading only, for writing only, or for both reading and writing.

✏ Note
If a task in one job obtains a file connection that was created in a
different job, the task cannot successfully use the connection to
perform I/O operations. However, the task can catalog the
connection under a logical name and use the logical name in
s_attach_file to obtain a second connection that can be used
without restriction.

A connection can be open, such as during read or write operations, or closed, such as
during renaming or file status operations. Connections created by one I/O system can
be used by the other as long as the connection is closed. For example, you can use an
EIOS call to create a file and obtain a connection with the BIOS calls that rename a
file or get a file's status. However, the connection cannot be used with a BIOS read,
write, or truncate call, which require an open connection.

The same restriction applies if the BIOS creates the connection. The EIOS can use
the connection as long as the system call does not require an open connection.

232 Chapter 16 I/O Jobs and Connections

Moving File Pointers
The BIOS and EIOS maintain a file pointer for each open file connection to a
random-access device unit. This file pointer tells the I/O System the logical address
of the byte where the next I/O operation on the file is to begin. The logical addresses
of the bytes in a file begin with 0 and increase sequentially through the entire file.

Normally the pointer for a file connection points to the next logical byte after the one
most recently read or written. However, a task can modify the file pointer by
invoking the EIOS s_seek or BIOS a_seek system call. This is useful when
performing random-access operations on a file.

■■ ■■ ■■

System ConceptsSystem ConceptsSystem ConceptsSystem Concepts Chapter 17Chapter 17Chapter 17Chapter 17 233233233233

Named Files 17
Named files are used with random-access, secondary storage devices such as disks
and diskettes. Named files provide several features that are not provided by physical
or stream files. These features include:

• Multiple files on a single device or volume

• Hierarchical file names

• Access control

• Extension data

• Disk integrity

Named files are useful in systems that support more than one application and in
applications that require more than one file.

iRMX named files can also reside on remote systems. You access remote named
files in the same way as local named files, using iNA 960 and/or iRMX-NET.

Named files can also reside on the DOS partition of DOSRMX systems and iRMX
for PC systems. You access DOS files using the Encapsulated DOS (EDOS) file
driver if you are using DOSRMX. You can access DOS files using the DOS file
driver if you are running the iRMX OS on a PC that does not run DOS.

See also: Accessing EDOS Files, in this chapter;
Accessing DOS Files, in this chapter;
Remote Files, Network User's Guide and Reference;
EDOS, Programming Concepts for DOS and Windows

234 Chapter 17 Named Files

Using Prefixes, Subpaths and File Paths in System
Calls

You designate named files in system calls by specifying their path. There are two
components to a path: the prefix and subpath. A prefix is a logical name for a device
or the name of a directory file or data file. A subpath is a data-file name or a
sequence of directory names optionally followed by a data filename.

You can represent the character string that designates a path for a named file with an
iRMX string. To represent a string of n characters, you must use 1+n consecutive
bytes. The first byte contains the character count. The next n bytes contain the
ASCII codes for the characters, in the same order as the string. This string is a
pathname.

Use a pointer to this pathname as the subpath parameter in the system call and use
the file or device connection as the prefix parameter in the system call.

Subpaths
The subpath ASCII string is a list of filenames separated by slashes, terminating with
the desired file. A file name can be 1-14 ASCII characters, including any printable
ASCII character except the / (slash), ↑ (up-arrow) or ^ (circumflex). These special
characters are reserved for use in designating directory levels or dividing components
in a pathname. The subpath can also be null or can point to a null string, in which
case the prefix indicates the desired connection.

This subpath is an example of the most common form:

A/B/C/D

Where:

A, B, C Are the names of directory files.

D Is the name of either a directory or data file.

This example causes the I/O System to start at the default directory and descend to
directories A, B, and C in order. Then it acts on file D.

An example of a less common form of subpath is:

↑A/B/C/D

Where:

↑ or ^ Tells the I/O System to ascend one level in the hierarchy of files; then
descend to directories A, B, and C in order; then act on file D.

System Concepts Chapter 17 235

The I/O System also accepts consecutive up-arrows. For example:

↑↑ A/B/C

This construction causes the I/O System to start with the directory indicated by the
default prefix and ascend two levels before interpreting the remainder of the subpath.

A subpath can begin with a / (slash). For example:

/A/B/C

Whenever the I/O System detects a slash at the beginning of a subpath, the I/O
System starts interpreting the remainder of the subpath at the root directory of the
device indicated by the prefix.

Prefixes
A prefix is a logical name for a connection to either a device, a named directory file,
or a named data file. The device may be either a local or remote device. The files
may also be either local or remote files. The prefix is the only component that
distinguishes a local connection from a remote connection. The prefix tells the I/O
System where to begin interpreting the subpath:

• If the prefix is a connection to a local device, the I/O System begins scanning the
subpath at the root directory of the device.

• If the prefix is a connection to a remote device, the I/O System begins scanning
the subpath at the virtual root directory of the device.

• If the prefix is a connection to a local or remote named directory file, the I/O
System begins scanning the subpath at the specified directory.

• If the prefix is a connection to a local or remote named data file, the I/O System
checks to see if the subpath is null. If it is, the I/O System uses the file indicated
by the prefix. If the subpath is not null, the I/O System returns a condition code
indicating that the application program is attempting to use a data file as though
it were a directory file.

All other syntax applies to both local and remote files.

Using the Default Prefix
Within one iRMX job, most references to a named file tree are generally confined to
one branch of the tree.

236 Chapter 17 Named Files

For a file, a default prefix is a connection to a directory at the head of the most
commonly used branch in the named file tree. To use the default prefix, set the
prefix parameter to null. The I/O System keeps track of a job's default prefix by
using the job's object directory.

You can specify one default prefix for each iRMX job. A default prefix provides a
job with two advantages. First, it enables the application to use subpath names
instead of pathnames. If your tree is several levels deep, this can save programming
time during development. Second, a default prefix provides a means of writing
generalized application code that can work at any of several locations within a tree.

For example, suppose that an assembler (implemented as an iRMX job) uses a
default prefix to find a location in a named file tree. The assembler could then use a
subpath name of temp to find or create a temporary work file. Before an application
invokes the assembler, it sets the default prefix of the assembler job to a directory in
the application's named file tree. This enables more than one job to invoke the
assembler concurrently without the risk of sharing temporary files.

Specifying Paths in System Calls
System calls referring to named files need a path (prefix and subpath) to locate the
file. If you specify a null prefix, the default is used. Specify a token to override the
default.

You can specify paths in these forms:

Prefix Subpath Designated Connection
null pointer to a Connection is the default prefix.

null string

null pointer to an ASCII string defines a path from the
ASCII string default prefix to the target connection.

token pointer to a Prefix parameter contains a token for a
null string connection and overrides the default prefix.

Since the subpath is null, acts on the directory
or file specified in the prefix.

token pointer to an Prefix parameter contains a token for a
ASCII string connection and overrides the default prefix.

The ASCII string defines a path from that
connection to the target connection.

If the ASCII string begins with a slash, the prefix merely designates the tree and the
subpath is assumed to start at the root directory of the tree associated with the prefix.

System Concepts Chapter 17 237

Named files can also be addressed relative to other files in the tree, using ↑ (up
arrow) or ^ (circumflex) as a path component. These two symbols have the same
meaning. (Some terminals do not have the up-arrow key.) The ↑ or ^ refers to the
parent directory of the current file in the path scan.

Those system calls that require paths have a path_ptr parameter. You can use this
path_ptr parameter, along with the default prefix, to specify the file to be used.
This parameter is a pointer to an iRMX STRING that must be in one of these forms:

Null string If the STRING is 0 characters long, the I/O System will act on the file
indicated by the default prefix of the calling task's job.

Logical name only
If the STRING consists only of a logical name enclosed in colons (such
as :g: for the Dept1 directory) the I/O System will look up the logical
name and obtain the associated connection. Then, because the subpath
is empty, the I/O System will act on the data file or directory file
indicated by the connection.

Subpath only
The STRING can consist of a subpath without a prefix. The I/O System
interprets such subpaths by starting at the directory indicated by the
default prefix of the calling task's job. Then the I/O System follows the
subpath from directory to directory until it reaches the final component
of the subpath. This final component is the file on which the I/O
System acts.

Whenever the STRING contains a subpath without a logical name, the
default prefix must be a logical name for a connection to a device or to
a named directory file. If the default prefix represents a connection to a
named data file, the I/O System returns a condition code indicating that
your task is attempting to use a data file as a directory.

238 Chapter 17 Named Files

Logical name and subpath
The application code can use a STRING with a logical name in colons
followed immediately by a subpath. For example:

:g:tom/test_data/batch_1

The I/O System interprets this example as follows. First, it looks up the
logical name :g: in the object directory of the local job, or if necessary,
the global or root job. Then it follows the subpath from the directory
associated with the connection. So in the example, the I/O System
would find the directory associated with :g: and it would step through
directories tom and test_data. Finally, the I/O System would act on file
batch_1.

Using Connections
Once you have a connection to a particular file, you can use it as the prefix
parameter of any system call by setting the subpath parameter to null. The I/O
System will ignore the subpath and use only the prefix to find that particular file.

Suppose the application has a connection to directory dept1/tom. Use the connection
to directory dept1/tom as the prefix, and use a pointer to a filename as the subpath.
For example, if the subpath name is test_data/batch_1, the specified file is
dept/tom/test_data/batch_1.

A file connection obtained in one job cannot be used as a connection by another job.
However, a file connection can be used as a prefix by other jobs in any call requiring
prefix and subpath parameters. The only exceptions to this rule are that the other
jobs cannot use the connection as a prefix while specifying a null subpath in calls to
a_change_access, s_change_access, s_delete_file, or a_delete_file. This means that
a file connection can be passed to another job and the other job can obtain its own
connection to the same file by calling a_attach_file, with the passed file connection
being used as the prefix parameter in the call.

However, if the connection was created by a task in a different job, your task should
not use the connection in any of these system calls. Rather, your task should first
obtain a new connection to the same file by performing these steps:

1. Catalog the current connection in the object directory of your task's job. This
establishes a logical name for the current connection.

2. Using the newly-defined logical name, invoke s_attach_file to obtain another
connection to the same file.

If your task does attempt to use a connection created in another job, the I/O System
will return a condition code rather than performing the requested function.

System Concepts Chapter 17 239

Controlling File Access
In environments where files are shared among multiple users and operating systems,
you may need to control user access and the level of user access to files. The
iRMX OS provides this control by identifying users with user IDs and embedding
access rights for these IDs into the files. This section describes the user ID and file
access along with the mapping process used for NFS files.

Users
The iRMX OS defines all entities, such as people or iRMX jobs, that use named files
in your system as users. If you want all of these entities to be able to access any file,
consider them as a single user. However, if different entities require different
accesses, you must divide the entities into subsets, each of which is a separate user.

Alternatively, if the application does not interact with people (or enables only one
person to interact), you might consider each iRMX job as a user. This setup would
enable the application to control the files that each job can access.

User Ids

A user ID is a 16-bit number that represents any individual or collection of
individuals requiring a separate identity for the purpose of gaining access to files.

Two user IDs have special meaning. One is the number 0 (the system manager or
Super user). The other is the number 0FFFFH (the World user). If specified during
system configuration, user ID 0 represents the system manager. When the system
manager creates or attaches files, the resulting file connection automatically has read
access to data files and list access to directory files, even if a file's access list does not
contain ID 0. The system manager can also change any file's access list.

The user ID 0FFFFH represents World (all users in the system). Placing the ID for
World in the list of user IDs for every user object enables the application to set aside
certain files as public files, giving everyone limited access to a series of utilities, such
as compilers. The HI follows this convention by ensuring that all users who log on
dynamically have the World ID in their user object.

✏ Note
Including the World ID in every user object, lets anyone modify the
access list of a file whose owner ID is 0FFFFH (World).

See also: permit command, Command Reference
Accessing NFS Files, later in this chapter

240 Chapter 17 Named Files

Figure 17-1 shows the relationship between a user and the user ID.

User

User ID

OM02123

16-bit Identifier:

0 = System Manager
0FFFFH = World User

Operator

iRMX OS Job

Figure 17-1. User and User ID Relationship

User Objects
The I/O System uses a user object when determining access rights to files. A user
object contains a list of one or more user IDs. When a task attempts to use a file, it
must supply the token for a user object. To determine access, the OS compares the
IDs in the supplied user object with information contained in the file itself.

Most I/O operations performed within a particular iRMX job are performed on behalf
of one user object. The I/O System enables the application to designate a default user
object for each job, which defines the access rights for all tasks in that job.

The I/O System uses the job's object directory to keep track of the job's default user
object, which is named r?iouser. Consider r?iouser to be a reserved name and do not
use it.

Whenever the application invokes a BIOS call on behalf of the default user object,
the application can use a null selector as the token for the user parameter. Use a
null selector to designate the default user in BIOS system calls.

For ICU-configurable systems, you set up the default user objects for your initial
EIOS I/O jobs (which start running immediately upon system initialization). Later,
when a task creates an I/O job, the new I/O job inherits the default user object of its
parent I/O job. The EIOS automatically catalogs the parent job's user object in the
new I/O job's object directory under the name r?iouser.

System Concepts Chapter 17 241

File Access List
For each named file (data or directory), the I/O System maintains an access list which
defines the users who have access and their access rights. Each access list is a
collection of up to three ordered pairs with each pair having the form:

ID, ACCESS MASK

The ID portion is a user ID. The list of user IDs defines the users who can access the
file. For systems that use NFS, the three iRMX user IDs map to NFS user IDs as
described earlier.

The access mask portion defines the kind of file access that the corresponding user
has. An access mask is a byte in which individual bits represent the various kinds of
access permitted or denied that user. When a bit is set to 1, it signifies that the
associated kind of access is permitted. When set to 0, the bit signifies that the
associated kind of access is denied.

iRMX-NET uses a slightly different access mask for remote files than is used for
local files. A file is local if it resides in the same physical system to which the
terminal is connected. A file is remote if it resides on another system accessible
through a network.

See also: Remote files, Network User's Guide and Reference;
File access attributes in this chapter for DOS and EDOS;
permit command, Command Reference

✏ Note
NFS file access is mapped to the iRMX OS file access scheme.
For information on this mapping see Accessing NFS Files, in this
chapter.

The association between the bits of the access mask and the kinds of access they
control are as follows:

Bit Data Files Directory Files
3 Update Change Entry
2 Append Add Entry
1 Read List
0 Delete Delete

The remaining bits in the access mask have no significance.

For example, an access list for a data file might look like this:

5B31 00001110
9F2C 00000010

242 Chapter 17 Named Files

The ID numbers (left column) are in hexadecimal and the access masks (right
column) are in binary. This means that the ID number 5B31 has update, append, and
read access rights, while the ID number 9F2C has the read access right.

The first entry in the file's access list is placed there automatically by the I/O System
when it creates the file. The ID portion of that entry is the first ID number in the user
object specified in the call that creates the file. The first ID is the owner ID for the
file. The access rights portion is supplied as a parameter in the same call. The owner
ID has full (unlimited) access to the file.

The system calls to add or delete ID-access pairs, or change the access rights of IDs
already in the access list are a_change_access or s_change_access.

✏ Note
Only the system manager and the file's owner can change the file's
access list without being granted explicit permission to do so.

Computing Access for File Connections
Whenever a task creates a directory or creates or attaches a file, the I/O System
constructs an access mask and binds it to the file connection object returned by the
call. This access mask is constant for the life of the connection, even if the access list
for the file is subsequently altered. When the connection is used to manipulate the
file, the access mask for the connection determines how the file can be accessed. For
example, if the computed access rights for a connection to a data file do not include
appending or updating, that connection cannot be used for writing.

When a task uses BIOS calls to create a directory or file, the access mask for the
connection is the same as the access mask that the task supplies in the access
parameter of the system call. When a task uses EIOS calls to create a directory or
file, the EIOS supplies an access mask that grants full access to the connection.

However, when a task attaches a file, the I/O System compares the user object
specified in the user parameter with the file's access list and computes an aggregate
mask.

Figure 17-2 on page 243 illustrates the algorithm that the I/O System uses during a
call to attach a file. As the figure shows, the OS compares the IDs in the default user
object with the IDs in the file's access list. The access masks corresponding to
matching IDs are logically ORed, forming an aggregate mask.

System Concepts Chapter 17 243

W-2800

(Matches) or

Access
Mask for
File
Connection

User Object For
Calling Task's Job

Access List for
Target File

User ID 1

ID 2

ID 3

ID 4

ID 5

ID

ID

ID

Access

Access

Access

Figure 17-2. Computing the Access Mask for a File Connection

Normally, the I/O System uses the aggregate access mask embedded in the
connection to determine a task's ability to access a file. However, there are two
circumstances in which the I/O System computes access again: during
a_change_access or s_change_access, and during a_delete_file or s_delete_file.
When a task invokes one of these system calls, the I/O System computes the access to
the target file (or to the data file or directory specified in the prefix parameter, if
the subpath portion is null). If the user object specified in the system call does not
have appropriate access rights, the I/O System denies the task the ability to delete the
file or change the access.

✏ Note
When computing access, the I/O System checks the access only to
the last file in the specified subpath and to the parent directory of
the last file. It does not check the access to any other directory files
specified in the path. If the subpath is null, the BIOS checks the
access to the file indicated by the prefix parameter.

244 Chapter 17 Named Files

File Access Rights Example
This example illustrates using IDs, access masks, access lists, and user objects to
permit each user in a system to have exactly the kinds of access that you want that
user to have.

This example shows that one ID number can give certain access rights to an
individual and that another ID number can give different access rights to a collection
of individuals. Here are the individuals and their access rights:

• Tom is to have full access to the file batch_1

• Bill is to have read and append access only

• Members of Department 2 are to have read access only

Tom (or whoever creates batch_1) can arrange for these kinds of access by doing:

1. Create a number of user objects, one for Tom, one for Bill, and one for each of
the members of Department 2 (George, Harry, and Sam). When creating the
user objects, assign unique owner IDs for each user: 4000H for Tom and 8000H
for Bill. Assign unique owner IDs for each of the members of Department 2, but
also include a common user ID, F000H, as an additional ID in each of their user
objects.

2. Use a_create_file to create the file batch_1. Use the token for the user object
containing the 4000H ID number and specify the access mask 00001111B. This
call returns a file connection that gives Tom full access to batch_1. The access
list for batch_1 has just one ID-access mask pair.

3. Use a_change_access to add an ID-access mask pair to the access list of
batch_1: ID 8000H and access mask 00000110B. This gives Bill read and
append access to batch_1. Now the access list has two ID-access mask pairs.

4. Use a_change_access to add a third pair to the access list of batch_1: ID F000H
and access mask 00000010B. This gives the people in Department 2 read access
to batch_1.

System Concepts Chapter 17 245

Bill can read the contents of batch_1 and append new information to it, if he knows
the prefix and subpath that are needed to attach batch_1 and he creates a user object
with the ID 8000H. He specifies that user object when attaching batch_1.

The members of Department 2 can read the contents of batch_1, if they know the
prefix and subpath that are needed to attach batch_1 and they create a user object
with the ID F000H. They specify that user object when attaching batch_1.

When Bill attaches batch_1, he receives a file connection that he can use to read the
file. He also can write, provided that the file pointer for that connection is at the end
of the file.

When a member of Department 2 attaches batch_1, he receives a file connection that
he can use in calls to read the file.

Getting and Setting Extension Data
For each named file on a random access volume, the BIOS creates and maintains a
file descriptor on the same volume. The first portion of the descriptor contains
information for the BIOS. The last portion, called extension data, is available to your
OS extension. You specify the number (from 0 to 255, inclusive) of bytes of
extension data for each named file on the volume, when formatting the volume with
the format command.

See also: format command, Command Reference

The BIOS system calls that enable you to record special information in the trailing
portion of the file's descriptor and to access this data when it is needed later are
a_get_extension_data and a_set_extension_data.

246 Chapter 17 Named Files

Maintaining Disk Integrity
The BIOS has several features that enable programs to maintain disk integrity and
determine whether files or volumes have been corrupted. The next sections outline
these features.

Attach Flags
The BIOS maintains flags that can indicate the integrity of named volumes and
named files. When you attach a named volume, the BIOS sets a flag in the volume
label to indicate that the volume is attached. When you attach a named file, the BIOS
sets a flag in the fnode (file descriptor node) file to indicate that the file is attached.
When you detach a volume or file, the BIOS clears the associated flag, indicating that
the file or volume was successfully detached.

You can check the condition of a volume by invoking a_get_file_status or
s_get_file_status. You can write your own programs to check the file flag, or you
can use the Disk Verification Utility to examine the fnode file.

The Disk Verification Utility (DVU) enables you to inspect, verify, and correct the
data structures of named or physical volumes. You can use the DVU to reconstruct
the fnode file, the volume label, the fnode map, the volume free space map, and the
bad blocks map of the volume.

See also: Disk Verification Utility, Command Reference

Fnode Checksum Field
The BIOS uses the fnode file to keep track of every named file on a volume. The
fnode file lists such information as the file name, the creation and last modification
dates, and the location of every disk sector that makes up the file. When you access a
file, the BIOS uses the fnode file to determine the file's location on the volume.
When you create, modify, or delete a file, the BIOS modifies the fnode file to match
the changes you made.

When the last connection to the file is deleted, the BIOS writes to the fnode file, and
calculates a checksum and writes that value in one of the fields of the fnode file.
This checksum can be used to determine whether any data errors occurred when the
BIOS wrote the fnode file. Your programs can use the checksum field to determine
whether the fnode file has become corrupted. Using the shutdown command helps
prevent fnode corruption; use the diskverify command to repair damaged files.

System Concepts Chapter 17 247

Getting and Setting the Bad Track/Block Information
It is not uncommon for a hard disk to have a few sectors or tracks that cannot reliably
store information. Many of these disks have a record of these bad tracks written on
the second-highest cylinder of the disk. When the BIOS formats a disk, it uses this
bad track/sector information to assign alternate tracks or sectors for the bad
tracks/sectors listed. The a_special system call also has the ability to retrieve and set
the bad track/sector information on a volume. One subfunction enables you to
retrieve the current list of defective tracks or sectors. Another subfunction enables
you to set up a new bad track/sector list.

Bad tracks and bad blocks are different. Bad tracks are handled by the device drivers
in conjunctions with the hardware, whereas bad blocks are handled by the Basic I/O
System. The Disk Verification Utility mainly deals with bad blocks. It can view bad
track information with getbadtrackinfo but the format command must be used to
change it.

✏ Note
Use the iRMX ability to read and set bad track and block
information only with ST506 drives. Drive electronics on newer
SCSI and IDE drives handle this mapping.

248 Chapter 17 Named Files

Accessing Remote Files
The I/O System supports the iRMX-NET local area network (LAN) by providing the
Remote File Driver (RFD) and the encrypt system call. Remote (public) files are
accessed by the RFD, which is similar to the Named File Driver.

The encrypt call encrypts passwords. You can use this system call to enable remote
file access through iRMX-NET or in any application that needs to perform password
encryption. No password decryption or data decryption facilities are provided in the
iRMX OSs.

Systems that Include iRMX-NET
iRMX systems can be networked together using iRMX-NET. iRMX-NET gives you
access to the files on hard disks of other systems on your network. The root directory
of a remote device is referred to as a virtual root. The remote system selects the
directories and files to be made accessible by using the offer command. Not all files
and directories on a remote system are automatically accessible.

A file owner specifies what kind of access will be given to other users using the
permit command. In iRMX-NET, giving or denying network file access is called
making files public or private. Use the offer command to make files public. Files
retain the same file permissions even when they are made public. Making directories
public has the effect of making all files below that directory public.

System Concepts Chapter 17 249

Figure 17-3 illustrates public and private files on two networked systems. User Bob,
working on the system shown on the right of the figure, is able to access the public
data files on system1. Bob's files are not accessible from system1, because none of
his files are public.

See also: offer command, Command Reference

W-2802

:SD:Directory
Structure

Directory
Structure

Legend

= Private Directory

= Public Directory

= Public Data File

= Private Data File

Public Files Bob

System1

User

Client
Remote
Server

Multibus Multibus

UserWork

CPU Board
for System1

Local CPU
Board :SD:

Figure 17-3. Example of Public and Private Files in an iRMX-NET System

250 Chapter 17 Named Files

Dynamic Logon and iRMX-NET
In a system that supports the dynamic logon facilities of the Human Interface or
iRMX-NET, a User Definition File (UDF) lists the user name, password (in
encrypted form), user ID, and other information about everyone who is allowed to
log on to the iRMX system. The EIOS provides get_user_ids so that you can look
up the permitted user ID of any user whose user name you know. This system call is
useful for tasks that need to set up user objects based on the information listed in the
UDF.

The EIOS also helps control remote file access through verify_user. This system
call validates user names and passwords to ensure file security. As a result, the EIOS
enables users to access remote files when logged on to dynamic terminals controlled
by the Human Interface.

Access rights to remote files are slightly different than for named files.

See also: permit, Command Reference

System Concepts Chapter 17 251

Accessing NFS Files
On a TCP/IP network you can use NFS for transparent file access between systems.
The NFS file driver enables application programs and users to access files on an
NFS-shared resource. Before using NFS from a client system, you must define the
files as NFS-shared on the server system. This section describes how file
characteristics are mapped between operating systems when you use NFS. The NFS
client or server software running on a non-iRMX OS (DOS or UNIX) is responsible
for mapping file characteristics to or from files on the non-iRMX system during NFS
file operations.

See also: attachdevice and permit, Command Reference
Using NFS, TCP/IP and NFS for the iRMX Operating System

Volume Names
The volume name for NFS files is the hostname. The number of free files is not
returned to the iRMX OS when you access files using NFS.

File Names
NFS filenames cannot be longer than 14 characters. If you try to access a file whose
name exceeds 14 characters, the system displays a truncated version of the name and
marks it as “file not found”.

Non-iRMX hosts can further restrict filename lengths. For example, DOS machines
limit filenames to eight characters followed by a three-character suffix.

NFS supports case-sensitive filenames. For hosts whose filenames are case-
insensitive, the filename is converted to comply with the host. For example, if you
use NFS to copy the file My_Stuff.txt to a DOS machine, it is saved as the DOS file
MY_STUFF.TXT. Copying the same file to a UNIX host results in the file
My_Stuff.txt. You need to reference files using the same case as they appear in the
directory.

252 Chapter 17 Named Files

File Ownership
File ownership mapping occurs between iRMX, DOS, and UNIX files when using
NFS. The following list describes the mapping:

• When you use NFS between two iRMX systems, file owners are maintained on a
one-to-one basis.

• When you use NFS between an iRMX system and a UNIX system, the following
mapping occurs regardless of which OS is the NFS client:

iRMX UNIX

First owner in access list “owner”
Second owner in access list “group”
Third owner in access list (ignored)
World Owner is user ID 60000 and

Group is user ID 1 (other)
Super Owner and group user IDs are 0 (root)

✏ Note
You can modify iRMX to UNIX file ownership mapping values for
the World user by setting parameters in the /etc/stune.ini file.

See also: Tunable Parameters, TCP/IP and NFS for the iRMX Operating
System

• When you are the Super user on an iRMX client and you copy files to an
NFS-shared file system on a UNIX host and the host does not allow root access,
the files get an owner ID of 60001 (nobody) and a group ID 1 (other).

• When you use NFS between an iRMX system and a DOS system, file ownership
mapping does not apply. This is because DOS has no concept of file owners.
The NFS package you use on a DOS system may make certain assumptions. For
example, a DOS-based NFS product might translate a file owned by user ID 0
(Super) as read-only from the DOS side. See the documentation for your non-
iRMX NFS product for such details.

System Concepts Chapter 17 253

User ID Translation
User IDs map one-to-one across NFS except as noted for the Super and World users
between iRMX and UNIX systems described in the previous section.

When you use NFS between two machines that happen to have different user
accounts with the same user ID, the file’s ownership is determined by the client’s
account. For example, assume that a file on an NFS server is owned by Sam with a
user ID of 33. User Sarah on an NFS client also has a user ID of 33. If Sarah
accesses the file on the NFS server through NFS, the user IDs map one-to-one.
However, Sarah’s access rights to the file will be whatever rights Sam has for the file
on the server machine. Also, if Sarah lists the directory that contains the file, the
owner will appear as Sarah, not Sam.

This user ID mechanism works similarly between iRMX systems or between iRMX
and UNIX systems.

File and Directory Creation
When an iRMX user creates a file or directory across NFS, the default access rights
are as follows:

UNIX Access Rights DOS Access Rights

“owner” = “rwx” read/write
“group” = “---” (not applicable)
“other” = “---” (not applicable)

Your NFS software on the non-iRMX host can further define these default access
rights.

File Access Rights
When you change file access permissions programmatically or with the permit
command from an iRMX client, the access rights are mapped through NFS as
follows:

Setting any of these bits
on an iRMX Client

Results in all of these bits being set on
iRMX, UNIX, and DOS Servers

iRMX iRMX UNIX DOS

Files D-AU

-R--

D-AU

-R--

-w-

r-x

read/write
read-only

Directories D-AC

-L--

D-AC

-L--

-w-

r-x

read/write
read-only

254 Chapter 17 Named Files

For example, if you set only the Delete (D) bit from an iRMX client system, this is
translated across NFS to mean D-AU access on an iRMX server, -w- (write) access
on a UNIX server, and read/write access on a DOS server.

When you change access permissions from another OS through NFS, the access
permissions on an iRMX server are set as follows:

Setting any of these bits on UNIX and
DOS Clients

Results in all of these
bits being set on an
iRMX Server

UNIX DOS iRMX

Files -w-

r-x

read/write
read-only

D-AU

-R--

Directories -w-

r-x

read/write
read-only

D-AC

-L--

For example, if you set the read (r) bit or the execute (x) bit from UNIX, it results in
a file with the “-R--” access on the iRMX server.

System Concepts Chapter 17 255

Accessing EDOS Files
The EDOS file driver enables application programs to access files on a DOS partition
and uses DOS as a file server. Before using any DOS partition or diskette, attach the
drive or the diskette using attachdevice.

See also: attachdevice, Command Reference

Directories
Users cannot rename a DOS directory or file to another subdirectory (such as
renaming dir1 to dir3/dir1). DOS directory files can only be read a multiple of 16
bytes at a time on 16-byte boundaries.

File Attributes
DOS file access attributes include read-only and read/write permission; iRMX access
attributes include read, change-entry, delete, update, add-entry, and append. An
iRMX user that has any of delete, change, update, add, or append permission has
write permission for DOS files.

The DOS user always has read (list) access to DOS files and directories; write
(delete, append, update, add-entry, and change-entry) access is optional. The DOS
user must have write access to the file to rename it or to delete a connection to it.
DOS and the iRMX OS have different ways for handling invisible files.

See also: Invisible files, iRMX Programming Concepts for DOS and Windows

File Names
DOS filenames must be eight characters or less in length, with a three character (or
less) extension. DOS truncates iRMX filenames, which may be up to 14 characters
and may contain one or more . (period). Any DOS filename is a valid iRMX
filename, but the converse is not true.

Time Stamps
The create_time, access_time, and modify_time elements are not valid for
DOS files. The only time stamp for DOS files is creation time or last-modified time.

File Ownership
Owner_access does not apply to DOS files because DOS does not support multiple
file owners. EDOS files have only one user, which is World.

256 Chapter 17 Named Files

Accessing DOS Files
The DOS file driver enables application programs to access files on a DOS partition
and uses DOS as a file server. Before using any DOS partition or diskette, attach the
drive or the diskette using attachdevice.

See also: attachdevice, Command Reference

Directories
DOS directory files can only be read a multiple of 16 bytes at a time on 16-byte
boundaries.

File Attributes
DOS file access attributes include read-only and read/write permission; iRMX access
attributes include read, change-entry, delete, update, add-entry and append. An
iRMX user that has any of delete, change, update, add, or append permission has
write permission for DOS files.

The DOS user always has read (list) access to DOS files and directories; write
(delete, append, update, add-entry and change-entry) access is optional. The DOS
user must have write access to the file to rename it or to delete a connection to it.
DOS and the iRMX OS have different ways for handling invisible files.

See also: Invisible files, Programming Concepts for DOS and Windows

File Names
DOS filenames must be eight characters or less in length, with a three character (or
less) extension. DOS truncates longer iRMX filenames, which may be up to 14
characters and may contain one or more . (period). Any DOS filename is a valid
iRMX filename, but the converse is not true.

Time Stamps
The create_time, access_time, and modify_time elements are not valid for
DOS files. The only time stamp for DOS files is creation time or last-modified time.

File Ownership
Owner_access does not apply to DOS files because DOS does not support multiple
file owners. DOS files have only one user, which is World.

System Concepts Chapter 17 257

Accessing CDROM Files
The CDROM file driver enables application programs to access files on a CDROM.
Before using any CDROM, attach the drive using attachdevice.

See also: attachdevice, Command Reference

Directories
CDROM directory files can only be read a multiple of 16 bytes at a time on 16-byte
boundaries.

File Attributes
CDROM files are read-only.

File Names
CDROM filenames must conform to ISO9660. The CDROM file driver cannot read
any other format currently. Filenames must be eight characters or fewer in length,
with a three character (or fewer) extension.

File Ownership
Owner_access does not apply to CDROM files.

258 Chapter 17 Named Files

Using Nucleus System Calls for the Default User and
Default Prefix

Several system calls provided by the Nucleus allow you to specifically manipulate
user objects and prefix objects.

• catalog_object

• uncatalog_object

• lookup_object

The default user and default prefix for each I/O job are cataloged in the job's object
directory.

System Calls for Named Files
Some system calls are useful for both data and directory files, some for only one kind
of file, and some (such as create_user) do not relate directly to either kind of file.
Generally, system calls that relate to named files also relate to remote files and DOS
files.

The brief descriptions in Tables 17-1 through 17-Error! Reference source not
found. on pages 259 through Error! Bookmark not defined. are grouped by
function, not alphabetically. Where a prefix is not used, an a_ prefix is required for
BIOS system calls and an s_ prefix for EIOS system calls. For example, the full
syntax for the BIOS system call for create_file is rq_a_create_file.

System Concepts Chapter 17 259

BIOS and EIOS System Calls for Named Files

Table 17-1. Getting and Deleting Connections

Call Target Used To

create_file data Create a new data file and automatically add
an entry in the parent directory. Obtain a
connection to an existing data file.

create_directory directory Create a new directory file and automatically
add an entry in the parent directory.

attach_file data and
directory

Obtain a connection to an existing data or
directory file.

delete_connection data and
directory

Delete a file connection, not a device
connection.

*a_physical_attach_device device Obtain a connection to a device.

a_physical_detach_device device Delete a connection to a device.

*s_logical_attach_device device Obtain a connection to a device and catalog
the logical name for the device in the object
directory of the root job.

s_logical_detach_device device Delete a connection to a device and remove
the logical name of the device from the
object directory of the root job.

hybrid_detach_device device Delete a connection to a device. Does not
remove the device's logical name from the
object directory of the root job. Use to
temporarily attach a device in a different
manner.

* For a_physical_attach_device and s_logical_attach_device, the device connection can be used as
the prefix for the root directory of the device.

Table 17-2. Getting and Setting Default Prefixes

Call Target Used To
*set_default_prefix job Set the default prefix for any iRMX job and

catalog the connection under the name $ in
the job's object directory.

*get_default_prefix job Determine the default prefix for any
iRMX job.

* These system calls do not require a prefix of a_ or s_.

260 Chapter 17 Named Files

Table 17-3. User Objects

Call Target Used To
*create_user user object Create a user object and return a token to

the calling task.
*delete_user user object Delete an existing user object.
*inspect_user user object

token
Return the ID list in an existing user object
to the calling task.

*set_default_user user object Establish a default user for any existing
iRMX job.

*get_default_user user object Determine or change the default user for
any existing iRMX job.

* These system calls do not require a prefix of a_ or s_.

System Concepts Chapter 17 261

Table 17-4. Using Data

Call Target Used To

open data and
directory

Open a connection to the file.

close data and
directory

Close the file connection.

seek data Position the file pointer of the file
connection. Tells the BIOS the location in
the file where the read, write or truncate
operation is to take place. Requires that the
file connection be open.

a_read
s_read_move

data and
directory

Read file data from the location indicated by
the file pointer and place the data in a
memory buffer. Use the seek system call to
position the file pointer. Requires that the
file connection be open. Requires that the
segment to which you copy the data be
writable.

a_write
s_write_move

data Copy information from a memory buffer and
place it in the file at the position indicated
by the file pointer. Use seek to position the
file pointer. Requires that the file
connection be open. Requires that the
segment from which you copy the data be
readable.

a_truncate
s_truncate_file

data
data

Drop information from the end of the file.
Use a_seek to position the file pointer at
the first byte to be dropped. Requires that
the file connection be open.

*wait_io file Receive the concurrent condition code of
the prior system call and the number of
bytes read or written. Use after a_read,
a_write, or a_seek.

*a_update BIOS Transfer data remaining in internal buffers
immediately to the files on a device. Use to
ensure that all files on removable volumes
(such as diskettes) are updated before
removal.

* These system calls do not require a prefix of a_ or s_.

262 Chapter 17 Named Files

For close, the application can elect to leave the file open, letting the BIOS close it
when the connection is deleted, but when a connection is shared between two or more
applications, some of the applications can place restrictions on the manner of sharing.
For instance, an application can specify sharing with writers only. By closing
connections, the application can improve the likelihood that the connections can be
used by other applications. A connection is not closed until all pending I/O requests
have been handled.

Each entry in a directory consists of 16 bytes. The first two bytes contain a 16-bit file
descriptor number corresponding to the file descriptor number associated with
get_file_status. The remaining 14 bytes are the ASCII characters making up the
name of the file to which the directory entry points. A file's name is the last
component of a pathname. Using read to read a directory lets the application obtain
several entries with one operation.

Table 17-5. Getting Status

Call Target Used To

get_file_status data and
directory

Get file status.

get_connection_status data and
directory

Get connection status.

*get_logical_device_status device Retrieve information about devices.
* This system call does not require a prefix of a_ or s_.

Table 17-6. Reading Directory Entries

Call Target Used To

a_read directory Get contents of the directory.

a_get_directory_entry directory Read directory entries; can be used without
opening a connection.

Note: These system calls are for the BIOS only.

System Concepts Chapter 17 263

Table 17-7. Deleting and Renaming Files

Call Target Used To

delete_file data and
directory

Delete files or empty directories.

rename_file data and
directory

Rename files or directories. Add entries to
directories.

Deleting a file involves two steps. First, call a_delete_file. This marks the file for
deletion. The second step, actual deletion, is performed by the BIOS. The BIOS
deletes marked files only after all connections to the file have been deleted.

For rename_file, the application can move the file to any directory in the same
named file tree. For example, you can rename A/B/C to be A/X/C. This example
moves file C from directory B to directory X. This means that the application can
change every component of a file's pathname except the root directory.

See also: Accessing DOS and EDOS Files, in this chapter;
rename_file system call, System Call Reference

Table 17-8. Changing Access

Call Target Used To

change_access data and
directory

Change the file's access list, or change
access rights of files in a directory, when
used by only the owner of a file or a user
with change entry access to the directory
containing the file.

Table 17-9. Identifying a File's Name

Call Target Used To

a_get_path_component data and
directory

Find out the last component of a file's
pathname. Use repeatedly to obtain the
entire pathname for a file.

Note: This system call is for the BIOS only.

264 Chapter 17 Named Files

Table 17-10. Changing Extension Data

Call Target Used To

a_set_extension_data data and
directory

Writes extension data. Use even if the file
connection is not open.

a_get_extension_data data and
directory

Reads extension data. Use even if the file
connection is not open.

Note: These system calls are for the BIOS only.

When you format a volume to accommodate named files, you have the option of
allowing each file to include extension data.

Table 17-11. Detecting Changes in Device Status

Call Target Used To

a_special device Perform functions that are device
dependent, such as formatting a disk or
setting terminal characteristics.

Note: This system call is for the BIOS only.

Table 17-12. Deleting Connections

Call Target Used To

s_delete_connection data and
directory

Delete a file connection, not a device
connection.

Note: This system call is for the EIOS only.

System Concepts Chapter 17 265

Table 17-13. Using Logical Names

Call Target Used To

s_catalog_connection object
directory

Create a logical name by cataloging a
connection in the object directory of a job.

s_lookup_connection object
directory

Accept a logical name from an application
task, look up the name in the object
directories of the local, global, and root jobs
(in that sequence), and return a token for the
first connection found.

s_uncatalog_connection object
directory

Delete a logical name from the object
directory of a job.

Note: These system calls are for the EIOS only.

Table 17-14. Creating and Deleting I/O Jobs

Call Target Used To
*create_io_job I/O job Create an I/O job while the system is

running. Available for compatibility with the
iRMX I OS. The memory pools associated
with those I/O jobs cannot exceed 1 Mbyte.
Specify if you want the initial task to start
running automatically, or wait until
start_io_job.

*rqe_create_io_job I/O job Create an I/O job while the system is
running. The memory pools can be up to
4 Gbytes for iRMX III systems. Use this
system call (instead of create_io_job) for
all new applications, because it takes full
advantage of iRMX features.

*start_io_job I/O job Start the initial task in an I/O job.
*exit_io_job I/O job Terminate an I/O job and inform the parent

job of the termination.

Note: These system calls are for the EIOS only and do not require a prefix of a_ or s_.

266 Chapter 17 Named Files

These EIOS system calls perform operations that do not fit into any other category.

Table 17-15. Miscellaneous Functions

Call Target Used To

s_special file
connection

Perform functions that are device
dependent, such as formatting a disk or
setting terminal characteristics.

s_get_directory_entry filename Look up the name of any file in a directory.

s_get_path_component filename Look up the name of a file as it is known in
the file's parent directory.

Note: These system calls are for the EIOS only.

See also: BIOS and EIOS calls, System Call Reference

Call Sequence for Named Files
System calls for named files cannot be used in arbitrary order. The following figure
shows the sequence for the most frequently used I/O System calls. Start with the
leftmost box and follow the arrows. Any path that you can trace is a legitimate
sequence of system calls. Figure 17-4 on page 267 is not a complete list of all
sequences.

System Concepts Chapter 17 267

Data Files

Directories

Create
File

Open

Attach
File

Read
Write
Seek

or
Truncate

Close
Delete

File
Delete

Connection

Detach
Device

Attach
Device

Create
Directory

Attach
File

Open
Seek

or
Read

Close

Get
Directory

Entry

Delete
File

Delete
Connection

W-2801

Figure 17-4. Sequence of Frequently Used System Calls for Named Files

■■ ■■ ■■

268 Chapter 17 Named Files

System Concepts Chapter 18 269

Physical Files 18
Physical files enable applications to read or write strings of bytes from or to a device.
A physical file occupies an entire device or the device's entire volume; the I/O
System provides applications with the ability to access the device driver directly.

Although there is a one-to-one correspondence between the bytes on a device and the
bytes of a physical file, the device connection is different from the file connection.

Situations Requiring Physical Files
Physical files are useful when the application system uses sequential devices, such as
line printers, display tubes, plotters, and magnetic tape units.

Physical files are also useful to communicate with random access devices, such as
disk drives and diskette drives, in these situations:

• When formatting volumes, the task accesses every byte on the volume. Only
physical files provide this kind of access.

• When using volumes in formats other than the iRMX format, you must use
physical files. Tasks will have to interpret information such as labels and file
structures, but a physical file can provide tasks with access to the raw
information.

• When implementing your own file format, such as a structure different from
iRMX named files, you can build a custom file structure using a physical file as
a foundation.

Maintaining Physical File Independence
To allow application tasks to use stream or named files in addition to physical files,
create two tasks: one to obtain a connection to the file and one to use the connection
to perform I/O. By maintaining this separation, the second task can work with any
kind of file.

To use this two-task approach, be sure that both tasks are in the same job. This
avoids passing a file connection from one job to another.

270 Chapter 18 Physical Files

BIOS Calls for Physical Files
1. Obtain a device connection to tell the I/O System that the file is a physical file

and which device contains the file using

a_physical_attach_device

2. Obtain a file connection using

a_create_file or a_attach_file

• For a_create_file, use the device connection token as the prefix parameter
to tell the BIOS which device you want as the physical file.

• For a_attach_file, use the device connection for the device, or use an
existing file connection to the file as the prefix parameter in the system
call.

3. Open the file connection using

a_open

4. Use the file. There are four system calls that can read, write, or otherwise use
the physical file.

These system calls read and write information from or to the physical file:

a_read and a_write

This call moves the file connection's file pointer if the device is a random access
device such as a disk or diskette.

a_seek

This call requests device dependent functions from the device driver.

a_special

Tasks can use this call to format a disk for use with the iRMX OS. The kinds
and number of functions supported depends upon the device and device driver.
Using special functions generally prevents a task from being device independent.

System Concepts Chapter 18 271

5. Close the file connection using

a_close

This is important if the connection share mode restricts the use of the file
through other connections. The application can repeat steps 2, 3, 4, and 5 any
number of times.

6. Delete the connection using

a_delete_connection

This is only necessary if the tasks of the application are completely finished
using the file.

7. Detach the device when the task no longer needs the device using

a_physical_detach_device

See also: BIOS calls, System Call Reference

EIOS Calls for Physical Files
1. Obtain a device connection to tell the I/O System that the file is a physical file

and which device contains the file using

logical_attach_device

The application program must use the device name that was assigned to the
device during system configuration. This system call obtains a device
connection and catalogs the connection under the specified logical name. Other
tasks wishing to use the device connection can look up the connection by using
the logical name.

See also: attachdevice, Command Reference;
for ICU-configurable systems, ICU User's Guide and Quick
Reference

272 Chapter 18 Physical Files

2. Obtain a file connection using

s_create_file or s_attach_file

• For s_create_file, use the path_ptr parameter to point to an iRMX
STRING containing the device's logical name enclosed in colons, as in :F0:.
This tells the EIOS which device you want as the physical file.

• For s_attach_file, use the path_ptr parameter of the call to point to an
iRMX STRING containing the device's logical name enclosed in colons, as
in :F0:, or use the path_ptr parameter of the call to point to an iRMX
STRING containing the connection's logical name enclosed in colons, as in
:database:.

3. Open the file connection using

s_open

The task must also specify how many buffers the EIOS can use when reading
from or writing to the file.

4. Use the file. There are four system calls that can read, write, or otherwise
manipulate the physical file.

These system calls read and write information from or to the physical file:

s_read_move or s_write_move

This call moves the file connection's file pointer if the device is a random access
device such as a disk or diskette.

s_seek

If you are writing a device driver for a magnetic tape unit, you can design it to
support s_seek.

This system call requests device dependent functions from the device driver.

s_special

Tasks can use these calls to format a disk for use with the iRMX OS. The kinds
of and number of functions supported depends upon the device and device driver.
Using special functions generally prevents a task from being device independent.

System Concepts Chapter 18 273

5. Close the file connection using

s_close

This is important if the connection share mode restricts the use of the file
through other connections. The application can repeat steps 2, 3, 4, and 5 any
number of times.

6. Delete the connection using

s_delete_connection

This is only necessary if the tasks of the application are completely finished
using the file.

7. Detach the device when the task no longer needs the device using

logical_detach_device

See also: EIOS calls, System Call Reference

274 Chapter 18 Physical Files

Call Sequence for Physical Files
You can use several system calls with physical files. Figure 18-1 shows the system
call sequence for physical files. To use the figure, start with the leftmost box and
follow the arrows. Any path that you can trace is a legitimate sequence of system
calls. The steps on the next pages provide a brief description of how an application
can use a physical file.

Figure 18-1. Sequence of System Calls for Physical Files

■■ ■■ ■■

W-3252

Attach
Device

Obtain
Connection

Write
Data

Read
Data

Open
File

Close
File

Delete
Connection

Detach
Device

Perform
Special

Functions

Seek
Pointer

System Concepts Chapter 19 275

Stream Files 19
Stream files enable one task to send large amounts of information to a second task,
even when the two tasks are in different jobs. The first task communicates with the
second task as though the second task were a device. This extends device
independence to include tasks.

Stream files are only one of several techniques for job-to-job communication.

Maintaining Stream File Independence
Two tasks, the reading task and the writing task, are always involved in using a
stream file. To allow your reading and writing tasks to use named files or physical
files in addition to stream files, add a third task to the application: creating the file.
This enables both the reading and writing tasks to be independent of the kind of file
being used.

Creating the File
The creating task obtains a device connection to the stream file device and creates the
stream file. It also catalogs the file connection under a logical name so the reading
and writing tasks can attach the file. This task is not device independent; it works
only for stream files.

BIOS Calls for Creating Stream Files
1. Obtain a connection to the stream file device using

a_physical_attach_device

Use the configured stream file name, typically stream, for the dev_name_ptr
parameter. For stream files, there is only one device.

2. Create the stream file and obtain a token for a file connection using

a_create_file

Use the token for the device connection as the prefix parameter, to tell the
BIOS to create a stream file.

A_create_file examines the device connection to determine what kind of file to
create.

Chapter 19 Stream Files276

3. Pass the file connection to the reading task.

There are several ways of doing this, including using object directories and
mailboxes.

EIOS Calls for Creating Stream Files

1. Create a stream file using

s_create_file

Use a path_ptr parameter pointing to an iRMX STRING of this form:

:stream_filename:

Where:

stream_filename is the logical name for the stream file device connection.

S_create_file returns a connection to the newly created stream file.

The logical name for the stream file device is a configuration parameter. During
system initialization, the EIOS attaches the stream file device and catalogs the
device connection under that logical name. Your tasks can use the logical name
to obtain the device connection.

2. Catalog the file connection under a unique logical name for each specific stream
file using

s_catalog_connection

The reading and writing tasks can then use the logical name to attach the file.

Writing the File
The writing task obtains a device connection to the stream file device and opens the
file for writing. It also closes and removes the connection. Figure 19-1 on page 281
illustrates the file writing process.

BIOS Calls for Writing Stream Files

1. Open the file for writing using

a_open

Use the token for the file connection as the connection parameter. Set the
mode parameter for writing; set the share parameter for sharing only with
readers.

System Concepts Chapter 19 277

2. Write information to the stream file using

a_write

Use the token for the file connection as the connection parameter. Use
multiple invocations of a_write if necessary. In this case, the BIOS uses the
concurrent part of the call to synchronize the writing and reading tasks. The
BIOS sends a response to each invocation of a_write only after the reading task
has finished.

3. Close the connection using

a_close

The writing task can repeat steps 1, 2, and 3 as many times as needed.

4. Delete the connection using

a_delete_connection

EIOS Calls for Writing Stream Files

1 Obtain a connection to the stream file using

s_attach_file

Set the path_ptr parameter of the system call to point to an iRMX STRING
containing the file connection's logical name, enclosed in colons as in :sf23:.

2. Open the file connection for writing using

s_open

Use the token of the file connection for the connection parameter and set the
mode parameter to write.

3. Write information to the stream file using

s_write_move

Use the token for the file connection as the connection parameter.

4. Close the connection when finished writing to the stream file using

s_close

The writing task can repeat steps 2, 3, and 4 any number of times.

5. Delete the connection using

s_delete_connection

Chapter 19 Stream Files278

Reading the File
The reading task obtains a device connection to the stream file device and opens the
file for reading. It also closes and removes the connection. Figure 19-1 on page 281
illustrates the file reading process.

BIOS Calls for Reading Stream Files

The reading task performs these steps to successfully read the information written by
the writing task:

1. The reading task must have a different file pointer than the writing task. Create a
file connection for the stream file using

a_attach_file

Set the prefix parameter to the token for the original file connection.

The reading task can also use a_create_file to obtain the new connection to the
same stream file. If the specified prefix parameter is a device connection, the
BIOS will create a new file and return a connection for it. If the specified
parameter is a file connection, the BIOS will just create another connection to
the same file.

2. Open the file connection for reading using

a_open

Use the token of the file connection for the connection parameter. Set the
mode and share parameters to read and sharing with all connections to the file.

3. Read information from the stream file using

a_read

Read the file until reading is no longer necessary or until an end-of-file condition
is detected. Use the token for the file connection as the connection parameter.

4. Close the connection when finished reading from the stream file using

a_close

The reading task can repeat steps 2, 3, and 4 any number of times.

5. Delete the connection using

a_delete_connection

The writing task deletes the old connection, and, as soon as both connections
have been deleted, the BIOS deletes the stream file.

System Concepts Chapter 19 279

EIOS Calls for Reading Stream Files

The reading task performs these steps to successfully read the information written by
the writing task:

1. The reading task must have a different file pointer than the writing task. Create a
file connection for the stream file using

s_attach_file
Set the path_ptr parameter to point to an iRMX STRING containing the file
connection's logical name enclosed in colons, as in :sf23:.

The reading task can also use s_create_file to obtain the new connection to the
same stream file. If the specified prefix parameter is a device connection, the
EIOS will create a new file and return a connection for it. If the specified
parameter is a file connection, the EIOS will just create another connection to the
same file.

2. Open the file connection for reading using

s_open
Use the token of the file connection for the connection parameter. Set the
mode and share parameters to read and sharing with all connections to the file.

3. Read information from the stream file using

s_read_move
Read the file until reading is no longer necessary or until an end-of-file condition
is detected. Use the token for the file connection as the connection parameter.

4. Close the connection when finished reading from the stream file using

s_close
The reading task can repeat steps 2, 3, and 4 any number of times.

5. Delete the connection using

s_delete_connection
6. Delete the file's logical name created by the creating task using

s_uncatalog_connection
Do not delete the logical name for the stream file device.

7. Delete the file connection created by the creating task using

s_delete_connection
The reading task deletes the file connection that the creating task obtained. Once
this connection is deleted, the EIOS automatically deletes the stream file.

See also: BIOS and EIOS calls, System Call Reference

Chapter 19 Stream Files280

Call Sequences for Stream Files
Figure 19-1 on page 281 illustrates three tasks: one each for creating, writing, and
reading the file. The writing task can create the file before it performs the write, but
this forces the writing task to use only stream files.

This figure shows the system call sequence for stream files. To use the figure, start
with the leftmost box and follow the arrows. Any path that you can trace is a
legitimate sequence of system calls. The sequences of steps on the next pages work
even if the three tasks are in different jobs. They also work regardless of the order in
which they are executed.

System Concepts Chapter 19 281

W-3251

Create
Connection

Open File
for

Reaching

Read
Data

Close
Connection

Delete
Connection Delete

Logical
Name

Cataloged
by Task 1

(EIOS)

Delete
Connection

Created
by Task 1

(EIOS)

Task 3: Reading the File

Obtain
Connection

(EIOS)

Open File
for

Writing

Write
Data

Close
Connection

Delete
Connection

Task 2: Writing to the File

Obtain
Connection

(BIOS)

Create
File

Pass
Connection
to Reading

Task
(BIOS)

Task 1: Creating the File

Catalog
Connection

Under
Logical
Name
(EIOS)

Figure 19-1. Sequence of System Calls for Stream Files

■■ ■■ ■■

Chapter 19 Stream Files282

System Concepts Chapter 20 283

Connections and Objects 20
Cataloging Connections

Use s_catalog_connection to control which directory the connection is cataloged in,
depending on the specified job token.

• To share a connection with tasks in the same job, but not other jobs, catalog the
token for the connection under a logical name in the local object directory.

• To share connections among tasks in several jobs, designate one global job for a
user session. Then catalog tokens for shared connections in the global job object
directory.

• To share certain connections with all tasks in the system, catalog tokens for the
connections in the root job's directory.

✏ Note
Before an I/O job exits, it must uncatalog any tokens it cataloged in
other directories (global or root). If it does not and the logical
name and token remain even though the connection is deleted,
other tasks referring to the logical name or attempting to use the
connection will receive an error.

284 Chapter 20 Connections and Objects

Cataloging Objects
The EIOS catalogs entries in the object directory of the system's root job and each
I/O job. This is a list of the names that the EIOS uses.

rqglobal The EIOS uses this name to identify the user session’s global
job for each I/O job. Whenever you create an I/O job, the
EIOS automatically catalogs the token for the global job in the
object directory of the I/O job. You may redefine this name,
but doing so may alter the interpretation of any logical names
that are cataloged in the object directory of your job's global
job.

r?iojob Whenever you create an I/O job, the EIOS catalogs an object
under this name in the object directory of the I/O job.
Do not redefine this name!

r?message Whenever you create an I/O job, the EIOS catalogs an object
under this name in the object directory of the I/O job.
Do not redefine this name!

r?iouser Whenever you create an I/O job, the EIOS catalogs an object
under this name in the object directory of the I/O job.
Do not redefine this name!

$ The EIOS uses this name to catalog the default prefix for each
I/O job. If you modify the definition associated with this name
by invoking catalog_object, you change the job's default
prefix. If you catalog an object other than a device connection
or a file connection under this name, the EIOS generates a
condition code whenever you attempt to use the default prefix.

With the exception of rqglobal and $, do not use catalog_object to modify any of the
definitions described here. If you do, the results will be unpredictable.

The EIOS uses object directories for two other purposes:

• Whenever you use catalog_connection to define a logical name for a
connection, the EIOS catalogs the connection in the object directory of the job
that you specify.

• Whenever you use logical_attach_device, the EIOS catalogs the device
connection in the object directory of the system's root job.

■■ ■■ ■■

System Concepts Chapter 21 285

UDI Basic Concepts
and System Calls

The Universal Development Interface (UDI) is a set of system calls compatible with
multiple OSs. If an application program makes only UDI system calls, it can be
transported between OSs. You can use the UDI as an alternative to the iRMX I/O
Systems; if you do so, you should only use UDI calls for I/O operations.

Figure 21-1 illustrates the relationship between application code, processing
hardware, and layers of software. The downward arrows represent command flow
and data flow from the application code to the hardware. All interaction between the
application code and the OS is through the UDI software.

Application code in application language(s)

UDI libraries

Operating system

W-2570

Intel387
math coprocessor

Intel387
support
library

Operating system interface libraries

Run-time libraries for
non-mathematical features

Intel386 , Intel486 , or Pentium processor

Figure 21-1. The Application Software-Hardware Model

21

286 Chapter 21 UDI Basic Concepts and System Calls

To make an application transportable between OSs, you need a UDI library for each
OS. All libraries present the same interface to applications. UDI OS interfaces,
however, are designed for specific operating systems, including the iRMX, iNDX,
UNIX, and XENIX OSs.

The UDI system calls, while presenting a standard interface to user programs, behave
somewhat differently when used in different OS environments. This is because
different OSs have unique characteristics.

UDI System Calls
The calls are divided into functional groups.

UDI Memory Management System Calls
When iRMX OSs load and run a program, the program is allocated memory. The
portion of memory not occupied by code and data, the free space pool, is available
dynamically while the program runs. The OS manages this memory as segments that
programs can obtain, use, and return.

Programs can use the UDI system calls dq_allocate and dq_mallocate to get
memory segments from the pool. They can use the system calls dq_free and
dq_mfree to return segments to the pool. Programs can also call dq_get_size and
dq_get_msize to receive information about allocated memory segments.

You can reserve memory for the I/O System by using the system call
dq_reserve_io_memory. This ensures that the OS allocates memory to
accommodate the buffers needed to open files.

Dq_reserve_io_memory is particularly useful to an application that has used all of
its allocated memory and must open a temporary file to store data. The system call
reserves additional memory for this purpose. If an application program has not
invoked dq_reserve_io_memory and is out of memory, the OS returns an E_MEM
condition code when the application tries to create a temporary file.

A program obtains a connection by calling dq_attach (if the file already exists) or
dq_create (to create a new file). Dq_detach deletes the connection. To delete both
the connection and the file, use dq_delete.

System Concepts Chapter 21 287

Once a program has a connection, it calls dq_open to prepare the connection for I/O
operations. The program performs input or output operations using dq_read and
dq_write. It can move the file pointer associated with the connection by calling
dq_seek. It can truncate the file by calling dq_truncate.

When the program finishes input and output to the file, it closes the connection by
calling dq_close. The program closes the connection, not the file. Unless the
program deletes the connection, by calling dq_detach, it can continue to open and
close the connection as necessary.

If a program calls dq_delete to delete a file, the file cannot be deleted while other
connections and I/O requests exist. In that case, the file is marked for deletion but is
not actually deleted until the last of the connections is deleted. During the time that
the file is marked for deletion, no new connections or I/O requests to the file may be
issued.

Using Program Control Calls
UDI provides two system calls for program control: dq_exit and dq_overlay.

Dq_exit terminates a program, closing all open files and freeing allocated resources.
You should always include this system call as the last statement in your program.

Dq_overlay lets you take advantage of the overlay support provided by the OS. This
system call loads an overlay into memory.

✏ Note
Prepare the overlay with the BND binder and the OVL286 overlay
generator.

Using Utility and Command-parsing Calls
UDI provides system calls for command parsing, date stamping, time stamping, and
system identification. The system calls are dq_get_time, dq_decode_time,
dq_get_system_id, dq_get_argument, and dq_switch_buffer.

Dq_get_time and dq_decode_time return the date and time information maintained
by the OS. Both calls provide the same kind of information, but dq_get_time is
provided for compatibility with previous releases. Use dq_decode_time instead of
dq_get_time when possible.

Dq_get_system_id returns a string that identifies the name of the OS. This system
call is useful for programs that need to perform operating-system-specific functions.

Dq_get_argument and dq_switch_buffer enable programs to retrieve parameters
from the command line (or from any other program buffer). Dq_switch_buffer

288 Chapter 21 UDI Basic Concepts and System Calls

switches to a new buffer so that the next time you call dq_get_argument, you will
retrieve a parameter from the new buffer.

Dq_get_argument parses the command line, returning the next parameter in the
sequence. The parameters are separated by delimiters, which include the space,
<CR>, ASCII character values ranging from 1 through 20H and 7FH through 0FFH,
and these:

,) (= # ! % + - & ; < > [] \ ' | ~

Using Condition Codes and Exception-handling Calls
Every UDI call (except dq_exit) returns a numeric condition code specifying the
result of the call. Each condition code is equated with a label. For example, the code
0 has the name E_OK. E_OK indicates that a call has been successful. Conditions
may also indicate a problem or require a response (exceptional conditions). The
dq_decode_exception returns the mnemonic description of any condition code
generated by a UDI system call.

See also: Condition codes, System Call Reference

A routine in the UDI interface library called rq_error handles UDI exceptional
conditions. This routine is called whenever a condition code is generated by a UDI
system call. Rq_error performs these operations:

• If an environmental condition occurs (device error, incorrect file reference,
insufficient memory, etc.), the condition code is returned to the calling program.
The calling program handles the exceptional condition inline.

• If a programmer error occurs, rq_error invokes the Nucleus system call
signal_exception. The action that signal_exception takes depends on the
Nucleus exception mode. If the exception mode is never (the default) or
environ, signal_exception passes control back to the calling program so that it
can process the exceptional condition inline. If the exception mode is all or
program, signal_exception passes control to the exception handler that is in
effect at the time the exception occurs.

See also: signal_exception, Nucleus calls, System Call Reference

System Concepts Chapter 21 289

Overriding the <Ctrl-C> handler

UDI provides a method for a program to handle <Ctrl-C> characters entered while
the program is running. The system default <Ctrl-C> handler terminates any
program that is active when <Ctrl-C> is entered. However, a program can override
the default handler for the duration of its execution by calling dq_trap_cc and
supplying a long pointer to a new <Ctrl-C> handler. The OS will call this new
<Ctrl-C> handler whenever a <Ctrl-C> is typed at the terminal. The new handler
remains in effect until the program calls dq_exit, or until it establishes another
handler by calling dq_trap_cc again.

Writing Portable Programs Using the UDI
Not all programs making UDI calls are portable across all UDI-supported OSs.
Employ these techniques to ensure that the programs you write are as portable as
possible:

• Never examine filenames (and pathnames) in your program. The rules for
forming pathnames are OS dependent.

• Modify filename strings only by calling the UDI procedure
dq_change_extension.

• Work only with pathnames supplied by the user, pathnames created by calling
dq_change_extension, or predefined filenames.

• Always check the condition code to see if a call failed.

• When handling condition codes, create the necessary file connections in the
initial part of programs or make a dq_reserve_io_memory call before making
any other UDI system call.

290 Chapter 21 UDI Basic Concepts and System Calls

Call Sequence for File-Handling System Calls
Figure 21-2 shows how file-handling calls are related. A program needing to access
a file obtains a token for a connection to the file. It then uses the connection to
perform operations. Other programs can simultaneously have connections to the
same file. Each program having a connection to a file uses its connection as if it had
exclusive access.

Figure 21-2. Sequence of System Calls for UDI

■■ ■■ ■■

CREATE

OPEN CLOSE DETACH DELETE

ATTACH

W- 2574

READ
WRITE
SEEK

TRUNCATE

291

Application Loader
Programming Concepts

This section describes the Application Loader subsystem. The AL loads programs
from secondary storage into memory under the control of iRMX tasks or tasks that
are part of application programs. The AL enables:

• Programs to run in systems with insufficient memory to accommodate all
programs at one time.

• Seldom used programs to reside on secondary storage rather than in memory.

These are the chapters in this section:

Chapter 22. Application Loader Basic Concepts

Chapter 23. Preparing Code for Loading

Chapter 24. Application Loader System Calls

292

System Concepts Chapter 22 291

Application Loader
Basic Concepts

This chapter defines terms used in Application Loader (AL) system calls and the AL
concepts described in this section.

These terms are used in the AL concepts and system call descriptions:

• Object code, object module, and object file

• Synchronous and asynchronous system calls

• I/O job

• Overlay, root module, and overlay module

• Device independence

• Configurability

Object Code
Object code may be:

• Output of a translator (for example, PL/M and ASM).

• Output of the BIND command.

An object file contains object code. An object module is the output of a single
compilation, a single assembly, or a single invocation of the BIND command.

Synchronous and Asynchronous System Calls
The AL provides both synchronous and asynchronous system calls. While a
synchronous system call is running, the calling task cannot run. The calling task
resumes running only after the loading operation has either failed or succeeded.

While an asynchronous system call is running, the calling task runs concurrently. To
explicitly overlap processing with loading operations, use asynchronous system calls.

See also: Asynchronous and synchronous calls, in this manual

22

292 Chapter 22 Application Loader Basic Concepts

Situations Requiring an I/O Job
Some of the system calls provided by the AL use the EIOS. These system calls must
be part of an I/O job: if a task is not in an I/O job, it cannot successfully use system
calls that require the EIOS. The AL creates the I/O job when one is required.

See also: I/O jobs, in this manual

Overlays
Overlays are logically independent subsections of a program which need not all be
present in memory at the same time during program execution. Using overlays can
reduce the memory space required for a program to execute, as these designs of a
data processor illustrate.

• If the data processor is structured as a monolithic program that resides on
secondary storage, the entire collection of object code will be loaded into RAM
when needed.

• If the data processor is an overlaid program, pieces (overlays) of the data
processor reside on secondary storage; individual overlays are loaded as needed.
In this way, the data processor can run in a much smaller area of memory
because different overlays are alternately loaded into the same memory space.
The data processor might be slower if it uses overlays, depending on how it uses
the time when the overlays are being loaded.

To implement an overlaid program using the AL, create a program with a root
module and one or more overlay modules. A root module is an object module that
controls the loading of overlays. When you invoke an overlaid program, the
application system loads the root module. The root module then loads overlay
modules as needed.

Overlays are supported in OMF86 and OMF286 programs; they are not supported in
OMF386 programs.

See also: Overlays, root modules, and overlay modules, Intel386 Family Utilities
User's Guide

System Concepts Chapter 22 293

Device Independence and the AL
The AL can load object code from any mass storage device supported by the BIOS.

Configuring the AL
For ICU-configurable systems, you can configure the kind of load function required
by your system. Your system may be configured for:

• Load job, which includes all the AL system calls.

• Load, which includes only a_load.

If you choose all AL system calls, the ICU will incorporate the EIOS into your
system.

You can configure the read buffer size to optimize loading time: a smaller buffer
size may cause a longer load time.

You can configure the memory pool minimum size used by the AL to create an I/O
job for newly loaded programs. If you specify 0 in the pool minimum parameter, the
Application Loader computes the required size.

See also: ICU User's Guide and Quick Reference

■■ ■■ ■■

294 Chapter 22 Application Loader Basic Concepts

System Concepts Chapter 23 295

Preparing Code for Loading 23
To process your code so that the AL can load it:

• Use an Intel386 translator or assembler (PL/M-386, ASM386, or iC-386) to
produce object modules that you can bind. COMPACT is the only supported
compilation model for Intel386 translators. Then use BND386 to produce a load
file. Use the RCONFIGURE control. The load file must be an OMF-286 Single
Task Loadable (STL) object file with LODFIX records.

STL format is the only supported object code format. LODFIX records enable
the AL to replace each selector in the object file, with the new GDT selector
assigned at random by the iRMX OS, at load time. Use the debug command to
determine which GDT slots were allocated for your program.

• Use a non-Intel compiler to produce your application. Some of these third-party
tools produce flat model (non-segmented)_ applications. The AL recognizes and
can load a flat model application.

See also: debug, Command Reference;
porting code, Programming Techniques;
Third-party Compilers, Flat Model, Programming Techniques

Specifying Pool Sizes for I/O Jobs
There are two ways to specify memory requirements for the I/O job's memory pool.
Both involve setting the BND386 RCONFIGURE control when you create the object
file. You can:

• Let the AL decide how large a memory pool to allocate to the new I/O job.

• Manually set the pool size.

296 Chapter 23 Preparing Code for Loading

The AL determines the size of the I/O job's memory pool using this information:

• The pool_min parameter, as a number of 16-byte paragraphs.

• The pool_max parameter, as a number of 16-byte paragraphs.

• The DMP ICU configuration parameter specifying the default dynamic memory
requirements.

• Memory requirements specified in the target file with the RCONFIGURE
parameter.

If the AL allocates the memory pool, it uses the requirements of the target file and
the configured DMP parameter to make this decision. Unless you have unusual
requirements, choose this option. Make sure the values specified by the
RCONFIGURE parameters provide more than enough memory for the program.

If you override the AL's decision on pool size, the AL uses the pool_min parameter
or pool_max parameter specified in the system call to decide how large a memory
pool to allocate. If the value you enter in pool_min is less than what is required to
load the file, the AL ignores your input and sets pool_min to the minimum amount
of memory required by your file. If you set pool_max to max_pool_size, the
created I/O job can borrow unlimited memory from its parent.

The pool size parameters in AL system calls are specified in 16-byte paragraphs.
However, the pool parameters in the RCONFIGURE control of BND386 are entered
in BYTES.

See also: Pool sizes for I/O jobs in this manual

System Concepts Chapter 23 297

Producing an STL Object File
This example illustrates how to produce an STL object file. The directory attached as
:lang: contains the PL/M runtime libraries. The source code for the program is
located in a PL/M file named my_prog.plm. This source is common to both the 16-
and 32-bit OSs. The program uses COMPACT model. The 16-bit version is linked
to the compatibility interface library, rmxifc.lib. The 32-bit version is linked to the
COMPACT library, rmxifc32.lib. Use this sequence to produce an object module
from my_prog.plm. The SEGSIZE control and DYNAMICMEM option of the
RCONFIGURE control are described after the example.

The 16-bit version runs on 16-bit systems.

PLM286 MY_PROG.PLM COMPACT

BND286 &

MY_PROG.OBJ, &

:LANG:PLM286.LIB, &

/RMX386/LIB/RMXIFC.LIB &

OBJECT(MY_PROG_16) SEGSIZE(STACK(+500H)) &

RCONFIGURE(DYNAMICMEM(5000H, 10000H))

The 32-bit version is:

PLM386 MY_PROG.PLM COMPACT WORD16

BND386 &

MY_PROG.OBJ, &

:LANG:PLM386.LIB, &

/RMX386/LIB/RMXIFC32.LIB &

OBJECT(MY_PROG_32) SEGSIZE(STACK(+500H)) &

RCONFIGURE(DYNAMICMEM(5000H, 10000H))

Binary compatibility support enables the 16-bit version to run on a 16- or 32-bit
system. The WORD16 compiler control tells the compiler that a WORD is a 16-bit
quantity in the source; this enables the source modules to be truly common.

Upon completion, the object module my_prog_16 or my_prog_32 is ready for
loading.

298 Chapter 23 Preparing Code for Loading

Specifying Stack Requirements with SEGSIZE Control
The SEGSIZE control specifies the stack requirements for your program and the
stack requirements for the highest iRMX layer used. Table 23-1 lists the stack
requirements for each layer. The value given as the minimum stack size for an
individual layer includes the requirements of all lower layers. For example, if you
use the Nucleus, BIOS and EIOS, add 550 bytes to the stack. Then add your
program's stack requirements.

Table 23-1. OS Stack Sizes

OS Layer Minimum Stack Size

Nucleus 250 bytes

BIOS 350 bytes

EIOS 550 bytes

Application Loader 700 bytes

Human Interface 1500 bytes

UDI 1750 bytes

When any task is created in the iRMX OS, the Nucleus ensures that it has at least a
1 Kbyte stack unless you have specified a size with the SEGSIZE control. Sixteen bit
tasks need appropriate stack padding so they run properly with the iRMX OS. If you
use the SEGSIZE control, make sure to specify at least a 1 Kbyte stack.

Specifying Dynamic Memory Allocation with DYNAMICMEM
Option

BND386 enables you to specify the amount of memory your program will allocate
dynamically, so that your program has enough dynamic memory once it is loaded and
running. The value specified by pool_min is always available for your program,
while the value specified by pool_max enables your program to borrow from its
parent. Pool_min and pool_max apply only for programs that are loaded as I/O
jobs.

■■ ■■ ■■

System Concepts Chapter 24 299

Application Loader System Calls 24
The AL system calls divide into two categories:

• I/O job and non-I/O job system calls

• Synchronous and asynchronous system calls

AL System Calls Requiring an I/O Job
The AL creates an I/O job and loads a program within it when one of these system
calls is issued:

a_load_io_job
rqe_a_load_io_job
s_load_io_job
rqe_s_load_io_job

The AL task which loads the job is a task in the new job. Once the code is loaded,
the AL task terminates itself, unless the new program contains overlays. If so, the
AL task waits for requests to load new overlays.

Specify the pool size parameters in AL system calls in 16-byte paragraphs; enter the
pool parameters in the RCONFIGURE control of BND386 in BYTES.

Chapter 24 Application Loader System Calls300

a_load Does Not Require an I/O Job
A_load is the only system call that does not create an I/O job. Instead, the AL task
that loads the program runs in the context of the caller's job.

The AL places the loaded code in memory; it does not create a task for it. If you
want this code to run, explicitly create a task for it using the Loader Result Segment
(LRS) that the caller receives on completion of loading. Because no I/O job is
created, you can use a_load in systems configured without the EIOS layer.

The LRS contains two fields, code_seg_base and stack_seg_base, that list the
tokens of the segments (up to 255) created by loading a file. These fields let you call
a_load while loading OMF286 programs that use MEDIUM and LARGE models.
Only COMPACT model OMF386 programs are supported for calls to a_load.

✏ Note
The system call a_load is not supported in flat-model applications.

See also: LRS, System Call Reference

Synchronous System Calls
The synchronous system calls are:

rqe_s_load_io_job
s_load_io_job
s_overlay

If the system call returns to the calling routine after the service has completely
finished, an E_OK condition code returns, using the specified exception pointer. If
the system call terminates due to an error, an exception condition code is returned.

System Concepts Chapter 24 301

Using rqe_s_load_io_job and s_load_io_job
These two system calls load the specified file and create an I/O job as the
environment for the loaded code.

Either call can immediately start or delay execution of the loaded code, depending on
the task_flags parameter. If you specify delayed execution, call start_io_job
after the AL has successfully returned and you are ready to start the program.

The resp_mbox parameter specifies the exit mailbox for the newly created I/O job.
The EIOS sends an exit message to this mailbox when the loaded program, contained
within the newly created I/O job, terminates using exit_io_job.

See also: create_io_job, start_io_job, and exit_io_job, System Call Reference

Loading Overlays with s_overlay
To create OMF286 overlaid programs on an Intel system, use OVL286 to produce the
object files. The AL assumes that you adhered to these rules when writing the
overlaid program.

• The root is always present in memory.

• No overlay, except the root, is present in memory unless its parent is also
present.

• The only possible request from any given overlay is to load a descendent
overlay.

• Any previously loaded sibling is no longer accessible once an overlay has been
loaded.

• No assumptions are made about the preservation of data across multiple requests
to load the same overlay.

Use s_overlay whenever the loaded program requires that a new overlay be present
in memory. This call can be used only by an overlaid program. It can be issued by
any overlay (including the root) to load any of its descendants.

Although s_overlay is synchronous, it can be used in conjunction with the
asynchronous AL system calls. When you invoke an overlaid program, use
a_load_io_job or s_load_io_job to load the root module. The root module then uses
s_overlay to load overlay modules as needed.

Chapter 24 Application Loader System Calls302

Asynchronous System Calls
The asynchronous system calls are:

rqe_a_load_io_job
a_load_io_job
a_load

The concurrent part of the call runs as an iRMX task. The task is readied by the
sequential part of the call and runs only when the priority-based scheduling of the OS
gives it control of the processor. The concurrent part also returns a condition code as
part of an LRS sent to the response mailbox specified in the asynchronous AL call.

See also: Synchronous and asynchronous calls, in this manual

Asynchronous Call Order of Operations
This example shows how an application can load a program stored on disk. The
application issues a_load to have the AL load the program into memory.

1 The application issues a_load and specifies a response mailbox for
communication with the concurrent part of the system call.

2. The sequential part of a_load begins to run and checks for valid parameters.

3. The iRMX OS returns a sequential condition code. It then returns control to the
application. If the condition code is E_OK, the AL readies the AL task;
otherwise, it does not ready the AL task.

4. The application receives control and tests the sequential condition code. If the
code is E_OK, the application continues running. At this point, the application
can take advantage of the asynchronous and concurrent behavior of the AL to
perform computations.

If the sequential condition code is not E_OK, the AL did not ready a task to
perform the function and the application must respond appropriately.

For the balance of this example, assume that the sequential part of the system
call returned an E_OK sequential condition code.

5. Before using the loaded program, the application verifies that the concurrent part
of a_load ran successfully. The application issues a receive_message system
call to check the response mailbox specified in a_load.

System Concepts Chapter 24 303

6. After receiving the LRS indicating successful loading, the application uses
rq_create_task (using the entry point, data segment, and stack segment
specified in the LRS) to activate the loaded program.

7. When the loaded program is no longer required, the application can delete all the
segments that the AL created for this program by using the segment list in the
end of the LRS. The LRS itself can then be deleted.

See also: Asynchronous and synchronous calls in this manual;
Application Loader calls, System Call Reference

Response Mailbox Functions
All AL system calls except overlay have a response mailbox parameter. The
response mailbox has two different functions, depending on the system call used.

When you invoke an asynchronous system call, this mailbox enables the AL to notify
the caller that the concurrent part of the system call is finished. The AL sends an
LRS to this mailbox on completion of the loading process.

In general, the LRS indicates the result of the loading operation. The format of an
LRS depends upon which system call was invoked.

See also: LRS, System Call Reference

For s_load_io_job and rqe_s_load_io_job, this mailbox also receives the exit
message from the loaded I/O job. The EIOS sends the exit message when the loaded
program terminates using exit_io_job.

Therefore, you can wait at the same mailbox two times: first for the LRS and then
for the exit message, in this order.

Avoid using the same response mailbox for more than one concurrent invocation of
asynchronous system calls because the AL may return LRSs in an order different
from the order of invocation. However, it is safe to use the same mailbox for
multiple invocations of asynchronous system calls if these conditions are met:

• One task invokes the calls.

• The task always obtains the result of one call via receive_message before
making the next call.

■■ ■■ ■■

Chapter 24 Application Loader System Calls304

HUMAN INTERFACE
PROGRAMMING CONCEPTS

This section documents the Human Interface (HI) layer of the iRMX OSs. This
section is intended for the programmers who write application programs that can be
loaded and executed using keyboard commands. It is also for system administrators
who use the HI command lines to configure the system.

This documentation assumes that you are familiar with the C or PL/M programming
language.

See also: iC-386 Compiler User's Guide;
PL/M-386 Programmer's Guide

These are the chapters in this section.

Chapter 25. Human Interface Basic Concepts

Chapter 26. The Command Line Interpreter

Chapter 27. Writing and Parsing Commands

Chapter 28. Communicating with the User

Chapter 29. Invoking HI Commands Programmatically

Chapter 30. Writing a <Ctrl-C> Handler

Chapter 31. Creating Human Interface Commands

System Concepts Chapter 25 307

Human Interface Basic Concepts 25
The HI provides features to aid both console operators and programmers. These
features include:

• A set of HI commands, such as general utilities and file, volume, and device
management commands.

• An initial program, the Command Line Interpreter (CLI), with its own set of
commands.

• A logon facility to validate users and set up their environment.

• Multiuser support.

• A recovery/resident user for ICU-configurable systems that enables access to the
system if it does not initialize properly.

• Wildcard pathname support.

• A group of system calls to aid programmers in writing application-specific
commands.

Sample Code
Code fragments illustrating HI concepts are included in the demo directory.
Filenames for the programs are listed in the respective chapters.

Resident HI Commands
You can use resident HI commands with any application system that includes the HI.
Here are some of the commands:

• File management commands such as copy, delete, and backup.

• Device and volume management commands such as attachdevice, format, and
diskverify.

• General utility commands such as debug and date.

See also: HI commands, Command Reference

308 Chapter 25 Human Interface Basic Concepts

CLI: The Initial Program
The initial program is the first program to run when a user logs on. An initial
program typically reads commands from the terminal and executes the commands
based on that terminal input. The iRMX-supplied initial program is called the HI
CLI. The CLI reads input from the terminal, enables the user to edit that input if
necessary, and executes commands (either CLI or HI) based on the input. Some CLI
commands are alias, history, and submit.

The CLI provides a number of additional features such as aliasing, background
processing, and recalling of previously entered command lines.

Loading Other Initial Programs
The initial program does not have to be the HI CLI; it can be almost anything from an
editor, to a BASIC interpreter, to a loadable command interface that you write. The
system manager determines which initial program runs when a user logs on when he
adds new users to the system. There can be a separate initial program for each user.

▲▲! CAUTION
Unloading jobs that contain interrupt handlers using sysload -u or
<Ctrl-C> will cause unpredictable results.

See also: path command, Command Reference

System Concepts Chapter 25 309

Logon
Logon validates terminal users and sets up their environment.

Validation
On some terminals, typically those used by a single user, the logon and validation
process is invisible. On other terminals, typically those used by several users, logon
and validation requires entering a name and password. The kinds of terminals are:

• Static terminals

• Dynamic terminals

Static terminals are configured to service a specific user. The static terminal's
attributes are usually taken from the user configuration files during logon. The logon
process is automatic and invisible to the user. When the HI starts running, it has
information about the user such as user ID, the amount of memory available to this
user, and the user's priority. The only way to change the HI's assumptions about
static terminals is to change the OS's user configuration files and restart the OS.

See also: Configuration files, System Configuration and Administration

Dynamic terminals are configured to service many different users on a request-by-
request basis. The HI requests a logon name and a password before allowing the user
to access the system. The HI verifies that the information entered is valid by
checking user configuration files set up by the system manager. Then it sets up the
terminal based on the information listed in those files.

Unlike static terminals, dynamic terminals have dynamic memory partitions. That is,
the HI does not assign any memory to the terminal at system startup. Instead, it
assigns the memory when a user logs on. When the user logs off a dynamic terminal,
the memory goes back into the general free space memory pool. If there is no free
memory left in the system, a user will be notified of this condition and will not be
able to log on.

The amount of memory assigned varies depending on the user's requirements, as
listed in the user configuration files. The advantage of dynamic terminals is that the
memory available to users varies depending on the needs of the user.

See also: Dynamic terminals, Static terminals, System Configuration and
Administration

310 Chapter 25 Human Interface Basic Concepts

Environments
The HI creates a job for each user that logs on. This job furnishes the application
environment by assigning:

• Memory for the user to use for running commands.

• The initial program for the user.

Any commands that the user invokes use the assigned area of memory. If there is not
enough memory in the system to initialize a user, the system assigns whatever
memory is available at the time and issues a warning message to the terminal.

Users can use CLI commands (alias, background, etc.) which are executed in the
interactive job or HI commands (copy, format, etc.) which run as child jobs of the
user's interactive job.

This table shows the process of entering CLI and HI commands. Either of these
commands can be entered with optional parameters.

CLI HI

Invoke by command name Invoke by pathname/command name

Interpret command CLI loads command into main memory from
secondary storage

Execute command Create a child job of the interactive job for the
command Execute command

Some commands are available from both the HI and the CLI. In this case, CLI
commands are executed before HI commands. For example, if you enter submit, the
CLI version of the submit command is executed, not the HI version.

Network Access
If the system is set up as a workstation on an iRMX-NET communications network,
any user who logs onto the system on a dynamic terminal automatically becomes a
verified user of the network and can access remote files using the iRMX-NET
network.

See also: iRMX-NET environment, Network User's Guide and Reference

If the system has NFS enabled and has files or directories defined as NFS-shared,
users can access these files and directories using Human Interface commands as if the
files and directories were local.

See also: Using NFS, TCP/IP and NFS for the iRMX Operating System

System Concepts Chapter 25 311

Logging Off
When users of dynamic terminals finish accessing the OS, they should use the logoff
command to terminate their sessions. Other users can then log onto the same
terminals.

Multiuser Support
Multiuser support enables multiple users to communicate with the OS. The BIOS
supports multiple terminals by providing device drivers that communicate with
multiple-terminal hardware. The HI supports multiple users by providing
identification and protection of users based on logon names and user IDs. The
multiuser HI also enables a programmer in the development environment to execute
commands, run development programs (editors, compilers, etc.), and run other
application programs.

The system manager must first set up the proper directory structure and provide
several files containing information about the users that can access the system.
However, you can still tailor your system to meet your individual needs by selecting,
for each user, the initial program that runs when that user accesses the HI. The user
configuration files maintained by the system manager identify this choice to the HI.

Figure 25-1 on page 311 shows how the HI handles multiple users.

System Manager establishes the user environment by:
 Creating a directory structure
 Providing file containing access rights for users
 Creating initialization program(s) for users

User Human Interface

HI assigns a user ID

OM02104

User logs in

User sends command to
create a file and/or

attach a device

HI identifies the user ID
as the command owner

HI checks access rights
for the user

HI completes command
depending on access rights

Figure 25-1. Multiuser Support under the HI

312 Chapter 25 Human Interface Basic Concepts

Recovery/Resident User
The recovery/resident user is available in ICU-configurable systems only. The
recovery/resident user only gains control if an initialization error occurs in the
configuration files and the system cannot initialize. The recovery/resident user (and
the associated terminal) is defined during ICU configuration.

User attributes are defined in HI memory during the configuration process and are
loaded with the system. A resident user does not use any of the system configuration
files and is not presented with a logon prompt. Because this user is only active if an
initialization error occurs, the user is typically configured as the system manager
(user ID 0).

Wildcards
The HI supports using wildcard characters in filenames. This provides a shorthand
method of specifying several files in a single reference. The wildcard characters
supported by the HI are:

? Matches any single character

* Matches any sequence of characters (including no characters)

See also: Wildcard characters, Command Reference

Programmers who write their own HI commands do not have to provide special code
to support wildcard pathnames as long as they use the HI system calls
c_get_input_pathname and c_get_output_pathname to obtain the file names from
the command line.

See also: Writing and Parsing Commands, in this manual

System Concepts Chapter 25 313

Human Interface System Calls
The HI provides a set of system calls that you can use in writing custom commands
for applications. These categories of HI system calls are available:

• Command parsing system calls

These calls provide the ability to parse the command line, enabling you to isolate
and identify the parameters in a command line. They also enable you to
determine the command name and parse other buffers of text.

See also: Writing and Parsing Commands, in this manual

• I/O and message processing system calls

These calls enable you to establish connections to input and output files,
communicate with the terminal, and format condition codes into a ready-to-
display form.

See also: Communicating with the Operator, in this manual

• Command processing system calls

These calls enable you to invoke interactive HI commands programmatically.

See also: Invoking HI Commands Programmatically, in this manual

• Program control system call

This call enables you to override the default <Ctrl-C> handler task provided by
the HI.

See also: Writing a <Ctrl-C> Handler, in this manual

Human Interface Operations
When the HI begins running, it:

1. Initiates a logon process that validates users.

2. Displays an initialization error on the terminal if an initialization error occurs.

3. Creates an iRMX job for each user logged into the HI.

a. Assigns an area of memory for the user to use for running commands.

b. Starts an initial program which is the user's interface to the OS.

■■ ■■ ■■

314 Chapter 25 Human Interface Basic Concepts

System Concepts Chapter 26 315

The Command Line Interpreter 26
The HI Command Line Interpreter (CLI) is invoked by the HI when the user logs on.
The CLI provides the user with:

• Line-editing

• Alias facilities

• Background processing

• Session history

• Terminal definition

• Execution of its own set of commands

For ICU-configurable systems, the HI can also operate with a user extension, which
enables you to add customized features to the CLI.

You can also write a loadable command interface to use as an initial program instead
of the CLI. This chapter lists the rules for writing a loadable command interface.

See also: password command, Command Reference;
User definition files, Terminal configuration files, System Configuration
and Administration

316 Chapter 26 The Command Line Interpreter

CLI Features
The CLI provides a number of features that make it a useful tool in a development
environment:

Line-editing enables the user to re-edit input.

Aliasing enables the user to abbreviate commonly used commands and
assign parameters to them.
CLI commands: alias, dealias, logoff

Background
processing

enables the user to run jobs in a background environment
while continuing to invoke commands at the terminal. The
user is notified when a background job starts and finishes. It
is possible to request a list of the active background jobs or
cancel a background job.
CLI commands: background, jobs, kill, logoff

Session history Displays the last 40 commands and enables the user to select
lines for re-editing.
CLI command: history

I/O redirection enables standard input and output to be directed somewhere
other than the user's terminal.
CLI command: submit

CLI environment enables the user to perform online changes to certain CLI
attributes, such as the prompt and the background memory
pool size.
CLI commands: set, super

✏ Note
CLI commands such as alias, submit, and super do not recognize
continuation characters.

If the CLI satisfies the needs of your application, you can assign it to each user as an
initial program.

See also: CLI commands, Command Reference

System Concepts Chapter 26 317

Initializing the CLI
The CLI can be invoked during either static or dynamic logon. During initialization,
the CLI performs these operations:

• Initializes the CLI environment

• Calls CLI extensions, if necessary

• Displays a sign-on message

• Creates a command connection object where it places information received from
the terminal

See also: Invoking HI Commands Programmatically, in this manual

• Attaches the user's directory

• Submits the file for processing (if it exists)

After this initial processing, the CLI displays the - (HI default) prompt and reads
input from the terminal. Input from the terminal can be a CLI command, an HI
command, or a user application program that is to be executed.

318 Chapter 26 The Command Line Interpreter

Invoking and Executing Commands
The CLI begins executing a command after a user enters a <CR> or an <Esc>.
However, before execution, the CLI enables the user to edit the input line or recall
previously entered lines. When input stops, the CLI performs these operations:

1. Reads the command line from the terminal into a CLI buffer.

2. Determines if the command is a CLI or an HI command.

3. Expands all aliases.

4. Handles any I/O redirection that may be necessary.

5. Passes control to the user extension procedure CLI$user$process, if
applicable.

See also: User Extensions, in this manual

6. Searches for CLI or HI commands.

If the CLI encounters a CLI command, it executes the action requested.

If the CLI encounters an HI command or any user application program, it:

a. Loads the file containing the command

b. Passes the parameters to the command

For long commands, it may be necessary to continue an HI command. The CLI
recognizes the & (ampersand) mark at the end of a command line as a continuation
character, and displays a ** (double asterisk) on the continuation line.

The user can recall either the complete continuation line or only part of it. A double
asterisk on the screen indicates that a continuation line is being recalled. The user
can then edit the relevant section of the line. However, after the section has been
edited, the entire command line is executed if the user presses <Esc> to terminate
input.

The CLI displays error messages for each command if the user does not invoke the
command properly or if the CLI cannot execute the command as requested.

See also: Continuation character, and specific CLI command error messages,
Command Reference

System Concepts Chapter 26 319

Adding User Extensions to the CLI
Only ICU-configurable versions of the OS enable the CLI to be extended to include
customized functions.

With this feature, you can create an initial program that takes advantage of the CLI
features, such as line-editing and aliasing, and still meets your precise needs. This
section explains how to extend the CLI to include user extensions that parse
commands differently or implement your own commands using CLI user extensions.

Creating User Extensions
The CLI is a 16-bit application that uses 16-bit user extensions. Creating an
extension involves writing three procedures:

• An initialization procedure

• A processing procedure

• An epilog procedure

You can combine these procedures, described in the next sections, into one module.
An empty default PL/M module called (located in) provides you with null instances
of the three procedures. The CLI has three entry points to the user extensions, one
before each procedure. You can make a local copy of the example module to develop
your CLI extension.

Initialization Procedure

When the CLI is initialized, it first defines its own alias tables (the memory area
where user-defined aliases are stored) and data structures. It then calls your user-
supplied initialization procedure one time only. If you have tables or data structures
to add during initialization, they should be part of the initialization procedure. The
CLI enters the user extension by calling:

CALL CLI$USER$INIT(except_ptr);

You can bind this procedure to the CLI library supplied with the HI. Examples of
how to do this are given later in this section.

320 Chapter 26 The Command Line Interpreter

Processing Procedure

After each command line (entered either from a terminal or in a submit file), the CLI
translates all aliases, and checks again for user extensions. At this point, you can
change a command, perform additional functions before execution, or process the
command. To access your user extension, the CLI calls:

cont_flag = CLI$USER$PROCESS(command_ptr, except_ptr);

Where:

command_ptr A pointer to a STRING containing the expanded command
ready for execution.

cont_flag A BYTE indicating whether the CLI should continue
executing the command line modified by the user extension, or
ignore it and continue to the user extension epilog procedure.

Epilog Procedure

After the CLI executes an HI, CLI, or user-supplied command, it calls the epilog
procedure. This procedure handles error conditions or performs any other functions
that cannot be performed until the command has been executed. The epilog
procedure is called by:

CALL CLI$USER$EPILOG(except_ptr);

Bind this procedure to the CLI library as shown in the example given later in this
section.

Error Handling

Each of the three user extension procedures returns a condition code in the exception
pointer, except_ptr. If the procedure returns anything other than E_OK, the CLI
outputs an error message in addition to the message issued by c_send_command or
the CLI command.

The CLI catalogs the condition code generated by the last command under the name
r?error in the global directory before executing the epilog procedure. You can
access this value and use it in your application. However, any changes to r?error are
not recognized by the CLI.

System Concepts Chapter 26 321

This PL/M code enables you to access the value in r?error.

DECLARE error_t TOKEN,

error BASED error_t WORD,

except WORD;

error_t = RQ$LOOKUP$OBJECT (SELECTOR$OF(NIL),

@(7,'R?ERROR'),0,@except);

After execution of this system call, the error field will contain the condition code
that the last command sent to r?error.

This C code also enables you to access the value in r?error.

main ()

{

selector error_t;

unsigned short excep;

error_t = rq_lookup_object ((selector)

NULL, "\07R?ERROR", 0, &excep);

print_error (5);

}

Demonstration Program - User Extension
A PL/M example, which is installed with the iRMX OS, shows how to create a user
extension using the CLI initialization, process, and epilog procedures described
above. This user extension enables you to measure the time required to execute a
CLI command, an HI command, or any application program. The PL/M code shown
is a straightforward example. Many special cases have been omitted.

322 Chapter 26 The Command Line Interpreter

Binding a User Extension
The CLI is a 16-bit PL/M application. Use BND286 to bind the user extension to the
CLI library. This section provides an example of the bind process.

You can combine the three user extension procedures into one module, but this is not
necessary.

Binding your extensions as shown below creates a CLI with your user extension.
You can add this newly created CLI to the application boot file using the ICU. Then
this new CLI will be called by its pathname, mycli, as a nonresident CLI during the
logon process.

If you want the default resident CLI to include user extensions, specify the pathname
of the user extension module during configuration.

See also: For ICU-configurable systems, ICU User's Guide and Quick
Reference

If you have named your user extension module myext.p28, you can use this example
exactly as it is written. Otherwise, replace myext.obj with the name of the object
module you wish to bind.

:LANG:BND286 &

MYEXT.OBJ, &

:RMX:HI/HCLI.LIB(HCLI), &

:RMX:HI/HCLI.LIB, &

:RMX:HI/HI.LIB, &

:RMX:LIB/RMXIFC.LIB, &

:RMX:HI/HUTIL.LIB, &

:LANG:PLM286.LIB &

RENAMESEG(CODE TO CLI_CODE,DATA TO HI_DATA, &

HI_CODE TO CLI_CODE,HI_DATA TO CLI_DATA) &

OBJECT(MYCLI) NOLOAD NODEBUG SEGSIZE(STACK(2400H)) &

RC(DM(1000H,0FFFFH))

Where:

MYCLI is the name you use to invoke this CLI.

System Concepts Chapter 26 323

Creating a Loadable Command Interface
If the CLI, with or without a user extension, does not meet your needs, you can
provide your own loadable command interface. Your loadable command interface
may be a completely different kind of program from the CLI. For example, you
could write a loadable command interface that enables access to files in selected
directories only. This would prevent a user from accidentally modifying other files.

Use the selections of static or dynamic terminal type, password or no password
required, and a loadable command interface, to create the user environment needed
for your application. For example, you can define a static terminal using the file.
Then, use the password command to assign your application program as the initial
program. By deleting all other users except Super (again, using the password
command), you would have created a system running only your application (with or
without a password requirement, depending on your needs).

If you provide your own loadable command interface, the program must obey these
rules:

• It must select the initial program for each user, and specify the selection in the
user configuration files maintained by the system manager.

• It must initialize its own data segment. The HI does not set the DS register for
the CLI.

• It must perform input and output using logical names :ci: (console input) and
:co: (console output).

• If it requires the ability to run HI commands, it must create a command
connection object using the c_create_command_connection system call.

If the loadable command interface does not create a command connection, it
(and any other application tasks) cannot use these HI system calls:

c_get_input_pathname
c_get_output_pathname
c_get_input_connection
c_get_output_connection
c_send_co_response
c_send_eo_response
c_send_command
c_set_control_c
c_delete_command_connection

324 Chapter 26 The Command Line Interpreter

• If it does not create a command connection, it must first invoke the
c_set_parse_buffer system call before using the HI system calls
c_get_parameter, c_get_char, and c_backup_char.

• It must invoke the EIOS call exit_io_job to terminate processing. It must not
use the PL/M or ASM RETURN statement for this purpose.

See also: HI system calls and exit_io_job, System Call Reference;
path command, Command Reference

Alternatively, if you want a particular user to use only BASIC-language programs, a
BASIC interpreter might be the initial program for that user.

▲▲! CAUTION
Unloading jobs that contain interrupt handlers using sysload -u or
<Ctrl-C> will cause unpredictable results.

■■ ■■ ■■

System Concepts Chapter 27 325

Writing and Parsing Commands 27
This chapter deals only with HI command parsing. HI commands are handled
differently than CLI commands.

When the user invokes a command, the OS places the command's parameters into a
parsing buffer. One of the first things that the invoked command must do is read the
parsing buffer, identify the individual parameters, and determine the correct action to
take, based on the number and meaning of the parameters.

See also: The Command Line Interpreter, in this manual;
CLI commands, Command Reference

The HI provides several system calls to parse command lines that follow a standard
structure. It also provides other system calls to process nonstandard formats. This
chapter:

• Defines the standard structure of command lines.

• Describes the system calls used to parse standard commands.

• Discusses how to switch from one parsing buffer to another parsing buffer.

• Discusses wildcards used in input and output pathnames.

• Describes system calls used to parse nonstandard commands.

• Describes the c_get_command_name system call used to obtain the command
name the user used when invoking a command.

326 Chapter 27 Writing and Parsing Commands

Standard Command-line Structure
The standard structure of an HI command line consists of elements separated by
spaces. Your commands should follow this structure to enable parsing by the HI
system calls.

See also: For different command structures,
Parsing Nonstandard Command Lines in this chapter

Command-line Structure Parameters
In this example, square brackets [] indicate optional portions of the standard
structure.

command [inpath-list [preposition outpath-list]] [params] <CR>

Where:

command Pathname of the file containing the command's executable object code.
The pathname may include a prefix and a subpath. A prefix is a logical
name of a directory and is unique if it is not duplicated in one of the
directories in the command search sequence defined during
configuration.

See also: Pathnames, logical names, Command Reference

inpath-list
One or more pathnames of files, separated by commas, that the HI reads
as input during command execution. Individual pathnames can contain
wildcard characters to signify multiple files. Use the
c_get_input_pathname system call to process this inpath-list.

See also: Wildcard characters, Command Reference

System Concepts Chapter 27 327

preposition
Tells the HI how to handle the output. The standard structure supports
these prepositions. Use the c_get_output_pathname system call to
process the preposition.

to The HI writes the output to a new file indicated by the output
pathname. If the file already exists, the HI asks if you want to
overwrite the file.

Answering with a Y (uppercase or lowercase) causes the HI to
overwrite the existing file with the new output. An R tells the HI
to continue overwriting existing files without prompting for
permission. An R causes the HI to proceed with the next pair of
input and output files.

over The HI writes the output to the file indicated by the output
pathname. It overwrites any information that currently exists in
the file.

after The HI appends the output to the end of the file indicated by the
output pathname.

outpath-list
One or more pathnames of files, separated by commas, that receive the
output. The total number of pathnames in this list and the number of
wildcards used depends on the inpath-list. Use the
c_get_output_pathname system call to process the outpath-list.

See also: Pathnames, Command Reference

params Parameters that cause the command to perform additional or extended
services during command execution.

See also: Command-line Structure Parameter Formats

<CR> and <LF>

Line terminator characters. The <CR> and the <LF> are both line
terminators.

These examples show how to enter an HI command using the command structure
described above.

- copy :home:file1 to /tmp/file2 <CR>

- format :f: files=300 interleave=1 bs <CR>

See also: HI commands, Command Reference

328 Chapter 27 Writing and Parsing Commands

Command-line Structure Parameter Formats
The standard structure supports parameters with these formats:

value-list
One or more groups of characters (called values) separated by commas.
When value-list is present, the command performs the service
indicated by the values.

See also: permit command, access value, Command Reference

keyword Predefined keyword functions without added user values.

See also: format command, force parameter, Command Reference

keyword =

value-list
or
keyword

(value-

list)

A keyword with an associated value or value-list. The keyword
portion identifies the kind of service to perform, and each value
supplies further information about the service request.

See also: format command, FILES=num, diskverify, kill
commands, Command Reference

keyword value-list
A keyword with an associated value or value-list. The keyword portion
identifies the kind of service to perform and each value portion provides
more information about the service. However, the keyword must be
identified to the command as a preposition. Use the c_get_parameter
system call to process the parameter.

See also: HI call c_get_parameter, System Call Reference

See also: Parsing Other Parameters in this manual

System Concepts Chapter 27 329

Command-line Structure Special Characters
The HI supports these special characters:

& (continuation
character)

Continuation characters are recognized by all HI commands
found in. When using an & (ampersand) in the command line
as the last character before the line terminator, the HI assumes
that the command continues on the next line. If the CLI (or
any loadable command interface that uses c_send_command
to invoke commands) processes the user's command entry, the
& and the line terminator that follows are edited out of the
parsing buffer. Then the continuation line is read and
appended to the parsing buffer.

This process continues until the user enters a line terminated
by a <CR> without a continuation character. Therefore, when
the command receives control, its parsing buffer contains a
single command invocation, without intermediate continuation
characters or line terminators.

; (comment
character)

The HI considers this character and all text that follows it on a
line to be a non-executable comment.

If the CLI (or any loadable command interface that uses
c_send_command to invoke commands) processes the user's
command entry, all comments are edited out of the parsing
buffer. Therefore, individual commands do not have to search
for and discard comments.

330 Chapter 27 Writing and Parsing Commands

" and " or
' and ' (quoting
characters)

Two ' (single-quote) or " (double-quote) characters remove the
semantics of special characters they surround. Use the same
character for both the beginning and ending quote.

If a command line contains quoted characters, HI system calls
that invoke the command and parse the command line do not
perform any special functions associated with the surrounded
characters. For example, the "&" (ampersand surrounded by
double quotes) is interpreted as a single ampersand and not a
continuation character.

The quotes do not remove the semantics of characters that are
special to other layers of the OS, such as :, /, and ^, which are
special to the I/O System.

To include the quoting character in the quoted string, the user
must specify the quoting character twice or use the other
quoting character. For example:

'can''t'
is read in the command line as

can't

System Concepts Chapter 27 331

Parsing the Command Line
The HI maintains a pointer for a parsing buffer, which initially points to the first
parameter used when invoking a command. Table 27-1 lists system calls used in
parsing command lines and their functions.

Table 27-1. Parsing System Calls

Call Name Function

c_get_input_pathname gets input pathname

c_get_output_pathname gets output pathname

c_get_parameter parses command line by parameter

c_backup_char traverses backward by character in a command line

c_get_char traverses forward by character in a command line

c_set_parse_buffer changes parsing buffer from the HI to the one in the
command line

c_get_command_name obtains command pathname

Use any of the HI system calls in Table 27-2 to read the parameters from the parsing
buffer.

Table 27-2. Parsing Buffer System Calls

Call Name Reads
Understands
Quotes Moves Pointer

c_get_input_pathname parameter yes to next parameter

c_get_output_pathname parameter yes to next parameter

c_get_parameter parameter yes to next parameter

c_backup_char character no back one character

c_get_char character no to next character

Note: System calls c_get_input_pathname, c_get_output_pathname, and c_get_parameter
remove the special meaning from quoted characters and discard the quote characters.

▲▲! CAUTION
Because c_backup_char and c_get_char move the pointer
character by character, not parameter by parameter, ensure that
they leave the pointer pointing at the beginning of a parameter (or
at blank characters which immediately precede the parameter)
before invoking any of the other system calls.

332 Chapter 27 Writing and Parsing Commands

Parsing Input and Output Pathnames
Use the system calls c_get_input_pathname and c_get_output_pathname to
identify the input and output pathnames in the command line. For command lines
that contain multiple pathnames, invoke these system calls several times to obtain all
the pathnames. These calls return the pathnames in the form of iRMX STRINGs. If
c_get_input_pathname returns a 0-length string (that is, the first byte is 0), there are
no more pathnames to obtain.

The first call to c_get_input_pathname:

1. Reads the entire inpath-list (the list of pathnames separated by commas) into a
buffer.

2. Moves the parsing pointer to the next parameter.

3. Returns the first input pathname to the command.

The first call to c_get_output_pathname:

1. Identifies the preposition (to, over, or after).

2. Reads the entire outpath-list into a buffer.

3. Moves the parsing pointer to the parameter after the outpath-list.

4. Returns the first output pathname to the command.

Succeeding c_get_input_pathname and c_get_output_pathname calls return
additional pathnames from the buffers created previously, but they do not move the
parsing pointer to the next parameter.

This example illustrates parsing the buffer. The parsing buffer contains:

A,B to C,D

The call sequence to this buffer and the associated results are listed below:

Call Sequence Result
c_get_input_pathname Obtains input pathnames (A and B)

Returns A to the caller
Positions the pointer at the preposition "to"

c_get_output_pathname Obtains output pathnames (C and D)
Returns C to the caller

c_get_input_pathname Returns B to the caller

c_get_output_pathname Returns D to the caller

System Concepts Chapter 27 333

✏ Note
Use the system calls c_get_input_connection and
c_get_output_connection to obtain input and output file
connections so the necessary I/O operations can be performed.

See also: c_get_input_connection and c_get_output_connection system calls,
Communicating with the user, in this manual

File Connection Demo Programs
There are two demo programs (one written in C, the other in PL/M) installed with the
OS that use c_get_input_pathname and c_get_output_pathname in their
command-line parsing; they also use c_get_input_connection and
c_get_output_connection to obtain connections to the files. These programs are a
partial example of a copy command that you could implement.

Wildcard Characters In Input/Output Pathnames
The c_get_input_pathname and c_get_output_pathname system calls
automatically handle pathnames that contain wildcard characters. They treat a
wildcarded pathname as a list of pathnames.

See also: Wildcard characters, Command Reference

C_get_input_pathname matches wildcards. When called, it compares the
wildcarded component with the files in the specified directory and returns the
pathname of a file that matches.

C_get_output_pathname generates wildcards. Each time you call it, it compares
the wildcarded output pathname with the wildcarded input pathname and with the
most recent pathname returned by c_get_input_pathname. Then it generates a
corresponding output pathname based on that information. The output pathname
could refer to an existing file or to a file that does not yet exist. A query is issued
when an existing file will be overwritten.

When both c_get_input_pathname and c_get_output_pathname use wildcard
characters, obey these rules:

1. Call c_get_input_pathname first to obtain the input pathname and then call
c_get_output_pathname so there is a corresponding output pathname. The
identity of the output pathname depends on the identity of the input pathname.

2. Always alternate multiple calls to c_get_input_pathname and
c_get_output_pathname. This is necessary to handle wildcard characters and
lists of pathnames.

334 Chapter 27 Writing and Parsing Commands

If you invoke two calls to c_get_input_pathname without an intermediate call
to c_get_output_pathname, you will not be able to obtain the first output
pathname.

If you invoke two calls to c_get_output_pathname without an intermediate call
to c_get_input_pathname, the second call returns invalid information.

Parsing Other Parameters
You can also use the c_get_parameter system for parsing standard command lines in
these instances:

• To parse parameters which appear after the input and output pathnames.

• To parse all parameters, if the command does not use input and output files.

• To parse the input and output pathnames, if the command requires a preposition
other than to, over, or after.

✏ Note
If you use c_get_parameter to parse input and output pathnames,
you must provide additional code to handle wildcard characters that
may appear in the command line. This call does not wildcard
characters automatically.

For example, a command line contains the pathname file*. If you
use c_get_parameter to parse this parameter, the system call
returns the value literally as file*.

It does not know that the characters represent a pathname, nor does
it know that the asterisk represents a wildcard.

When called, c_get_parameter parses a single parameter and moves the pointer of
the parsing buffer to the next parameter. The parameter returned as a result of this
call is one of these:

value-

list

One or more groups of values separated by commas. The system call returns the
entire list in the form of a string table. It places each of the values in the value list
in a separate string.

See also: String table and string, System Call Reference

Individual parameters are separated by spaces.

C_get_parameter returns each listed value as a string in a string table. However, an
individual value can itself consist of a value-list. If a group of values separated by
commas is enclosed in parentheses, c_get_parameter treats the values as a single
value, returning them in a single string. For example, consider this value-list:

System Concepts Chapter 27 335

A,(B,C,D),E

C_get_parameter recognizes three values: A, the group B,C,D, and E.

See also: Command-line Structure Parameter Formats in this manual

There are two demo programs (one written in C, the other in PL/M) installed with the
OS that use c_get_parameter in their command-line parsing.

See also: Examples in /rmx386/demo/c/hi directory

336 Chapter 27 Writing and Parsing Commands

Parsing Nonstandard Command Lines
The next sections discuss two kinds of nonstandard command lines: one that is
similar to the standard and one that is completely different.

Variations on the Standard Command Line
If you want to structure your commands so that other parameters appear before the
input and output pathnames, you can still use c_get_input_pathname and
c_get_output_pathname to parse the input and output pathnames. However, ensure
that your command knows which of the parameters contain the input and output
pathnames. Two ways to do this are:

• Enforce a rigid structure on the command line. For example, suppose you want
two parameters to appear before the input and output pathnames, such as:

command p1 p2 input-pathname prep output-pathname

These commands can parse the command line:

Command Parameter
c_get_parameter p1, p2
c_get_input_pathname input-pathname
c_get_output_pathname output-pathname

If you do this, p1 and p2 are position-dependent parameters which must be included
whenever the command is invoked.

• Use a separate parameter as a switch to inform the command that the parameters
that follow are input and output pathnames. This method requires more code to
implement but it can enable you to make all your parameters (including the input
and output pathnames) position-independent.

This command line example shows how users can specify what they want to
retrieve before they specify where to get the information. The example uses a
hypothetical command called retrieve (which retrieves information from various
data bases) and a parameter called FROM.

retrieve names addresses phones from file1 to file2

The parameter FROM signals that the next parameters are input and output
pathnames. An example of how to process this command line follows:

while not end-of-command line

call c_get_parameter

if parameter = FROM then

call c_get_input_pathname

call c_get_output_pathname

end

System Concepts Chapter 27 337

Other Nonstandard Command Lines
In some instances, you might want your command line to look completely different
from that described earlier in this chapter. For example, suppose you require a syntax
in which these rules apply:

• Spaces have no significance and can be omitted between parameters.

• A prefix character must be before each parameter ($ indicates an input file, @
indicates an output file, and - indicates all other parameters).

With this kind of syntax, a user could invoke a command (in this example, refine) as
follows:

refine $infile-medium@outfile <CR>

Where:

infile The file from which to read information.

outfile The file in which refine should place its output.

medium A parameter that further directs the processing.

If you require any nonstandard syntax, you must use the c_backup_char and the
c_get_char system calls to parse the command line. Using calls requires you to
provide the parsing algorithm in your own program, because they make no
assumptions about the structure or order of parameters. However, by using these
system calls, you can enforce any command syntax you choose.

✏ Note
You cannot use c_get_input_pathname,
c_get_output_pathname, and c_get_parameter to parse the
individual parameters. Any of these system calls would return the
entire parameter list as a single parameter.

338 Chapter 27 Writing and Parsing Commands

Switching To Another Parsing Buffer
Some commands might require the ability to parse additional lines of text after the
original command invocation, for example, an editor needs to parse individual editor
commands. A command such as this cannot use the HI-provided parsing buffer
because it has no way of placing information in the buffer, and because it cannot reset
the parsing pointer to the beginning of the buffer.

Using the system call c_set_parse_buffer changes the parsing buffer from the one
the HI provides to one that the command provides. This call also sets the parsing
pointer to the beginning of the buffer.

Resetting the parsing pointer to the beginning of the buffer enables you to use one
buffer for parsing many lines of text. For example, suppose your command has
several sub-commands. Each time the user enters a sub-command, your command
reads the sub-command into a buffer, calls c_set_parse_buffer to reset the parsing
pointer, and parses the sub-command.

The buff_p parameter (in the c_set_parse_buffer system call) is a pointer to a
buffer containing the text to be parsed. This buffer can contain text read from the
terminal, text read from a file, or even text that you hard code into the command.
After the call to c_set_parse_buffer, these command parsing system calls obtain
information from the new parsing buffer:

c_get_parameter
c_get_char
c_backup_char

The other command parsing calls (c_get_input_pathname and
c_get_output_pathname) are not affected by calls to c_set_parse_buffer. These
calls always obtain pathnames from the command line parsing buffer.

System Concepts Chapter 27 339

The program flow for an operation like this could be:

1. Read the information from the terminal into a buffer (use c_send_co_response,
c_send_eo_response, or an EIOS call).

2. Call c_set_parse_buffer to set the parsing buffer to the buffer containing the
sub-command. This sets the parsing pointer to the beginning of the buffer.

3. Parse the sub-command using c_get_parameter, c_backup_char or c_get_char
system calls.

4. Perform the operations requested by the sub-command.

5. Go back to step 1. Continue this loop until the user exits from the command.

✏ Note
If you specify null or a 0 value for the buff_p parameter, the
parsing buffer switches back to the original command line buffer
which remains pointing at the next parameter in the command line.
This enables you to parse part of the command line, switch buffers
and parse a portion of another buffer, and switch back to the
command line.

Every time you call c_set_parse_buffer, the parsing pointer moves to the start of the
new buffer. However, c_set_parse_buffer returns, in its offset parameter, the
previous position of the pointer in the new buffer. If you switch back to that buffer
by again calling c_set_parse_buffer, you can use this value to move the pointer to its
previous position in two ways:

• Use the c_get_char system call to move the parsing pointer back to its previous
position in the new buffer. Call c_get_char the number of times specified in the
offset parameter of the first c_set_parse_buffer call. This positions the
pointer to its previous location. You can then continue parsing parameters from
the point at which you left off.

• Treat your parsing buffer as an array of characters (called CHAR, for example).
When you call c_set_parse_buffer the first time, specify the buff_p parameter
to point to the first element of the array. Then, when you switch parsing buffers,
c_set_parse_buffer returns, in the offset parameter, the number of bytes
already parsed. When you switch back to the new parsing buffer, you can use
this offset value as an index into the array.

340 Chapter 27 Writing and Parsing Commands

Obtaining the Command Name
The HI places the invoked command name in a buffer. The c_get_command_name
obtains the command's pathname.

C_get_command_name does not operate on the parsing buffer, nor is it affected by
the c_set_parse_buffer system call. It can be called multiple times; each time it
returns the same command name.

If the user enters the complete pathname of the command (including the logical
name), the command-name buffer contains exactly what the user entered. However,
if the user enters a command name without a logical name, the HI automatically
searches a number of directories for the command. In this case, the command-name
buffer contains not only the name the user entered, but also the directory containing
the command (such as :system:, :prog:, or :$:).

Therefore, a command can use the value returned by c_get_command_name and the
circumflex (^) pathname separator to access the directory in which it resides. For
example, if command-name is the name received from c_get_command_name, a
command could access its directory by using the pathname:

command-name^

It could access another file in the directory by specifying the pathname:

command-name^file

■■ ■■ ■■

System Concepts Chapter 28 341

Communicating with the User 28
This chapter discusses the HI system calls that:

• Establish connections to input and output files.

• Communicate with the user's terminal.

• Format condition codes into messages that can be sent to the user.

Establishing Input and Output Connections
The HI provides two system calls for establishing connections to input and output
files: c_get_input_connection and c_get_output_connection. These system calls
are structured so that you can use the output from other system calls as input to these
system calls.

Using c_get_input_connection
Use the c_get_input_connection system call for establishing file connections:

1. Get the pathname for the file which will be connected (either through the
c_get_input_pathname function or by directly specifying the pathname).

2. Use the pathname as one of the parameters for the c_get_input_connection
system call.

3. Call c_get_input_connection to establish the connection to the file.

If c_get_input_connection cannot obtain a connection to the specified file, it returns
a condition code and writes an error message to :co: (normally, the user's terminal).
For example, if the specified input file does not exist, c_get_input_connection
displays this message:

<pathname>, file not found

See also: c_get_input_connection HI system call, System Call Reference

342 Chapter 28 Communicating with the User

Because c_get_input_connection returns messages to the user in the event of an
exceptional condition, your command does not have to return additional messages
unless you require them. The command must decide only whether to abort or to
continue processing.

Using c_get_output_connection
Use the c_get_output_connection system call for establishing file connections:

1. Get the pathname for the file which will be connected (either through the
c_get_output_pathname function or by directly specifying the pathname).

2. Use the pathname as one of the parameters for the c_get_output_connection
system call.

3. Call c_get_output_connection to establish the connection to the file.

A second parameter in c_get_output_connection specifies the preposition used when
writing to the output file (to, over, or after). This preposition governs how the
output file is processed.

to c_get_output_connection prompts the user for permission to delete the
existing file. This prompt appears as:

<pathname>, already exists, OVERWRITE?

A user's Y or y response (yes), causes the system call to obtain the
connection to the existing file.

A R or r response (repeat), causes the establishes the connection to that
existing file, and obtains any additional output connections, without
prompting for permission to delete other existing files.

Any other response causes the system call to return a condition code
without obtaining a connection to the file.

over If you specify the over preposition, c_get_output_connection obtains
the connection without prompting the user for permission.

after If you specify the after preposition, c_get_output_connection
obtains the connection without prompting the user for permission. It
also sets the file pointer to the EOF before returning control. Thus, new
information does not overwrite existing information.

This is unlike to and over which cause c_get_output_connection to
leave the file pointer at the beginning of the file.

If the user does not have the proper access rights to the file, or if
c_get_output_connection cannot obtain a connection to the file, the system call
returns a condition code and displays a message at the user's terminal.

System Concepts Chapter 28 343

See also: c_get_output_connection HI system call, System Call Reference

A normal scenario for using c_get_input_connection and c_get_output_connection
is shown in Figure 28-1.

DO WHILE more input and output files

Obtain input pathname from command line with

c_get_input_pathname

Obtain output pathname from command line with

c_get_output_pathname

Obtain connection to input file with

c_get_input_connection

Obtain connection to output file with

c_get_output_connection

Read information from input file

Perform command operations on information

Write information to output file

Delete connections to input and output files

END

Figure 28-1. c_get_input_connection and c_get_output_connection Example

344 Chapter 28 Communicating with the User

Communicating With the User's Terminal

The HI provides two system calls that communicate with the user's terminal. They
are c_send_co_response and c_send_eo_response. Each of these system calls
combines into a single system call several operations that you would normally
perform when communicating with the terminal.

c_send_co_response System Call
In its general form, c_send_co_response attaches and opens connections to :ci: and
:co:. Depending on the values you choose as parameters for this system call you can:

• Send a message and receive a message (write to :co: and read from :ci:).

• Send a message without waiting to receive a message (read from :ci:).

• Receive a message without sending a message (write to :co:).

C_send_co_response deals specifically with the logical names :ci: and :co:.
Therefore, its input and output can be redirected to files by changing the pathnames
represented by these logical names. For example, when a user places a command in a
submit file, submit assumes that :ci: is the submit file and that :co: is the output file
specified in the submit command. Figure 28-2 on page 344 shows how to use
c_send_co_response.

See also: c_send_co_response HI system call, System Call Reference

Parameters:

call c_send_co_response

Write to :co:
and

Read from :ci:

Message to be sent
Size of message to be received
Buffer to receive message

Write to :co: Read from :ci:

Input

OM02105

Figure 28-2. Using c_send_co_response

c_send_eo_response System Call
C_send_eo_response, although it performs the same operations as
c_send_co_response, only reads information from and writes information to the

System Concepts Chapter 28 345

user's terminal. Input and output cannot be redirected. This system call is useful if
you have multiple tasks communicating with a single terminal.

For example, if a task uses either of these system calls and requests a response from
the terminal, no other output is displayed at the terminal until the user enters a
response to the first system call. After the user responds, tasks can send further
information to the terminal.

When used by all the tasks which communicate with the terminal, this prevents the
user from receiving several requests for information before being able to respond to
the first one.

See also: c_send_eo_response HI system call, System Call Reference

346 Chapter 28 Communicating with the User

Formatting Messages Based on Condition Codes

Whenever you include OS calls in the code of a command that you write, it is
possible for those system calls to encounter exceptional conditions, such as:

• Programming errors

• Environmental conditions

Even the most thoroughly debugged commands can encounter exceptional conditions.
The exceptional conditions can arise from invalid user entries, lack of secondary
storage space, media errors, and other problems over which the command has no
control.

The HI provides a default exception handler to handle exceptional conditions in
commands that you write. This exception handler receives control on all occurrences
of exceptional conditions. It displays the condition code value and mnemonic at the
user's terminal and aborts the command.

You can use the Nucleus system calls get_exception_handler, rqe_get_exception
handler, set_exception_handler, and rqe_set_exception_handler to provide your
own exception handling, either to pass additional information to the user or to enable
the user another chance to enter correct information. You can also use these calls to
cancel the effect of the default exception handler on some or all exceptions that occur
in your command.

See also: get_exception_handler, set_exception_handler,
rqe_get_exception_handler, and rqe_set_exception_handler, System
Call Reference

c_format_exception System Call
When you perform your own exception handling, you can create messages that return
to the user under specific exceptional conditions so they can correct the problem.
The c_format_exception system call accepts a condition code value as input and
returns a string whose contents describe the exceptional condition. You can use this
string as input to a system call such as c_send_co_response to write the information
to the user's terminal.

By using c_format_exception, you can return a message to the user for all
exceptional conditions, but you do not have to enlarge your program by including the
text of these messages in the code of your command.

System Concepts Chapter 28 347

The text portion of the string produced by c_format_exception consists of the
condition code value and mnemonic in this format:

value : mnemonic

You can display this string as is, or you can place additional explanatory text in the
string before displaying it.

This PL/M example shows you how to use c_format_exception to write an error
message to the screen every time a procedure named DoSomething encounters an
exception. You can declare a message as follows:

DECLARE

error_msg STRUCTURE(

length BYTE,

char(80) BYTE),

failed(*) BYTE DATA(33,'DoSomething procedure failed ***

'),

excep WORD,

local_excep WORD;

Now, whenever DoSomething encounters an exception during execution, you can
call c_format_exception, as shown below, to create the default message for the
exception contained in the excep variable and concatenate it to the failed message
you declared in the variable failed.

CALL MOVB(@failed, @error_msg, SIZE(failed));

CALL rqCformat$exception(@error_msg, SIZE(error_msg),

excep, 1, @local_excep);

You can write the error_msg string to the screen. For example, if the excep
variable contains 05H, the string contained in error_msg would be:

'DoSomething procedure failed *** 0005: E_CONTEXT'

See also: Examples in /rmx386/demo/c/hi directory;
c_format_exception, System Call Reference

■■ ■■ ■■

348 Chapter 28 Communicating with the User

System Concepts Chapter 29 349

Invoking HI Commands
Programmatically

When you write your own command, you might want to perform an operation that is
already provided in another command (such as copying one file to another, displaying
a directory, etc.). Instead of duplicating the code for this operation in your command,
you can invoke HI system calls to issue the commands themselves. The effect of
making these system calls is the same as that produced by a user entering an HI
command at the terminal. The HI provides the three system calls in Table 29-1 to
help process command invocations:

Table 29-1. Command Invocation System Calls

Call Name Function

c_create_command_connection Creates a command connection object to
store the command invocation lines

c_send_command Sends the command line to the command
connection and invokes the command

c_delete_command_connection Deletes the command connection

This chapter discusses these operations and provides an example of how the system
calls appear in a program.

Creating a Command Connection
The c_create_command_connection system call creates the object and returns a
token for it. The token can be used in calls to c_send_command (to send command
lines to the object) and in calls to c_delete_command_connection (to delete the
object after using it).

When you call c_create_command_connection, you also specify tokens for the
connections that serve as command input and command output for the invoked
command. This enables you to redirect input and output for the invoked command to
secondary storage files. Or you can specify :ci: and :co:.

29

Chapter 29 Invoking HI Commands Programmatically350

The command connection supports processing multiple-line commands without
interference from other tasks. Without the command connections, the OS would be
unable to determine which continuation line went with which command when many
tasks were sending command lines to be processed. The command connection
provides a place to store command lines until the command is complete.

Sending Command Lines to the Command
Connection and Invoking the Command

The c_send_command system call sends command lines to a command connection
and, when the invocation is complete, invokes the command. The format of the
command line is the same as entering the command line at a terminal. The command
can be any HI command or any command that you write. However, it cannot be a
CLI command and it cannot use the alias feature of the CLI.

See also: HI commands, Command Reference

If the string specified as a parameter to c_send_command contains a complete
command invocation then this takes place:

1. C_send_command places the command line in the command connection.

2. C_send_command invokes the command.

However, if the string does not contain the entire command invocation (that is, it
contains the & as a continuation character), then this takes place:

1. C_send_command places the command line in the command connection
without invoking the command.

2. C_send_command returns a condition code, E_CONTINUED, to inform the
calling program that the command is continued.

3. The programmer calls c_send_command to combine continuation lines in the
command connection with the command lines already there.

4. Repeat Step 3 until c_send_command encounters the end of the command
invocation (a line without a continuation character).

5. C_send_command loads the command from secondary storage.

6. C_send_command invokes the command.

The c_send_command call that invokes the command does not return control until
the invoked command finishes processing. Once the command finishes processing,
you can use the command connection for invoking other commands.

System Concepts Chapter 29 351

The c_send_command system call contains two pointers to WORDs or unsigned
shorts that receive condition codes. One of these points to a location that receives the
status of the c_send_command system call. The other points to a location that
receives the status of the invoked command.

Priority Considerations
Every command has a priority (usually based on the priority of the user who invoked
the command) that determines when the command will be able to run in relation to
the other tasks in the system. When commands are invoked using command
connections, their priorities are lowered (numerically increased) by one. This ensures
that the calling task (the one that created the command connection) retains control
over the commands it invokes.

As a result, a command invoked directly at the terminal will have a higher priority
(and possibly complete sooner) than the same command invoked using a command
connection.

See also: rqe_set_max_priority command, System Call Reference

Deleting the Command Connection
After you have finished invoking commands programmatically, delete the command
connection. The c_delete_command_connection system call performs this
operation. You do not need to delete the command connection after each command
invocation, because the command connection is reusable. However, delete the
command connection after performing all c_send_command operations. This frees
the memory used by the data structures of the command connection.

Command Connection Calls Demo Programs
There are two demo programs (one written in C, the other in PL/M) installed with the
OS that use c_create_command_connection, c_send_command, and
c_delete_command_connection. These programs invoke the HI copy command
programmatically.

See also: Examples in /rmx386/demo/c/hi directory

■■ ■■ ■■

Chapter 29 Invoking HI Commands Programmatically352

System Concepts Chapter 30 353

Writing a <Ctrl-C> Handler 30
Normally, when an HI command is executing, a user cannot communicate with the
system until the command requests input from the user. This can present problems if
a user enters the wrong command or needs to access the system. However, there are
a number of ways the user can abort command execution.

• If the command is executing interactively, the user can enter a <Ctrl-C>
character to abort a command.

• If the command is running in the background environment, the user can enter the
CLI commands jobs and kill to abort a job.

This chapter explains how to override the default <Ctrl-C> action by providing your
own code to process a <Ctrl-C> character.

See also: Aborting background jobs, Command Reference

How the Default <Ctrl-C> Works
When the user enters a <Ctrl-C>, the OS sends a unit to a semaphore. In the default
case, this is a semaphore established by the HI. An HI task waits at that semaphore
to receive the unit. When it receives the unit, it aborts the command that is currently
executing and returns control to the user. The HI task then waits at the semaphore for
another unit.

This <Ctrl-C> facility enables users to cancel commands while the commands are
executing. It can be used with your commands without requiring special
implementation code.

354 Chapter 30 Writing a <Ctrl-C> Handler

Providing Your Own <Ctrl-C>
With some commands that you write, you might want to override the default
<Ctrl-C> handling. For example, suppose you write a text editor. A user invokes the
editor with an HI command and then specifies edit commands to enter text into a
buffer and modify that text.

While using the editor, the user does not want a <Ctrl-C> character to abort the entire
editing session, destroying text in the editing buffer that could have taken hours to
create. Instead, the user might want a <Ctrl-C> to abort a single editor command
only. In order to provide this facility, your HI command (the editor) must override
the default <Ctrl-C> handling and provide its own code to handle <Ctrl-C> entries.

By changing the semaphore to one that you create, you can circumvent the default
<Ctrl-C> task of the HI. You can use the HI system call c_set_control_c to replace
the <Ctrl-C> semaphore. This system call changes the calling job's <Ctrl-C>
semaphore to the semaphore you specify. There is only one parameter in this system
call: control_c_semaphore which is a token for your new <Ctrl-C> semaphore.
A single unit is sent to the new semaphore each time a <Ctrl-C> is entered from the
terminal.

See also: HI system call c_set_control_c, System Call Reference

If you create an HI command that does not use the default <Ctrl-C> semaphore, that
command must service the new <Ctrl-C> semaphore. It can do this by:

• Using inline code that periodically checks the semaphore for a unit.

• Creating a task that waits continually at your <Ctrl-C> semaphore for a unit.

In either case, when a unit is sent to the semaphore, the command (or the task) must
perform the necessary <Ctrl-C> operation.

▲▲! CAUTION
If you also include the UDI in your application, the <Ctrl-C>
handler will revert to the UDI default handler unless you establish
the new <Ctrl-C> handler in the UDI with the dq_trap_cc call.

Using Inline Processing
The program flow of such a command using inline processing would be:

1. Call create_semaphore to create the <Ctrl-C> semaphore.

2. Call c_set_control_c to switch the <Ctrl-C> semaphore to the one just created.
Use the token for the semaphore you created in Step 1 as input.

System Concepts Chapter 30 355

3. Continue with command processing. Periodically check the semaphore (by
calling receive_units with the time_limit parameter set to 0) to determine if it
contains any units. If you obtain any units from the semaphore, perform the
necessary <Ctrl-C> processing.

If your command services the <Ctrl-C> semaphore with inline code, you can perform
any operation you want. You can branch to various locations, you can start new tasks
running, you can abort the command, or you can perform any other function that you
wish.

However, in order to service the <Ctrl-C> semaphore with inline code, check the
semaphore periodically, to see if it contains a unit. When doing this, ensure that you
place the checks inside all program loops that perform operations a user might want
to abort. Also, because you can check the semaphore only periodically, you cannot
always guarantee a quick response to the <Ctrl-C>.

Using a <Ctrl-C> Task
The program flow of such a command using a task would be:

1. Call create_semaphore to create the <Ctrl-C> semaphore.

2. Call catalog_object to catalog the token for the semaphore in an object
directory.

3. Call create_task to start the <Ctrl-C> task.

4. Call c_set_control_c to switch the <Ctrl-C> semaphore to the one just created.
Use the token for the semaphore you created in Step 1 as input.

5. Continue with command processing.

The program flow of the <Ctrl-C> task could be:

1. Call lookup_object to obtain the token for the semaphore.

2. Do forever:

a. Call receive_units with the time_limit parameter set to 0FFFFH to
obtain a unit from the semaphore.

b. Perform the operation that must occur when the user enters a <Ctrl-C>.

356 Chapter 30 Writing a <Ctrl-C> Handler

If you use a <Ctrl-C> task, you can guarantee quick service because the task is
always waiting at the semaphore. However, because a separate task services the
<Ctrl-C>, you can perform only a limited number of operations in response to the
<Ctrl-C>.

• The task can send a message to the command, but then the command would have
to periodically check a mailbox. This has the same disadvantages as inline
servicing with none of the advantages.

• The task can delete or suspend the command. However, the task has no way of
knowing what operations the command was performing when the user entered
the <Ctrl-C>. If the command was updating an internal table, deleting the
command could corrupt your entire system. Suspending the command could
enable the <Ctrl-C> task to interrogate the command's state. The <Ctrl-C> task
could delete the command if appropriate, or it could enable the command to run
until it was safe to be deleted.

Returning to the Default Handler
Once your command assigns a new <Ctrl-C> semaphore, that assignment remains
until either:

• Your command invokes the HI c_send_command system call. Invoking this
system call automatically reverts back to the default <Ctrl-C>. To continue
using your own <Ctrl-C>, invoke c_set_control_c (to switch back to your
<Ctrl-C> semaphore) immediately after invoking c_send_command.

• Your command is deleted. When this happens, the HI automatically reactivates
its default <Ctrl-C> semaphore. For example, once the example text editor
described earlier in this chapter terminates, the HI resets the semaphore so that
<Ctrl-C> again becomes active.

<Ctrl-C> Task Demo Programs
There are two demo programs (one written in C, the other in PL/M) installed with the
OS that are examples of a user-supplied <Ctrl-C>.

See also: Examples in /rmx386/demo/c/hi directory

■■ ■■ ■■

System Concepts Chapter 31 357

Creating Human
Interface Commands

This chapter discusses the steps that you must perform to create your own HI
commands. It discusses the necessary elements of a command as well as how to
compile (or assemble) and bind your code.

You can make your application into an HI command and run it on an DOSRMX
system. This requires these steps.

1. Program your application.

2. Give the application a command name and specify parameters, if any.

3. Provide for the command to parse its command line parameters, if any.

4. Provide for the command to terminate itself when finished. If you plan to use
sysload to load it, use the delete_job system call. Otherwise, use exit_io_job.

5. Compile the command using the appropriate compiler.

6. Bind the command to the appropriate libraries to make a Single Task Loadable
(STL) file. The RCONFIGURE control makes the command loadable.

7. Load the command manually (x in these examples), using one of these methods.

- sysload x parameter 1 parameter n <CR>
The job will continue to be available.

- background x parameter 1 parameter n <CR>
The command runs in the background. Redirect :ci: and :co: to log files.

- SS x parameter 1 parameter n <CR>
The command runs in the foreground; debug it using Soft-Scope.

- debug x parameter 1 parameter n <CR>
The command runs in the foreground and you can debug it.

If you use sysload to load your application, that job will continue to be available.

31

358 Chapter 31 Creating Human Interface Commands

Detailed instructions for steps 3, 4, 5, and 7 are described in sections which follow.

To perform the operations described in this chapter, you must have a system that
includes the HI commands. The system must have an editor, the necessary compiler
or assembler, and the appropriate binder, such as BND286 for 16-bit HI commands
and BND386 for 32-bit HI commands.

Elements of a Human Interface Command
This section discusses the rules that every user-written command must obey. It also
suggests some programming practices to make coding and using your commands
easier.

✏ Note
When coding your commands, avoid duplicating CLI command
names such as, alias and submit. If you do name a new command
with the same name as a CLI command, execute it with the full
pathname, for example, :utils:alias. Otherwise, the CLI command
will be executed instead of your command.

System Concepts Chapter 31 359

Parsing the Command Line
If you are going to enable the user to enter parameters when invoking the command,
the first thing your command should do is parse the command line. To support lists
of pathnames and wildcarded pathnames, the flow of a program that uses input and
output files should be:

1. Call c_get_input_pathname to obtain the entire list of input pathnames.

2. Call c_get_output_pathname to obtain the preposition and the entire list of
output pathnames.

3. Call c_get_parameter as many times as necessary to get all the parameters.

4. Do until no more input pathnames remain:

a. Call c_get_input_connection to obtain a connection to the input file.

b. Call c_get_output_connection to obtain a connection to the output file.

c. Read the information from the input file, perform the command operations
based on that input, and write the information to the output file.

d. Call the EIOS s_delete_connection call to delete the connections to the
input and output files.

e. Call c_get_input_pathname and c_get_output_pathname to obtain the
next input and output pathnames.

System Calls and Objects to Avoid
Although you can use any of the OS calls you require, some system calls are intended
primarily for use in system-level jobs (those jobs that you configure into the OS
rather than invoking as HI commands). The command descriptions for those calls
describe when the calls should be avoided.

In particular, avoid objects (and their associated system calls) that, by their use, make
your command immune to deletion. Regions and extension objects are examples of
such objects. If your command becomes immune to deletion, a <Ctrl-C> that a user
enters to cancel the command will have no effect; the user's terminal may also lock
when the command finishes processing.

See also: Regions, extension objects, in this manual

360 Chapter 31 Creating Human Interface Commands

Terminating the Command
When the user invokes a command, the OS loads the command into memory and
creates an I/O job as the environment in which the command runs. The user can use
the CLI background command to process commands in background mode, and at the
same time continue processing another command in the foreground. In order to
finish processing a foreground command correctly, any task in the command that
exits must do so by calling exit_io_job. This system call causes the OS to delete the
I/O job containing the command, therefore returning control to the user.

See also: I/O jobs, in this manual;
EIOS system call exit_io_job, System Call Reference

If the command running in the foreground omits the call to exit_io_job, the user
might not be able to enter further commands. To terminate a command before it
reaches its normal completion, the user should enter <Ctrl-C> to abort a command
running in the foreground or the CLI kill command to abort a command running in
the background environment.

Include Files
When writing the code for your commands, declare each OS call as an external
procedure. Instead of writing these declarations yourself, you can use the include
statement. Using include statements makes it possible to include code from an
external file into your program. This information may be in an include file:

• External declarations of system calls

• Literal definitions of condition codes

• Common literal definitions that you declare

See also: Header files, System Call Reference

System Concepts Chapter 31 361

Producing a 16-bit Executable Command
After you have written the source code for your command, produce object code that
can be executed in a 16-bit environment. Follow these steps:

✏ Note
This section applies to object code developed using Intel tools only.

See also: C Compiler-specific Information for information
on building executable code with non-Intel tools,
Programming Techniques

1. Compile (or assemble) the command using the appropriate translators. When
you do this, ensure that the names you specify in include statements specify
the correct devices and directories.

2. Using BND286, bind the code to the interface libraries (and any other libraries
that you require) and produce a relocatable object module that the OS can load
anywhere in memory. The format of the BND286 command is:

BND286 &

command-name, &

:RMX:LIB/RMXIF*.LIB &

:dir:other.lib, &

RCONFIGURE (DYNAMICMEM(min,max)) &

OBJECT(output-pathname) &

SEGSIZE(STACK(stacksize))

Where:

command-name The complete pathname of the file containing your compiled
(or assembled) command. You can bind in several files or
libraries at this point, if necessary.

:dir: A generic logical name you create for directories containing
miscellaneous libraries.

other.lib Any other files or libraries that you need to bind with your
command, for example, plm286.lib.

* Replace this character with C if you are using COMPACT.

output-pathname Complete pathname of the file in which BND286 places the
command after binding.

362 Chapter 31 Creating Human Interface Commands

stacksize Size, in bytes, of the stack needed by the command and any
system calls that the command makes. The HI uses this value
when it creates a job for the command. Be sure the stack is
large enough to handle both user and system requirements.

See also: Stack requirements,
Programming Techniques

min,max Minimum and maximum amount of dynamic memory, in
bytes, required by the command.

The command uses this memory when it creates iRMX
objects. The AL uses the min and max values when it loads a
job for the command. Be sure that these values are large
enough to satisfy the needs of your command and small
enough to enable the command to be loaded into the user's
memory partition.

For example, suppose a sort command requires at least
64 Kbytes of dynamic memory but can use any additional
dynamic memory for buffers to increase performance. If you
do not define a maximum memory parameter, all of your
dynamic memory will be allocated to the sort command,
preventing you from executing other commands at the same
time. Therefore, assume that you want to limit the max value
to 1 Mbyte. Specify:

RCONFIGURE(DYNAMICMEM(10000H,100000H))

Consider these factors when calculating the values for min and
max.

• The value you give for the min field plus the memory
required by the HI program must fit into
contiguous memory. If there is not enough contiguous
memory for them, you may not be able to load your
command.

• The value for the max field should be large enough to
ensure enough memory for commands that request
memory dynamically.

The command is now ready for execution. A user can invoke the command by
entering the pathname of the file containing the command (the output-pathname in
the BND286 command).

System Concepts Chapter 31 363

Producing a 32-Bit Executable Command

After you have written the source code for your command, produce the object code.
To generate a 32-bit command, use these steps. (16-bit commands can run on
iRMX III and DOSRMX also.)

✏ Note
This section applies to object code developed using Intel tools only.

See also: C Compiler-specific Information for information
on building executable code with non-Intel tools,
Programming Techniques

1. Compile (or assemble) the command using the appropriate translators. When
you do this, ensure that the names you specify in include statements specify
the correct devices and directories.

2. Using BND386, bind the code to the OS interface libraries (and any other
libraries that you require) and produce a relocatable object module that the OS
can load anywhere in memory. The format of the BND386 command is:

BND386 &

command-name, &

:RMX:LIB/RMXIFC32.LIB &

:dir:other.lib, &

RCONFIGURE (DYNAMICMEM(min,max)) &

OBJECT(output-pathname) &

SEGSIZE(STACK(stacksize)) &

RENAMESEG (CODE to CODE32, DATA to DATA32)

Where:

command-name The complete pathname of the file containing your compiled
(or assembled) command. You can bind in several files or
libraries at this point, if necessary.

:dir: A generic logical name you create for directories containing
miscellaneous libraries.

other.lib Any other files or libraries that you need to bind with your
command, for example, plm386.lib.

output-pathname Complete pathname of the file in which BND386 places the
command after binding.

364 Chapter 31 Creating Human Interface Commands

stacksize Stack size, in bytes, needed by the command and any system
calls that the command makes. The HI uses this value when it
creates a job for the command. Be sure the stack is large
enough to handle both user and system requirements. The OS
supports compact interface procedures.

See also: Stack requirements, Programming Techniques

min,max Minimum and maximum amount of dynamic memory, in
bytes, required by the command.

The command uses this memory when it creates objects. The
Application Loader (AL) uses the min and max values when it
loads a job for the command. Be sure that these values are
large enough to satisfy the needs of your command and small
enough to enable the command to be loaded into the user's
memory partition.

For example, suppose a sort command requires at least
64 Kbytes of dynamic memory but can use any additional
dynamic memory for buffers to increase performance. If you
do not define a maximum memory parameter, all of your
dynamic memory will be allocated to the sort command,
preventing you from executing other commands at the same
time. Therefore, assume that you want to limit the max value
to 1 Mbyte. Specify:

RCONFIGURE(DYNAMICMEM(10000H,100000H))

Consider these factors when calculating the values for min and
max.

• The value you give for min and the memory required by
the HI program must fit into contiguous memory. If
there is not enough contiguous memory for them, you
may not be able to load your command.

• The max value should be large enough to ensure memory
for commands that request memory dynamically.

The command is now ready for execution. A user can invoke the command by
entering the pathname of the file containing the command (the output-pathname in
the BND386 command).

■■ ■■ ■■

System Concepts Chapter 32 365

INtime® 2.0 Compatibility
and Interoperablilty

The iRMX III.2.3 OS includes components of the INtime 2.0 Windows NT
Enhancement software. These components allow an iRMX III.2.3 system to function
as a Remote INtime Client, thus allowing communications between a Windows NT
Host and itself (as a Remote INtime Client), as well as running INtime RT software
directly on the iRMX III.2.3 system. As a direct benefit of this communications
mechanism (NTX) with an NT system, an updated version of Soft-Scope can be used
on the NT Host that can communicate either serially (at up to 115KB) or via UDP/IP
with the iRMX III.2.3 system to download and debug iRMX or INtime applications
on the iRMX III.2.3 system (acting as a Remote INtime Client).

Becoming a Remote INtime Node
The following jobs/components must be running on the iRMX III.2.3 system to allow
it to act as a Remote INtime Client, both for communications and application cross
debug purposes:

• Paging Job

• Flat Job

• Remote INtime Personality Job

• Appropriate Remote INtime low level drivers

• serdrvr.job for serial interface

• ne.job, tulip.job, eepro.job, or eepro100.job for

• UDP interface

• New iRMX TCP/IP Stack components (TBD)

• Appropriate Channel Interface Module (CIM)

• rtcimcom.rta for serial communications

• rtcimudp.rta for UDP/IP communications

• NTX Proxy Job (ntxproxy.rta)

■■ ■■ ■■

32

366 Chapter 32 INtime® 2.0 Interoperability an dCompatibility

System Concepts Chapter 33 367

Windows NT Host
Cross-Development Environment

You can now develop iRMX Applications on a Windows NT Host and debug them
on a Remote iRMX III.2.3 system using either serial or UDP/IP communications
interfaces:

• To configure and generate an iRMX III.2.3 application system, you can run a
DOS-hosted iRMX Interactive Configuration Utility (ICU) from a Windows NT
Console (DOS Box).

• To develop an iRMX application, run the standard Intel/RadiSys OMF386 tools
from a Windows NT Console (DOS Box).

• To download and debug an iRMX application on a remote iRMX system, use a
Windows NT-hosted version of Soft-Scope.

• To drive OMF386 tools in the development of sample iRMX applications, use
the various provided iRMX Demo Applications that use DOS-hosted make files.

• For easy setup of a Windows NT Host to communicate via NTX with a Remote
INtime Client (iRMX III.2.3), use the provided Windows NT-hosted
Windows NT-Link Configuration Utility. The Utility also produces working
iRMX Configuration and batch (.CSD) files that you can use to set up the iRMX
system as a Remote INtime Client.

33

368 Chapter 33 Windows NT Host Cross-Development Environment

■■ ■■ ■■

System Concepts Appendix A 369

OS Extension Example A
Ring Buffer Manager

This example (in PL/M) illustrates portions of a ring buffer manager and various
parts of an OS extension. Be advised, however, that the example is incomplete and
should be imitated with discretion. In particular, the example has these
shortcomings:

• The issue of exception handling is not addressed. Clearly the code supporting a
system call should examine each invocation for validity, but, for brevity, the ring
buffer example does not do this.

• There are no safeguards against partial creation of an object. When creating a
composite object, a type manager must first create the components of the object.
Occasionally, after creating some of the components, the manager might be
unable to create the others. A type manager should be able to recover from this
situation, usually by deleting the components already created and returning an
exception code to the caller. The example, again for brevity, does not do this.

• The entry routine does not check the entry code for validity.

• The potential for problems with deletion is ignored. For this reason, you should
imagine that the environment of the example is constrained in at least two ways.
First, only one task will ever try to delete a ring buffer and, when it does try, no
other task will be using that buffer. Second, when a job containing a task that
created a ring buffer is deleted, no tasks in other jobs are using that ring buffer.

• The example has been desk-checked, but the example has not actually been
tested.

• The example ring buffer is limited to a maximum of 64 Kbytes in length.

• The example assumes use of version V3.1 or later of the desired PL/M compiler,
i.e. PL/M-286 or PL/M-386.

370 Appendix A OS Extension Example

A ring buffer is a block of memory in which bytes of data are placed at successively
higher addresses. Byte removals are interspersed with byte insertions, with the
restriction that the byte being removed must always be the byte that has been in the
buffer for the longest time. Thus, data enters and leaves a ring buffer in a FIFO
manner. Ring buffers are so named because the lowest address logically follows the
highest address. That is, if the last byte placed in (or retrieved from) the buffer is at
its highest address, then the next byte to be placed in it (or retrieved from it) is at the
lowest address. As data enters and leaves the buffer, the portion containing data runs
around the ring, with the pointer to the last byte out chasing the pointer to the last
byte in. Figure A-1 illustrates these characteristics.

OM02889

Oldest
data

Low
address

High
address

Newest
data

Empty

Last byte
in pointer

Last byte
out pointer

Figure A-1. A Ring Buffer

The main (service) part of the example consists of four procedures:
CREATE_RING_BUFFER, DELETE_RING_BUFFER, PUT_BYTE, and
GET_BYTE. The last two procedures are for placing a character in a ring buffer and
for retrieving a character, respectively.

✏ Note
The text description and the figures in this appendix use
C-language syntax. However, these procedure examples are in
PL/M-language syntax.

System Concepts Appendix A 371

/***

* NOTE: The common literal file (COMMON.LIT) is included *

* in each of the PL/M portions of the example. This include file *

* uses conditional compilation. The compilation switch 'R_32' be *

* used when compiling with PL/M-386. *

**/

$IF word16

DECLARE WORD_32 LITERALLY 'DWORD';

DECLARE WORD_16 LITERALLY 'WORD';

$ELSE

DECLARE WORD_32 LITERALLY 'WORD';

DECLARE WORD_16 LITERALLY 'HWORD';

$ENDIF

DECLARE TOKEN LITERALLY 'SELECTOR';

$IF r_32

DECLARE SIZEOFOFFSET LITERALLY 'WORD_32';

$ELSE

DECLARE SIZEOFOFFSET LITERALLY 'WORD_16';

$ENDIF

DECLARE forever LITERALLY 'WHILE 1';

DECLARE indefinitely LITERALLY '0FFFFH';

DECLARE ASTR$STRUC LITERALLY 'STRUCTURE(

num$slots WORD,

num$components WORD,

seg TOKEN,

empty$ct TOKEN,

full$ct TOKEN)';

DECLARE POINTER$STRUC LITERALLY 'STRUCTURE(

off_set SIZEOFOFFSET,

selector SELECTOR)';

DECLARE SEGMENT$STRUC LITERALLY 'STRUCTURE(

size WORD,

head WORD,

tail WORD,

buffer(1) BYTE)';

372 Appendix A OS Extension Example

Initialization
The initialization task creates a region to protect data in ring buffers from being
manipulated by more than one task at a time. This part of the OS extension also
creates the required extension type and creates a deletion mailbox. In an ICU-
configurable system, the OS extension call-gates are established during configuration.
For this example, they are GDT slots 440H, 441H, 442H, and 443H. Finally, this
part of the OS extension waits at the deletion mailbox. Code for the initialization
task includes this:

$IF r_32

$COMPACT(-CONST IN CODE- has example)

$LARGE(other_libs EXPORTS ring$buffer$manager)

$ENDIF

example:

DO;

$INCLUDE(:RMX:INC/COMMON.LIT) /* Declares common literals

*/

$INCLUDE(:RMX:INC/NUCLUS.EXT)

RING$BUFFER$MANAGER: PROCEDURE EXTERNAL;

END RING$BUFFER$MANAGER;

DECLARE ring$buffer$type TOKEN PUBLIC;

DECLARE ring$buffer$region TOKEN PUBLIC;

RING_BUFFER_INIT: PROCEDURE;

DECLARE delete$object TOKEN;

DECLARE exception WORD;

DECLARE fifo LITERALLY '0';

DECLARE rb$code LITERALLY '8000H';

DECLARE deletion$mbox TOKEN;

DECLARE response$mbox TOKEN;

ring$buffer$region = RQ$CREATE$REGION (

fifo,

@exception);

deletion$mbox = RQ$CREATE$MAILBOX (

fifo,

@exception);

System Concepts Appendix A 373

ring$buffer$type=R$$CREATE$EXTENSION (

rb$code,

deletion$mbox,

@exception);

$IF rmx86

CALL RQSETOS$EXTENSION(

224,

@ring$buffer$manager,

@exception);

$ENDIF

CALL RQENDINIT$TASK;

DO FOREVER;

delete$object = RQ$RECEIVE$MESSAGE (

deletion$mbox,

indefinitely,

@response$mbox

@exception);

/***

* If desired, delete the components of the composite object. They *

* are not automatically deleted when DELETE$EXTENSION is called. *

* See the DELETE$RING$BUFFER procedure, shown later, for the code *

* that does this. *

***/

CALL RQ$DELETE$COMPOSITE (

delete$object,

@exception);

END; /* FOREVER */

END RING_BUFFER_INIT;

END example;

374 Appendix A OS Extension Example

The Interface Library
The user interface library consists of four small procedures, one for each of the
system calls provided by the OS extension. The library supports application code
written in the PL/M COMPACT model. If a different model had been used for
compiling the application code, these interface procedures would be slightly
different, reflecting the fact that, when making procedure calls in other models, the
stack is used differently than in the COMPACT model.

See also: Interface libraries, Programming Techniques;
Interface libraries, System Call Reference

The interface procedures are as follows:

; define macro to allow

; both 16 and 32 bit

; usage

$IF (%r_32) THEN(%'

; 32 bit registers/data types

%define(ax) (eax)

%define(bx) (ebx)

%define(cx) (ecx)

%define(dx) (edx)

%define(si) (esi)

%define(di) (edi)

%define(bp) (ebp)

%define(sp) (esp)

%define(mov16) (movzx)

%define(pusha) (pushad)

%define(popa) (popad)

%define(pushf) (pushfd)

%define(popf) (popfd)

%define(iret) (iretd)

%define(dw) (dd)

%define(dd) (dp)

) ELSE (%'

System Concepts Appendix A 375

; 16 bit registers/data types

%define(ax) (ax)

%define(bx) (bx)

%define(cx) (cx)

%define(dx) (dx)

%define(si) (si)

%define(di) (di)

%define(bp) (bp)

%define(sp) (sp)

%define(mov16) (mov)

%define(pusha) (pusha)

%define(popa) (popa)

%define(pushf) (pushf)

%define(popf) (popf)

%define(iret) (iret)

%define(dw) (dw)

%define(dd) (dd)

)FI%'

CREATERB PROC NEAR

PUBLIC CREATERB

%IF (NOT(%rmx86)) THEN (

EXTRN GATE 440: FAR

)FI

PUSH %BP

MOV %BP, %SP

%IF (%rmx86) THEN (

LEA %SI, SS:%BP+4 ; SS:SI contains

location of first

parameter

MOV BX, 0 ; code for

CREATE_RING_BUFFER

INT 224 ; call the

OS-extension via a

software interrupt

) ELSE (

PUSH SS:%BP+4 ; parameter--the size

of the ring buffer

CALL GATE 440 ; call the

OS-extension via a

call-gate

376 Appendix A OS Extension Example

)FI

POP %BP ; restore BP value

RET 2 ; return clearing

passed parameter

CREATERB ENDP

DELETERB PROC NEAR

PUBLIC DELETERB

%IF (NOT(%rmx86)) THEN (

EXTRN GATE 441: FAR

)FI

PUSH %BP

MOV %BP, %SP

%IF (%rmx86) THEN (

LEA %SI, SS:%BP+4 ; SS:SI contains

location of first

parameter

MOV BX, 1 ; code for

DELETE_RING_BUFFER

INT 224 ; call the

OS-extension via a

software interrupt

) ELSE (

PUSH SS:%BP+4 ; parameter--target

ring buffer

CALL GATE 441 ; call the

OS-extension via a

call-gate

)FI

POP %BP ; restore BP value

RET 2 ; return clearing

passed parameter

DELETERB ENDP

GETRBYTE PROC NEAR

PUBLIC GETRBYTE

%IF (NOT(%rmx86)) THEN (

EXTRN GATE 442: FAR

)FI

PUSH %BP

System Concepts Appendix A 377

MOV %BP, %SP

%IF (%rmx86) THEN (

LEA %SI, SS:%BP+4 ; SS:SI contains

location of first

parameter

MOV BX, 2 ; code for GET_BYTE

INT 224 ; call the

OS-extension via a

software interrupt

) ELSE (

PUSH SS:%BP+4 ; parameter--target

ring buffer

CALL GATE 442 ; call the

OS-extension via a

call-gate

)FI

POP %BP ; restore BP value

RET 2 ; return clearing

passed parameter

GETRBYTE ENDP

PUTRBYTE PROC NEAR

PUBLIC PUTRBYTE

%IF (NOT(%rmx86)) THEN (

EXTRN GATE 443: FAR

)FI

PUSH %BP

MOV %BP, %SP

%IF (%rmx86) THEN (

LEA %SI, SS:%BP+4 ; SS:SI contains

location of first

parameter

MOV BX, 3 ; code for PUT_BYTE

INT 224 ; call the

OS-extension via a

software interrupt

378 Appendix A OS Extension Example

) ELSE (

PUSH SS:%BP+6 ; parameter--character

to write

PUSH SS:%BP+4 ; parameter--target

ring buffer

CALL GATE 443 ; call the

OS-extension via a

call-gate

)FI

POP %BP ; restore BP value

RET 4 ; return clearing

passed parameters

PUTRBYTE ENDP

These interface procedures correspond to a set of external procedure declarations in
the application PL/M code:

CREATERB: PROCEDURE(size) TOKEN EXTERNAL;

DECLARE size WORD;

END CREATERB;

DELETERB: PROCEDURE(ring$buffer$token) EXTERNAL;

DECLARE ring$buffer$token TOKEN;

END DELETERB;

GETRBBYTE: PROCEDURE(ring$buffer$token) BYTE EXTERNAL;

DECLARE ring$buffer$token TOKEN;

END GETRBBYTE;

PUTRBBYTE: PROCEDURE(char, ring$buffer$token) EXTERNAL;

DECLARE char BYTE;

DECLARE ring$buffer$token TOKEN;

END PUTRBBYTE;

System Concepts Appendix A 379

The Create Ring Buffer Procedure
The sole function of the CREATE_RING_BUFFER procedure is to create a ring
buffer for the calling task and to return to the task a token for the composite ring
buffer object.

Each ring buffer consists of three objects: a segment and two semaphores. The
supporting data structure, required by the iRMX OS for calls to create_composite
and inspect_composite, has five fields:

• The number of slots available for tokens in this list of component object tokens.
Because ring buffers are composed of three objects and no components will be
added, the number of slots is set to three.

• The number of component objects actually in the composite object. In this case,
the number of components is three.

• A token for a segment. The segment contains the ring buffer. The first WORD
in the segment contains the size of the actual ring buffer. The second WORD of
the segment is a POINTER to the most recently entered byte in the buffer. The
third WORD points to the oldest byte in the buffer. The rest of the segment is
used as the buffer itself. In the program, a structure reflecting the intended
breakdown of the segment is superimposed on the segment.

• A token for a semaphore. This semaphore is used to keep track of the number of
vacancies in the ring buffer. Thus, it is initialized to the size of the buffer.

• A token for a semaphore. This semaphore is used to keep track of the number of
occupied bytes in the ring buffer. Thus, it is initialized to 0.

380 Appendix A OS Extension Example

The CREATE_RING_BUFFER routine creates the components of the composite ring
buffer object, initializes the appropriate fields, then creates the composite object, as
follows:

$INCLUDE(:RMX:INC/COMMON.LIT) /* Declares common literals */

$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE ring$buffer$type TOKEN EXTERNAL;

CREATE_RING_BUFFER: PROCEDURE (size) TOKEN PUBLIC REENTRANT;

DECLARE size WORD;

DECLARE seg$ptr POINTER;

DECLARE ptr$struc POINTER$STRUC AT (@seg$ptr);

DECLARE astr ASTR$STRUC;

DECLARE segment SEGMENT$STRUC BASED seg$ptr;

DECLARE exception WORD;

DECLARE ring$buffer TOKEN;

DECLARE priority LITERALLY '1';

astr.num$slots = 3;

astr.num$components = 3;

astr.seg = RQ$CREATE$SEGMENT (

size+6,

@exception);

astr.empty$ct = RQ$CREATE$SEMAPHORE (

size,

size,

priority,

@exception);

astr.full$ct = RQ$CREATE$SEMAPHORE (

0,

size,

priority,

@exception);

ptr$struc.base = astr.seg;

ptr$struc.off_set = 0;

segment.size = size;

segment.head = -1;

segment.tail = 0;

System Concepts Appendix A 381

ring$buffer = RQ$CREATE$COMPOSITE (

ring$buffer$type,

@astr,

@exception);

RETURN ring$buffer;

END CREATE_RING_BUFFER;

The segment.head variable is set to -1 because the PUT_BYTE procedure (shown
later) advances this pointer before placing a character in the buffer.

382 Appendix A OS Extension Example

The Delete Ring Buffer Procedure
DELETE_RING_BUFFER, which can be called by any task, deletes a ring buffer.

$INCLUDE(:RMX:INC/COMMON.LIT) /* Declares common literals

*/

$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE ring$buffer$type TOKEN EXTERNAL;

DELETE_RING_BUFFER: PROCEDURE(ring$buffer$token)

REENTRANT PUBLIC;

DECLARE ring$buffer$token BASED TOKEN;

DECLARE astr ASTR$STRUC;

DECLARE exception WORD;

astr.num$slots = 3;

CALL RQ$INSPECT$COMPOSITE (

ring$buffer$type,

ring$buffer$token,

@astr, @exception);

CALL RQ$DELETE$COMPOSITE (

ring$buffer$type,

ring$buffer$token,

@exception);

CALL RQ$DELETE$SEGMENT (

astr.seg,

@exception);

CALL RQ$DELETE$SEMAPHORE (

astr.empty$ct,

@exception);

CALL RQ$DELETE$SEMAPHORE (

astr.full$ct,

@exception);

END DELETE_RING_BUFFER;

System Concepts Appendix A 383

The Put Byte Procedure
PUT_BYTE places a character in the buffer by advancing the pointer to the front of
the buffer then placing the character in the byte being pointed to.

$INCLUDE(:RMX:INC/COMMON.LIT) /* Declares common literals

*/

$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE ring$buffer$type TOKEN EXTERNAL;

DECLARE ring$buffer$region TOKEN EXTERNAL;

PUT_BYTE: PROCEDURE(char, ring$buffer$token)

REENTRANT PUBLIC;

DECLARE ring$buffer$token TOKEN;

DECLARE char BYTE;

DECLARE size WORD;

DECLARE seg$ptr POINTER;

DECLARE ptr$struc POINTER$STRUC AT (@seg$ptr);

DECLARE astr ASTR$STRUC;

DECLARE segment SEGMENT$STRUC BASED seg$ptr;

DECLARE exception WORD;

DECLARE units$left WORD;

astr.num$slots = 3;

CALL RQ$INSPECT$COMPOSITE (

ring$buffer$type,

params.ring$buffer$token,

@astr,

@exception);

units$left = RQ$RECEIVE$UNITS (

astr.empty$ct,

1,

indefinitely,

@exception);

CALL RQ$RECEIVE$CONTROL (

ring$buffer$region,

@exception);

ptr$struc.base = astr.seg;

ptr$struc.off_set = 0;

segment.head = ((segment.head + 1) MOD

segment.size);

segment.buffer(segment.head) = params.char;

384 Appendix A OS Extension Example

CALL RQ$SEND$CONTROL (

@exception);

CALL RQ$SEND$UNITS (

astr.full$ct,

1,

@exception);

END PUT_BYTE;

This procedure enters a region after obtaining the desired unit. To reverse these steps
would create a deadlock situation, particularly if the same reversal occurs in the
GET_BYTE routine.

System Concepts Appendix A 385

The Get Byte Procedure
GET_BYTE removes the oldest byte in the buffer, then advances the segment.tail
pointer.

$INCLUDE(:RMX:INC/COMMON.LIT) /* Declares common literals

*/

$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE ring$buffer$type TOKEN EXTERNAL;

DECLARE ring$buffer$region TOKEN EXTERNAL;

GET_BYTE: PROCEDURE(ring$buffer$token) BYTE PUBLIC REENTRANT;

DECLARE ring$buffer$token TOKEN;

DECLARE size WORD;

DECLARE seg$ptr POINTER;

DECLARE ptr$struc POINTER$STRUC AT (@seg$ptr);

DECLARE astr ASTR$STRUC;

DECLARE segment SEGMENT$STRUC BASED seg$ptr;

DECLARE exception WORD;

DECLARE char BYTE;

DECLARE units$left WORD;

astr.num$slots = 3;

CALL RQ$INSPECT$COMPOSITE (

ring$buffer$type,

ring$buffer$token,

@astr

@exception);

units$left = RQ$RECEIVE$UNITS (

astr.full$ct,

1,

indefinitely,

@exception);

CALL RQ$RECEIVE$CONTROL (

ring$buffer$region,

@exception);

ptr$struc.base = astr.seg;

ptr$struc.off_set = 0;

char = segment.buffer(segment.tail);

segment.tail = ((segment.tail + 1) MOD segment.size);

386 Appendix A OS Extension Example

CALL RQ$SEND$CONTROL (

@exception);

CALL RQ$SEND$UNITS (

astr.e,pty$ct,

1,

@exception);

RETURN char;

END GET_BYTE;

Epilogue
Any task in any job linked to these procedures may call any one of the procedures.
The procedure names to be used in such calls are CREATE_RB, DELETE_RB,
GET_RB_BYTE, and PUT_RB_BYTE. Application programs cannot manipulate either
ring buffers or their component objects, except through these system calls. In fact,
application programmers need not be aware that ring buffers are composed of several
other objects. To them, ring buffers appear (except for the absence of "RQ" in the
procedure names) to be standard iRMX objects.

■■ ■■ ■■

System Concepts Index 387

Index

#DELETE# ^ (circumflex) character, 234
$, default prefix, 225, 284
↑ (up-arrow) character, 234
.GAT file, 175
/ (slash) character, 234
:config:terminals, 323
:prog: directory, 317
:prog:r?logon, 317
:system:, 329

A
a_attach_file, 259
a_attach_file call, 230, 238, 278
a_change_access call, 238, 242, 243
a_close call, 261, 271, 277, 278
a_create_directory call, 259
a_create_file call, 230, 259, 270, 275
a_delete_connection, 259
a_delete_connection call, 271, 277, 278
a_delete_file call, 238, 243, 263
a_get_connection_status call, 262
a_get_directory_entry call, 262
a_get_extension_data call, 245, 264
a_get_file_status call, 262
a_get_path_component call, 263
a_load call, 300
a_load_io_job call, 299
a_open call, 230, 261, 270, 278
a_physical_attach_device, 275
a_physical_attach_device call, 228, 259, 270
a_physical_detach_device call, 228, 259, 271
a_read call, 261, 262, 270, 278
a_rename_file call, 263
a_seek call, 232, 261, 270
a_set_extension_data call, 245, 264
a_special call, 247, 264, 270

a_truncate call, 261
a_update call, 261
a_write call, 261, 270
aborting

command, <Ctrl-C>, 353
accept_control call, 70, 71
access byte

description, 98
access list

changing, 242
example, 241

access mask, 241, 242
aggregate, 242

access rights, 242, 243
changing, 238, 242, 263
denying, 241
example, 244
file, 230
limitations, 98
shared files, 239

accessing, see also attaching
device driver, 269
device unit, 224
DOS diskettes, 255, 256, 257
DOS files, 233
file, 224
files, example, 343
memory segments, 97
network, 310
NFS files, 251
remote files, 233, 310
shared objects, 111

add_reconfig_mailbox system call, 165
adding

functions to OS, 173
addressing

memory, 158
aggregate mask, 242
AL (Application Loader), 291

388 Index

alarm task, watchdog timer, 165
alarms

creating, Kernel, 205
deleting, Kernel, 205

aliases, 316
memory segments, 160

aligning
4-byte for Kernel, 212
buffers, 97

allocating
memory, 95, 286, 299

alter_composite call, 195
appending

output, 327
application programming, definition, 214
application recover, watchdog timer, 166
assigning

device logical name, 229
asynchronous call, 302
attach flags, disk integrity, 246
attach_buffer_pool call, 103, 106
attach_port call, 88, 89
attachdevice command, 251, 255, 256, 257
attaching

buffer pool to port, 103
connection, 286
devices, 228, 229, 251, 255, 256, 257, 270,

275
DOS diskettes, 255, 256, 257
logical device, 271
named files, 238
NFS files, 251
physical files, 270, 272
ports, 88
stream files, 278

B
background processing, 316, 353
bad tracks and sectors, 247
binary compatibility support, 297
binding

example, 361, 363
user extension, 322

BIOS (Basic I/O System), 213
BND286

example, 361

user extension, 322
BND386, 295

dynamicmem option, 298
example, 363
segsize control, 298

borrowing
memory, 95
memory, 296, 298

broadcast call, 86, 90
broadcasting system-wide, 86
buffer pools

attaching to port, 103
configuring, 102
creating, 100
data chains, 101
deleting, 104
description, 99
detaching from port, 103
filling, 100
initializing, 101
releasing buffers to, 104
requesting, 103
resources required, 100
tokens, 99

buffers
access control, semaphore, 63
aligning, 97
deletion, avoiding in I/O, 219
parsing, 325
switching example, 339

bytes read, number of, 216

C
c_backup_char call, 331, 337
c_create_command_connection call, 323, 349
c_delete_command_connection call, 349
c_format_exception call, 346
c_get_char call, 331, 337
c_get_command_name call, 340
c_get_input_connection call, 333, 341, 359
c_get_input_pathname, 331
c_get_input_pathname call, 312, 326, 332, 333,

336, 337, 359
c_get_output_connection call, 333, 342, 359
c_get_output_pathname call, 312, 327, 331, 332,

336, 337, 359

System Concepts Index 389

c_get_parameter call, 328, 331, 334, 335, 337,
359

c_send_co_response call, 344
c_send_command call, 329, 349, 350
c_set_control_c call, 354, 355
c_set_parse_buffer call, 324, 338
call gates, 174
cancel call, 86, 90
cancelling

command, 353
message, 86

case sensitivity
object directory, 112

catalog_connection call, 284
catalog_object call, 44, 112, 113, 284, 355
cataloging

connections, 229, 276, 283
logical name, 225
object, 112

change_access call, 263
character

continuation, 350
special, 329

checksum, 246
child job

definition, 25
ci device

connection, 344
circumflex (^) character, 234, 340
CLI (Command Line Interpreter), 308, 315
client-server model, 81
closing

connection, 262, 287
named files, 261
physical files, 271, 273
stream files, 277, 278

co device
connection, 344

command interface
loadable, 308, 315

Command Line Interpreter, see CLI
command usage

aborting, 353
background, 360
cancelling, 353
CLI and HI, 310
comment character, 329

connections, 349, 351
continuation character, 329
creating, 357
directory access, 340
entering, examples, 327
executing, 318
invoking programmatically, 349
multiple lines, 350
nonstandard, 336
obtaining name, 340
parameters, 287

format, 328
syntax, 326

parsing, 313, 325, 359
parsing nonstandard, 336, 337
priority, 351
quoting character, 330
sending, 350
standard structure, 326
status, 351
terminating, 360
wildcards, 312
writing, 349

communicating
between tasks, 44

compatibility with INtime, 365
composite objects

creating, 189
deleting, 190
deleting nested, 193

condition codes, 288
asynchronous, 215
concurrent, 216
custom system calls, 184
description, 115
I/O, 219
mnemonic, 117
ranges, 118
sequential, 302
synchronous, 219, 300

configuring
AL, 293
buffer pools, 102
custom CLI, 322
watchdog timer, 168

connect call, 89
connections, 286

390 Index

BIOS and EIOS, 231
cataloging, 283
closing, 262
created by another job, 238
creating, 287, 341
deleting, 264, 273, 287
device, 228, 275
device and file, 224
file, 231
logical name, 238, 265
named files, 259
opening, 342
returned, 219
sharing, 262
stream files, 276, 279
used by another job, 238
using pathname, 341

console input/output, 341, 344
continuation character, 316, 318, 329
continuing command lines, 350
copy command, 263
corrupt volume or file, 246
create_buffer_pool call, 100, 106
create_composite call, 189, 195
create_extension call, 189, 195
create_heap call, 106
create_io_job call, 265
create_mailbox call, 50, 56
create_mailbox system call, 165
create_port call, 76, 89
create_region call, 68, 71
create_segment call, 95, 97, 100, 106
create_semaphore call, 59, 65, 354, 355
create_task call, 35, 47, 303, 355
create_user call, 260
creating

alarms, Kernel, 205
buffer pools, 100
command connections, 349
commands, 357, 360
commands, caution, 358, 359
composite objects, 189
connections, 224, 259, 286, 341
custom objects, 189
descriptor, 160
device connections, 228, 229
file connections, 230, 231

I/O buffers, 219
I/O jobs, 227, 265, 299
jobs, 28
mailboxes, 50
mailboxes, Kernel, 201
memory pools, Kernel, 216
memory segments, 97
object directory, 111
objects, Kernel, 198
OS extensions, 174
physical files, 270, 272
ports, 76
regions, 68
semaphores, 59
semaphores, Kernel, 199
stream files, 275, 276
task to load program, 303
tasks, 35
user messages, 346

cross-development environment
Windows NT host, 367

D
data

blocking access, semaphore, 61
caution with regions, 68
mailbox type, 49

data chain, 75, 101
date, 287
date/time subsystem, 163
deadlock

avoiding when deleting objects, 187
caution with regions, 68
preventing in regions, 70

debug command, 295
default exception handler, 346
default prefix, 259, 284

cataloged in object directory, 225
definition, 225
using, 236

default user object, 226, 240
delaying

job execution, 301
delete_buffer_pool call, 104, 106
delete_composite call, 190
delete_extension call, 190, 195

System Concepts Index 391

delete_heap call, 106
delete_job call, 30, 31, 190
delete_mailbox call, 51, 56
delete_port call, 76, 89
delete_region call, 71
delete_segment call, 98, 106
delete_semaphore call, 60, 65
delete_task call, 35, 47
delete_user call, 260
deleting

alarms, Kernel, 205
buffer pools, 104
caution with tasks and regions, 68
caution, Kernel objects, 198
command connections, 351
composite objects, 190
connections, 229, 264, 271, 273, 277, 278,

286
device connections, 228
extensions, 193
files, 243, 287
I/O buffer, avoiding, 219
I/O jobs, 227, 265
IORS, 218
jobs, 30
mailboxes, 51
mailboxes, Kernel, 201
memory pools, Kernel, 216
memory segments, 98
named files, 238, 263
nested composite objects, 193
objects, immunity, 187
ports, 76
regions, 68
semaphores, 60
semaphores, Kernel, 199
tasks, 35

delimiters, 288
dependent jobs

definition, 26
descriptors

alias for memory segment, 160
cautions, 159, 160
changing physical address, 160
changing segment size, 160
creating, 160
defining memory, 159

description, 158
type code, 159

detach_buffer_pool call, 103, 106
detach_port call, 88, 89
detaching

buffer pools, 103
connections, 286
devices, 228, 229, 271
logical devices, 273
ports, 88

detecting device status change, 264
device connections, 259, 269, 270, 271, 275, 284

creating and deleting, 228
named files, 234
owner, 228, 229

device controller
definition, 220

device granularity
setting, 220

device independence, 275
device unit

definition, 220
Device Unit Information Block, see DUIB
devices

detaching, 271
status change, 264

Direct Memory Access, see DMA
directories

/rmx386/demo/c/rmk, 214
/rmx386/jobs, 214
/RMX386/UDI, 183
:$:, 340
:prog:, 340
:rmx:hi, 319
:system:, 340
:utils:alias, 358

directory
access, 340
entry, 262, 266
object, 225, 284
remote device, 248

disable call, 150, 156
disable_deletion call, 187, 188
disabling

interrupt levels, 150, 151
disk integrity, 246

fnode checksum, 246

392 Index

diskverify command, 246
DMA, 97
DOS files

access attributes, 255, 256
definition, 222
name components, 255
names, 256
renaming, 255, 256, 257
user, 255, 256

dq_allocate call, 286
dq_attach call, 286
dq_close call, 287
dq_create call, 286
dq_decode_exception call, 288
dq_decode_time call, 287
dq_delete call, 286
dq_detach call, 286
dq_exit call, 287, 288, 289
dq_free call, 286
dq_get_argument call, 287
dq_get_size call, 286
dq_get_system_id call, 287
dq_get_time call, 287
dq_mallocate call, 286
dq_open call, 287
dq_overlay call, 287
dq_read call, 287
dq_reserve_io_memory call, 286, 289
dq_seek call, 287
dq_switch_buffer call, 287
dq_trap_cc call, 354
dq_trap_exception call, 183
dq_truncate call, 287
dq_write call, 287
DUIB (Device Unit Information Block)

definition, 223
dynamic logon

remote system, 250
dynamic memory

requirements, 362, 364
dynamic terminals, 309
dynamicmem option, borrowed memory, 298

E
EDOS files

definition, 222

EIOS (Extended I/O System), 213
elapsed time, measuring, 205
enable call, 156
enable_deletion call, 187, 188
encrypt call, 248
end_init_task call, 31
enter_interrupt call, 136, 138, 157
environment

cross-development, Windows NT host, 367
epilog procedure, 320
error handling, CLI, 320
examining in-service register, 155
examples

access list, 241
access rights, 244
accessing files, 343
asynchronous call, 215, 302
BIND, 297
BND286, 361
BND386, 363
buffer pool and port, 103
command connection, 351
entering commands, 327
file granularity, I/O, 221
logical name and subpath, 238
mailbox, different job, 54
mailbox, same job, 51
memory, borrowing, 95
multiple-buffer interrupt, 147
OS extension, 369
overlay modules, 292
parsing buffers, 339
parsing commands, 333
ports, fragmented request, 82, 83, 84
ports, fragmented response, 83
ports, request-response, 82
quoting characters in commands, 330
r?error, 321
reading file, 215
region, 69
ring buffer, 369
round-robin scheduling, 42
semaphore, bottleneck, 60
semaphore, multi-unit, 63
semaphore, mutual exclusion, 60
Single Task Loadable (STL) file, 297
single-buffer interrupt, 146

System Concepts Index 393

subpath, 234
task handler, Kernel, 210
user extension, 321
watchdog timer failure recovery, 167
wildcards, 333
writing message to screen, 347

exception handlers
32-bit and 16-bit, 121
assigning, 115
custom, 183
default, 119
inline, 118
mode, 117
System Debugger, 116
types, 116
writing custom, 181

exception handling
I/O, 219
UDI, 288

exception mode, 117
exceptional conditions

description, 115
handling in commands, 346

exit_interrupt call, 156
exit_io_job call, 265, 301, 303, 324, 360
exiting program, 287, 303
extension data, 264

changing, 245, 264
named files, 264

extensions, see OS extensions:

F
failure handling, watchdog timer, 165
file connections

access rights, 242
creating, 230
deleting, 230
getting, 231

file drivers, 223, 224, 248, 251, 255, 256, 257
file format

implementing your own, 269
file independence, 275

maintaining, 269
file pointers

modifying, 232
moving, 270, 272

seeking, 287
files, 215

access rights to, 230
list of, 241

controlling access to, 239
corrupt, 246
definition, 222
deleting, 287
descriptor, 245
EDOS, see EDOS files
granularity of, I/O, 221
loading with AL, 301
location on volume, 246
name components, 234
name length of, 234
not found message, 341
opening, 342
physical, see physical files. see physical

files
remote, 222. see remote files. see remote

files
status of, 262
stream, see stream files. see stream files
temporary, 286
truncation of, 230, 231

first level job
definition, 26

flat memory models
allocating memory, 93
execution model, 93
memory management, 93
system calls for memory management, 93

fly-by mode, 97
force_delete call, 187
format command, 245
format \t, 269
formatting

volumes using physical files, 269
forwarding

message to sink port, 88
message using remote socket, 88

fragmentation
file, reducing, 220
port, 76

fragments
large messages broken up, 76
receiving, 85

394 Index

request message, 82, 83
response message, 83

free space memory, 286
functions

adding to OS, 173
malloc for Kernel, 213

G
get_address call, 106
get_buffer_size call, 107
get_default_prefix call, 259
get_default_user call, 260
get_exception_handler call, 127, 181
get_heap_info call, 107
get_interconnect call, 171
get_level call, 155, 157
get_logical_device_status call, 262
get_port_attributes call, 89
get_priority call, 47, 200
get_size call, 97, 106
get_task_accounting, 128
get_task_accounting call, 129
get_task_info, 128
get_task_info call, 129
get_task_state, 128
get_task_state call, 129
get_task_tokens call, 31, 47, 112, 113
get_type call, 113
get_user_ids call, 250
granularity

device, setting, 220

H
handlers

task, Kernel, 209
handling

exceptional conditions, 346
exceptions, custom, 183
spurious interrupts, 154

hardware exceptions
tokens, 98

hardware exceptions, 115
hclusr.p28 file, 319
heaps

description, 99

tokens, 99
HI (Human Interface), 307

caution with regions, 72
history command, 316
host, Windows NT

cross-development environment, 367

I
I/O

redirecting, 316, 344, 349
I/O buffers

creating I/O, 219
I/O jobs, 226

and AL, 292
cataloging, 226
creating, 265, 299
creating and deleting, 227
definition, 26
deleting, 265
differences, 227
exiting, 301
naming, 284
parameters, 227

I/O Request/Result Segment, see IORS
IDT (interrupt descriptor table), 133
initial program, 313

definition, 308
initial task, 30

signaling end of, 31
initialization, 313

CLI, 317
custom, 319
errors, recovery, 312

initializing
buffer pools, 101

inpath-list, 326
reading, 332

input
redirecting, 344, 349

in-service register, examining, 155
inspect_composite call, 195
inspect_object call, 113
inspect_user call, 260
instruction pointer

for task, 34
interactive jobs, 310

System Concepts Index 395

interconnect space
caution, 169
description, 169
getting register value, 169
setting register value, 169
utility to read or write to, 170

interface library, 374
internal recovery, watchdog timer, 166
interoperability with INtime, 365
interrupt descriptor table, see
interrupt handlers

description, 135
iRMK calls in, 142
memory pools, Kernel, 218
writing, 136

interrupt levels, 133
assigning to external sources, 134
disabling, 150, 151
in standard definition files, see Installation

and Startup
interrupt lines, 131
interrupt task

priority, 140
interrupts

enabling, 153
example, multiple-buffers, 147
example, single-buffer, 146
servicing patterns of tasks and handlers,

144
spurious, detecting, 155
spurious, handling, 154

INtime
working with, 365

invoking
commands, 318, 350
commands programmatically, 349

IORS (I/O Request/Result Segment), 214, 215
deleting, 218

iRMX string, definition, 234
iRMX-NET, 310

access remote file, 248
I/O, 250

J
job command, 353
jobs

changing task priority, 31
creating, 28
deleting, 30
global, naming, 284
hierarchy, 25
limitations, 28
resources provided by, 27
specifying resources, 29
tokens, getting, 47
user, 310

K
Kernel

description, 197
examples, task handler, 210
literals, 198
mailboxes, 201
memory management, 215
objects, 198
overhead in memory pools, 217
real-time clock, 205
task management, 207
tick ratio, 204
time management, 204

keyword, 328
kill command, 353
KN_create_alarm call, 205, 207
KN_create_area call, 216, 219
KN_create_mailbox call, 201, 203
KN_create_pool call, 216, 219
KN_create_semaphore call, 199, 200
KN_delete_alarm call, 205, 207
KN_delete_area call, 216, 219
KN_delete_mailbox call, 201, 203
KN_delete_pool call, 216, 219
KN_delete_semaphore call, 199, 200
KN_get_pool_attributes call, 218, 219
KN_get_time call, 205, 207
KN_receive_data call, 202, 203
KN_receive_unit call, 199, 200
KN_reset_alarm call, 206, 207
KN_reset_handler call, 210, 211
KN_send_data call, 201, 203
KN_send_priority_data call, 201, 203
KN_send_unit call, 199, 200
KN_set_handler call, 210, 211

396 Index

KN_set_time call, 205, 207
KN_sleep call, 206, 207
KN_start_scheduling call, 208, 211
KN_stop_scheduling call, 208, 211
KNE_get_time call, 207
KNE_set_time call, 207

L
LAN, 310
libraries

rmxifc.lib, 297
rmxifc32.lib, 297

line terminator characters, 327
line-editing mode, 316
live insertion, 51, 163
load_io_job call, 301
loadable command interface, 315, 323
loadable jobs

clib.job, 214
definition, 26

Loader Result Segment, see LRS
loading

files, 301
overlay modules, 301
programs, 299, 357

Local Area Network (LAN), 248
locking

scheduling, 207
LODFIX record, 295
logging off, 311
logging on, 309
logical device

attaching, 229, 271
detaching, 273

logical names, 265
assigning to device, 229
connections, 238
defining, 284
definition, 225
named files, 234
prefix, 235
subpaths, example, 238

logical_attach_device call, 229, 271, 284
logical_detach_device call, 229, 273
logoff command, 311
logon

definition, 309
lookup_object call, 44, 112, 113, 355
LRS (Loader Result Segment), 300

M
mailboxes

advantages and disadvantages, 44
between different jobs, 54
creating, 50
creating Kernel, 201
data type, 49
deleting, 51
deleting Kernel, 201
description, 49
example, different job, 54
example, same job, 51
Kernel high priority, 201
message or object type, 49
queues, 50
queues, Kernel, 202
reconfiguration, 51, 56, 165, 166
response, 214, 302, 303

maintaining
file independence, 269, 275

measuring elapsed time, 205
memory

addressing with descriptors, 158
allocating, 95, 286, 299
borrowing, 95, 296, 298
buffer pools, 99
buffers, aligning, 97
data chains, 75, 101
dynamic partitions, 309
flat models, 93
heaps, 99
Kernel aligning, allocating, 212, 215
Kernel alignment, 216
management, 286
overlay modules, 292
pool attributes, 96
releasing, 286
reserving, 286
size, 286
tasks using, 93

memory pools
attributes, Kernel, 218

System Concepts Index 397

creating, 94
creating, Kernel, 216
definition, 93
deleting, 94
deleting, Kernel, 216
interrupt handlers, Kernel, 218
overhead, Kernel, 217
reserving, 227
size, 94, 295
specifying, 299

memory segments
allocating, 286
creating, 97
definition, 97
deleting, 98
selector, 97
token, 97

messages
control, description, 80
control/data, description, 80
design, 346
error, 318
exit, 301
file not found, 341
forwarding from remote socket, 88
forwarding to sink port, 87
fragmented request, 82, 83, 84
fragmented response, 83
fragments, 76
mailboxes, 44, 49
overwrite, 327, 342
ports, 45, 80, 81
priority, Kernel, 201
queues, 46
receiving, 302
sending, 44
sending to user, 344, 346
short-circuit, 75
stream files, 275
transaction pair, 81
transfer protocol, 74
writing to screen, 347

moving
file pointer, 270, 272, 287

mp2 file, 175
Multibus II

ports, 74

slot number, 170
Transport Protocol, 74

multiuser support, 311
mutual exclusion

interconnect registers, 170
Kernel, 200
regions, 67
semaphores, 59, 60

N
named files

definition, 222
extension data, 264
features, 233
getting name, 263
opening, closing, reading and writing, 261
path, 234, 236
system call order, 266

naming
global job, 284
objects, 284

networking
to remote files, 248

NFS
access rights mapping., 239
file names, 251
name components, 251
user id mapping, 239

nonstandard commands, 336
NUCERROR, 179

overriding, 183
Nucleus

communication subsystem, functions, 1
interface libraries, functions, 1
resident, functions, 1

O
object code

definition, 291
producing, 363

object directory, 225, 226
case-sensitive, 112
cataloging object, 112
creating, 111
default prefix, 225

398 Index

description, 111
looking up object, 112
number of entries, 111
removing object, 113

object files
definition, 291

object module
definition, 291

objects
cataloging, 112
creating custom, 189
getting address, 106
getting token, 112
immune from deleting, 187
Kernel, 198
naming, 284
Nucleus calls, 258
shared access, 111
user, definition, 240

offer command, 248
off-line device, 229
offspring job, see child job
OMF-286, 295
opening

files, 230, 231, 261, 270, 272, 276, 277,
278, 279, 287

files, example, 343
OS extensions

creating, 174
custom condition codes, 184
deleting, 193
description, 173
entry point, 176
function procedures, 176
including in system, 185
interface procedures, 175
linking procedures, 184

OSs
porting code between, 286

outpath-list, 327
reading, 332

output
redirecting, 344, 349

overlapping
processing, 291

overlay modules, 287, 292, 301
example, 292

overriding
NUCERROR, 183
RQERROR, 183

overwrite message, 327, 342
OVL286 (80286 overlay generator), 287, 301
owner ID, 242
owner, device connection, 229

P
parameter

formats supported, 328
position-independent, 336

parameter object
definition, 29
token, 29

parameters
buff_p, 338
code_seg_base, 300
connection, 276
dev_name_ptr, 275
DMP, 296
GSN, 174
KTR, 204
MCE, 102
MCO, 97
MCT, 97
MDC, 97
mode, 230, 231
NIE, 133
offset, 339
OSX, 174
path_ptr, 225, 237, 272, 276, 277, 279
pool_max, 296
pool_min, 296
prefix, 229, 234, 238, 270, 275, 278
resp_mbox, 301
share, 230, 276
stack_seg_base, 300
task_flag, 301
to, over, and after, 327

parent job
definition, 25

parsing
buffers, 331, 339
buffers, example, 339
buffers, switching, 338

System Concepts Index 399

commands, 359
commands, example, 333
nonstandard command, 336
pathnames, 332
pointer, 338
value-list, 334

passwords, 309
encrypting, 248

path
named files, 234, 236, 266

pathnames
components, 326
using for file connection, 341
wildcards, 312

permit command, 239, 248
physical files, 269

attaching, 270
closing, 271, 273
creating, 270, 272
definition, 222
deleting connections, 271
detaching devices, 271
detaching logical device, 273
opening, 270, 272
reading, 270, 272
special functions on, 270, 273
system call order, 274
writing, 270, 272

physical files call, 274
plm286.lib file, 361
plm386.lib file, 363
pointer

parsing, setting, 338
porting

code, 286, 289
ports

advantages and disadvantages, 45
attaching, 88
attaching buffer pools, 103
attributes, getting, 89
broadcasting message, 86
buffer pool, 81
cancelling message, 86
creating, 76
deleting, 76
detaching, 88
detaching from buffer pool, 103

example, request-response, 82
forwarding from remote socket, 88
fragmentation, 76
identifying, 77
large data transfers, 75
linking response/request, 75
message types, 80
on same host, 75
queues, 76, 81
receiving message, 79
receiving message fragment, 85
receiving reply, 86
sending request, 85
sending response, 85
sink, 87
status, 75
storing data, 103

prefix
default, 235, 259
I/O, 235
pathname, 326
subpath, 238

priority
adjustment by regions, 45, 67
bottleneck, regions, 67
bottleneck, semaphores, 60
commands, 351
dynamic, Kernel, 200
inversion, regions, 68
inversion, semaphores, 61
messages, Kernel, 201
round-robin threshold, 40
tasks, 39

private files, definition, 248
programmable interrupt controller, see PIC
programmatic command invocation, 349
programs

loading, 357
public directory

definition, 248
public files, 239

definition, 248

Q
queues

control message, 81

400 Index

FIFO, 46
high-performance, 50
mailbox, 50
mailbox, Kernel, 202
overflow, 50
port, 76
priority, 46
region, 68
semaphore, 59

R
r?error

accessing values in, 320
example, 321

r?iojob I/O job object, 284
r?iouser user object, 226, 240, 284
r?message object, 284
random access

extension data, 245
files, 232

RCONFIGURE control, 295, 357, 362, 364
reading

byte string, 269
directory entry, 262
files, 287
inpath-list, 332
outpath-list, 332
physical files, 270, 272
stream files, 278

receive call, 79, 89
receive_control call, 70, 71
receive_data call, 55, 56
receive_fragment call, 85, 89
receive_message call, 50, 53, 56, 302
receive_reply call, 86, 90
receive_units call, 65, 355
receiving

message at port, 79
message fragment at port, 85
reply from port, 86
semaphore units, 64

reconfiguration mailbox, 51, 56
reconfiguration mailboxes, 165, 166
recovery/resident user, 312
redirecting

I/O, 344, 349

regions
advantages and disadvantages, 45
caution, 68, 72
caution, human interface, 72
creating, 68
deadlock, 69
deadlock, preventing, 68, 70
deleting, caution, 68
deletion/suspension immunity, 67
description, 67
dynamic priority adjustment, 45
example, nesting, 69
Kernel, 199
mutual exclusion, 45, 67
nesting, 69
priority adjustment, 70
priority inversion, 67
queues, 68
releasing control, 71
releasing nested, 70
releasing, symmetry, 69
semaphore, dynamic priority, 200

release_buffer call, 101, 104, 106
releasing

buffer pools, 104
memory, 286

remote files
definition, 222
prefix, 235

remote socket, 88
removing

object from directory, 113
rename_file call, 263
repetitive alarms, 205
request, linking to response, 75
request_buffer call, 101, 103, 106
request-response transaction, 82
reserving

memory pools, 227
reset_interrupt call, 35, 137, 156
response, linking to request, 75
resume_task call, 47

limitations of, 38
ring buffer example, 369
rmk.h file, 215
rmk_base.edf file, 215
rmk_base.equ file, 215

System Concepts Index 401

rmk_base.ext file, 215
rmk_base.h file, 215
rmk_base.l file, 215
rmk_base.lit file, 215
rmk_ex.equ file, 215
rmk_ex.l file, 215
rmk_ex.lit file, 215
rmk_type.equ file, 215
rmk_type.l file, 215
rmk_type.lit file, 215
root job

definition, 26
root module, 292
round-robin scheduling, 40

description, 40
example, 42

rq_a_attach_file, 259
rq_a_attach_file call, 230, 238, 278
rq_a_change_access call, 238, 242, 243
rq_a_close call, 261, 271, 277, 278
rq_a_create_directory call, 259
rq_a_create_file call, 230, 259, 270, 275
rq_a_delete_connection, 259
rq_a_delete_connection call, 271, 277, 278
rq_a_delete_file call, 238, 243, 263
rq_a_get_connection_status call, 262
rq_a_get_directory_entry call, 262
rq_a_get_extension_data call, 245, 264
rq_a_get_file_status call, 262
rq_a_get_path_component call, 263
rq_a_load call, 300
rq_a_load_io_job call, 299
rq_a_open call, 230, 261, 270, 278
rq_a_physical_attach_device, 275
rq_a_physical_attach_device call, 228, 259, 270
rq_a_physical_detach_device call, 228, 259, 271
rq_a_read call, 261, 262, 270, 278
rq_a_rename_file call, 263
rq_a_seek call, 232, 261, 270
rq_a_set_extension_data call, 245, 264
rq_a_special call, 247, 264, 270
rq_a_truncate call, 261
rq_a_update call, 261
rq_a_write call, 261, 270
rq_accept_control call, 70, 71
rq_alter_composite call, 195
rq_asynchronous call, 302

rq_attach_buffer_pool call, 103, 106
rq_attach_port call, 89
RQ_attach_port call, 88
rq_broadcast call, 86, 90
rq_c_backup_char call, 331, 337
rq_c_create_command_connection call, 323, 349
rq_c_delete_command_connection call, 349, 351
rq_c_format_exception call, 346
rq_c_get_char call, 331, 337
rq_c_get_command_name call, 340
rq_c_get_input_connection call, 333, 341, 359
rq_c_get_input_pathname, 331
rq_c_get_input_pathname call, 312, 326, 332,

333, 336, 337, 359
rq_c_get_output_connection call, 333, 342, 359
rq_c_get_output_pathname call, 312, 327, 331,

332, 333, 336, 337, 359
rq_c_get_parameter call, 328, 331, 334, 335,

337, 359
rq_c_send_co_response call, 344
rq_c_send_command call, 329, 349, 350
rq_c_set_control_c call, 354, 355
rq_c_set_parse_buffer call, 324, 338
rq_cancel call, 86, 90
rq_catalog_connection call, 284
rq_catalog_object call, 44, 112, 113, 284, 355
rq_change_access call, 263
rq_connect call, 89
rq_create_buffer_pool call, 100, 106
rq_create_composite call, 189, 195
rq_create_extension call, 189, 195
rq_create_heap call, 106
rq_create_io_job call, 265
rq_create_mailbox call, 50, 56
rq_create_port call, 76, 89
rq_create_region call, 68, 71
rq_create_segment call, 95, 97, 100, 106
rq_create_semaphore call, 59, 65, 354, 355
rq_create_task call, 35, 47, 303, 355
rq_create_user call, 260
rq_delete_buffer_pool call, 106
rq_delete_composite call, 190, 195
rq_delete_extension call, 190, 195
rq_delete_heap call, 106
rq_delete_job call, 30, 31, 190
rq_delete_mailbox call, 56
rq_delete_port call, 76, 89

402 Index

rq_delete_region call, 71
rq_delete_segment call, 98, 106
rq_delete_semaphore call, 60, 65
rq_delete_task call, 35, 47
rq_delete_user call, 260
rq_detach_buffer_pool call, 103, 106
rq_detach_port call, 88, 89
rq_disable call, 150, 156
rq_disable_deletion call, 187, 188
rq_enable call, 156
rq_enable_deletion call, 187, 188
rq_encrypt call, 248
rq_end_init_task call, 31
rq_enter_interrupt call, 136, 138, 157
rq_error routine, 288
rq_ete_buffer_pool call, 104
rq_exit_interrupt call, 156
rq_exit_io_job call, 265, 301, 303, 324, 360
rq_force_delete call, 187
rq_get_address call, 106
rq_get_buffer_size call, 107
rq_get_default_prefix call, 259
rq_get_default_user call, 260
rq_get_exception_handler call, 127, 181
rq_get_heap_info call, 107
rq_get_interconnect call, 171
rq_get_level call, 155, 157
rq_get_logical_device_status call, 262
rq_get_port_attributes call, 89
rq_get_priority call, 47, 200
rq_get_size call, 97, 106
rq_get_task_accounting, 128
rq_get_task_accounting call, 129
rq_get_task_info, 128
rq_get_task_info call, 129
rq_get_task_state, 128, 129
rq_get_task_tokens call, 31, 47, 112, 113
rq_get_type call, 113
rq_get_user_ids call, 250
rq_inspect_composite call, 195
rq_inspect_user call, 260
rq_load_io_job call, 301
rq_logical_attach_device call, 229, 271, 284
rq_logical_detach_device call, 229, 273
rq_lookup_object call, 44, 112, 113, 355
rq_physical files call, 274
rq_receive call, 79, 89

rq_receive_control call, 70, 71
rq_receive_data call, 55, 56
rq_receive_fragment call, 85, 89
rq_receive_message call, 50, 53, 56, 302
rq_receive_reply call, 86, 90
rq_receive_units call, 65, 355
rq_release_buffer call, 101, 104, 106
rq_rename_file call, 263
rq_request_buffer call, 101, 103, 106
rq_reset_interrupt call, 35, 137, 156
rq_resume_task call, 47

limitations of, 38
rq_s_attach_file call, 231, 272, 277, 279
rq_s_catalog_connection call, 265, 276, 283
rq_s_change_access call, 238, 242, 243
rq_s_close call, 273, 277, 279
rq_s_create_file call, 231, 272, 276
rq_s_delete_connection call, 264, 273, 279, 359
rq_s_delete_file call, 238, 243
rq_s_get_directory_entry call, 266
rq_s_get_path_component call, 266
rq_s_load_io_job call, 299
rq_s_logical_attach_device call, 259
rq_s_lookup_connection call, 265
rq_s_open call, 231, 272, 277, 279
rq_s_overlay call, 301
rq_s_read_move call, 261, 272, 279
rq_s_seek call, 232, 272
rq_s_special call, 266, 273
rq_s_truncate_file call, 261
rq_s_uncatalog_connection call, 265, 279
rq_s_write_move call, 261, 272, 277
rq_send call, 89
rq_send_control call, 71
rq_send_data call, 55, 56
rq_send_message call, 50, 53, 56
rq_send_reply call, 85, 90
rq_send_rsvp call, 85, 90
rq_send_units call, 65
rq_set_default_prefix call, 259
rq_set_default_user call, 260
rq_set_exception_handler call, 119, 127, 181,

183
rq_set_interconnect call, 171
rq_set_interrupt call, 136, 138, 156
rq_set_pool_min call, 31
rq_set_priority call, 39, 47

System Concepts Index 403

rq_signal_exception call, 179, 186, 288
rq_signal_interrupt call, 139, 156
rq_sleep call, 47
rq_start_io_job call, 265, 301
rq_suspend_task call, 47

limitations of, 38
rq_system_accounting, 127
rq_system_accounting call, 129
rq_uncatalog_object call, 113
rq_verify_user call, 250
rq_wait_interrupt call, 147, 156
rq_wait_io call, 216, 261
rqe_change_descriptor call, 160, 161
rqe_change_object_access call, 97, 98
rqe_create_descriptor call, 160
rqe_create_descriptor call, 160, 161
rqe_create_io_job call, 227, 265
rqe_create_job call, 28, 31, 94, 111
rqe_delete_descriptor call, 160, 161
rqe_get_object_access call, 98, 106
rqe_get_pool_attrib call, 96, 106
rqe_inspect_directory call, 113
rqe_load_io_job call, 301
rqe_offspring call, 30, 31
rqe_release_buffer call, 107
rqe_request_buffer call, 107
rqe_set_exception_handler call, 119
rqe_set_max_priority call, 31
rqe_set_os_extension call, 185, 186
rqe_timed_interrupt call, 147, 151, 156
RQERROR, 179

overriding, 183
rqglobal global job token, 284

S
s_attach_file call, 231, 272, 277, 279
s_catalog_connection call, 265, 276, 283
s_change_access call, 238, 242, 243
s_close call, 273, 277, 279
s_create_file call, 231, 272, 276
s_delete_connection call, 264, 273, 279, 359
s_delete_file call, 238, 243
s_get_directory_entry call, 266
s_get_path_component call, 266
s_load_io_job call, 299
s_logical_attach_device call, 259

s_lookup_connection call, 265
s_open call, 231, 272, 277, 279
s_overlay call, 301
s_read_move call, 261, 272, 279
s_seek call, 232, 272
s_special call, 266, 273
s_truncate_file call, 261
s_uncatalog_connection call, 265, 279
s_write_move call, 261, 272, 277
scheduling

lock, 207
tasks, 39

search order, 265
object directory, 225
subpath, 235

seeking
file pointer, 272

segment, memory See memory segments :, 27
segments, memory, see memory segments
segsize control, 298
selectors

memory segments, 97
semaphores

advantages and disadvantages, 45
binary, 60
blocking, 60
bottleneck, 60
controlling access, 63
creating, 59
creating Kernel, 199
deleting, 60
deleting Kernel, 199
description, 59
example, multi-unit, 63
example, mutual exclusion, 60
Kernel, 199
multi-unit, 62
mutual exclusion, 60
receiving units, 64
sending units, 64
synchronizing tasks, 45
task queue, 59, 64

send call, 89
send_control call, 71
send_data call, 55, 56
send_message call, 50, 53, 56
send_reply call, 85, 90

404 Index

send_rsvp call, 85, 90
send_units call, 65
sending

command lines, 350
messages between tasks, 44
messages to mailbox, 49
messages to user, 344
request to port, 84
response from port, 85
units to semaphore, 64

sequential devices
for physical file, 269

servers
locating in system, 86, 90

service information, inside back cover
set_default_prefix call, 259
set_default_user call, 260
set_exception_handler call, 119, 127, 181, 183
set_interconnect call, 171
set_interrupt call, 136, 138, 156
set_pool_min call, 31
set_priority call, 39, 47
setting

extension data, 245
interconnect register, 169

sharing
connection, 262

shutdown command, 246
signal_exception call, 179, 186, 288
signal_interrupt call, 139, 156
single-shot alarms, 205
sink port, 88
slash (/) character, 234
sleep call, 47
socket

forwarding from remote, 88
Soft-Scope, 357
special characters, 329
specifying

memory pools, 295
stack size, 298

sr.c file, 214
stack requirements, 362, 364
stack size

specifying, 298
start_io_job call, 265, 301
static terminals, 309

status
invoked commands, 351
port, 75

STL (Single Task Loadable), see STL
STL format, 295
stream files, 275

attaching, 275, 278
closing, 278
closing connections, 277
connections, 276, 279
creating, 275, 276
definition, 222
deleting connections, 277, 278
naming, 275
opening, 276, 278
path_ptr parameter, 279
prefix parameter, 278
reading, 278
synchronizing tasks, 277
system call order, 280
writing, 276

string, ASCII codes in, 234
subpath

definition, 234
examples, 234
I/O, 237
named files, 238
null, 234, 235
pathname, 326
search, 235

suspend_task call, 47
limitations of, 38

suspending
caution, tasks and regions, 72

suspension depth
of task, 34, 38

switching
parsing buffers, 338

synchronizing
tasks, 59
tasks, stream file, 277

sysload command, caution, 308, 324
system calls

invoking commands, 349
state transitions, 38

System calls
asynchronous, 215, 218, 291

System Concepts Index 405

command parsing, 313
Kernel scheduling, 208
processing commands, 313
program control, 313
synchronous, 214, 291

System Debugger
as exception handler, 116

system ID, 287
system jobs

definition, 26
system manager, 242

user ID, 239
system programming, definition, 214
system_accounting, 127
system_accounting call, 129

T
tasks

<Ctrl-C>, 355
asleep state, 36
asleep-suspended state, 36
attributes, 34
caution, deletion immunity, 68
deleting, 35
execution types, 33
grouping in job, 33
handlers, Kernel, 209
initial, 30, 228
instruction pointer, 34
mailboxes with, 54
memory for, 93
messages, passing, 44
multiple, to single terminal, 345
mutual exclusion, 45
physical files, 269
priority, 39
queues, 46, 50, 68
ready state, 36
regions and deadlock, 70
running state, 36
scheduling, 39
semaphores with, 59
sleep state, Kernel, 206
states and transitions, 36
stream files, 275
suspended state, 36

suspending, 34
switching, Kernel, 207
synchronizing, 45, 59
types of, 34

terminals
dynamic, 309
error messages, 341
input, 317, 344
messages, 346
multiple tasks, 345
static, 309

terminating
commands, 360

testing
sequential condition codes, 215

tokens
buffer pools, 99
caution, changing bits, 98
getting, 47
heaps, 99
mailboxes, passing, 49
memory segments, 97
object directory, 111
type codes, 113

transaction
ID, 81
pairs, definition, 81
request-response, 81

transferring
large amount of data, 75

traps, hardware, 115
truncating file, 230, 231, 287
type manager

deleting nested composites, 193
description, 189
writing, 194

U
ucerr.a38 file, 183
UDF (User Definition File)

definition, 250
UDI (Universal Development Interface), 285
uncatalog_object call, 113
unloading jobs

caution, 308, 324
up-arrow (↑) character, 234

406 Index

user
console, 344
file access, 239
messages, 346
multiple, 311
recovery/resident, 312
system manager, 239
terminal, 344
validation, 309
World, 239

user configuration files, 309, 323
multiuser systems, 311

User Definition File, see UDF
user extension, 319

binding, 322
example, 321

user ID, 241, 311
access mask, 241
definition, 239
example, 244

user jobs, 310
user object

definition, 240
operations on, 260

V
validating

users, 309
value-list, 328

parsing, 334
verify_user call, 250
virtual root, definition, 248
volumes

corrupt, 246
definition, 221

W
wait_interrupt call, 147, 156
wait_io call, 216, 261
wait_iors call, 216
watchdog timer

alarm task, 165
application failure recovery, 166
configuration, 168
failure handling, 165
failure recovery example, 167
internal recovery procedure, 166
overview, 163

WD_HOST_FAILURE message, 165
WD_HOST_RESET message, 166
wildcards

commands, 312
examples, 333
pathnames, 312

Windows NT host
cross-development environment, 367

World user
user ID, 239

write error, 246
writing

<Ctrl-C> handler, 353
buffers to disk, 261
byte string, 269
commands, 349
error message, example, 347
files, 287
interrupt handler, 136
named files, 261
new file, 327
output, 327
physical files, 270, 272
stream files, 276
type manager, 194
user messages, 346

	iRMX® System Concepts
	Quick Contents
	Notational Conventions

	Contents
	Section I: NUCLEUS PROGRAMMING CONCEPTS
	Chapter 1: Jobs
	What is a Job?
	Job Hierarchy
	Job Types

	What Does a Job Contain?
	Creating a Job
	Resource Sharing
	Specifying Resources
	The Parameter Object
	The Initial Task

	Deleting a Job
	Job System Calls
	How to Use Job System Calls

	Chapter 2: Tasks
	What is a Task?
	Task Types
	Task Attributes

	Creating a Task
	Deleting a Task
	Task Execution States
	Task Execution State Transitions
	Suspending and Resuming Tasks

	Prioritizing Tasks
	Task Priority Level
	Round-robin Scheduling

	Communicating Between Tasks
	Using Mailboxes and Ports
	Using Semaphores and Regions
	Task and Message Queues

	Task System Calls
	How to Use Task System Calls

	Chapter 3: Mailboxes
	What is a Mailbox?
	Object Mailboxes
	Data Mailboxes

	Creating a Mailbox
	Mailbox Queues
	Reconfiguration Mailboxes

	Deleting a Mailbox
	Exchanges Between Tasks in the Same Job
	Using send_message
	Using receive_message

	Exchanging Data Between Tasks in Different Jobs
	Using send_data
	Using receive_data

	Mailbox System Calls
	How to Use Mailbox System Calls

	Chapter 4: Semaphores
	What is a Semaphore?
	Creating a Semaphore
	Task Queue

	Deleting a Semaphore
	Binary Semaphores and Mutual Exclusion
	Priority Bottlenecks and Blocking

	Multi-unit Semaphores
	Using send_units
	Using receive_units

	Semaphore System Calls
	How to Use Semaphore System Calls

	Chapter 5: Regions
	What is a Region?
	Deletion and Suspension Protection
	Priority Adjustment

	Creating a Region
	Task Queue

	Deleting a Region
	Misusing Regions
	Nesting Regions
	Prevention
	Using receive_control
	Using accept_control

	Region System Calls
	How to Use Region System Calls

	Chapter 6: Ports
	What is a Port?
	What is a Service?
	Ports in Multibus II Systems

	Why Use a Port?
	Using Heaps and Buffer Pools at Ports

	Creating a Port
	Fragments in Large Data Messages

	Deleting a Port
	Identifying a Port
	Sending Data Messages
	Using send
	Using receive

	Sending Request / Response Messages
	Control and Control / Data Format
	Transaction Pairs
	Basic Request / Response Transactions
	Fragmented Response Transactions
	Fragmented Request Transactions

	Setting Up Special Ports
	Forwarding Messages from Sink Ports

	Port System Calls
	How to Use Port System Calls

	Chapter 7: Memory Pools, Memory Segments, Heaps, and Buffer Pools
	Flat Memory Models
	What is a Memory Pool?
	Creating a Memory Pool
	Allocating Memory
	Borrowing Memory

	What is a Memory Segment?
	Creating a Segment
	Deleting a Segment
	Access Rights and Hardware Types

	Heap Management
	What is a Buffer Pool?
	Creating and Initializing a Buffer Pool
	Deleting a Buffer Pool

	Memory Management System Calls
	How to Use Memory Management System Calls

	Chapter 8: Object Directories
	What is an Object Directory?
	Creating a Job Object Directory
	Deleting a Job Object Directory
	Using an Object Directory
	Using catalog_object
	Using lookup_object
	Using rqe_inspect_directory
	Using uncatalog_object

	Object Directory System Calls
	How to Use Object Directory System Calls

	Chapter 9: Exception Handling and System Accounting
	Exception Handling
	Exception Handler Actions
	Exception Handler Modes
	Condition Code Values and Mnemonics
	Handling Exceptions Inline
	Assigning an Exception Handler
	OS-Assisted Handling of Hardware Exceptions
	Writing Your Own Exception Handler
	Exception Handler System Calls

	System Accounting
	Enabling and Disabling CPU Tracking
	Returning Information About a Task
	Returning Task Creation and Duration Statistics
	System Accounting System Calls

	Chapter 10: Interrupts
	How Do Interrupts Work?
	Interrupt Controllers and Interrupt Lines
	Interrupt Levels
	Interrupt Descriptor Table
	Assigning Interrupt Levels to External Sources

	Interrupt Handlers and Interrupt Tasks
	System Calls and Interrupt Handlers
	Writing an Interrupt Handler
	Using set_interrupt With a Handler Only
	Using an Interrupt Handler and an Interrupt Task
	Using iRMK Kernel Calls in iRMX Interrupt Handlers
	Interrupt Servicing Patterns

	Handling Spurious Interrupts
	Calling get_level
	Judicious Selection of Interrupt Levels
	Examining the In-service Register

	Interrupt System Calls
	How to Use Interrupt System Calls

	Chapter 11: Descriptors
	What is a Descriptor?
	Advanced Uses for Descriptors
	Descriptors for Undefined Memory
	Descriptors with Aliases
	Using rqe_create_descriptor
	Using rqe_delete_descriptor
	Using rqe_change_descriptor

	Descriptor System Calls

	Chapter 12: Other Nucleus Features
	Date and Time Subsystem
	Live Insertion Support
	Watchdog Timer
	Reconfiguration Mailboxes
	Failure Handling
	Configuring the Watchdog Timer

	What is Interconnect Space?
	How the OS Uses Interconnect Space
	How an Application Uses Interconnect Space
	Referencing Interconnect Space
	Reading and Writing Interconnect Space

	Interconnect Register System Calls

	Chapter 13: OS Extensions and Type Managers
	How Do You Add a System Call?
	Creating an OS Extension
	Exception Handling for Custom System Calls
	Linking the Procedures
	Including OS Extensions
	System Calls for OS Extensions

	Protecting Objects From Deletion
	System Calls for Deletion Immunity

	Type Managers and Custom Objects
	Creating New Objects
	Deleting Composite Objects and Extension Types
	Writing a Type Manager
	Type Manager System Calls

	Section II: iRMX KERNEL PROGRAMMING CONCEPTS
	Chapter 14: iRMX Kernel Programming Concepts
	What Does the Kernel Provide?
	Kernel Semaphores
	Mailboxes

	Kernel Time Management
	Using the Kernel Tick Ratio
	Using Alarms
	Using Sleep
	Time Management System Calls

	Kernel Task Management
	Controlling Task State Transitions
	Using Task Handlers
	Task Management System Calls

	iRMX Memory Management for Kernel System Calls
	Aligning Application or malloc Allocated Memory
	Using malloc

	Demo Files for the Kernel
	Include Files for the Kernel
	Kernel Memory Management
	Creating Memory Pools and Areas
	Deleting Memory Pools and Areas
	Pool and Area Overhead
	Performance Issues
	Getting Information about a Pool
	Allocating Memory in an Interrupt Handler
	Kernel Memory Management System Calls

	Section III: I/O SYSTEMS PROGRAMMING CONCEPTS
	Chapter 15: I/O System Basic Concepts
	System Programming (BIOS)
	Synchronous and Asynchronous Calls
	Asynchronous Call Order of Operations
	Using Asynchronous Calls
	Condition Codes for Asynchronous Calls
	Creating I/O Buffers

	Device Controllers and Device Units
	Setting Mass Storage Device Granularity
	File Granularity Example
	Volumes

	File Types
	Communication Between Tasks and Device Units
	Logical Names
	Path_ptr Parameters and Default Prefixes (EIOS)
	I/O Jobs (EIOS)

	Chapter 16: I/O Jobs and Connections
	Creating I/O Jobs
	Creating Device Connections
	Using BIOS System Calls
	Using EIOS System Calls
	Using a Logical Device with BIOS System Calls

	Creating File Connections
	Using BIOS System Calls
	Using EIOS System Calls
	Moving File Pointers

	Chapter 17: Named Files
	Using Prefixes, Subpaths and File Paths in System Calls
	Subpaths
	Prefixes
	Using the Default Prefix
	Specifying Paths in System Calls
	Using Connections

	Controlling File Access
	Users
	User Objects
	File Access List
	Computing Access for File Connections
	File Access Rights Example

	Getting and Setting Extension Data
	Maintaining Disk Integrity
	Attach Flags
	Fnode Checksum Field
	Getting and Setting the Bad Track/Block Information

	Accessing Remote Files
	Systems that Include iRMX-NET
	Dynamic Logon and iRMX˚NET

	Accessing NFS Files
	Volume Names
	File Names
	File Ownership
	User ID Translation
	File and Directory Creation
	File Access Rights

	Accessing EDOS Files
	Directories
	File Attributes
	File Names
	Time Stamps
	File Ownership

	Accessing DOS Files
	Directories
	File Attributes
	File Names
	Time Stamps
	File Ownership

	Accessing CDROM Files
	Directories
	File Attributes
	File Names
	File Ownership

	Using Nucleus System Calls for the Default User and Default Prefix
	System Calls for Named Files
	BIOS and EIOS System Calls for Named Files

	Call Sequence for Named Files

	Chapter 18: Physical Files
	Situations Requiring Physical Files
	Maintaining Physical File Independence
	BIOS Calls for Physical Files
	EIOS Calls for Physical Files

	Call Sequence for Physical Files

	Chapter 19: Stream Files
	Maintaining Stream File Independence
	Creating the File
	Writing the File
	Reading the File

	Call Sequences for Stream Files

	Chapter 20: Connections and Objects
	Cataloging Connections
	Cataloging Objects

	Chapter 21: UDI Basic Concepts and System Calls
	UDI System Calls
	UDI Memory Management System Calls
	Using Program Control Calls
	Using Utility and Command-parsing Calls
	Using Condition Codes and Exception-handling Calls

	Writing Portable Programs Using the UDI
	Call Sequence for File-Handling System Calls

	Section IV: APPLICATION LOADER PROGRAMMING CONCEPTS
	Chapter 22: Application Loader Basic Concepts
	Object Code
	Synchronous and Asynchronous System Calls
	Situations Requiring an I/O Job
	Overlays
	Device Independence and the AL
	Configuring the AL

	Chapter 23: Preparing Code for Loading
	Specifying Pool Sizes for I/O Jobs
	Producing an STL Object File
	Specifying Stack Requirements with SEGSIZE Control
	Specifying Dynamic Memory Allocation with DYNAMICMEM Option

	Chapter 24: Application Loader System Calls
	AL System Calls Requiring an I/O Job
	a_load Does Not Require an I/O Job
	Synchronous System Calls
	Using rqe_s_load_io_job and s_load_io_job
	Loading Overlays with s_overlay

	Asynchronous System Calls
	Asynchronous Call Order of Operations
	Response Mailbox Functions

	Section V: HUMAN INTERFACE PROGRAMMING CONCEPTS
	Chapter 25: Human Interface Basic Concepts
	Sample Code
	Resident HI Commands
	CLI: The Initial Program
	Loading Other Initial Programs
	Logon
	Validation
	Environments
	Network Access
	Logging Off

	Multiuser Support
	Recovery/Resident User
	Wildcards
	Human Interface System Calls
	Human Interface Operations

	Chapter 26: The Command Line Interpreter
	CLI Features
	Initializing the CLI
	Invoking and Executing Commands
	Adding User Extensions to the CLI
	Creating User Extensions
	Demonstration Program - User Extension
	Binding a User Extension

	Creating a Loadable Command Interface

	Chapter 27: Writing and Parsing Commands
	Standard Command-line Structure
	Command-line Structure Parameters
	Command-line Structure Parameter Formats
	Command-line Structure Special Characters

	Parsing the Command Line
	Parsing Input and Output Pathnames
	File Connection Demo Programs
	Wildcard Characters In Input/Output Pathnames

	Parsing Other Parameters
	Parsing Nonstandard Command Lines
	Variations on the Standard Command Line
	Other Nonstandard Command Lines

	Switching To Another Parsing Buffer
	Obtaining the Command Name

	Chapter 28: Communicating with the User
	Establishing Input and Output Connections
	Using c_get_input_connection
	Using c_get_output_connection

	Communicating With the User's Terminal
	c_send_co_response System Call
	c_send_eo_response System Call

	Formatting Messages Based on Condition Codes
	c_format_exception System Call

	Chapter 29: Invoking HI Commands Programmatically
	Creating a Command Connection
	Sending Command Lines to the Command Connection and Invoking the Command
	Priority Considerations
	Deleting the Command Connection
	Command Connection Calls Demo Programs

	Chapter 30: Writing a <Ctrl-C> Handler
	How the Default <Ctrl˚C> Works
	Providing Your Own <Ctrl˚C>
	Using Inline Processing
	Using a <Ctrl˚C> Task
	Returning to the Default Handler

	<Ctrl˚C> Task Demo Programs

	Chapter 31: Creating Human Interface Commands
	Elements of a Human Interface Command
	Parsing the Command Line
	System Calls and Objects to Avoid
	Terminating the Command
	Include Files

	Producing a 16-bit Executable Command
	Producing a 32-Bit Executable Command

	Chapter 32: INtime® 2.0 Compatibility and Interoperablilty
	Becoming a Remote INtime Node

	Chapter 33: Windows NT Host Cross Development Environment

	Section VI: OS EXTENSION EXAMPLE
	Appendix A: OS Extension Example
	Ring Buffer Manager
	Initialization
	The Interface Library
	The Create Ring Buffer Procedure
	The Delete Ring Buffer Procedure
	The Put Byte Procedure
	The Get Byte Procedure
	Epilogue

	Index

