RadiSys

iIRMX®
System Concepts

RadiSys Corporation

5445 NE Dawson Creek Drive
Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150
www.radisys.com

07-0635-01

December 1999

EPC, iRMX, INtime, Inside Advantage, and Radi Sys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
isatrademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel isaregistered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright 0 1999 by RadiSys Corporation

All rights reserved.

Quick Contents

Nucleus Programming Concepts
Chapter 1 - Chapter 13

IRMK Kernel Programming Concepts
Chapter 14

I/O Systems Programming Concepts
Chapter 15 - Chapter 21

Application Loader Programming Concepts
Chapter 22 - Chapter 24

Human Interface Programming Concepts
Chapter 25 - Chapter 31

OS Extension Example
Appendix A

Index

System Concepts

Notational Conventions

Most of the references to system calls in the text and graphics use C syntax instead of
PL/M (for example, the system call send_message instead of send$message). |f you
areworking in C, you must use the C header files, rmx_c.h, udi_c.h and rmx_err.h.

If you are working in PL/M, you must use dollar signs ($) and use the rmxplm.ext and
error.lit header files.

This manual uses the following conventions:

[

Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

All numbers are decimal unless otherwise stated. Hexadecimal numbers include
the Hradix character (for example, 0FFH). Binary numbersinclude the B radix
character (for example, 11011000B).

Bit 0 isthe low-order bit. If abitisset to 1, the associated description istrue
unless otherwise stated.

Data structures and syntax strings appear in this font.
System call names and command names appear in thisfont.

PL/M datatypes such asBY TE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C datatypes are lower case except
those that represent data structures.

Whenever this manual describes /O operations, it assumes that tasks use BIOS
cals(suchasrg_a read, rq_a write, andrq_a_special). Although not
mentioned, tasks can also use the equivalent EIOS calls (such asrq_s read,
rq_s write, and rq_s special) or UDI calls (dg_read or dg_write) to do the
same operations.

Note
Notes indicate important information.

CAUTION
Cautions indicate situations which may damage hardware or data.

Contents

Section I: NUCLEUS PROGRAMMING CONCEPTS

1 Jobs

WHEL IS B IOD?....cceieceiisretere et 25
N oo) o [1= = VP 25

oo T I3/ TSP 26
What D0OeS 8 Job CONLAINT.......c.overirerreienrereerr e 27
Creating @ J0Doceiececese e e 28
RESOUICE ShalNQ...c.eeveiereesiesesesteseeeesee e esie e e e sre e e eeeaesaesseseesnens 28
SPECITYING RESOUICEScoveiecie ettt 29
The Parameter ODJECL........cceiiriererecere e sne 29
THE INItIAl TASK ...evereeireireies s 30

D= L= (] gl [T o o S 30
JOD SYStEM CallS....cueieiciieecese e e 31
How to Use Job System CallS.......cccovveeeeeieesese s e 32

2 Tasks

WHat IS @ TASK? ittt sttt et b et se e b nne s 33
TASK TYPES ettt sttt ettt se et aesbeeae e e e e e seesbesaesnea 34
Task AttHIDULES ..o 34
L0 T pTo = = U 35
(D12 L= (] glo [=S TP 35
Task EXECULION SEALES........eiviieieieie ettt see e eneas 36
Task Execution State TranSitioNScccooevereieneneneeee e 37
Suspending and ResUMING TasKS........coerreerrreriene e e 38
PriOMtiZiNg TASKS.....cueeeeeereerierie ettt st e e e e 39
Task Priority LEVEL ..o 39
Interrupt Task Priority LeVEl ... 40
Round-robin SCheduling.........cccoeiirireiiesere e 40
Communicating BEWEeN TasKScccceoeiieierenese e 44
Using Mailboxes and POIS.........cccooeiiiee e e e 44

System Concepts Contents \Y

Advantages and Disadvantages of MailbOXes.........ccccceevrerereneenne. 44
Advantages and Disadvantages of POrtS...........ccocoovinieneiencncnenne. 45

Using Semaphores and REQIONScoiiererererenenese e 45
Task and MeSSage QUEUIES.........cceueierierierieeieeieeeeeeseesee e e seesae e e eneenes 46
Task SYStEM CallS. ..o e 47
How to Use Task System CallSooeieieiieieeeee e 48

3 Mailboxes

What iISaMailDOX?......cooveirceie s 49
ODbJECt MAIDOXESeeeciiiiieiciee et enea 49
Data MailDOXES ..ot 49
Creating @aMailBOXcco i 50
MailDOX QUELIESeeeveieeeceeecteecte ettt ettt ettt nbe e saeeens 50
Queues For Object MailbOXES.........ccceveeeerieeeeieeeeeesee e 50

Queues For Data MailbOXES..........covceviieecieieieeece e 50
Reconfiguration MailDOXESccccveeeiieiiserie e 51
DeEleting aMaillDOXccvieeeeeeierie s e s et eeaeneens 51
Exchanges Between Tasksin the Same Jobcccccevevvrievesince s 51
USING SENA MESSAGE.....eveveiereeetiriesteetesessesseseeeeseeeeeesaessessesaeseessanseseens 53
USING FECEIVE MESSAGE ...vvevvereereetestesreesesseesaesaessessessessesssssessessesssesssssessens 53
Exchanging Data Between Tasksin Different Jobs.........ccoceeveevivecieicsciennene 54
(UL Tglo 8 =0 To [= - S SR 55
USING FECEIVE AALA......ccuerveieierieiiieetieseesesee st e e ere e e esae s eae e sreste e enens 55
MailboX SYysStemM CallS.......cccveieeieiesise s 56
How to Use Mailbox System Calls.........ccovvvvinerecieeeere s 57

4 Semaphores

What 1S @ SemMaPhOre?...... .ot 59
Creating 8 SEMAPNOre.........c.oiiie e e 59
TASK QUELE.......ee ettt st re et e esbe e s ae e beenteentesaeestaetenn 59
Deleting @ SeMEPNOTE.c.ciuiieeieeeeeeere ettt re e 59
Binary Semaphores and Mutual EXCIUSION.........ccoviiiiineieceeeeene e 60
Priority Bottlenecks and BIOCKING.........cccoeroeerieierinene e 60
MUlti-unit SEMEPNOTES.......coueiieieee e e 62
USING SENA_UNIES ...ttt st s snn 64
USING FECEIVE UNITS...c.eieiiiiiierieeieeieeie et e see e e e sbesee e 64
Semaphore System CallS.......cooi i 65
How to Use Semaphore System Calls........ccocviiiriniieieienesee e 66

vi

Contents

5 Regions

What ISAREJION?......cciiiciiiieieesese ettt ene e e aesrenes 67
Deletion and SuSpPension ProteCtioncccveeeeeeeeeieeeeneeseseseseese e 67
Priority AJUSIMENEccviiieeieieeeese et nnen 67

Creating @REJIONcceeieeee e 68
TASK QUEUE........eveieeeitee ettt ettt e et beebeebe e raesbeesbeesbeebesnsesaeesaeesseenneeans 68

DElEting @aREJION......cce et sre e 68

TS TS Tl = o o g 68

NESLING REJIONS......ccveieeetieieeeeie et ste st e e e se e aeseesrenns 69
PrEVENTTION. ..ot e e e e 69
USING FECEIVE CONEIOLeeeieieciece et 70
WIS T a0 I oor=o) o0 11 £) IS 70

REGION SysteM CallS.....ccvceeeeesese e 71

How to Use Region System CallS.........cccvvveeeieeieie e 72

6 Ports

WAL IS B POIM?.....ceiiieete e e 73
WAL IS 8 SEIVICE? ...ttt 73
Portsin MUltibuS [T SYSLEMScveieeree e 74

WHY USE A POIM?.....ceie ettt st naesre e 75
Using Heaps and Buffer PooIS at POIS..........ccccoveeeveceeeeeeesesese e 75

Creating @POM.......cociceceee e e 76
Fragmentsin Large Data MESSAgES.........cccevevueriereseseseeseseesaeseeseeseesnens 76

DEENG @ POcciieceeieeeee ettt e e seenes 76

1AENtifYING @ PO ..o 77

Sending Data MESSAGESc..cceiverierieeeceeeee e se e sre e e e se et sre e 78
L LS T 0T 5= 0o S 78
USING FECEIVE.eeveeueeeeeeeesieste e ste et s e eseeaesae e srestesaesnesse e e eneesaensensesrenss 79

Sending Request / RESPONSE MESSAGES.evervevereereeeeeressesresresaessessesseseessenes 80
Control and Control / Data FOrmMatccovveirineerineeneeeseeeeseens 80
TranSaCtion PaiTS........ccciiirieiriseese et 81
Basic Request / Response TranSaCtioNS........cc.vcvevereereererieeesesesseseseeseens 82
Fragmented Response TranSaCtioNS.........c.ccveveeeeeeeeeeeseseseseseesseseeseens 83
Fragmented Request TranSaCtionS..........ccccvvevereresesieeseeseseseseesresesnens 84

(0L alo = 0o [£/ o T 84
USiNg recaiVe fragmentcccovvveeeeeeeie e e e 85
UL Talo = aTo [= o) Y 2SR 85
USING FECEIVE TEPIY ..uviiiieriectese s eeeeeete e ste et se e e e sre e 86
USING BroadCastccveeeeeeree s 86
L0 LS T 0T = o= S 86

Setting Up SPECial POIS.......ccveeeieeeeseses et s 87

Forwarding Messages from Sink POrtS.........ccoccveveneneeeeesese e 87
System Concepts Contents Vii

Using attach _port and detach _port..........ccccoeieieininicieneieees 88
USING CONMECT.....cetiteieeeterie ettt ne e e e 88
POt SYStEM CallS ..ot e e 89
How to Use Port System CallS ..o 91
7 Memory Pools, Memory Segments, Heaps, and Buffer
Pools
Flat Memory MOEIS........ooiiiiicieee et 93
What isaMemory POOI?.......cooeieieiese e 93
Creating aMemory POccccovvieeieieiese s 94
AllOCAEING MEMOIY ...ovicvieeeeeeeee ettt sre e eneas 95
BOIrOWING MEMOIYccveiieieiieeiese et sne s 95
Using rge_get_pool_attrib......ccceeeeeeeeeeeceeeeeeee e 96
What isaMemory SEgMENE?.......ccoiv e 97
Creating @ SEgMENTccevee ettt nreas 97
Boundary AlIgNmeNntcoooveieieieeeseree e 97
DeEleting @ SEJMENtcc.eiveciereeeeieeeeee e ene e 98
Access Rights and HardwWare TYPES......cccevveereeiereeieeeesesseseeseeseeseens 98
Heap Management...........ooceieiee et ee e 99
What iSaBUFFEr POOI?ccoiiiieiieesese s 99
Creating and Initializing a Buffer PoOlcccoeveveveveninne e 100
USINg Data ChaiNS........ccveieieeciesesese e sae e s 101
Using attach_buffer_pool ... 103
Using detach_buffer_pool ... 103
Using request_ bUFfer.........cvcveeeveie e 103
Using release bUFferccecveveie e 104
Deleting aBuffer POOI........cccviviiieeecesese e 104
Memory Management System Calls........ccccocvvvvieiieneniecieseesese e 105
How to Use Memory Management System Calls........cccccevevvievvneinsennn, 108
8 Object Directories
What isan ObjeCt DIFECIOIY? ...ccuvvveieeceeeeeeee s 111
Creating a Job ObJECt DIrECLONYccveievere e 111
Deleting aJob ObjECt DITECLOIYcccovvvereieeeieseeeeeeeeie e see e sre e sreenes 111
UsiNg an ODJECt DITECLOMYccvvvueeeeeeeeeeiestese ettt 112
OISTalo lor= = Lo e [l 0] o 1= ox TS 112
UsiNg [00KUP _ODJECL......c.eoeeieieeee e 112
Using rge_inSPect dir€Ctory......cccueveveeeeresese et 112
Using uncatalog_ObJECEccvevieviee e 113
Object Directory System CallS......cccoeveverevisesece e 113
How to Use Object Directory System CallS.......cccoovvvvvveieeeneeeceeseen 114
viii Contents

8 Exception Handling and System Accounting

EXCEPtion HandliNgcceeieieesere st 115
Exception Handler ACHIONS.......cccoeveie v enens 116
Exception Handler MOGES.........cccvveeieece et 117
Condition Code Values and MNEMONICScocvereerinieerieenesieeseeseens 117
Handling EXCEPLioNS INIINEccoveieie i 118
Assigning an Exception Handlerccoeveveveii s 119
OS-Assisted Handling of Hardware EXCeptions...........cccccovvvienievesiennnnn, 119

TagFaultinfo StIUCLUN........cceeeeeeeee e 120
Writing Y our Own Exception Handlercoovveeeeeieciieiesece e 121
[F= 100 (1= g = 01011/ oSS 122
Handler CONENES........cvviieirieee et 123
Compiling Your Exception Handlercccooveeeveeceverese e 124
Parameters Used With Hardware TrapS.........cecveeeeevevenesesesesnnnnns 125
Exception Handler System CallS.......cccvovveveienenesiseceeeeesesesiese e 127

SYSEEM ACCOUNTINGeeuveniereiiesiestesiesteereseeeesaesaes e see e sresresresneeseeeeeeeeseesenes 127
Enabling and Disabling CPU Tracking.........cccouveerveerieeveesieneseseseseseens 127
Returning Information ABOUt @ TasK........ccceveveereereeeeeeecece e 128
Returning Task Creation and Duration StatistiCS........c.ccceeverereveneinnnnns 128
System Accounting System CallS........cccovvvieieniriene e 128

10 Interrupts

HOW DO INtErTUPES WOIK? ...t 131
Interrupt Controllers and INterrupt LiNES.......cooeeeeeeieenenene e 131
PC-compatible MOGE........ccoiiiiiiiieee e 132
INEEITUPE LEVEIS ...t 133
Interrupt DesCriptor TabI@.......coviiiieeeee e 133
Assigning Interrupt Levelsto External SOUrCeSocoooevereneiesenennns 134
Interrupt Handlers and INterrupt TaskS.......ccccererereienerieeeese e 135
System Calls and Interrupt Handlers..........ccooooieiiniiinieneeeeeeeee 135
Writing an Interrupt Handler ..o 136
Using set_interrupt With aHandler Only ..., 136
What the OS Does With aHandler Onlyccoceoeieiencicieiee 137

Using an Interrupt Handler and an Interrupt Taskcccccoeeeieieneneneene, 137
Using set_interrupt With aHandler and TasK........cccceoeveveicinneenne. 138

Using rge_timed_interrupt or wait_interrupt.........ccocceeevereneieneenne. 139

Shared INEEITUPLS ..ot e 139
Interrupt Task Prioriti€S........coooeieree e 140

Using iRMK Kernel Callsin iRMX Interrupt Handlers...........cccooeveeeee. 142
Creating the SErVIiCe TasK......cocierereie e 142

Things to do from the Service TasK.......ccccvveererererienie e 142

System Concepts Contents iX

Thingsto do fromthe Handlercooeiiiiiii e, 142
Example Using iRMK Kernel Callsin iRMX Interrupt Handlers..... 143

Interrupt Servicing PatternS. ..o 144
Single Buffer EXamPle........coooeiiiereie e 146
Multiple Buffer EXample ... 147
Disabling INtEITUPLS.....coueeeeeeiee et e 150
Enabling Interrupt Levels from within a Task.........c.cooeeeirininenne 153
Handling Spurious INEEITUPES.......coueiieieieeeeeeee et 154
Calling et 1EVE ... s 155
Judicious Selection of Interrupt LEVEIS ..o 155
Examining the IN-Service REQISLESccooeiiiiiirieeee e 155
Interrupt SyStem CallS.......oo e 156
How to Use Interrupt System CallS........cooiirieiiiie e 157

11 Descriptors
What iISADESCIHPLOI? ...c.veveceeciese et eeeeee e et e e e e se e e nrenne s 158
Advanced USeS fOr DESCIIPLOIScuvieeiereereseseesiesesreeseseeseseesse e e sresneens 159
Descriptors for Undefined MEmMOTYcccvvveievienence e eeeeeseene s 159
DesCriptors With AlESES.......ccvecere it 160
USING I _Create deSCriPLONcivieveieeeeeceeeeceeeeesee e s e et sre e eneeeens 160
Using rge_delete deSCriptOr......vueveeeeeeeeeereese e see s e see st se e neens 160
Using rge_change deSCriPtorccvveeeererere e stestese e eeee e s see e 160
DesCriptor SYyStemM CallS......vcveieierie e 161
12 Other Nucleus Features

Date and Time SUDSYSEEMcouiiiiiiierie et ee e 163
LiVe INSErtioN SUPPOITc.eeeeeeieieeie ettt re e 163
WatChdOg TIMEr ...t 163
Reconfiguration MailDOXEScoeiiieierieiee e 165
Fallure Handling.........ooeie et e 165
Internal Failure RECOVENYcoiiiiiiieeiee e 166
Application Failure RECOVENYccoiiiiiiinerieeeeeeee e 166
Configuring the Watchdog Timer..........ccooiereiineneneeeee e 168
What iS INtercoONNECt SPACE?.......covereierierere ettt 169
How the OS Uses INterconnect SPaCecoceeeeereereereereese e 169
How an Application Uses INterconnect SPace.........ccooveeererererienienieeieeieeneens 169
Referencing INterconnect SPace........ccovvveeerereeieeseere e 170
Reading and Writing INterconnect SPacecoccveeeeeereeneecncnese e 170
Interconnect Register System CallS........ooiiiiireieiee e 171

Contents

13 OS Extensions and Type Managers

How Do You Add a System Call?.......coeeeeeeeeese e 173

Creating an OS EXTENSION.......ccvveiieieeeeeeiese e et sse e seeae e see s 174

INterface ProCEAUIES...........coviireireeiese ettt 175

FUNCLION PrOCEAUNES........ceeeeiiereeicrie ettt 176

ENtry PrOCEAUIES.........cveie et st 176

Exception Handling for Custom System Calls........ccoevievevenieveneieinens 179

RQERROR and NUCERROR Procedures..........ccccocveevrereererenennens 179

Writing Y our Own RQERROR or NUCERROR Procedure............. 181

Handling EXCEptioNS INIINE........cccovvie e 181

Custom Condition COUES..........ccurirueirinirereresese e 184

Linking the ProCEOUNES.........ccviieieieieeeeese et snens 184

INCIUdING OS EXIENSIONSceiveieieeieeeiesiesiesieseestessesreseeseeaeseestesressesnnanens 185

System Callsfor OS EXIENSIONS.......ccccvuerueriererieseseeeeeeeeesae e e e 186

Protecting Objects From DEltionccccevevenieie e 187

System Calls for Deletion IMmUNItYccceveeivieeeciereee e 188

Type Managers and Custom ObJECES........cuevverereresiereesreseeeeeeseeseseesesee e 189

Creating New ODJECES.......ccoviiieceeer e 189

Deleting Composite Objects and EXtENSion TYPES.....cccvvvveverereserenenns 190

USING dElEtE JOD....c.eciee e 191

Using delete exXtenSiON.........cceeeeeeieereerese e 193

Deleting Nested COMPOSITESccvrererreereeeeeeeeeeseeseese e e e e 193

Writing @ TYPE MANAJESocueeueeeeeeeiereeses ettt see st snen 194

Type Manager System CallS.........cocvvveeeiererese s s 195
Section II: KERNEL PROGRAMMING CONCEPTS

14 iRMX Kernel Programming Concepts

What Does the Kernel Provide?...........covieiineineneseeesee e 197

Kernel Object Management..........covvvvereieceeeeese e 198

Kernel SEMaPNOTES.......cc.coeiererise ettt et nnens 199

Creating and Deleting Semaphoresccccoveveevceeeeese s 199

Sending and Receiving Semaphore Units..........ccocvveveveececnennsennn, 199

Using Region SEMaPROrESccvevveresesene e se e 200

Priority AJUSIMENEcccoceieeecieeeeee e 200

Kernel Semaphore System Calls........cccoveveveevienesine s 200

MAHTDOXES ...ttt 201

Creating and Deleting MailbOXES........cccoveveeeirceeeeese e 201

Sending and Receiving Mailbox MeSsages.........ccoovvvvevevesiesieseenne. 201

Handling Mailbox OVEIflIOWccceceveiiiececiceceere e 202

Kernel Mailbox System Calls........cccoveveieienesineceeeeeee e 203

System Concepts Contents Xi

Kernel Time ManagemMentcoeeoeeieeiere e 204
Using the Kernel Tick Ratio........ccooeiiieiiiinere e 204
USING ATBIMS ...t s ne e e e e e 205
USING SIBEPD ..ttt st b e sb e ne e 206
Time Management System CallS........cccooiririiieneee e 206

Kernel Task ManagemMeNnt........coceeeerenerene e ee e e 207
Controlling Task State TranSitioNnS..........ccocevereiereneneeee e 208
UsiNg Task HanIErSoouiiiee e 209

Installing and Removing Task Handlers...........ccoovereinieicieicne 210
Task Management System CallS ..o 211

iRMX Memory Management for Kernel System Calls........ccccooroeieicienenen. 212
Aligning Application or malloc Allocated Memoryccccceeererenenens 212
USING MEITOC ...t 213

Demo Filesfor the Kernel ..o 214

Include Filesfor the KErel ..o 215

Kernel Memory ManagemMent..........cccooerereneneeeeee e 215
Creating Memory POOIS @and ATE8S.......cccceereeieieriene e 216
Deleting Memory PoOIS anNd ATEES.........ccceeeeeeerieresene e seens 216
Pool and Area OVerhead.............ccvviieininere e 217
PerformanCe ISSUES..........ocueiriiieirieer e 217
Getting Information about @ PO0locooeieieieeeee s 218
Allocating Memory in an Interrupt Handlercocoooeiiiineninicnieienns 218
Kernel Memory Management System Calls.........ccoooovviinininicnieieienns 219

Section II: I/O SYSTEMS PROGRAMMING CONCEPTS
15 1/O System Basic Concepts

System Programming (BIOS)......cc.ciireriieieie e 214

Synchronous and Asynchronous Calls...........cooereieirniniienee e 214
Asynchronous Call Order of Operationsccoceeeeereriereneseseseereeeenes 215
Using AsynchronouS CallSco.ooeieiiieereee e 218
Condition Codes for Asynchronous Calls...........ccooereeeinienienene s 219
Creating /O BUFfErS.......ooieeeeee e 219

Device Controllersand Device UNItScooeeviieeineininecnceeseeeeieseeeees 220
Setting Mass Storage Device Granularity.........ccoceeveeerenieneeiceieeeeneenens 220
File Granularity EXamMPIe.......cccooiiiiiiieieeeeeee e 221
VOIUMES ...ttt 221

TSN Y/ 0= SRR 222

Communication Between Tasks and Device UNits..........cccoceeverecinenncnieenn 223

LOGICEl NBIMIES......ccueeieeeeie ettt sttt se e s ee e s besaeebe e eneeeens 225

Path_ptr Parameters and Default Prefixes (E1OS).......cccooeorirvniniencniee 225

[/O JODS (EIOS) ...ttt bbb 226

Xii Contents

16 /0 Jobs and Connections

Creating I/O Jobs........

Creating Device CONNECLIONSccvevvereerere e et see e
UsiNg BIOS System CallS......ccovveeieieieeseses e
UsiNg E1OS System CallS........cvvveeeieieiesesere e
Using aLogical Device with BIOS System Calls.........cccocevevevvneieiennnn,

Creating File CONNECLIONSccveieeeeeeses e
UsiNg BIOS System CallS......ccvveeieieieeseses e
UsiNg E1OS System CallS.......ccovveeeieieeseses e
MOVING FilE POINLEIS......cceiiieeceieeeiee st nnens

227
228
228
229
229
230
230
231
232

17 Named Files

Using the Default PrefiX ...
Specifying Pathsin System CallS ..o
USING CONNECLIONS.......coiiiiiieieieeieeieeiee et see e e e eaas
ControlliNG FIlE ACCESSoiueiueieeiee ettt e

User Objects........
File AccessList...

Computing Access for File CONNECLIoNScccveriieneieneeeeeeeee
File Access Rights EXample.........coooiiiiiiiee e
Getting and Setting EXENSION Data.........cceveeereriieirieeieeie e
Maintaining DisK INEEQIITY.......coiirere e

Attach Flags.........

Fnode CheckSUmM Field.........c.coiieirininiieee e
Getting and Setting the Bad Track/Block Information............cc.ccoceeenee
ACCESSING REMOLE FIES......coiii e e
Systems that Include IRMX-NETcoooiiiiiiereneeeeeee e
Dynamic Logon and iRMX-NETcccoriiiininienininere e

Accessing NFSFiles...
Volume Names....

File Ownership....

USE D TranNS@tioncccccueeeieeeiie et e s ean e e s sbene s

File and Directory

(O {10 o ISR

File ACCESS RIGNLS... ..o

Accessing EDOS Files

System Concepts

Contents

234
234
235
235
236
238
239
239
239
240
241
242
244
245
246
246
246
247
248
248
250
251
251
251
252
253
253
253
255

Xiii

D1 (0 = USSR 255

File ATIDULES.......oee e 255

FIIE NGIMES ...ttt e s een 255
THME SEAIMPS .ttt ettt st e b e e e e s 255

File OWNErSNIP ... e 255
ACCESSING DOS FIES. ...t 256
D1 o (0] =SSP 256

File ATIDULES. ..o e 256
FIIENGIMES ...ttt e 256
THME SEAIMPS ..ttt bttt e b e se e e s 256

File OWNErSNIP ... e 256
AcCeSSING CDROM FilES ..ot 257
D1 o (0] =SSP 257

File ATIDULES. ..o 257
FIIENGIMES ...ttt s 257

File OWNErSNIP ... 257
Using Nucleus System Calls for the Default User and Default Prefix............. 258
System Callsfor Named Fil€s..........cooiiiiiiieiceee e 258
BIOS and EIOS System Callsfor Named Files.........ccooviiiinieicienns 259

Call Sequence for Named FileS.........cooi i 266

18 Physical Files

Situations Requiring Physical FIlES.........ccccoevevevinese e 269
Maintaining Physical File Independence........ccooeveveverevcescse s 269
BIOS Callsfor Physical FIl€S........cccoviieeieeeee s 270
EIOS Callsfor PhySiCal Fil€S......cccvviiiiieeeeee e 271

Call Sequencefor Physical FIleS........cccceiviiieeieescce e 274

19 Stream Files

Maintaining Stream File Independence.........cccooeveiereniene s 275
Creating the File.......ooeee s 275
BIOS Callsfor Creating Stream Files..........ccooviiieiiiinieieeeee 275

EIOS Callsfor Creating Stream Files........ccccoooviiienienieeieeeeee 276

WIHING the FITE ... e 276
BIOS Calls for Writing Stream Files ..o 276

EIOS Callsfor Writing Stream Files..........ccooevveeneniieinecee 277

ReadiNG the Fle ... 278
BIOS Callsfor Reading Stream Files.........ccoooveiereniiiiniecee 278

EIOS Callsfor Reading Stream Files.........ccccoooviiienenenieeeeeeen 279

Call Sequencesfor Stream Files.........coe i 280

Xiv

Contents

20 Connections and Objectscccooveeeiivviviiiiiennnnn. 20
Catal 0ging CONNECLIONS........oiuiiuiieerieeieee et s sbe e 283
Catal 0ging ODJECES ..ot e 284
21 UDI Basic Concepts and System Calls
UDI SysSteM CallS....cciieieceeeerecerese sttt ne e s 286
UDI Memory Management System Calls.........ccocvvvveerieececienesese e 286
Using Program Control CallS.........cccveeeevievenenie e s 287
Using Utility and Command-parsing Calls.........cccovvvvievenenevcniese e, 287
Using Condition Codes and Exception-handling Calls........cc.cccceevvvnenee. 288
Overriding the <Ctrl-C> handlercccvvevenevecicececesee e, 289
Writing Portable Programs Using the UDIccocveeveeceeieieccece e 289
Call Sequence for File-Handling System Calls........cccoevevevvnenesene e 290
Section IV: APPLICATION LOADER PROGRAMMING
CONCEPTS
22 Application Loader Basic Concepts
L0 o)1= v i 00 o [T SRR 291
Synchronous and Asynchronous System CallS.........ccoeeeiriininenercee 291
Situations Requiring an /O JOD ..o 292
L@ < 4 = 1YL ST 292
Device Independence and the AL ..o ierieieie e 293
ConfigUING thE AL ... e e 293
23 Preparing Code for Loading
Specifying Pool Sizesfor 1/O JoBS ..o 295
Producing an STL OBJECt Fil......cocovieiecice e 297
Specifying Stack Requirements with SEGSIZE Contralccccceveneee. 298
Specifying Dynamic Memory Allocation with DY NAMICMEM Option 298
24 Application Loader System Calls
AL System Calls Requiring an /O JOb.........ccooviiiiiiinene e 299
a load Does Not Require an /O JoDcooooiiiiiiiee e 300
SynchronouS SYStEM CallS........oiiiiiiiiiirere e 300
Usingrge s load io joband s load i0 jOD ..., 301
Loading Overlayswith s overlayccooooeoeieieieeeee e 301
System Concepts Contents XV

Asynchronous System CallS........c.ooeeeieeee e 302
Asynchronous Call Order of Operationsccoceeeeeeeriereneseseseeseeeenes 302
Response MailboxX FUNCLIONS...........ccooiririreeecere e 303

Section V: HUMAN INTERFACE PROGRAMMING CONCEPTS

25 Human Interface Basic Concepts

SAMPIE COUR ...ttt et e b 307
Resident HI COMMENGS............couririeinirieinineiee s 307
CLI: Thelnitial Program ...t 308
Loading Other Initial Programs...........ccooeeeeereeeeieeiee e 308
0o o o OO 309

VaAlTOBLION ...ttt eb e 309

ENVIFONMENES ...t e 310

NEIWOIK ACCESS ...ttt 310

(oo o 1 oo [® 1 PP 311
MUILTUSEr SUPPOI ...ttt 311
RECOVErY/RESIAENT USES ...ttt st 312
WITACAITS ...ttt ettt 312
Human Interface System CallS........coooiiiiiiieiee e 313
Human Interface Operations..........c.cceoeeerereiene et 313

26 The Command Line Interpreter

CLI FEALUMNES.....c.ei ittt e 316
INItTAIZING the CLI ... e 317
Invoking and Executing Commands..........ccccvevueruereereeiesiesiesesesesrese e ssesee s 318
Adding User EXtensionstothe CLIcccccveeeieeiererese e 319
Creating USer EXTENSIONS......ccoievereneseceseeeeeeseese et e e seeneas 319
Initialization ProCeAUre.........ccoeieieeee et 319
Processing ProCeAUIEoocvveveieeeeeeeese et 320

EPIlOg ProCeAUrE.cceeeceee ettt s 320

Error Handlingccvceeeeeecc et 320
Demonstration Program - User EXTENSION........cc.ccvvereveseseseeeeeeiennens 321
Binding aUser EXTENSION.......cccccviieeeieseesesesteeeeseesesees e e snesseeeeneeseens 322
Creating a Loadable Command Interface.......ccoovevvvveeeevevenn s 323

27 Writing and Parsing Commands
Standard Command-1iNE SLTUCLUIEc.uviiiieeie et 326
Command-line Structure Parameters..........oocueeivceeeeiceee e seeeeessveee e 326

XVi Contents

Command-line Structure Parameter FOrmatsccoceeveeeeeevieeeceeeee e 328

Command-line Structure Special CharaCters.........ccccooeveierenene e 329
Parsing the Command LiNecoooiiireieeieeeese e 331
Parsing Input and Output Pathnames.............cccooiiiieieiereeeee e 332
File Connection DemO Programs..........c.ccoeverenenesenieneeeeseesee e seese e 333
Wildcard Characters In Input/Output Pathnames............ccccoovvvenicnennns 333
Parsing Other Parameterscoocooi e 334
Parsing Nonstandard Command LiNeS...........cccoerererenenenenenesesee e 336
Variations on the Standard Command Line...........ccoceeoeieneieneienenennns 336
Other Nonstandard Command LiNeSccooeiererieeieenerene e 337
Switching To Another Parsing BUFfer ..o 338
Obtaining the Command NamMEceeiieiiiiere e 340
28 Communicating with the User
Establishing Input and Output CONNECLIONS.........cccereeerererererereeeeese e 341
USiNg C_get_ iNPUL_CONNECLION........ccviiieiereeeeeeeeeeeee e e 341
Using C_get_ OUtPUL_ CONNECLION......ccvevverierieieieseeeeee e ee s eas 342
Communicating With the User's Terminalccccoovveveeercecieesesese e 344
c_send_co_response System Callcccvvvvevvviesene s 344
c_send_eo_response System Callcccvvvvevevvse v 345
Formatting Messages Based on Condition COdES..........ccceeveevvrvsesesereerennens 346
c_format_exception System Callcccevvvievivivieceeeeeee e 346
29 Invoking HI Commands Programmatically
Creating @ Command CONNECLION.........ccoiviiereriere e 349
Sending Command Lines to the Command Connection and | nvoking the Command
Priority CONSIAErationS.ceoeeeeeerieie et seen 351
Deleting the Command CONNECLION..........ccrererereeiriee e 351
Command Connection Calls Demo Programs..........ccccceeeerereneseseneenne 351
30 Writing a <Ctrl-C> Handler

How the Default <Crl-C> WOrKScovirieiiieneiere e 353
Providing Your OWN <CHH-C>.....ocvivieiceeeceee s 354
USING INIINE PrOCESSINGeiuiiiiiiiceceeiee et s enas 354
USING @<CHT-C> TaSK ..uveieieisieciseeteseeeeee e et 355
Returning to the Default Handlercccoovivivvenesiceceescse e 356
<Ctrl-C> Task DEMO Programs..........ccccueeeerereresiesesesesseseessessessesseseessesseens 356

System Concepts Contents XVii

350

31 Creating Human Interface Commands
Elements of a Human Interface Command...........c.cocevveirinnrcinneennecnennes 358
Parsing the Command LiNe.........cccevvrevesieseseesieses et eeeee e 359
System Calls and ObjectSto AVOId........ccceeeeieieeeesee e 359
Terminating the Command...........cceeererieveniene e 360
INCIUAE FIIES ... 360
Producing a 16-bit Executable Commandcccevvevevecreeiescesiesese e 361
Producing a 32-Bit Executable Command...........cccocvevriviervseneseseesesee e 363
32 INtime® 2.0 Compatibility and Interoperablilty
Becoming a Remote INtiMe NOGE..........cooeieiiiiieeee e 365
33 Windows NT Host Cross-Development Environment 367
A OS Extension Example
RIiNg BUFfer M@nNagEScoiieii e 369
INITAIIZATON ...ttt 372
The Interface Library ... 374
The Create Ring Buffer Procedure..........ccocooeeeeienencne e 379
The Delete Ring Buffer Procedure...........cooeoeeoeienenene e 382
The Put Byte ProCeAUIE.covieeiie et 383
The Get BYte ProCeOUrecoeiieeeee et 385
o] oo |1 1< SRS 386
Index 387
XViii Contents

Tables

Table 1-1. Job System Cdlls...........
Table 2-1. Task System Calls........
Table 3-1. Mailbox System Calls...

Table4-1. Semaphore SystemM CallS ...

Table 5-1. Region System Calls.....
Table 6-1. Port System Cdlls.........
Table 6-1. Port System Calls (conti

1UTCo) S

Table 8-1. Object Directory System CallS......cccevvvevieienieiececeeeee e

Table 9-1 Condition Code Ranges..

Table 9-2 Exception Handler System CallScc.ccevevevvniene s
Table 9-3 Accounting System CallS.......ccccvciiieieerese e

Table 10-1. Allocation of Interrupt

| (L=

Table 10-2. Interrupt Level and Task Priority Information.........cccccecveeeeveevenenesesinnnn,

Table 10-3. Handler and Task Inter
Table 10-4. Interrupt Levels Disabl
Table 10-5. Interrupt System Calls
Table 10-5. Interrupt System Calls
Table 11-1. Descriptor System Call

action through TimMe.......coeeevevvvnievescceeeece e
ed for RUNNING TaSK......ccevevrerienieieeeeeesesee s
(CONtINUE) ...
LSS

Table 12-1. Interconnect Register System CallS........cccvvveveienenie e
Table 13-1. Comparing Techniques for Creating System Calls........cccccoecevevvrevenennn,
Table 13-2. OSExtension System CallS......ccccveveievere i
Table 13-3. Déeletion Immunity System CallS........cccovvivveeievv i

Table 13-4. Type Manager System

(0= 1 £

Table 14-1. Kernel Semaphore System Calls........ccceoveveeeeeieenenece e
Table 14-2. Kernel Mailbox System CallS........ccevevevievisiesie s
Table 14-3. Time Management System CallS.......cccevevevieiie v
Table 14-4. Task Management System Calls........ccceeevenenievesiene e

Table 14-5. Kernel Include Files....

Table 14-6. Management SysStem CallS.......ccvivviririeeieierere e s
Table 17-1. Getting and Deleting CONNECLIONS...........ccoovveeireveneeeeeee e see s
Table 17-2. Getting and Setting Default PrefiXeS.....cooovvvieiececeee e

Table 17-3. User Objects...............
Table 17-4. Using Data..................
Table 17-5. Getting Status.............

Table 17-6. Reading DireCtory ENriEScvecveeeievese sttt
Table 17-7. Deleting and Renaming FilES.........cccovvvevie s i

Table 17-8. Changing Access........

Table 17-9. Identifying a FIlESNAME.......ccccovveieieeere e s
Table 17-10. Changing EXtENSION Datal........cccceeeeeeieerieresesiesieseseereeeeseeseeseesee e sneens

Table 17-11. Detecting Changesin
Table 17-12. Deleting Connections

System Concepts

DEVICE SLAUSc.veeeveeeeie ettt et

Contents

31

47

56

65

71

89

9
113
118
127
129
134
141
149
152
156
157
161
171
173
186
188
195
200
203
207
211
215
219
259
259
260
261
262
262
263
263
263
264
264
264

XiX

Table 17-13. USiNg LOgiCal NAIMESccccoueiiiireieeie ettt
Table 17-14. Creating and Deleting 1/0 JODS........cccooeieierieneiesese e
Table 17-15. Miscellaneous FUNCLIONS.........cooiiiirierieiere e

Table 23-1. OS Stack Sizes.

Table 27-1. Parsing System CallS.......ccooiiiiiieie e
Table 27-2. Parsing Buffer System CallS..........ccooiieiiiiiieeeece e
Table 29-1. Command Invocation System Calls.........cooeoeiereneiine e

XX

Contents

265
265
266
298
331
331
349

Figures

Figure 1-1. Resource Sharingin Jobs........cccccccvevvvvienennn.
Figure 1-2. Job System Call Order........cccoveveeveverernsennn,
Figure 2-1. Task Execution States.........cccocvvvrevvsereenennne.
Figure 2-2. The Round-robin Priority Threshold...............

Figure 2-3. Round-robin and Priority-based Scheduling within the Ready Queue........

Figure 2-4. Task System Call Ordercccevvvvevvrnvrnnnnne.

Figure 3-1. Exchanging Objects Between Tasks in the Same Job...........cccccveevevenennene.

Figure 3-2. Exchanges Between Tasksin Different Jobs...
Figure 3-3. Mailbox System Call Order........ccccevvvrrnnnee.
Figure 4-1. Mutual Exclusion Using a Binary Semaphore.

Figure 4-2. Priority Inversion Bottleneck with Semaphores.........c.cccocvevviviievevceennee,

Figure 4-3. Multi-unit and Binary Semaphores Allocating
Figure 4-4. Semaphore System Call Orderccccvvvenene.
Figure 5-1. Deadlock and Nested Regions..........cc.ccevvenee.
Figure 5-2. Preventing Deadlock in Nested Regions..........
Figure 5-3. Region System Call Order........cccccvvvvvrvennnee.
Figure 6-1. Basic Request / Response Using Ports............
Figure 6-2. Fragmented Response Using Ports..................
Figure 6-3. Fragmented Request, Example.........cccccvnenee.
Figure 6-4. Forwarding MessagesUsing Ports..................
Figure 6-5. Port System Call Order........c.ccccvvvevvrnirnnnnne.

BUFfErS..ovcceececceeceecee,

Figure 7-1. Conseguences of Minimum-Maximum Memory Pool Values...................

Figure 7-2. Borrowing Memory From the Parent Job........
Figure 7-3. Buffer Pool with Associated Buffers...............
Figure 7-4. Structure of aChain BlocKcccccvvvviennnee.
Figure 7-5. Relationship of Buffer Pool and Port...............
Figure 7-6. Segment System Calls......c.cccocevvvevvnnveennne.
Figure 7-7. Buffer Pool System Calls......ccccovvvvevvrennee.
Figure 8-1. Object Directory System Calls.........ccccevuneee.

Figure 10-1. Processor and PIC Interrupt Linesin Native Mode..........cccccvvevveveevenene

Figure 10-2. Flow Chart of Interrupt Handling..................
Figure 10-3. Single-Buffer Interrupt Servicing..................
Figure 10-4. Multiple-Buffer Interrupt Servicing
Figure 10-5. Interrupt System Calls.......cccccevvvevvrervnnnne.

Figure 11-1. Descriptor and Offset Used To Access a Segment's Physical Memory ...
Figure 13-1. OS Extension Using Interface and Function Procedures............c..cccveu.e...

Figure 13-2. OS Extensions with Entry Procedure.............

Figure 13-3. Summary of Duties of Proceduresin OS EXtENSIONSccccevvvreereernnn
Figure 13-4. Handling Exceptions with an iRMX Exception Handlercccocven.e...

Figure 13-5. Control Flow for Handling Exceptions Inline

System Concepts

Contents

28
32
36
41
42

52

57
60
61
63
66
69
70
72
82
83

87

91

94

95
100
102
103
108
109
114
132
145
146
148
157
158
174
177
178
180
182

XXi

Figure 13-6.
Figure 13-7.
Figure 14-1.
Figure 14-2.
Figure 15-1.
Figure 15-2.
Figure 17-1.
Figure 17-2.
Figure 17-3.
Figure 17-4.
Figure 18-1.
Figure 21-1.
Figure 21-2.
Figure 25-1.
Figure 28-1.
Figure 28-2.
Figure A-1. A Ring Buffer

XXii

Composite Object System Call Ordercceoeeeeeereieie e
Type Manager Involvement in Delete job ...
Kernel Invoking of Task Handlers..........ccooiiiiniieneneceeeeeeceee s
Memory POOIS 8N0 ATEES.......cccueieieireie et
Behavior of an Asynchronous System Callcccooieieirinieninenecnns
Hardware and Software Layers Between Tasks and a Device
User and User ID RelationShip........ooereeeeieeieie e
Computing the Access Mask for aFile Connectionccccceeeevenieenne.
Example of Public and Private Filesin an iRMX-NET System................
Sequence of Frequently Used System Callsfor Named Files..................
Sequence of System Callsfor Physical Files.........cccocoiiieiiiiieiiicens
The Application Software-Hardware Model ..o,
Sequence of System CallSTor UDIcccooiiiiiieiiiineieeeeeeeee e
Multiuser Support under the HI ...
C_get_input_connection and c_get_output_connection Example..............
USING C_SENA _CO_TESPONSE.....c..cueeerteiereeeeeeeeeesessesaeseesteseeseeseenesnesnesnens

Contents

190
192
210
218
217
223
240
243
249
267
274
285
290
311
343

370

NUCLEUS PROGRAMMING CONCEPTS

This section documents the iIRM XU Nucleus subsystem. Its functions include:
* Providing objects for communication and resource access control

« Scheduling tasks based on priority

» Handling interrupts based on interrupt level

The Nucleus consists of:

Kernel Provides low level interfaces and primitives.

Resident Nucleus Provides high level interfaces, memory protection and
validation.

Nucleus Messaging Provides high level message passing
Service (NMS)

Interfacelibraries Provide communication between OS layers.

These are the chaptersin this section:

Chapter 1. Jobs

Chapter 2. Tasks

Chapter 3. Mailboxes

Chapter 4. Semaphores

Chapter 5. Regions

Chapter 6. Ports

Chapter 7. Memory Pools, Memory Segments, and Buffer Pools
Chapter 8. Object Directories

Chapter 9. Exception Handling and System Accounting
Chapter 10. Interrupts

Chapter 11. Descriptors

Chapter 12. Other Nucleus Features

Chapter 13. OS Extensions and Type Managers

Jobs

What is a Job?

A job consists of a set of tasks and the resources they use, in a shared address space:
the job's memory pool. Tasks within ajob use and share the job's resources to do
their work. A job isolates its tasks and resources from other jobs because jobs cannot
share memory pools.

When you have tasks and resources that need to be isolated, create a separate job for
them.

Job Hierarchy

Jobs are arranged in a hierarchy; the root job is always topmost; other jobs descend
fromtheroot job. A parent job isajob that contains tasks that create other jobs. The
created jobs are child jobs.

The Nucleus maintains the job hierarchy, keeping track of the relationships of parent
and child jobs.

See also: Jobs, Introducing the iIRMX Operating Systems, for basic information
on job hierarchy

System Concepts Chapter 1 25

Job Types
TheiRMX OS supports several kinds of jobs.

26

Job Type
Root job

First level job

Loadable job

System job

Dependent/child job

1/O jobs

Description

Created by the Nucleus at system initialization. All jobs
in the system descend from the root job.

Created by the Nucleus at system initialization. First level
jobs are child jobs of the root job. The BIOS and EIOS,
for example, arefirst-level jobs. In

ICU-configurable (Interactive Configuration Utility)
systems, you can specify your application as afirst-level
job.

L oadable jobs are child jobs of the HI. Y ou can create
your applications as one or more loadable jobs. Other
loadable jobs are the shared C library, network jobs, 1/0
jobs, and device and file drivers.

System jobs include servers and networking.

In ICU-configurable systems, system jobs are first-level
jobs created by the Nucleus at system initialization. They
are child jobs of the root job. You can use the ICU to
specify which of the system jobs supplied by Intel to
include in your system.

Y ou can load some system jobs using the loadinfo file
rather than making them first-level jobs with the ICU.

Descend from other jobs. They are created dynamically
asthe system runs. Parent jobs create dependent child
jobs. Most of the jobs you create are dependent jobs.

Dependent jobs that provide the environment for EIOS
system calls. You create I/O jobs for tasks that use these
calls. 1/0Ojobsare child jobs of the EIOS and HI.

Y our application will probably contain more than one first-level or dependent job
because you will have tasks and resources that need isolation. The number of jobs
depends on the complexity of the application and the modularity of your design.

See also: I/O jobs, in this manual;
system jobs and loadable jobs, System Configuration and
Administration

Chapter 1

Jobs

What Does a Job Contain?

A job can contain these resources:

Resour ce/Object
Task

Object directory

Memory pool

Memory segment

Buffer pool

Mailbox

Semaphore
Region

Exception handler

Description

A thread of execution. Tasks do the work of the system.
A job may contain several tasks. Oneisthe initial task
created by the Nucleus. The remainder are created by the
initial task. You group related tasksin the same job.

A list of object names and tokens which tasksin jobs
share with each other. Y ou catalog objects in the object
directory.

A pool of up to 4 Gbytes that provides the memory that
tasks share and use to do their work within thejob. You
specify the size of the memory pool.

A contiguous sequence of bytes that tasks use for any
purpose. Y ou haveto create and del ete segments.

Dynamically allocable memory. First you create the
buffer pool and load it with segments. Then to allocate
memory you only need to specify the buffer pool's token
and how much memory you need. The Nucleus allocates
and returns memory to the buffer pool.

Passes messages or data between tasks. Y ou can pass
messages and data between tasks in different jobs.

Synchronizestasks. A semaphoreis acounter.

A one-unit semaphore with special suspension, deletion
and priority-adjustment features. Regions provide mutual
exclusion. Only one task can access aregion at atime.

Passes messages between tasks in the same or different
jobs. Synchronizes operations between boardsin a
Multibus |1 system.

Specifies what to do when a hardware, programmer or
environmental error occurs.

Each object you create uses an entry in the Global Descriptor Table (GDT).

See also: Individual objects and exception handling in Introducing the iRMX
Operating Systems;
individual object chaptersin this manual

System Concepts

Chapter 1 27

Creating a Job

When you create ajob using create job or rge_create_job, you specify its
resources, which is a parameter object the parent job can pass to the child, and an
initial task. These resources are taken from the parent job's memory pool.

Resource Sharing

28

Task limit

When you create ajob that will have an extensive hierarchy beneath it, be sure you
specify enough resources (memory, object directory entries, tasks and objects) in the
new job because all of the tasksin the new job and any subsequent child jobs will
share the resources of the new job. Since a child job getsits resources from its parent
job, resources in child jobs cannot exceed those of the parent, as shown in Figure 1-1.

@g . Object limit

S 3 OM02859

The memory pools for child tasks B and C are allocated from the memory pools of their
parent jobs.

Any objects cataloged by child jobs in the parent job's object directory reduce the number
of entries remaining to be made in the parent job.

Any tasks created by the child jobs reduce the number of tasks remaining to be created in
the parent job.

Any objects created by the child jobs reduce the number of objects remaining to be created
in the parent job.

Figure 1-1. Resource Sharingin Jobs

Chapter 1 Jobs

Specifying Resources

These are the resources you specify when you create a job:

Maximum number of entries allowed in the job's object directory. Alternatively,
you can specify no object directory if tasks do not share objects.

Maximum and minimum sizes of the job's memory poal, to be shared by al tasks
in the job and any child jobs they create.

See also: Borrowing memory, in this manual

Maximum number of objects that tasksin the job can create. Y ou can specify
that an unlimited number of objects can be created by tasksin the job.

Maximum number of tasks allowed to exist within the job at agiven time. Since
the Nucleus always creates an initial task, you cannot specify 0. Y ou can specify
that an unlimited number of tasks can be created.

Maximum (numerically lowest) task priority at which any task contained in the
job can execute. Y ou can specify that the child job inherits the maximum task
priority of its parent. Y ou cannot specify a maximum task priority that exceeds
the maximum task priority in the parent job.

Exception handler to use for tasksin the job and when to pass control to it.
Alternatively, you can use the default exception handler, which deletes the job.

Whether the Nucleus should validate system call parameters for calls made
within the job's tasks and in child jobs. Y ou can enable parameter validation in a
child job even if you disabled it in the parent job.

The Parameter Object

When you create a child job, the parent job can pass a parameter object to the child
job, if needed. The parameter object can be of any object type and can be used for
any purpose. For example it can be a segment containing data, arranged in a
predefined format, which the child job needs. The child job accesses the parameter
object by getting its token with the get_task_tokens system call.

If there is no need to pass a parameter object, don't specify one.

System Concepts Chapter 1 29

The Initial Task

The Nucleus creates theinitial task for the new job. Thistask reduces by one the
maximum number of tasksin the parent job.

Y ou program the initial task to do initializing or housekeeping needed when the job
starts running. Y ou can program the initial task to either delete itself or continue to
exist asaregular task, perhaps doing other housekeeping operations.

Y ou supply the same information to the Nucleus about the initial task as you do when
you create atask yourself:

« Thepriority of theinitial task, which must not exceed the new job's maximum
task priority. Alternatively, you can specify that the task use the job's maximum
task priority.

« A pointer to theinitial task's start address.

« Atokenfor theinitial task's data segment. Or you can let the Nucleus assign the
segment.

« A pointer to theinitial task's stack. Unless you have a specific reason to do so,
let the Nucleus create the stack and assign the stack pointer. Otherwise,
particularly in first-level jobs, results may be unpredictable.

+ Thesize of the stack.
See also: Stack size, Programming Techniques
« Whether theinitial task contains floating-point instructions.

Deleting a Job

30

Before you delete ajob using delete job, you have to delete all its child jobs and its
extension objects, if any exist.

Usetherqge offspring system call to find the child jobs. Delete jobs starting from
the bottom of the job's hierarchy, beginning with childlessjobs. After you have
deleted al child jobs, delete the job itself; all the job's objects are deleted too, even if
tasks in other jobs have access to them. The deleted job's memory is returned to the
parent jab.

Use the delete_extension system call to delete extension objects and their composite
objects.

Chapter 1 Jobs

Job System Calls
These are the system callsthat relate directly to jobs:

rqe create job

create job

delete job

end_init_task (ICU-configurable systems only)
rqe_offspring

get_task_tokens

set_pool_min

rqe_set_max_priority

Table 1-1 lists common operations related to jobs and the Nucleus system calls that
do the operations.

Table 1-1. Job System Calls

Operation Description

create job Rge_create_job and create_job create a job with an initial task
and returns a token for the job.

delete job Delete_job deletes a job that has no child jobs or extension

objects.

signal Nucleus

Use end_init_task in the initial task to signal the Nucleus that
initialization is complete.

get token
for object

Get_task_tokens gets a token for a parameter object or for the
task's job, parent job or root job so you can catalog objects.

find child jobs

Rge_offspring gets tokens for all child jobs so you can delete
them. It returns the list in a structure you supply.

set minimum Set_pool_min changes the minimum size of the job's memory
size of job's pool from its creation size. If the new minimum is greater,
memory pool memory will be obtained from the job's memory pool if possible.*

set maximum
priority of
tasks in job

Rge_set_max_priority dynamically changes the maximum
priority of a task in a job. The new maximum task priority must
not be greater than (numerically less than) the job's maximum
task priority.

* The amount actually allocated depends on the current allocation, the requested minimum and
maximum, granularity of units allocated, and how memory is already allocated from the memory
pool. The minimum pool size must not exceed the maximum pool size.

See dso:

System Concepts

Nucleus system calls, System Call Reference

Chapter 1 31

How to Use Job System Calls

Figure 1-2 shows the order in which you make job system calls and mentions calls
that tasksin jobs frequently use.

set_interrupt

rqe_create_job create_task \rlvaelt_tilrr:wtgguiﬁtt;: t
catalog_object end_init_task ge_timed_| up

reset_interrupt
delete_job

get_task_tokens
0 [l U

rqe_offspring
delete_task
delete_extension

set_pool_min
rge_set_max_priority

OM02860
1. Make these calls from the task that needs to create the new job.
2. Make these calls from the initial task created by the Nucleus.
3. Make these calls from the job's interrupt tasks.

4. Make these calls from any tasks in the job. You will also use calls that:
- Create, catalog, manipulate, and delete objects
- Change a task's priority or execution state

5. Make these calls from the initial task or another housekeeping task.

6. Make this call from the task that created the job.
Figure 1-2. Job System Call Order

32 Chapter 1 Jobs

Tasks

What is a Task?

A task isathread of execution that does the work of the system. Itisonly active
object in the system. It runs a sequence of instructions to manipulate data and
objects. It isthe active object within ajob.

Y ou will probably have several tasksin one job. One will be the initial task which
you specified in the create_job call and which the Nucleus created to initialize the
job environment. Y ou may create other tasks and group them together in one job
environment because:

« They have similar or related purposes.
« They shareresources.
« They exist for similar lengths of time.

Thereisno hierarchy among iRMX tasks: al tasksin ajob belong to the job, even if
one task has created the others. All objectsin ajob belong to the job, not to the tasks
that created them.

The executable part of atask is a procedure without parameters that never returns,
similar to mai n() in C programs. A task makes system calls and may call other
procedures. Y ou can write a procedure specifically for one task, or share it among
severa tasks.

The Nucleus schedul es tasks so that each task seesitself as having its code executed
continuously. Depending on the needs of the application, atask may execute in
these, or other, ways:

« Execute once, then delete itself

« Executeinaninfinite loop, spending most of itstime waiting for an event to
occur, such as amessage arrival, an interrupt, or an elapsed time interval

« Executeinaninfinite loop, spending most of its time performing its function

System Concepts Chapter 2 33

Task Types
These are the basic types of tasks.
Type Task Function

initial Initializes the job environment and creates one or more tasks for the job.

It is created by the Nucleus and isthe first task to runin anew job. It
may exist for the life of the job, performing housekeeping and other
functions or execute once.

ordinary Typically respondsto internal events. Doeswork required of the

application.

interrupt Servicesincoming interrupts.

Task Attributes

A task inherits some attributes from its parent job, such as its exception handler and
exception mode. It also has these attributes of its own:

An instruction pointer that points to the currently executing instruction in the
task

The task state at initialization and the current execution state
Seealso: Task execution states in this section

The current suspension depth of the task

Seealso: Task execution states in this section

Whether the task is an interrupt task

The parent job

The code, data and stack segment register context

Once you create atask, the Nucleus keeps track of these attributes.

Chapter 2 Tasks

Creating a Task

When you create atask using create_task, the Nucleus takes resources that it needs
(such as memory for a stack) from the parent job. These are the resources you
specify when you create a task:

The priority of the task, which must not exceed the job's maximum task priority.
Alternatively, you can specify that the task use the job's maximum task priority.

A pointer to the task's start address.

A token for the task's data segment. Or you can let the Nucleus assign the
segment.

A pointer to the task's stack. Unless you have a specific reason to do so, let the
Nucleus create the stack and assign the stack pointer. Otherwise, particularly in
first-level jobs, results may be unpredictable.

The size of the stack.
See also: Stack size, Programming Techniques
Whether the task contains floating-point instructions.

These are the system calls for creating the three types of tasks:

Task Type System Call

initial create job

ordinary create task

interrupt create task followed by set_interrupt caled from within

the new task, which will become the interrupt task

Deleting a Task

When you delete atask using delete task, the task is disassociated from its parent
job, and any stack segments created for it are reclaimed for allocation to new tasks.
The task's resources are returned to the parent job. These are the system callsto

delete the three kinds of tasks:

Task Type System Call

initial delete_task

ordinary delete task

interrupt reset_interrupt; when an interrupt task is reset,

delete task isautomatically called

If atask makes C library calls, call c_stop before calling delete task.

System Concepts Chapter 2 35

Task Execution States

36

A task existsin one of the execution states shown in Figure 2-1.

0
Ready
Y
0
Running

[O [

Suspended]

< Asleep/
Asleep R P >|| Suspended
7

OMO02708-3

A task is usually created in the ready state. It is not running, asleep, and/or suspended.
Tasks created in I/O jobs can start in suspended state.

The task's instructions are being executed; only one task can execute at a time.

The task is voluntarily waiting for something to wake it up; it controls the length of time it
stays asleep. A task goes to sleep because:

- It makes a request that cannot be done at once and it will wait (forever if necessary).

- It puts itself to sleep for a specified time. The task will not specify sleep forever.

The asleep state is the most common state for tasks waiting for an event. A task may not
put another task to sleep.

The sleeping task is suspended. The suspension depth increases by one each time the
task is suspended. If the task's sleep time expires first, it enters the suspended state. If
the task is resumed first, it enters the asleep state.

The task had its execution postponed because it has suspended itself by waiting for an
event or interrupt or has been suspended by another task. The suspension depth
increases by one each time the task is suspended.

Figure 2-1. Task Execution States

Chapter 2 Tasks

Task Execution State Transitions

As an application runs, atask often transitions from one execution state to another. A
task in any state except ready cannot run, even if it has the highest priority. You can
delete atask from any state. Creating atask instantly makesit ready.

Transition

Ready to running

Running to ready

Running to asleep

Asdleep to ready, or
ad eep-suspended to
suspended

Running to
suspended

Ready to suspended
or asleep to asleep-
suspended

Suspended to ready
or asleep-suspended
to asleep

System Concepts

Reason

The task becomes ready, has the highest priority of all ready

tasks and one of these:
« It has ahigher priority than the running task.

« Therunning task is suspended, put in the sleep state, or

deleted.

 The running task's time quota has expired, and the ready

task is next in the queue.

One of these:

A higher priority task becomes ready.

« Thetask usesall of itstime quotain round-robin
scheduling.

One of these:

« Thetask putsitself to deep for aspecified time.

« Thetask requests something that cannot be done
immediately and it can wait.

One of these:

« The deep time expires.

« The deep time expires before arequest is granted.

« Therequest is granted because another task sends a
message and the message is received.

« Theobject thetask iswaiting at is deleted.

The task suspends itself.

The task is suspended by another task. The suspension
depth increases by one each time the task is suspended.

The suspension depth is one and the task is resumed by
another task.

Chapter 2

37

These are the system calls that cause execution state transitions:

catalog_object receive_units
create job receive_task
create task send

enable send_control
enable deletion send_data
end_init_task send_reply
force deete send_message
lookup_object send_rsvp
receive send_signal
receive control send_units
receive_data seep
receive_fragment suspend_task

receive_message

timed_interrupt

receive reply
receive_signal

wait_interrupt

Suspending and Resuming Tasks

38

Y ou will not encounter problems when atask uses suspend_task to suspend itself.

Y ou may get unpredictable results when using suspend_task to suspend another task
for synchronization. Whenever possible, use a semaphore or mailbox to synchronize
tasks instead.

Each time you call suspend_task, the suspension depth increases by one. The
Nucleus keeps track of the task's suspension depth, up to 255. The larger the number
of calls made, the greater the depth. When the suspension depth is >0, you must
make a corresponding number of resume_task callsto bring the task out of
suspension. Y ou cannot obtain the suspension depth of atask from the Nucleus.

Y ou need to make multiple calls to resume_task from another task to make a task
ready when the suspension depth is>1. Each time you call resume_task, the
suspension depth decreases by one. Y ou do not have to make the resume_task calls
from the task that suspended the task.

See also: suspend_task example, Programming Techniques

Chapter 2 Tasks

Prioritizing Tasks

The Nucleus handles task scheduling, based on priority or interrupt level; what job a
task belongs to has no effect on scheduling. The Nucleus always executes the highest
priority running task until it isinterrupted, is preempted by a higher priority ready
task, or it putsitself to sleep, suspends itself, or completes and relinguishes control.

Task Priority Level

The priority level of atask determines itsimportance in relation to other tasks and
interrupts. Y ou specify atask's static priority when you createit or later using
set_priority if you need to. Thetask’s priority may be adjusted by the OS when
using aregion (described later); thisis called dynamic priority. The priority isan
integer value from O through 255, with 0 being the highest priority.

Range
0-16
17 - 127

128 - 130

131 - 255

System Concepts

Used For
Used by the OS for servicing hardware exceptions.
Used by the OS for servicing external interrupts.

Let the Nucleus assign these levels to handlers and interrupt tasks,
based on the order in which you attached your external interrupt sources
to the PICs.

In general, don't create tasks in this range. A task running in this range
masks everything numerically lower, meaning response time to external
interrupts is slower and interrupts may be lost.

Use for tasks that communicate with interrupt tasks. These tasks may,
for example, do some asynchronous processing that is related to, but
not required for servicing the interrupt.

Use for tasks that handle internal events, like message passing and
computation. Typically, you don't assign a task to every level in this
range.

You might put important tasks, such as mailbox managers, in the range
140 - 160. Leave some gaps if you plan to add features and tasks later
on.

You can usually start using round-robin scheduling at about 200.

See also: Round-robin Scheduling in this section

Chapter 2 39

Interrupt Task Priority Level

Interrupt tasks are tasks that you create, using the create _task call; assign the default
priority for thetask'sjob. Then associate the task to an interrupt handler using the
set_interrupt call. You may usetherge set_max_priority call to adjust the job's
maximum task priority, if needed.

Typically, you create interrupt tasksin related jobs. If you are using the 1/0O System,
however, interrupt tasks are created within the BIOS job.

See also: Managing Interrupts in this manual for more information on interrupt
handling

Round-robin Scheduling

40

Y ou can assign the same priority level to more than one task and let the tasks take
turns running. Typically you do not do this with important tasks.

Unless you use round-robin scheduling, the first task, Task A, at any given priority
level can run until interrupted or put in the ready state by a higher-priority task. Task
A will regain control after the interrupt has been serviced or the higher-priority task
completes. Other tasks assigned the same priority level can be left waiting
indefinitely unless Task A voluntarily gives up control of the CPU. This could be
disastrous in a multiuser environment.

See also: Introducing the iIRMX Operating Systems for basics on round-robin
scheduling

The default round-robin level is 140. Y ou set two parameters that affect round-robin
scheduling: the threshold priority level and the time quota each task can run before it
ispreempted. In an ICU-configurable system, you can use the Nucleus screen to set
the RRP and RRT parameters; otherwise you use the rmx.ini file to set them.

See dlso: RRP and RRT, ICU User's Guide and Quick Reference;
L oadtime parameters, RRP and RRT, System Configuration and
Administration

Chapter 2 Tasks

Figure 2-2 illustrates round-robin scheduling and the priority threshold.

Priority O
D No Round-robin
D Priority threshold
D Round-robin
Priority 255
OM02863

1. At or above the priority threshold, no round-robin scheduling occurs.
2. You set the priority threshold at configuration.

3. Below the priority threshold, round-robin scheduling automatically occurs between tasks of
equal priority.

Figure 2-2. The Round-robin Priority Threshold

System Concepts Chapter 2 41

42

Figure 2-3 shows how round-robin scheduling works with priority-based scheduling.

Ready queue

PT

<— Running

<— Ready

<— Running

PT

<— Ready

<— Running

PT

[<— Ready

<— Running

<— Ready

<<— Running

<— Ready

PT = Priority Threshold

Asleep—>

Asleep—>

Asleep—>

Figure 2-3. Round-robin and Priority-based Scheduling within the Ready Queue

The priority threshold in the figure is 200. There aretasks A, B, C, and D with these

prioritiesin the figure:

Priority ~ Tasks

Chapter 2

Tasks

130 Task C
140 Task D
200 Tasks A and B

1. Task A runsfor 2 clock ticks when Task C becomes ready.

2. Task C has higher priority than A and B, so it gains control and runs until done.
In the meantime, Task D becomes ready.

3. Task D has higher priority than A and B, so it gains control and runs until done.

4. Task A runsagain for its remaining 3 clock ticks, then relinquishes control to
Task B.

5. Task B runsuntil it has used all of its 5 clock ticks or completed. It relinquishes
control. Task A begins running for another 5 clock ticks.

System Concepts Chapter 2 43

Communicating Between Tasks

Tasks communicate with each other to exchange data and synchronize execution.
The OS provides four exchange objects used in exchanging data and synchronizing

tasks. They are:
+ Mailbox

« Port

« Semaphore
+ Region

See also: Chapters about each object, in this manual;
Designing an Application, Programming Techniques,
examples in /rmx386/demo/c/intro directory

For tasks to share the exchange objects, you must create them, then catalog them
from the creating task using catalog_object. Then other tasks can use
lookup_object to get the object’'s token so they can access the object.

Using Mailboxes and Ports

Tasks commonly use mailboxes or ports to request a service from another task. The
client task sends a message that specifies parameters for the service call; the service
task receives the message and provides the specified service. The service task can
return results of the service, if any, to the client using a mailbox or port.

See also: Mailboxes and ports, Introducing the iIRMX Operating Systems;
Chapters about mailboxes and ports, in this manual

Advantages and Disadvantages of Mailboxes

Y ou use a mailbox to send variably-sized messages between tasks in the same or
different jobs on the same host processor. A mailbox is easy to use for
single-message exchanges. A data mailbox, on the other hand, requiresiRM X
support at both the sending and receiving task. Additionally, a message arriving at a
mailbox where no task iswaiting is copied by the OS into buffer space in the mailbox
message queue; thisisthe first copy. When atask arrives to receive the message, the
message is copied by the OS from the mailbox queue into the task's message buffer;
thisisthe second copy. Thereis no copying with message-type mailboxes, which
pass tokens only.

44 Chapter 2 Tasks

Advantages and Disadvantages of Ports

A port transmits large messages between tasks on the same processor (short-circuit
message passing) and communicates between tasks on different processorsin a
Multibus |1 system. A port provides access to non-iIRMX applications using the
Multibus |1 transport protocol.

A port provides a transaction-based protocol; request messages are tied to specific
response messages. This enables atask to send messages to many tasks and to
distinguish the replies from one another. Tying the request to the response is handled
automatically by theiRMX OS.

A port copies amessage only once. |If amessage arrives at a port where notask is
waiting, the message is copied into buffer space (which you must alocate) in the
port's buffer pool; thisisthe only copy. When atask arrives to receive the message,
the OS gives the task a pointer to the message buffer. A second copy of the message
is not made.

Using Semaphores and Regions
Both semaphores and regions provide mutual exclusion to shared resources.

See also: Semaphores and regions, Introducing the iRMX Operating Systems;
Chapters about semaphores and regions, in this manual

Y ou can use a semaphore with more than one unit as a general purpose counter to
synchronize the actions of multiple tasks. A semaphore with one unit can also
provide mutual exclusion of tasks, but without the dynamic priority adjustment and
deletion protection provided by regions. Semaphores do not enforce synchronization
or mutua exclusion. Semaphores provide more flexibility in waiting for accessto
resources than regions; you can specify atime limit for waiting in the task queue. A
task using aregion cannot set atime limit.

Tasks use regions to enforce mutual exclusion to a specific resource or data. Only
onetask at atime can control aregion. The task that is controlling the region cannot
be deleted or suspended. If the region has a priority-based task queue, the task in the
region will have its priority dynamically adjusted so that it is always at least as high
as the highest priority task waiting in the queue. When atask gains control of several
regions, then gives up control of the regions one at a time, the task's dynamic priority
is not readjusted to its static priority until the task gives up control of the last region;
thisimproves performance.

System Concepts Chapter 2 45

Task and Message Queues

46

If atask makes arequest that cannot be filled immediately and the task iswilling to
walit, the task stops executing, goes into a task queue and goesto sleep. More than
one task can wait in aqueue. Y ou specify whether the OS places tasks in the queue
in either afirst-in-first-out (FIFO) or a priority-based manner when you create the
exchange object.

« InaFIFO queue, tasks are queued in the order they arrive at the exchange object.

« Inapriority queue, the highest priority tasks move to the head of the queue.
Tasks of equal priority are arranged in order of arrival.

Y ou specify the maximum length of time the task can wait in the queue when you tell
the task to receive data or amessage, a signal, or semaphore units.

Besides the task queues maintained by all exchange objects, mailboxes and ports also
have message queues to hold incoming messages for tasks. Message queues are
always FIFO-based.

Chapter 2 Tasks

Task System Calls
These are the system calls that relate directly to tasks:

create task
delete task
reset_interrupt

sleep

suspend_task
resume_task
get_priority
set_priority
get_task_tokens

Table 2-1 describes common operations on tasks and the system calls that perform

the operations.

Table2-1. Task System Calls

Operation

Description

create task

Create_task creates a new task and returns a token for it.

delete task Delete_task deletes the specified task. It calls reset_interrupt
for interrupt tasks.

put task to Sleep puts the calling task to sleep for a specified time. One

sleep task may not put another to sleep.

suspend Suspend_task lets tasks suspend themselves and other tasks.

task Suspend_task increases the suspension depth by one.

resume task

Resume_task decreases the suspension depth by one.

modify task Get_priority checks the priority of the specified task.
priority Set_priority sets task priority to the specified level, which must
be
« Equal to or greater than the parent job's priority level
« Within the allowable range of priorities (0 to 255)
You cannot change the priority level of interrupt tasks.
obtain Get_task_tokens finds out the token for any one of these
specific objects:
token » Task's own token

e Task's job

« Parameter object of the task's job
« Parent job of the task's job

* Root job of the system

See also: Nucleus system calls, System Call Reference;
examples in the /rmx386/demo/c/intro directory

System Concepts

Chapter 2

47

How to Use Task System Calls

Figure 2-4 shows the order in which you make task system calls and mentions calls
that tasks frequently use.

create_task
catalog_object

[

get_task_tokens
lookup_object
sleep
suspend_task
resume_task

[] l

get_priority
%

[[

set_interrupt
wait_interrupt or
rqe_timed interrupt
reset_interrupt

0OM02868
1. Make these calls from the task that needs to create the new task.
2. Make these calls if the new task is to be an interrupt task.

3. Make the get_task_tokens and lookup_object calls from the new task to obtain tokens
for other jobs, tasks and objects in the system. Make the sleep call if the task needs to
wait. Make the suspend_task call from a task that has completed and no longer needs to
run. Make the resume_task call from another task.

You will also use calls that create, catalog, manipulate and delete objects.
4. Make these calls from the new task to change its own or another task's priority.

5. Make this call from the task that created the task.

Figure 2-4. Task System Call Order

48 Chapter 2 Tasks

Mailboxes

What is a Mailbox?

Tasks exchange information by sending messages to and receiving messages from
mailboxes. A message may be either an object token or a stream of data.

Y ou can create two kinds of mailboxes. object (usually for object tokens) or data.
The choice depends on the information your tasks need to exchange. An object
mailbox cannot pass data (except in segments).

Sending and receiving data uses different system calls than sending and receiving
object tokens.

See also: Nucleus system calls, System Call Reference;
examples in the /rmx386/demo/c/intro directory

Object Mailboxes

Y ou use an object mailbox to pass an object token, usually a segment token, to
another task. To use an object mailbox to send a segment, you must create the
segment, then send the segment's token to an object mailbox. An object mailbox is
also called a message mailbox.

Data Mailboxes

Use data mailboxes for passing small amounts of information. Y ou won't have to
create and delete segments or dereference a segment token after atask receivesit.

Although the amount of data per message islimited to 128 bytes, the data can be a
pointer to alarger area. Passing datainstead of objects can be important in systems
wherethe GDT is almost full, because each object uses an entry in the GDT.

System Concepts Chapter 3 49

Creating a Mailbox

When you create a mailbox using create_mailbox, the Nucleus takes resources that it
needs from the task's parent job. These are the parameters you specify when you
create a mailbox:

« Whether the mailbox passes data or objects.

« For object mailboxes, the number of objects that can be in the high-performance
message queue. By default, the OS creates a high-performance queue of eight
objects. For data mailboxes, you do not specify the size of the queue.

« Whether the task queue is FIFO or priority based.

Mailbox Queues

Each mailbox has two queues: atask queue and a message queue. At any given
time, at least one of the queues is empty, because the Nucleus sees that waiting tasks
receive messages as soon as they are available.

See also: Task and message queues in Chapter 2

Queues For Object Mailboxes

By specifying a high-performance queue that is large enough to contain all the
objects queued during normal operations, you improve the performance of
send_message and receive_message when these calls get or place objectsin the
gueue. The Nucleus permanently allocates memory for a high-performance queue
even if no objects are stored in it, so memory does not have to be allocated
dynamically.

The Nucleus automatically handles overflow. When more objects arrive than the
high-performance queue can hold, the Nucleus creates a temporary overflow queue
that holds up to four messages. The overflow queueis not deleted until it empties.
Because the overflow queue is created once for every additional four messages,
performance is only affected when a send_message system call causes the alocation
of an overflow queue. Then, extratimeisrequired for the allocation.

Queues For Data Mailboxes

The default queue for data mailboxes is three messages, 128 bytes each. When more
messages arrive than the queue can hold, the Nucleus creates a temporary overflow
gueue that holds up to 400 bytes. The overflow queueis not deleted until it empties.

50 Chapter 3 Mailboxes

Reconfiguration Mailboxes

Multibus |1 systems that are configured with the watchdog timer to support live
insertion use reconfiguration mailboxesin theiRMX OS. The watchdog timer sends
messages to these mailboxes to indicate board failures or resets. Y ou create a
reconfiguration mailbox by first creating a mailbox with create_mailbox. Then, you
use the add_reconfig_mailbox system call to specify the mailbox as a
reconfiguration mailbox. A reconfiguration mailbox must be a data mailbox.

See also: add_reconfig_mailbox system call, System Call Reference;
Live Insertion, Chapter 12

Deleting a Mailbox
When you delete a mailbox using delete_mailbox, the Nucleus:
« Awakens any tasks waiting at the mailbox with an E_EXIST condition code

« Discards any messages in the queue

Exchanges Between Tasks in the Same Job

Figure 3-1 on page 52 illustrates an exchange between two tasksin asingle job.
When tasks in the same job use mailboxes, they can use object mailboxes.

Inthisfigure, Task A isaninterrupt task associated with an interrupt handler; Task B
isan ordinary task. If Task A sends messages to the mailbox faster than Task B can
receive them, the messages will be queued at the mailbox until Task B can get to
them. Thisisagood situation to use a high-performance queue.

System Concepts Chapter 3 51

Interrupt

OM02872

1. Interrupt Task A creates a segment to store the data it expects to receive from the interrupt
handler using create_segment.

2. Interrupt Task A creates an object mailbox using create_mailbox and catalogs it using
catalog_object. Task A goes to sleep by waiting for a signal from an interrupt handler,
using wait_interrupt.

Task B looks up Task A's mailbox using lookup_object. Task B goes to sleep by waiting
for a message at the mailbox, using receive_message. (If the tasks share a common
data segment, you could store the mailbox token there and avoid using lookup_object.)

When Task A receives the signal from the interrupt handler, it wakes up, places data into
the segment and sends the token to Task B using send_message.

Task A then creates a new segment for the next interrupt and waits.
3. Task B wakes up and receives the token in the mailbox.
4. Task B processes the segment, then deletes the segment.

Figure 3-1. Exchanging Objects Between Tasksin the Same Job

52 Chapter 3 Mailboxes

Using send_message

Send_message sends a single object to a mailbox and enables a task to request
acknowledgment from the receiving task.

When you send a message:

- If atask iswaiting, it receives the message immediately. If the receiving task
has been adleep, it moves either from asleep to ready or from asleep-suspended
to suspended.

- If notask iswaiting, the message is placed at the tail of the message queue.
M essage queues are processed as FIFO, so the message remainsin the queue
until it movesto the head of the queue and is given to atask.

Using receive_message
When atask is waiting to receive a message:

« |If thereisamessage in the queue when atask arrives at a mailbox, the task
receives the message immediately.

« |If thereis no message in the queue, the task may or may not wait in atask queue.

- If thereceive_message call indicates that the task can wait, it is placed in
the task queue and goes to sleep. Thisishow you use mailboxesto
synchronize tasks as well as pass messages. A deeping task wakes when a
message arrives or when a specified time limit expires.

The task receives an E_TIME condition code if the designated waiting
period elapses before the task gets a message.

- If thereceive_message call specifiesthat the task cannot wait, the task
remains ready and immediately receivesan E_TIME condition code.

If you usereceive_message, check to see if an acknowledgment has been requested.

System Concepts Chapter 3 53

Exchanging Data Between Tasks in Different Jobs

Figure 3-2 shows a server task that does similar services for several client tasksin
different jobs. The server and clients have their own mailboxes. The server should
catalog its mailbox in the root job's object directory. Each client sends the token for
its mailbox to the server so the server will know whereto reply.

E B E

<

0 !

E A E

E ' ——> =Request

: 5 < =Reply
O :

w-2836

1. The Server Task S creates a data mailbox using create_mailbox and catalogs it in the
root job's object directory using catalog_object. The Server Task puts itself to sleep using
receive_data.

2. Each Client Task creates its own mailbox. Each Client Task looks up the token for the
server task's mailbox using lookup_object.

3. When either client (Task B in this example) sends data using send_data, the client
includes the token for its mailbox in the call.

4. When a message from either client arrives, the Server Task wakes up and processes the
data. It sends a reply to the appropriate client task's mailbox (Task B in this example)
using the mailbox token included in the send_data call.

Figure 3-2. Exchanges Between Tasksin Different Jobs

54 Chapter 3 Mailboxes

Using send_data

The maximum amount of data transferred by the send_data system call is 128 bytes.
Y ou must create a send buffer for the data and pass atoken or a pointer to it. Passa
token if you have created a segment using the create_segment call or a pointer if you
have declared a data structure in a portion of the DS.

The original data area becomes available for re-use after send_data returns.

Y ou cannot request acknowledgment from the receiving task when you use
send_data.

If there is atask waiting at the mailbox when the message arrives, the message is
copied directly to the task's receive buffer. Otherwise the messageis copied into the
Nucleus-provided message queue.

Using receive_data

Thereceive data call requests a message from amailbox. Always specify a buffer
of at least 128 bytesin thereceive data system call. Y ou must create areceive
buffer; you can create a segment or declare a data structure in a portion of the DS.

If the task calling receive data iswaiting at the mailbox when the message arrives,
the message is copied directly to the waiting task's receive buffer. Otherwise the
message is copied into the Nucleus-provided message queue.

When atask iswaiting to receive data:

« When amessage arrives at the mailbox, the datais copied from the send buffer
into the task's receive buffer. It does not go into the message queue.

« |If thereis no message, the receiving task goes into the task queue. The task goes
to sleep for the specified time limit or until a message arrives, whichever comes
first. If the message arrives, it is copied from the send buffer to the receive
buffer. 1f no message arrives during the time limit, the task will awaken with an
E_TIME condition code.

When amessage is waiting to be received:
« Thereceiving task receives the message without going into the task queue.
« If notask iswaiting, the message goes into the message queue.

The amount of time necessary to receive a message can potentially be longer than the
specified time limit. A time-out error will not occur after the message transmission
into the receiver's segment begins. The transmission timeis significant only for very

long messages.

System Concepts Chapter 3 55

Mailbox System Calls
These are the system callsthat relate directly to mailboxes:

add_reconfig_mailbox
create_ mailbox
delete mailbox
send_data

receive data
send_message
receive_message

Table 3-1 lists common operations on mailboxes and the mailbox system calls that do
the operations.

See also: Nucleus system calls, System Call Reference

Table 3-1. Mailbox System Calls

Operation Description

create Create_mailbox creates a new mailbox and returns a token for

mailbox the mailbox.

specify Add_reconfig_mailbox specifies an existing data mailbox as a

reconfiguratio reconfiguration mailbox (used with the watchdog timer).

n mailbox

delete Delete_mailbox takes a token for a mailbox and deletes the

mailbox mailbox.

send data Send_data sends up to 128 bytes of data to a data mailbox.

receive data Receive_data receives up to 128 bytes of data from a data
mailbox.

send Send_message sends an object token to a mailbox.

message

receive Receive_message receives an object token from a mailbox.

message

See also: Nucleus system calls, System Call Reference;
examples in the /rmx386/demo/c/intro directory

56 Chapter 3 Mailboxes

How to Use Mailbox System Calls

These are the rules for mailboxes:

« A task can send amessage to any mailbox for which it has a token.
« A mailbox can receive a message from any task that hasits token.
« Thesize of adatamessageislimited to 128 bytes.

Figure 3-3 shows the order in which you make mailbox system calls.

create_mailbox Jook biect
catalog_object O0Kup_objec

u |

send_data
receive_data

uncatalog_object
delete_mailbox

send_message
receive_message

O

OM02869

1. Make these calls from a task in the job that needs to receive messages from the new
mailbox.

2. Make this call from the task that needs to send information to the mailbox.

3. Make the receive_ calls from a task in the job that created the mailbox. Make the
send_ calls from any task that has the mailbox token.

4. Make these calls from the task that created the mailbox.

Figure 3-3. Mailbox System Call Order

Use the send_data and receive_data system calls with data mailboxes. Use the
send_message and receive_message with object mailboxes. If you try to pass
information with the wrong system call, for example sending a object with
send_data, the Nucleusissues an E_TY PE condition code.

System Concepts Chapter 3

57

Chapter 3 Mailboxes

Semaphores

What is a Semaphore?

A semaphore is a counter that takes positive integer values called units. Tasks send
units to and receive units from the semaphore. A semaphore can:

« Synchronize atask's actions with other tasks
« Provide mutual exclusion from data or a resource

See also: Semaphores, Introducing the iIRMX Operating Systems;
Examples in the /rmx386/demo/c/intro directory

Creating a Semaphore

These are the parameters you specify when you create a semaphore using
create_semaphore:

« Theinitial number of unitsin the custody of the new semaphore.

« The maximum number of unitsthe semaphore can have in custody at any given
time. Thelower limit isautomatically O.

* Whether the task queue is FIFO or priority based.

Task Queue

Use a priority-based queue so high-priority tasks do not wait behind lower-priority
tasks in the queue. Within a priority-based queue, tasks of equal priority are FIFO
queued.

See also: Priority Bottlenecks and Blocking, in this chapter

Deleting a Semaphore

When you use delete_semaphor e, the Nucleus awakens any tasks waiting to receive
units at the semaphore with an E_EXIST condition code.

System Concepts Chapter 4 59

Binary Semaphores and Mutual Exclusion

If atask asks a binary (single-unit) semaphore for a unit to gain access to aresource
and a unit is not available, it means some other task isusing the resource. The
requesting task can't access the resource until the unit is returned.

Figure 4-1 illustrates a binary semaphore guarding a resource. Tasks queue up for
access to the resource; in general, use a priority-based queue in your applications.

—

OM02706

wm\/m
o

Create the semaphore with one initial unit and a maximum of one unit, using
create_semaphore.

1. Task A requests a unit from the semaphore using receive_units. The semaphore sends
the unit. Task B also requests a unit from the semaphore using receive_units and
specifies it is willing to wait. Task B goes to sleep by waiting in the queue until Task A has
returned the unit.

2. Task A accesses the resource. No other task can access the resource at the same time.
When Task A is done using the resource, it returns the unit to the semaphore using
send_units.

3. Now Task B will wake up and receive the unit. If Task B has a higher priority than A, it will
begin running. Otherwise it will be ready.

Figure4-1. Mutual Exclusion Using a Binary Semaphore

Priority Bottlenecks and Blocking

Y ou may encounter several problems when you use semaphores for mutual exclusion
of shared data. To eliminate the problems, use regions rather than semaphores to
control shared resources.

See also: Regions, in this manual

60 Chapter 4 Semaphores

Thefirst bottleneck isahigh priority ready task blocked by alower priority running
task. This occurs if the lower-priority task obtained the required units before the
higher-priority task became ready. The running task, regardless of priority, controls
the resource until it returns the units to the semaphore.

The second bottleneck, priority inversion, occurs when alow priority task obtains the
required units to access a resource, then is preempted by a medium-priority task,
which is then preempted by a high-priority task that needs to access the resource.
Figure 4-2 shows what could happen:

<Dﬂ
s [
<= eﬂ

OM02870

1. Low priority Task A is running and obtains a unit from a binary semaphore to access some
data. It starts accessing the data.

2. Task B, a medium priority task, preempts A.

3. Higher priority Task C preempts B, but cannot access the data while the low priority task
holds the unit. The low priority Task A cannot complete its operation and return the unit
because it is preempted by B.

Figure4-2. Priority Inversion Bottleneck with Semaphores

The third bottleneck occurs when atask holding a semaphore unit and using shared
datais suspended or deleted; no other task can gain access to the shared data. Only
after the suspended task is resumed and returns the semaphore can the data be used
by the other tasks. In the case of a deleted task, the semaphore prevents any other
tasks from ever using the shared data.

System Concepts Chapter 4 61

Multi-unit Semaphores

Y ou typically use a multi-unit semaphore as a counter, for example managing the
available space in acircular buffer. A task can request more than one unit from a
multi-unit semaphore and the semaphore tries to satisfy the request.

The semaphore either sends all the units requested or none at all. So, a multi-unit
semaphore might have tasks waiting for units and also have units that have not been
granted available, but not enough to satisfy the task at the head of the task queue.
Thisisapossible scenario:

Two tasks are queued waiting for units.

Task A isfirst in the queue and wants three units.

Task B is second in the queue and wants one unit.

The semaphore has zero units available when the requests are made.

These are possible outcomes for a FIFO queue:

« The semaphore receives three units. Task A receives the units, awakens and
runs while B remains asleep in the queue.

« The semaphore receives two units. Both tasks remain asleep. There aren't
enough units for Task A and Task B's request cannot be satisfied, because Task
A isdtill ahead of it in the queue.

« The semaphore receives four units. Both A and B receive their requested units
and are awakened. Task A runsfirst becauseit isfirst in the queue.

These are possible outcomes for a priority queue, with Task B having a higher
priority than A:

« The semaphore receives two or three units. Task B receives a unit, awakens and
runswhile A remains asleep in the queue.

« The semaphore receives four units. Both A and B receive their requested units
and are awakened. Task B runsfirst because it is higher priority.

62 Chapter 4 Semaphores

Figure 4-3 shows how tasks can share a fixed-length list of buffers using two
semaphores: one binary and one multi-unit counting semaphore.

« Thebinary semaphore prevents two different tasks taking buffers from the list at
the sametime.

« The counting semaphore prevents a task spending time searching the list for an
available buffer when thereis none.

A
A T)%< - D

\/—\

\—/ OM02890

Create a binary semaphore B that provides mutually-exclusive access to the buffer list using
create_semaphore.

Create a counting semaphore C that tracks the number of available buffers, eight in this
example, using create_semaphore. Set the initial units and maximum units equal to the
number of buffers: eight.

1. Task A requests the only unit from semaphore B using receive_units. The semaphore
sends the unit. Now, only task A can request units from semaphore C.

2. Task A requests three units from semaphore C using receive_units. The semaphore
sends the units. Now task A has access to three buffers in the shared list. Task A then
returns the unit to semaphore B using send_units.

3. Task D requests the unit from semaphore B using receive_units and receives it.

4. Task D can now request four units from semaphore C. Since the semaphore has enough
remaining units to satisfy the request, Task D will receive them. If it had not, D would have
waited.

All tasks should return their units to C as soon as possible to free resources for other tasks.

Figure 4-3. Multi-unit and Binary Semaphores Allocating Buffers

System Concepts Chapter 4 63

Using send_units
A task does not have to receive a unit from a semaphore in order to send a unit to it.

When atask sends units to a semaphore, and no task of equal or higher priority is
waiting, the task remains running. If a higher priority task iswaiting for the unit, it
preempts the lower priority task.

The semaphore returnsan E_LIMIT condition code when:
« Youtry to send zero units.

« Youtry to send more units than the maximum number of units the semaphoreis
allowed to have. In this case, the number of unitsin the custody of the
semaphore remains unchanged.

Using receive_units

Usereceive _unitsto find out how many units are available by specifying 0 in the
uni t s parameter.

Y ou can specify how long atask using receive_unitswill wait for a semaphore unit.
Two factors determine whether the task receives the units and how soon: how many
units the task asks for, and where the task is in the queue.

« |f the number of units requested is within the semaphore's current supply of units
and the specified maximum for that semaphore, the request is valid.

— If thetask is at the front of the queue, the request is granted immediately,
and the task stays running.

— If arequest isvalid but cannot be granted immediately, the task can either
wait or not.

If thereceive unitscall specifiesthat it can wait, the task goes into the task
gueue and goesto sleep by waiting. If the time elapses before the task gets
the unitsit asked for, the task awakens and receives an E_TIME condition
code.

If the receive_units call specifiesthat the task cannot wait, the task receives
an E_TIME condition code.

« |If thetask asks for more units than the maximum number allowed for a
particular semaphore, the request isinvalid and the semaphore returns an
E _LIMIT condition code.

64 Chapter 4 Semaphores

Semaphore System Calls
These are the system calls that relate directly to semaphores:

create_semaphore
delete_semaphore
send_units
receive_units

Table 4-1 lists common operations on semaphores and the semaphore system calls
that do the operations.

Table4-1. Semaphore System Calls

Operation Description

create Create_semaphore creates a new semaphore and returns a
token for it.

delete Delete_semaphore deletes the semaphore.

send units Send_units gives a specified number of units to a semaphore.

to semaphore

receive Request units from a semaphore with the receive_units system

units from call.

semaphore

See also: Nucleus system calls, System Call Reference

System Concepts Chapter 4 65

How to Use Semaphore System Calls

These are the rules for semaphores:

« A task does not have to receive a unit from a semaphore in order to send a unit to
it.

« A semaphore cannot receive more units than the maximum specified when it was
created.

Figure 4-4 shows the order in which you make semaphore system calls.

create_semaphore send_units uncatalog_object
catalog_object receive_units delete_semaphore

0OM02871

1. Make these calls from the task that has the resource that needs to be shared.
2. Make these calls from the tasks that need to use the resource.

3. Make these calls from the task that created the semaphore.

Figure 4-4. Semaphore System Call Order

66 Chapter 4 Semaphores

Regions

What is a Region?

A region is abinary semaphore with special suspension, deletion, and priority-
adjustment features. Regions provide mutual exclusion from resources; only one task
may control aregion at atime; only the task in control of the region can access the
resource.

Deletion and Suspension Protection

Tasks that have control of aregion, or are queued at aregion, cannot be deleted or
suspended by other tasks until they give up control of the region.

Tasksin control of aregion cannot be preempted by other tasks wanting control of
theregion. A task can, however, be preempted by a higher-priority task that does not
want control of the region.

Priority Adjustment

If you use a priority-based queue, the priority of the task controlling the region will
be dynamically raised whenever the task at the head of the region's task queue has a
priority higher than that of the controlling task. The priority of the controlling task is
raised to match that of the queued task. This priority adjustment prevents the priority
inversion bottleneck that can occur when tasks use semaphores to obtain mutual
exclusion.

Once atask's priority israised in thisway, the priority is not lowered until the task
gives up control of al regions. Itisnot sufficient to give up control of the region that
raised the priority, if the task still controls another region.

System Concepts Chapter 5 67

Creating a Region

The only parameter you specify when you create aregion using create region is
whether the task queue is FIFO or priority based.

Task Queue

Tasks of equal priority in a priority-based queue are queued in a FIFO manner.

A task in the region's task queue sleeps until the region becomes available; it can wait
indefinitely.

Deleting a Region

When you delete aregion using delete_region, the Nucleus awakens any tasks
waiting for control of aregion with an E_EXIST condition code.

A task cannot delete aregion it controls. It must give up control of the region first.
Otherwise, an E_CONTEXT condition code returns.

Misusing Regions

68

Misuse of regions can corrupt the interaction between tasksin an application system.
Before writing a program using regions, you must have a complete understanding of
regions, the OS, and the entire application system. Avoid these problems:

Deadlock Thisoccursif two tasks need control of two regions for accessto the
same two resources at the same time and each task has control of one
region.

Since there is no time limit on waiting for control, deadlocked tasks can
remain so indefinitely. Any other tasks entering the region's task queue
will aso become deadl ocked.

Deletion immunity
If you create and atask abtains control of the region, the task will be
immune to deletion until it gives up control of the region. If the task
never gives up control, it can never be deleted.

No time limit
If control is not immediately available, there are two options. If the
task cannot wait, it receives a condition code. If the task waits, it may
never run again. If these are not acceptable, use a semaphore instead.

See also: Semaphores, in this manual

Chapter 5 Regions

Nesting Regions

A task can take control of more than one region at atime, which is called nesting
regions. Regions are released in alast-obtained, first-released order. When atask
releases control of aregion and has control of multiple regions, the most recently
obtained region isreleased first.

Deadlock occurs with multiple nested regions as shown in Figure 5-1. The example
usesthe receive_control system call to gain control of the regions.

- U
/v

1. Task A requests and obtains control of Region X. It also needs control of Region Y.

2. Task B preempts Task A. It requests and obtains control of Region Y. It also needs
control of Region X.

Neither task can run. Neither task can be deleted. If any other tasks try to obtain control of
either region, they will also become deadlocked.

Figure5-1. Deadlock and Nested Regions

Prevention
There are two ways to prevent deadlock in nested regions.

« Usetheaccept_control system call. Tasksusing accept_control cannot
deadlock at aregion unless they keep trying endlessly to accept control.

« Ifyouusereceive control, have all tasks request control in a consistent order; it
doesn't matter what order aslong as all tasks obey it. List the names of all
regionsin any order and label them in sequential order. Asyou program atask
that nests any of the regions, be sure the task requests control in ascending order
and releases the regionsin descending order. If you follow this rule consistently,
you can safely nest regions to any depth. Figure 5-2 on page 70 shows how
sequential ordering works.

System Concepts Chapter 5 69

A /VDD

OM02892

1. Task A, priority 140, requests and obtains control of region X. It also needs control of
Region Y.

2. Task B, priority 135, preempts Task A. It requests control of region X. Task A's priority is
raised to equal B's. Task B can't obtain control so it enters the task queue.

3 Task A requests and obtains control of region Y.

4. Task C, priority 130, preempts Task A. It requests control of region X. Task A's priority is
raised to equal C's. Task C can't obtain control so it enters the task queue.

Task A runs and then releases region Y, followed by region X. Then, its priority is adjusted to
its static level, 140. Task C will then wake up, preempt A, and obtain control of both regions.

Figure5-2. Preventing Deadlock in Nested Regions

If atask has control of several regions, and multiple tasks with different priorities are
waiting for the regions, the priority of the controlling task may be raised more than
once. But the controlling task must surrender control of all the regionsit controls
beforeits priority revertsto itsoriginal static value.

Using receive_control

Thereceive_control system call enables atask to wait for aregion to become
available. But if access never becomes available, the task never runs again. An error
occurs if atask requests control of aregion it already controls.

Using accept_control

If control is not immediately available, the task does not wait at the region. Instead,
it receives a condition code and remains ready. To gain control, the task must make
repeated callsto accept_control.

70 Chapter 5 Regions

Region System Calls
These are the system calls related to regions.

create region
delete region
receive _control
send_control
accept_control

Table 5-1 lists common operations on regions and the region system calls that do the
operations.

Table5-1. Region System Calls

Operation Description

create region Create_region creates a new region and returns a token for it.

delete region Delete_region takes a token for a region and deletes the region.

get control Receive_control gives a task control of a region when it becomes

of region available. The task sleeps in the task queue until control is
granted.

give up Send_control informs the Nucleus that the calling task is giving

control up control of the last region it controlled. A different task can then
be given access to the shared data.

get control Accept_control allows a task to gain access to shared data when

immediately access is immediately available.

See also: Nucleus system calls, System Call Reference;
examples in the /rmx386/demo/c/intro directory

System Concepts Chapter 5 71

How to Use Region System Calls

These are the rules for regions:

Do not let atask suspend itself when it controlsaregion. Unlessthetask is
resumed by another task, the region may permanently exclude other tasks from a
shared resource.

In addition, the task will never run again and its memory will not be returned to
the memory pool. Tasksin the region’stask queue are also immune to deletion
and will encounter the same memory pool problems.

Do not use regions in Human Interface applications. If atask inan Hl
application uses regions, the application cannot be stopped asynchronously
(using <Citrl-C> entered at aterminal) while the task is accessing data guarded
by the region.

When the running task no longer needs control, it should release control of the
region, which enables a waiting task to access the resource.

A task cannot delete aregion it controls without first releasing the region.

Use an arbitrary order for all tasks accessing regions when you use nested
regions and the receive_control system call.

Figure 5-3 shows the order in which you make region system calls.

create_region receive_control > 3 uncatalog_object
catalog_object (accept control [send control delete_region

72

[

OM02875

Make these calls from the task that has the resource that needs to be shared.

Make these calls from the tasks that need to obtain control of the region to access the
resource.

Make this call to give up control of the region.

Make these calls from the task that created the region.

Figure 5-3. Region System Call Order

Chapter 5 Regions

Ports

What is a Port?

Ports were initially implemented for Multibus |1 systems as an access point to the
Nucleus Communication Service, but they have been extended to be an access point
to any service. A task can pass messages to a service through its port. If the service
connects different tasks then another task can receive that message.

When you use ports, the sending task sends the message through its port and the
receiving task receives the message through its port. Y ou can create a buffer pool or
heap and attach it to the port to provide fast storage allocation for messages received
at aport.

A message consists of a control part and optionally a data part. The control part
contains data which usually definies what to do with the data part (if any). Control
messages do not require special buffer arrangements (such as pools or heaps) but data

messages do.

What is a Service?

A serviceis amodule which processes messages from ports. Services can range from
complex subsystems, such as the Nucleus Communication Service, or the |P module
of the TCP/IP stack, to simple hardware interfaces, such as alow-level serial device
driver. All services process messages received via ports from tasks, and they also
process messages from an interface, which may be a hardware interface or another
object, such as amailbox or evan another port.

For example, the serial driver service manages the hardware interface using
interrupts, and processes messages from tasks using the service. The Nucleus
Commumication Service processes messages from tasks using the system, and also
messages to and from the Multibus 11 interface.

System Concepts Chapter 6 73

Ports in Multibus Il Systems

For two tasks on different boards to exchange messages, each must have accessto a
Nucleus Communication Service port on its own board. Each port is an access point
to the message-passing protocol of the Multibus 11 Transport Protocol Specification.

If you use a port to communicate with a board that is running another OS, the other
OS must also support the Multibus Il Transport Protocol Specification.

74 Chapter 6 Ports

Why Use a Port?

These are the advantages of using ports:

Variable message size
Each message passed to a port may be a different size, from afew bytes
in a control message, to include data messages of many Megabytes.
Storage is allocated per message, and the message size does not have to
be pre-determined.

Linking request to response
A client task sending a message can specify aresponse buffer so it can
receive aresponse tied specifically to the request. This corresponds to
the client-server model of task interactions used by the Nucleus.

Providing current status
Each message that a task receives includes status information about
whether an exceptional condition prevented successful transmission (for
example, aMultibus Il transmission error, or insufficient buffer space at
the server). Transaction IDs bind status messages to data message
transmissions.

Short-circuit message passing
This feature can be used where messages are passed from task to task
on the same host. The message is copied directly from the sending task
to the receive buffer of the receiving task. Because the interfaceis
gerneally the same for communicating on the same processor or
between processors, applications that use ports can migrate from a
single host to a system with multiple hosts.

Using Heaps and Buffer Pools at Ports

Most incoming messages to a server require that you create a heap or buffer pool and
attach it to the port. When a message arrives at a port, a buffer is automatically
allocated from the attached object to receive the data. The receiving task can access
this buffer directly, and return it to the pool or heap when it has finished with the

message.

In the case of a buffer pool, depending on the message size and the buffer pool, an
incoming message may be copied into a single buffer or into a series of buffers called
adata chain. The Nucleus gives the receiving task a pointer either to a single buffer
or to adata chain block that holds pointers to all buffersin the chain.

A heap or buffer pool can be attached and detached during the existence of the port.
See also: Buffer pools and heaps, in this manual

System Concepts Chapter 6 75

Creating a Port

These are the parameters you specify when you use the create port system call.
* Thename of the service to be used.

* Theport'sID. Ingeneral some of the port I Ds are reserved by the service.
The Nucleus can assign the port ID for you if you specify a specia null
value (usually zero). Y ou can create a port with no ID, called an unbound
port.

e The number of simultaneous transactions allowed at this port.
* Whether the task queue is FIFO or priority based.
* Whether fragmentation is enabled or disabled.

* Whether the port is to have an ID assigned to it (in other words, whether the
port is to be bound).

Fragments in Large Data Messages

When amessage is delivered, the receiving port must supply storage. Whether the
dataistransmitted in one piece depends on the buffering capacity of the port.

The Nucleus can break up the data portion of messages that are too large to be
delivered in one piece into smaller pieces, if the service supports fragmentation, and
the port has enabled this feature. The Nucleus Communication Service (NCS) will
send the message in fragments when the receiving buffers are too small to receive the
entire message. Each of the fragments specifies the same transaction 1D.

The NCS on the server delivers asingle reply to the client task. The client task
receives a condition code only if fragmentation fails.

The NCS expects that the server in a client-server transaction will control
fragmentation whether it occurred in arequest from a client or aresponse to a client.

If fragmentation is disabled, the sending task will receive a condition code when
there is not enough buffer space at the receiving end.

Deleting a Port

76

When you delete a port using delete_port, the Nucleus deletes all messages queued
at the port and cancels all outstanding transactions for the port. The Nucleus deletes
message buffers allocated from the port's buffer pool and awakens any task waiting
for amessage at the port with an E_EXIST condition code. If you delete a sink port
(described later) that is attached to one or more ordinary ports, the Nucleus detaches
them.

Chapter 6 Ports

Identifying a Port

In a multiprocessor system, each port must be uniquely identified. The paragraphs
below describe the ways a port is identified.

Identifier How It Is Used

genaddr A genaddr (general address) is a structure which combines the port ID with
the service interface address (defined by the service). This uniquely defines
aport across al the hosts accessed by the service. For example a port at an
Ethernet service will have aport ID and the 48-bit MAC address defined by
the Ethernet specification.
An addressis defined as follows:

DECLARE GENADDR STRUCTURE (

port _id WORD 16,
address_l en BYTE,
unused BYTE,
addr ess BYTE(*));
orinC,

t ypedef struct genaddr {
unsi gned short port_id;

unsi gned char address_| en;
unsi gned char unused;
unsi gned char address[];
} GENADDR;
Socket (NCS only) A socket is a 32-bit number that combines the host ID and port

ID. Itisspecial to the Nucleus Communication Service and is retained for
legacy reasons.

These lines of code define a socket:

DECLARE SOCKET STRUCTURE(

host _id WORD_16,
port _id WORD_16) ;
orinC,

t ypedef struct socket_struct {
unsi gned short host _i d;
unsi gned short port _id;
} SOCKET_STRUCT;

System Concepts Chapter 6 77

Port ID The port ID identifies the port among all those on a given processor board
in agiven service. In amultiprocessor system, more than one port can have
the same port ID aslong as the ports reside on separate processor boards.
Any board that supports the Multibus |1 Transport Protocol will specify
port IDsfor its ports, whether running the iIRMX OS or another OS. This
lets boards communicate with each other regardless of the OS being used.

Host ID Thehost ID isalogical address for the host, a number in the range 1 to 254
that uniquely identifiesthe host. It isa 16-bit value, usually equal to the
dot number in aMultibus |1 backplane.

Addresslen Defines the number of bytesin the address which are valid. Usually fixed
for agiven service. Adresses of up to 28 bytes are supported by iRMX.

Address An array of bytes defining the interface address for a given service.

Token Thetoken is specific to theiIRMX OS. iRMX tasks use the token to catalog
the port in the object directory, attach the port to asink port, or delete the
port.

See also: Multibus Il Transport Protocol Specification and Designer's Guide

Sending Data Messages

These messages follow the mailbox model. The client uses the send call to send the
message. The server usesthereceive call to receive the data at its port. The client
does not expect aresponse; the server doesn't send one.

Using send

78

Use send to send data from a client to a server without expecting areply. Y ou must
specify avalid pointer to some control information, even if your application doesn't
use the information. Y ou can optionally provide a pointer and alength for a data
component. If you do, specify if the data component can be in a single segment or in
adata chain.

Y ou can specify that the message transmission be synchronous or asynchronous: if
synchronous, send does not return until the message has been sent; if asynchronous,
the system call returnsimmediately, letting the task continue processing while the
message is being sent. A status message will be delivered to the port later if the
transmission fails. Optionally a service will send a status message on the completion
of every asynchromous transmission.

Chapter 6 Ports

Using receive

Use receive for servers to receive messages from clients. Receive requires that you
have created a buffer pool using create buffer_pool, released buffers (segments you
have created) to it using release buffer, and have attached it using
attach_buffer_pool. Receive returns a pointer to the data component of the message
if there is a data component.

Y ou must identify the receiving port. Y ou must specify how long the task will wait
for the message at the port. The calling task goesto sleep by waiting for a message at
aport. If no message arrives before the specified time limit expires, the task will
awaken with an E_TIME condition code.

Y ou must supply a pointer to a structure that r eceive fills with information about the
transmission.

System Concepts Chapter 6 79

Sending Request / Response Messages

Transaction pairs provide a client-server communication model. Clients send request
messages to servers and servers send responses back. This model includes the ability
to:

+ Useeither acontrol or control/data format for messages

« ldentify message pairs as transactions

Control and Control / Data Format

TheiRMX implementation of the Multibus |1 Transport Protocol Specification
defines two kinds of message format: control and control/data.

Control A short, unsolicited message conveying control information; you do

message not have to create a buffer pool in the receiving task prior to sending a
control message. The control message can contain application-
specific control information. Control messages are delivered faster
than control/data messages.

Control/data A message with a control portion and a data portion. Usually, you

message have to create a buffer pool in the receiving task prior to sending a
control/data message (the exception is a client receiving a response
from aserver).

80 Chapter 6 Ports

Although control and data portions are combined when sent in a control/data message
transaction, they are stored differently at the receiving port.

« Thereceiving port's message queue provides storage for the control portions of
incoming messages.

« Thereceiving port stores data portions of a message differently depending on
whether they are part of a client request or of a server response.

— For request messages, the Nucleus allocates storage from a buffer pool you
attach to the server's receiving port. The Nucleus rejects data portions sent
to a port without a pool or with insufficient pool resources.

— For response messages from servers to clients, the data portions are
delivered to a specific response buffer supplied by the client task; the
response buffer cannot be a data chain.

Transaction Pairs
The Nucleus uses transaction |D numbers to match responses to requests.

Therequest is delivered to the server's port, where the control portion of the message
is copied into a control message queue, and the datais transferred into space
allocated from the buffer pool you created. The server acts on the request and
prepares aresponse that may include control and data information. The NCS uses the
response buffer supplied by the client as the destination for the data portion of the

response message.

The client supplies a pointer to a response buffer if it expects a data messagein
response. The client task allocates response buffer space based on memory in the
client task's job; the response buffer is not allocated from the client port's buffer pool.

System Concepts Chapter 6 81

Basic Request / Response Transactions

82

The client sends a control/data message that tells the server to perform a service on
the data (for example, write it out to disk). The data component in thisexampleis
1Kbytelong. All buffersinthe example are 1 Kbyte. Figure 6-1 shows this

transaction.
ﬂ

OMO02864

[

H RO (O %

1. The client Task C calls the send_rsvp system call. Then the client calls receive_reply
and goes to sleep by waiting for the response.

o1y

The server Task S has previously called receive and is waiting for the message. The
message goes through Port C and arrives at the server's port, Port S. Because the
receive buffer in the port's buffer pool is large enough, the message is delivered. The
server Task S receives the message and begins processing the data. The server also
receives a transaction ID that the Nucleus uses to match the server's response to this
request.

2. When it is done processing, Task S calls send_reply to send a reply to the client; the
server includes the transaction ID supplied in the original request. Task C receives the
reply in its response buffer and, having previously called receive_reply, wakes up; the
transaction is complete.

Figure 6-1. Basic Request / Response Using Ports

Chapter 6 Ports

Fragmented Response Transactions

Figure 6-2 shows a fragmented response. Three buffersin the example are 1 Kbyte;
the request is for 3 Kbytes and the response buffer is 3 Kbytes.

EL) %e S
ffffffffffff -

[

om02877

1. The client Task A uses send_rsvp to send a request to read 3 Kbytes from a disk to the
server, Task B. Task A passes a pointer to a 3 Kbyte response buffer so it can receive the
entire response in one block. The client calls receive_reply and goes to sleep by waiting
for the response.

2. The server, Task B, receives the request message, having previously called receive, and
initiates the service.

3. This server has a 1 Kbyte buffer limit, so the server cannot send the entire 3 Kbyte
response message in one operation. The server fragments the response message,
repeatedly calling the send_reply system call with 1 Kbyte fragments until the entire
message is sent.

Send_reply parameters include an EOT (end-of-transaction) indicator. As long as the
server is sending fragments, it sets the EOT field to FALSE so the transaction remains
open. When it sends the last fragment, the server sets EOT to TRUE.

4. Only the control part of the last fragment, EOT=TRUE, is sent to the receiver.

At that point, the client, Task A, will awaken from the receive_reply system call with
3 Kbytes of data in the response buffer, and the transaction ends.

Figure 6-2. Fragmented Response Using Ports

System Concepts Chapter 6 83

Fragmented Request Transactions

In Figure 6-3, the client sends a control/data message to the server that includes

3 Kbytes of data. This server can receive dataonly in 1 Kbyte blocks, so the message
must be fragmented before it can be received. The client will not be aware that this
transmission was fragmented.

[

: S
]

[

OM02878

1. The client, Task A, calls the send_rsvp system call. The client calls receive_reply and
goes to sleep by waiting for the response.

2. When the server, Task B, tries to receive the incoming data message using receive, it will
receive an E_NO_LOCAL_BUFFER status message. The message includes the length of
the data message.

3. Aloop in the server task calls the receive_fragment system call three times to receive the
3 Kbyte data message in 1 Kbyte fragments.

4. When the server has called receive_fragment often enough to receive the entire
message, it calls send_reply to send a response to the client. The transaction ID matches
the response to the request.

5. The client, Task A, awakens from the receive_reply system call and the transaction ends.

Figure 6-3. Fragmented Request, Example

Using send_rsvp

Use send_rsvp for aclient to send a request to a server, expecting aresponse. You
must identify the receiving port. Y ou must specify avalid pointer to some control
information; you can optionally provide a pointer and a length for a data component.
If you do, specify if the data component can be in a single segment or in adata chain.

Y ou must specify whether to use the receive or receive reply system call for
receiving the response from the server. Use receive when a client task initiates
multiple transactions from a task; you might also have a separate task use receive to
pick up the responses.

84 Chapter 6 Ports

Specify the size of the client's response buffer and a pointer to it. The response
buffer cannot be a data chain; it must be a contiguous block.

Specify whether to use synchronous or asynchronous transmission. If you specify
synchronous when you call send_rsvp, the client task will wait until all the fragments
have been received. Otherwise, the client will go on with other processing.

Using receive_fragment

Usereceive fragment for servers to receive messages from clients when insufficient
buffer spaceis available to receive a message in one piece. If the receive status code
isE_NO_LOCAL_BUFFER, you need to code aloop that makes callsto
receive_fragment to receive fragments.

Thei nf o_pt r structure of the receive call will contain the length of the data
message received, the transaction 1D, and the sending socket. When you use
receive_fragment, you specify the size of fragments according to the how the
server's buffer pool isset up. You are responsible for determining how many times
to call receive_fragment, based on the size of the message and the size of the buffers
available for receiving the fragments.

Using send_reply
Use send_reply for a server to send aresponse to aclient. The message goes to the
response buffer supplied by the client, not its heap or buffer pool.

Y ou must supply the transaction ID; thisisthet rans_i d parameter in the
send_rsvp system being answered.

Y ou must identify the receiving port. Y ou must specify avalid pointer to some
control information; you can optionally provide a pointer and a length for a data
component. If you do, specify whether the data component can bein asingle
segment or in adata chain.

Y ou must specify whether the transmission is synchronous or asynchronous. If the
reply isfragmented, you must specify whether thisis the last fragment.

System Concepts Chapter 6 85

Using receive_reply

Receive reply enables a client to wait for aresponse from a server. The data
component is received in the response buffer originally specified in the send_rsvp
cal.

Y ou must supply the same port _t oken andrsvp_trans_i d parameters you used
inthe send_rsvp call. You must also specify how long the client task will wait for
the message at the port. The client task goes to sleep by waiting for amessage at a
port. 1f no message becomes available before the specified time limit expires, the
task will awaken with an E_TIME condition code.

Using broadcast

Thiscall iscommonly used by Multibus |1 hosts to broadcast status information
system-wide to dedicated ports with the same port ID on each host in asystem. You
can dedicate a task on each host to wait for messages at the agreed-upon port.

You can also use this call to locate servers in the system. The clients can send a
broadcast message to the server port ID. The server sends a message back to the
sender, and the client obtains the server's host 1D from the message.

In general, indicate to a service that you want to broadcast by setting the
BROADCAST flagintherge_send call. The broadcast call is specific to the Nucleus
Communication Service.

Using cancel

86

You can cancel send or send_reply control/data messages, but not control-only
messages. Y ou can also cancel asend_rsvp message, which disassociates the
response buffer from the source port. Y ou specify the transaction 1D and the port ID
for the operation to be canceled. Cancel isalocal operation only, affecting only the
specified port. It does not notify the remote socket involved in the transaction.

Chapter 6 Ports

Setting Up Special Ports

This section describes attaching and detaching a sink port to ordinary ports and
connecting a port to a default remote socket.

Forwarding Messages from Sink Ports

Message forwarding allows messages from several connected ports to be received by
asingle task waiting at asink port. Sink ports help avoid duplication of codein
several tasks. All messages come to the sink port, which forwards them to the
appropriate task. The sink port must be on the same host as the receiving task. The
sink port must be of the same service as all of its forwarding ports, or it must be an
anonymous sync port, created by specifying a null service name inrge _create port.

The example in Figure 6-4 is an 1/O Server that receives messages at two different
sockets and accesses a single hard disk to fill the requests. The exampleillustrates
using only ordinary ports (on the left) and using asink port (on the right).

© ©
TS

OMO02876

1. Ports A and B receive a request and passes data to the receiving Tasks A and B. A and B
both write data to disk, so there is duplication of code.

2. Ports C and D are forwarded to a single sink port. The sink port determines which of the
ports forwarded the message to it (so it can send a reply) and sends the data to Task E.
Task E handles requests from both ports C and D.

Figure 6-4. Forwarding Messages Using Ports

System Concepts Chapter 6 87

Using attach_port and detach_port

The attach_port system call enables you to attach ordinary portsto asink port. An
ordinary port can be attached only to one sink port.

After you attach a port to asink port, al subsequent messages to the ordinary port are
forwarded to the sink port. Messages that were queued at the ordinary port at the
time of the attachment remain queued at the ordinary port and are not forwarded, so
you must ensure that the queue is empty before attaching the sink port. A task that
was queued to receive a message at an ordinary port with an empty message queue
will remain in the task queue until it times out or until the sink port is detached and a
message arrives at the ordinary port.

Only asingle level of forwarding is supported; a sink port may not be attached to
another sink port.

When you detach a sink port using detach_port, subsequent messages to the ordinary
port will not be forwarded to the sink port. Messages previously forwarded to the
sink port remain queued at the sink port until they are removed with areceive
operation or the port is deleted.

Using connect

Y ou can use connect to connect a port on the host to a default remote address, which
you specify, so that messages sent from the host port are automatically routed to that
particular address on the remote host. While the connection exists, the port on the
client can only receive messages from the specified socket. The connectionis active
when you specify adefault remote socket with the connect system call

To disconnect the default remote socket, specify a 0 for the default remote socket
with the connect system call. Once disconnected, the port remains disconnected until
specifically connected again. A port can be connected to a remote socket more than
once, with the most recent connection overriding all previous connections.

88 Chapter 6 Ports

Port System Calls

Operations on ports fall into two broad categories: setup and message passing.

These are the system calls that relate directly to ports.

Setup calls

Message-
passing calls

create port

delete port
connect
attach_port
detach_port
get_port_attributes

send

send_rsvp
send_reply
receive

receive reply
receive_fragment
cancel

Table 6-1 describes operations on a port and what the related system calls are.

Table6-1. Port System Calls

Operation Description

create port Create_port creates a new port and returns a token for the port.

delete port Delete_port deletes the port.

connect port Connect connects a specified port with a specified socket.

attach sink Attach_port attaches a specified port to a specified sink port.

detach sink Detach_port detaches the specified port from its sink port.

get port Get_port_attributes fills in a data structure containing the

attributes specified port's attributes. Supply a pointer to a port_attrib
structure.

send, no Send sends a message and returns a transaction ID.

reply

receive Receive receives a message at a specified port.

receive Receive_fragment receives a fragment of a request message. It

message is typically used by a server when insufficient buffer space is

in fragments available to receive a message in one piece.

System Concepts

continued

Chapter 6 89

90

Table6-1. Port System Calls (continued)

Operation

Description

send, expect
reply

Send_rsvp sends a message from a client to a server with an
implied request for a response from the server.

send Send_reply sends a reply from a server to a client in response to
response an earlier send_rsvp message.

receive Receive_reply call receives a reply to an earlier send_rsvp
response message.

broadcast a

Broadcast sends a message from a specified port to a specified

message socket on every host processor in the system. Broadcast
ignores the host ID, so the call effectively sends a message to the
specified port ID on every host.
cancel Cancel cancels synchronous or asynchronous send_rsvp
message messages.
See also: Nucleus system calls, System Call Reference;

examples in the /rmx386/demo/c/intro directory

Chapter 6

Ports

How to Use Port System Calls
Figure 6-5 shows the order in which you make port system calls.

send

d_rsvp
create_port attach_port send_|
[Catalog_object] >| connect detach_port broadcast

receive_reply

0 I] 0

uncatalog_object
delete_port

W

get_port_attributes
receive
receive_reply
receive_fragment
send_reply

OM02879
1. Make these calls from the client or sending task.
2. Make this call from the client or sending task to connect to a default remote socket.

3. Make these calls to attach an ordinary port to a sink port. The sink port and ordinary ports
must reside on the same host.

4. Make these calls from the client or sending task.
5. Make these calls from the receiving or server task.

6. Make these calls from the task that created the port.

Figure 6-5. Port System Call Order

System Concepts Chapter 6 91

92 Chapter 6 Ports

Memory Pools, Memory
Segments, Heaps, and Buffer Pools

Tasks satisfy their memory needs by using Nucleus system calls to allocate and
deallocate memory. Memory includes:

« Memory pools, which control memory allocation and management in the iIRMX
0OS. Memory pools are maintained by the Nucleus.

+ Memory segments, which are the fundamental building blocks of the OS; they
are maintained by your application.

« Buffer pools, which provide away to allocate a set of segments so they will be
available quickly and dependably during time-sensitive operations; after you
create them, buffer pools are maintained by the Nucleus.

Flat Memory Models

The flat memory model is a 32-bit memory model where an application runs entirely
in asingle segment. Memory management differs between flat memory model
applications and 32-bit segmented memory models. This chapter focuses on the 32-
bit segmented memory model.

See also: Using the Flat Memory Model, Programming Techniques for
information on the flat memory model, the paging subsystem that
supports this model, and the system calls used in managing memory.

What is a Memory Pool?

TheiRMX OS allocates a contiguous block of memory to ajob from free space
memory; you specify the minimum and maximum size. Each job has one memory
pool, which is the source of memory for objects created within the job. When you
create the job, the Nucleus creates a minimum size memory pool by allocating
memory from the parent memory pool. There is atree-structured hierarchy of
memory pools, identical in structure to the hierarchy of jobs.

Memory that a job subsequently borrows from its parent remains in the pool of the
parent but istemporarily allocated to the child. Until the child job releases the
borrowed memory, it is only available to tasks in the child job, not to tasksin the
parent jab.

System Concepts Chapter 7 93

A memory pool for ajob does not have atoken. Y ou cannot refer to amemory pool
explicitly or manipulate it like an object.

Creating a Memory Pool

94

Y ou create a memory pool when you use therge_create job call to create ajob.
Two parameters of therqe _create job system call, pool _mi n and pool _nax, set
the size range. The upper limit of both pool _ni n and pool _nax is4 Gbytes. The
job begins with the specified minimum amount of memory, and it can borrow
memory from the parent memory pool up to the specified maximum size. Y ou delete
amemory pool by deleting the job.

Initially, ajob's memory pool isa physically contiguous block equal to the specified
pool minimum. If the job borrows memory from its parent job, the borrowed
memory is also a contiguous memory block, but not contiguous to the initial memory
pool. The maximum amount of memory that ajob may borrow is equal to pool_max
- pool_min. It ispossible that a memory request in a pool can fail even if the pool has
not reached its specified maximum limit.

Figure 7-1 shows two jobs that have been all ocated from the same parent memory
pool.

g)
p

maximum

e minimum
minimum

]]
_ J

OMO02865
P is the parent pool. Its size is 512 K.

1. Job 1 has a minimum of 200 K and a maximum of 300 K.
2. Job 2 has a minimum of 200 K and a maximum of 350 K.

Since the total minimum size for the jobs is 400 K, both jobs can be created. Since the total
maximum size is 650 K, the pools will not be able to reach their maximum sizes simultaneously.

Figure 7-1. Consequences of Minimum-Maximum Memory Pool Values

Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

Allocating Memory

Memory in ajob is unallocated unless it has been requested by tasksinthejob or is
on loan to achild job. A request for memory is explicit when you call the
create_segment system call and implicit when you create any other object.

The amount of memory actually allocated to objects is between 18 and 33 bytes
longer than the specified size. These extra bytes are for internal use by the Nucleus.
However, each returned selector pointsto the first address available to the task.

Borrowing Memory

When you try to create a segment or other object, and the unallocated part of the job's
pool istoo small to satisfy the request, the Nucleus tries to borrow more memory, up
to the pool's specified maximum, from the job's parent and on up the job hierarchy if
necessary. Figure 7-2 illustrates borrowing memory.

g)
p

Unallocated memory

OA

Allocated memory
(N J

OM02866

1. Task A creates a segment object using create_segment. The memory is available from
Job C. When Task A no longer needs this segment, it should delete it using
delete_segment. The memory returns to Job C's pool.

2. Task A creates another segment. This time, the memory is not available in Job C's pool,
so it is borrowed from the parent job's pool, P. When Task A no longer needs this
segment, it should delete it using delete_segment. The memory returns to pool P.

When Job C is deleted, the memory in its pool becomes unallocated, and it is available to the
parent job.

Figure 7-2. Borrowing Memory From the Parent Job

System Concepts Chapter 7 95

Borrowing increases the pool size of the job that is doing the borrowing and is
restricted to the job's maximum. If ajob has equal pool minimum and maximum
attributes, its pool isfixed at that common value, and the job cannot borrow memory
from its parent.

Using rge_get_pool_attrib

96

Y ou can determine the source pool for ajob by getting the attributes of the job's
memory pool using rqe_get_pool_attrib. Supply apointer totheattrib_ptr data
structure when calling rge_get_pool_attrib, and the system call fillsin the fields of
the structure with the pool's attributes.

Pool attributesinclude: minimum and maximum allowable pool size, initial pool
minimum size, number of allocated paragraphs of memory, number of available
paragraphs (not including memory that could be borrowed from the parent job), the
parent job token, and the amount of memory borrowed.

Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

What is a Memory Segment?

A memory segment is a contiguous sequence of bytes, ranging in size from 1 byte to
4 Gbytes.

There are no restrictions on what you can use memory segments for; you can create
segments to hold data of whatever size and internal structure you need. The Nucleus
itself creates segments in response to awide range of system calls; all the iIRMX
objects are constructed from segments.

Creating a Segment

The only parameter you specify in the create_segment system call isthe size of the
new segment. If enough memory is available, the Nucleus returns a token for the
segment.

A segment's physical starting addressis on a 16-byte (paragraph) boundary. The
Nucleus assigns each segment a slot in the Global Descriptor Table (GDT). That
GDT dot multiplied by 8 serves as the segment token.

Y ou can use the segment token when you use send_message to send a message, for
example. You can also use the token for a segment as the selector portion of a
pointer to the segment when placing data into the segment. The SELECTOR data
type is especialy useful in referring to the segment.

You can use therqe _change object_access call to change data segments to read-
only and read/write for data segments or execute-only or execute/read. Y ou can use
get_sizeto get asegment's size in bytes.

See also: Data types, Nucleus examples, System Call Reference

Boundary Alignment

InaMultibus |1 system, solicited messages pass across the system bus more
efficiently if buffers are aligned on a4 byte boundary. Both the base address of the
segment and its length are multiples of four. The create_segment system call
automatically creates buffers that adhere to this convention. Because of the 4 byte
boundary, Direct Memory Access (DMA) can be done in one cycle (fly-by mode), in
which the DMA controller directly transfers data between the Message Passing
Coprocessor (MPC) and memory. The Nucleus Communication Subsystem (NCS)
supports one-cycle transfers for aligned buffers.

See also: MCO, MCT, and MDC parameters on the MBI screen, ICU User's
Guide and Quick Reference

System Concepts Chapter 7 97

If the buffer is not aligned on a 4 byte boundary, each DMA operation requires two
cycles: oneto place the information in the DMA controller's buffer and another to
move it to the desired destination.

For example, on an SBC 486/125 or 486/150 board, solicited data can be transferred
at 13.3 Mbytes per second using one-cycle transfers; using two-cycle transfers, the
rateis 4 Mbytes per second. On SBC 386/133, 486/125, or 486/133SE or MIX
n86/020A, 486SX 33, 486D X 33, or 486D X 66 boards, alignment on a 16-byte
boundary and length allows even faster DMA burst mode. For example, on an SBC
486/125 or 486/150 board, solicited data can be transferred at 20 Mbytes per second
using burst mode. The NCS picks the fastest mode possible.

Deleting a Segment

Y ou delete a segment using delete_segment; any task that knows the segment's token
can make the call.

Access Rights and Hardware Types

98

When the microprocessor is operating in protected mode, a segment's access bytes
define the way the segment can be used by instructionsin other segments.

When you create an object, its corresponding segment is assigned a read/write access
type. Before the OS performs any operation, the processor checks the accesstype. If
you have entered the wrong access type, the processor causes a hardware exception.

Y ou can check an object'stype using rqe_get_object_access. Provide a pointer to
theaccess_pt r data structure and the system call fillsin the results.

Y ou can change an object's access type for segment objects, descriptor objects, or
composite objects using rge_change_object_access. Accessrightsfor al other
objects cannot be changed. This system call uses the access byte format provided by
the microprocessor for both code and data segment descriptors.

See also: rqe_get_object_access and rge_change_object_access, System Call
Reference;
the user's manual for your microprocessor

A CAUTION
Do not change bitsin atoken. This can cause a hardware
exception.

Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

Heap Management

TheiRMX |11 OSincludes a memory object called a heap. The interfaces described
in the following subsections provide the object management interface for heap
objects.

A heap is created, then buffers may be requested from and subsequently released to
the heap. Finally, the heap is deleted, which also deletes the underlying segment.
Two additional interfaces are provided: one finds the size of a buffer allocated from a
heap given the heap token and the buffer pointer, and one interrogates the heap object
to determine how much of its resources have been used.

When buffers are requested (allocated) from the heap, afull pointer is returned and

the base (segment) of the pointer is used to validate the buffer when it is returned to
the heap. If aflat-model application creates a heap, that heap’ s segment is mapped

into the job’ s virtual segment.

No reference is returned to the user, because no direct access of the segment is
intended. When buffers are allocated from the segment, the interface library must
adjust the buffer offset according to the task’ s mapping of the heap segment so that a
valid pointer is returned to the caller. If a heap token is used by a flat-model job
which did not create it, the heap object must be mapped into the new job’s virtua
segment and an internal reference of this mapping be kept by the object. This has two
purposes:

e Toalow abuffer alocated to atask in the new job to be mapped correctly, and

» |If the heap object is deleted, the mappings may be deleted from each job's virtual
segment.

What is a Buffer Pool?

A buffer pool manages a preallocated set of segments that you can allocate
dynamically so they will be available quickly and dependably during time-sensitive
operations. The Nucleus maintains the buffer pool, and your application maintains
the segments that it holds. Y ou reference a buffer pool with its token.

The pool can maintain eight different sizes of segments. The buffer pool maintains a
linked list of buffers for each size of segment; all segmentsin agiven list have the
same size. Each linked list can contain as many segments as you need.

After you create and fill abuffer pool, you just specify atoken to identify the pool
and how much memory you need. The Nucleus automatically takes care of the rest.

Figure 7-3 shows a buffer pool and its associated buffers.

System Concepts Chapter 7 99

Y

— J
[] []

OM02880

1. This area is the linked list for each of eight segment sizes. Each linked list can have as
many buffers as you need.

2. This area holds the buffers. The individual buffers are segments with read and write
access enabled.

3. During its existence, a pool gives buffers to tasks when they call request_buffer. When
the pool delivers a buffer to a requesting task, the buffer is removed from the list of
available buffers. The task releases the buffer back to the pool using release_buffer.

Figure 7-3. Buffer Pool with Associated Buffers

Creating and Initializing a Buffer Pool

These are the parameters you specify when you use the create buffer _pool system
call to create the buffer pool.

« The maximum number of buffersthat can exist at one time in the buffer pool
« Whether data chains are supported, or only contiguous buffers

A newly created pool isan object with a set of attributes that defines its capabilities.
Buffer poolsincur a certain amount of system overhead in their creation. This
formula defines the amount of resources required.

(Max Buffers * 4) + 108 bytes = memory used by a buffer pool

Buffers are not allocated for a buffer pool at creation. Y ou must allocate a set of
segments for the buffer pool. Create the segments using the create_segment system
call. You can create as many segments as you need in up to eight different sizes.

100 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

Then, you place the segmentsin the buffer pool using release buffer. This process
iscalled initializing the buffer pool. Do it early in your program rather than in the
middle of real-time operation. Do not release segments created in different jobsto
the buffer pool.

Using Data Chains

|:| Note
You can use data chainsonly inthe iRMX 111 OS. The
configuration of DOSRMX and iRM X for PCs does not allow the
use of data chains.

If you enable data chaining, a message may be copied into a data chain instead of a
single buffer, depending on itssize. The NCS strings small buffers together to fill a
large request made in request_buffer. If the pool constructs adata chain, it returnsa
selector to adata chain block that holds pointers to the segments that make up the
chain. The buffer pool also returnsthe E DATA_CHAIN condition code to
request_buffer so the requesting task will know it has received a chain block.

The amount of data in the message determines the number of buffersused. When a
data chain is created, the required number of buffers are removed from the buffer
pool and made into the chain. One additional buffer istaken from the buffer pool and
used as the chain block, which contains alist of al the buffersin the chain.

System Concepts Chapter 7 101

102

Figure 7-4 on page 102 shows the structure of a chain block.

Byte count
. Buffer
Buffer pointer > segment
Reserved byte 0
Byte count
Buffer pointer \ Buffer
Reserved byte segment
° 1
L[]
L[]
Byte count
i ~| Buffer
Buffer pointer > segment
Reserved byte n
Byte count =0

OMO02886

The buffer pointer is a selector:offset pair with 16-bit offset (not 32-bit). To use as a pointer in
PL/M-386, use this: buf$p = build$ptr(chain(n).base, chain(n).off)

The byte count data type is WORD_16; each component buffer cannot exceed 64 Kbytes in
length.

Byte count = 0 is the chain terminator.

Figure 7-4. Structure of a Chain Block

The minimum buffer size for data chains is 1Kbyte in length, and you must request at
least one buffer to enable the system to build the data chain block.

« The minimum data chain block size is (max_elements*8) + 2 BYTES.

« The maximum number of elementsis a configuration option. At least one 1026
byte buffer will be available in the buffer pool for chain allocation.

See also: MCE parameter on the NUC screen, ICU User's Guide
and Quick Reference

|:| Note

Data chains are not supported as message passing buffers on the
SBC 486D X33 and SBC 486SX 25 boards.

Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

Using attach_buffer_pool

If you have created the buffer pool to use with a port, you have to attach it to the port
with the attach_buffer_pool system call. When the NCS delivers a message to the
port, it will automatically store data messages coming to the port in buffers from the
pool. The NCS requests buffers at the same time it receives a buffer request. The
NCS grants the request, using buffers from the attached pool. The buffer or buffers
are then passed to the task that receives the message. Even if the buffer pool is
attached to a port, you can still use the buffer pool token to perform operations on the
buffer pool.

Figure 7-5 shows the relationship of a buffer pool and an attached port. It also shows
how a pointer to a buffer is passed to a task receiving a message at the port.

)

jHD ‘ /D) <[

Ne—

OM02881
1. Task A sends a message through port A to port B.

2. The NCS requests a buffer from the pool attached to port B and places the message
directly into the buffer. A pointer M to the message buffer is placed into the message
gueue of the port.

3. Task B receives the pointer to the message buffer and accesses it. Task B should release
the buffer back to the pool when finished with the message.

Figure 7-5. Relationship of Buffer Pool and Port

Using detach_buffer_pool
This call does not delete the buffer poal, it only removes the association to the port.
If no buffer pool is attached, the E_STATE condition code returns.

Using request_buffer

You can use request_buffer when you need a buffer from a pool for any purpose.
The NCS callsrequest_buffer when it needs space to store an incoming data
message at a port.

The pool returns a pointer to the smallest buffer that fills the request; the buffer may
be equal to or larger than the requested size.

System Concepts Chapter 7 103

If no single buffer is large enough to fill the request, and data chaining is enabled, the
NCS attempts to create a data chain and returns a pointer to the data chain block
along with the E_DATA_CHAIN condition code.

Using release_buffer

Userelease buffer to return the buffer back to the pool when the task is done with
the information in the message. Otherwise the buffer is not available to the pool.

Release buffer adds the segment to one of the lists of buffersin the pool. If the size
of the segment is different from any of the sizes currently maintained by the pool, the
pool creates anew list for segments of that size. Up to eight lists are supported.

If you arereleasing achain block, asingle call to release buffer releases all data
chain buffers to the pool, including the data chain block buffer. Usethef | ags
parameter to indicate whether the segment is a single buffer or a data chain block.

Deleting a Buffer Pool

104

Y ou cannot delete a buffer pool using delete buffer_pool while it is attached to a
port; you must first detach it using detach_buffer_pool. A task attempting to delete
an attached pool will receive an E_STATE condition code.

Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

Memory Management System Calls
These are the system calls that relate directly to memory management.

Memory pool call
Segment calls

Buffer pool calls

Heap management calls

rge_get_pool_attrib

create_segment
delete_segment

get_size
rge_get_object_access
rge_change object_access
rge_get_address

create buffer_pool
delete_buffer_pool
request_buffer
release buffer
attach_buffer_pool
detach_buffer_pool

create heap
delete_heap
rge_request_buffer
rge release buffer
get_heap_info
get_buffer_size

These are the rules for buffer pools:

« You can attach a buffer pool to more than one port.

« You cannot attach a port to more than one buffer pool.

« A port must be in the same jaob as the attached buffer pool.

System Concepts

Chapter 7

105

106

Table 7-1 lists the operations used to manage memory segments and buffer pools and
the system calls that do the operations.

Table 7-1. Memory Management System Calls

Operation Description

get pool Rge_get_pool_attrib gets information about pool status or use of
attributes its job's memory pool or another job's memory pool.

create Create_segment creates a segment and returns a selector to a
segment new segment.

delete Delete_segment deletes a segment and returns the memory to
segment the job's memory pool from which it was allocated.

get size Get_size returns the size of a segment in bytes.

change Rge_change_object_access changes the access rights of the

access rights

segment.

check
access rights

Rge_get_object_access returns an object's access rights.

get physical Rge_get_address converts an object's logical address into its

address physical address, which may be needed for device drivers or for
creating aliases.

create Create_buffer_pool creates a buffer pool and returns a token for

buffer pool the pool.

delete Delete_buffer_pool accepts a token for a buffer pool and deletes

buffer pool the pool and any buffer segments it contains.

request Request_buffer gets a buffer from a pool that has been created

buffer using the create_buffer_pool system call.

release Release_buffer adds a segment to one of the lists of buffers in

buffer the pool, either to initially fill the buffer pool or to return a segment

to the buffer pool.

attach buffer

Attach_buffer_pool accepts a token for a buffer pool and a token

pool to port for a port and associates the buffer pool with the port.

detach Detach_buffer_pool accepts a token for a port and detaches the
buffer pool buffer pool that is currently attached.

create Create_heap creates a heap and returns a token for the heap.
heap

delete Delete_heap accepts a token for a heap and deletes the heap.
heap

rge request
buffer

Rge_request_buffer gets a buffer from a heap that has been
created using the create_heap system call, or from a pool that
has been created using the create_buffer_pool system call.

Chapter 7

Memory Pools, Memory Segments, and Buffer Pools

rge release Rge_release_buffer returns a preciously allocated buffer space to
buffer the specified buffer pool or heap.

get heap Get_heap_info returns a structure containing information about a
info heap object.

Get buffer Get_buffer_size returns the size of a buffer previously allocated
size from a heap

See also: Nucleus system calls, System Call Reference

System Concepts Chapter 7 107

How to Use Memory Management System Calls

Figure 7-6 shows the order in which you make memory segment system calls.

108

Chapter 7

delete_segment

[

rqe_get_object_access
rge_change_object_access
rqe_get_address

[

OM02883

Make this call from the task that needs a memory segment.
Make this call from any task that needs to know the size of the segment.
Make these calls if you need to change the segment's access rights.

Make this call from any task that knows the segment's token.

Figure 7-6. Segment System Calls

Memory Pools, Memory Segments, and Buffer Pools

Figure 7-7 shows the order in which you make buffer pool system calls.

create_segment attach_buffer_pool
release_buffer

[U

create_buffer_pool

[

detach_buffer_pool
delete_buffer_pool

request_buffer
release_buffer

0 0

OM02882

1. Make this call from the task that needs a buffer pool.

2. These calls fill the buffer pool with buffers. Make these calls from the task that created the

buffer pool.

3. Make this call if the creating task has a port that needs a buffer pool.

4. Make these calls from the creating task.

5. Make this call from the task that created the buffer pool.

System Concepts

Figure 7-7. Buffer Pool System Calls

Chapter 7

109

110 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

Object Directories

What is an Object Directory?
An object directory contains alist of object names and corresponding tokens.

« The name contains from 1 to 12 characters; a character is a 1-byte value from 0
to OFFH. Some tasks may know objects only by name.

+ Thetokenisa 16-bit selector or handle for objects.

The object directory enables tasks to use symbolic names to share access to objects.

Creating a Job Object Directory

The Nucleus creates an object directory for each job as you create it, using
rqe_create job. You specify the number of entries allowed in an object directory in
thedi rect ory_si ze parameter of the rge_create job system call.

Deleting a Job Object Directory
Y ou delete the job object directory when you call delete job.

System Concepts Chapter 8 111

Using an Object Directory

Typically, one task creates an object and catal ogs its token and name. Another task
uses that name to look up the token for the object. Two or more tasks can share an
object that is cataloged in an object directory.

|:| Note

The object directory is case-sensitive: upper- and lower-case
alphabetic characters are interpreted differently. The Nucleus,
however, sees the name asjust a string of bytes; it does not
interpret these bytes as ASCII characters.

Using catalog_object

Use the catalog_object system call to put the object into an object directory. You
specify the job in which to catal og the object, the object's token, and a name for the
object. If the object directory isfull, the task receivesan E_LIMIT condition code.

Y ou can catalog the object in the task's job or in any job for which you have the
token. Each job has an object directory, including the root job. To make an object
accessible to all tasksin the system, catalog it in theroot job. Call get_task_tokens
to obtain the token of the root job.

Y ou can use any byte values except null in the name. Y ou can catalog the object
under several different names, all with the same token, if your application needs this.
The Nucleus will return a condition code if you try to catalog an object using a name
that is already cataloged in the directory.

Using lookup_object

Use lookup_object to get an object's token so atask can access the object. You
specify the token of the job whose object directory you want to search, the name of
the object and the amount of time the task can wait. If the object is not cataloged, the
task goes to sleep by waiting for the specified time or until the nameis cataloged,
whichever comes first.

The call returns the object's token, or an E_TIME condition code if the object is not
cataloged during the specified wait time. If the object directory isfull and the task
specified no wait time, it receivesan E_LIMIT condition code instead.

Using rqe_inspect_directory

112

Userge_inspect_directory to view the contents of ajob's object directory in a
single operation. Y ou specify the token of the job whose object directory you want to

Chapter 8 Object Directories

inspect and a pointer to a structure in which the contents of the objectory will be
returned. The structure also contains the maximum number of entries to be returned.

Using uncatalog_object

Y ou remove entries from a directory using the uncatalog_object system call.

Object Directory System Calls
These are the system callsthat relate directly to object directories.

catalog_object
get_type
inspect_directory
lookup_object
uncatalog_object
get_task_tokens

Table 8-1 lists common operations on objects in object directories and the system
callsthat perform the operations. Tasks can use the object directory for their job or

another job.
Table 8-1. Object Directory System Calls
Operation Description
enter object Catalog_object catalogs the specified object in an object
in directory directory.
get type of Get_type accepts a token for an object and returns its type code.
object This enables you to use the appropriate calls for the object.
inspect Rge_Inspect_Directory fills a passed in structure with the entries
contents of in the specified object directory.
entire object
directory
look up name Lookup_object returns the token of the named object.
of object
remove Uncatalog_object removes the entry for the specified name. The
directory name becomes available for re-use.
entry
get token Get_task_tokens gets a token for a parameter object or for the
for object task's job, parent job or root job in order to catalog objects.

See also: Nucleus system calls, System Call Reference

System Concepts Chapter 8 113

How to Use Object Directory System Calls
Figure 8-1 shows the order in which you make object directory system calls.

uncatalog_object
]

OM02884

lookup_object

get_type
get_task_tokens

l 0

catalog_object

1. Make this call from the task that created the object.
2. Make these calls from tasks that need to access the object.
3. Make this call from the task that created the object.

Figure 8-1. Object Directory System Calls

114 Chapter 8 Object Directories

Exception Handling and
System Accounting

This chapter describes how to handle the condition codes, or exceptions, that are
returned from iIRMX system calls. The primary method isto use exception handlers,
either those provided with the OS or handlers you write. After handling an
exception, you may want your application to investigate the state of the system by
using a set of callsthat return system accounting information.

Exception Handling

Whenever atask makes a system call, the system returns a condition code to the task
to communicate the success or failure of the call. For example, atask may request
memory that is not available. Conditions that represent failure or incomplete success
are called exceptional conditions.

These are sources of exceptions:

» Hardware exceptions, such astrying to execute a read/write data segment. These
occur as aresult of violating a hardware protection feature.

« "Environmental errors, such astrying to write to a printer that is off-line. These
conditions arise outside the control of the calling task.

e Programmer errors, such as making amistake in asystem call. These are
conditions that the calling task can prevent.

See also: Nucleus interrupt and exception handling, Introducing the iIRMX
Operating Systems;
List of condition codes, System Call Reference

Y ou assign an exception handler for ajob when you use therqge create job call:
either the parent job’s current exception handler, which normally deletesthe job in
which the error occurred, or a custom handler you write. You also assign the
exception mode: when to transfer control to the exception handler. If you do not set
ajob's exception mode to transfer control to the job's exception handler, the tasksin
the job must deal with exceptions either by handling them inline or by specifying
their own exception handler using set_exception_handler or
rqe_set_exception_handler. In either case, you must write code to handle the
exception.

System Concepts Chapter 9 115

Exception Handler Actions

116

The Nucleus supports exception handlers for programmer errorsin tasks. Y ou decide
how an exception handler should deal with a condition. In general, a handler does
one of these:

» Correctsthe cause of the exception and continues.
e Logsthe error and continues.

» Deletesthe job containing the task that erred.

* Deletesthe task that erred.

* Suspendsthe task that erred.

» Ignoresthe error. (Note that hardware exceptions cannot be ignored.) If you
choose this option, the system continues as if no error had occurred. Thisis
generally unwise.

Y ou can specify the System Debug Monitor (SDM) as the default exception handler
when debugging an ICU-configurable system. Then SDM takes control of all the
supported hardware exceptions except those from the Numeric Processor Extension
(NPX). When you specify SDM as the default exception handler, hardware
exceptions cause a break to SDM and send a message to the console. Thisisthe
default for systems that are not |CU-configurable.

See dso: Nucleus screen, ICU User's Guide and Quick Reference;
sdb.job, System Configuration and Administration;
Writing Exception Handlers, later in this chapter

Rather than allowing SDM to take over on a hardware exception, you can write
exception handlers that test for and handle these hardware traps. Since your handler
isalso called for programmer and environmental exceptions (unless these exceptions
are handled inline), the handler must first determine the type of error and act
accordingly.

|:| Note

Because exception handlers can now process hardware traps, you
must modify existing custom exception handlersto test for and
process hardware traps.

See also: Writing Exception Handlers, later in this chapter

Chapter 9 Exception Handling and System Accounting

Exception Handler Modes

An exception handler normally receives control when an exceptional condition
occurs, but it may not, depending on the exception mode. These are the exception-
mode circumstances under which the handler gets control:

* Programmer errors only (all other errors handled inline)

e Environmental conditions only (all other errors handled inline)
* Always

e Never (al errors handled inline)

After detecting that a system call has encountered an exceptional condition, the
Nucleus compares the condition with the calling task's exception mode. The Nucleus
determines whether to pass control to the exception handler based on the mode. The
exception handler then deals with the problem and returns control to the task, unless
the exception handler deleted the job, deleted the task, or suspended the task. When
the exception handler returns, the system call'sexcept _pt r parameter pointsto the
condition code. While the exception handler is executing, the task in which the error
occurred is till the running task. The exception handler task uses the stack and
environment of the task that made the system call.

|:| Note

The only deviation from this behavior occurs for hardware traps.
When a hardware trap occurs the current assigned exception
handler is called regardiess of the exception handler mode.

Condition Code Values and Mnemonics

Condition codes are numeric values that represent unique conditions. Each code also
has a mnemonic such as E_OK, which indicates successful completion or E MEM
which indicates not enough memory.

When you write tasks, you can refer to the condition codes by their mnemonics. The
OS ingtallsinclude files that contain literal declarations for iIRMX condition codes.

See also: Condition code numeric values and mnemonics for specific system
cals, System Call Reference

System Concepts Chapter 9 117

The values of condition codes fall into ranges based on the iIRMX layer that first
detects the condition and the type of exception. Table 9-1 shows the ranges based on
the type of error and the layer detecting the condition. Numeric values appear in

hexadecimal.
Table 9-1 Condition Code Ranges
Hardware Exceptions 8100H to 8111H
Numeric Processor Extension Exceptions 8007H (NPX Error)
All Other Programming and Environmental Exceptions
Environmental Programming
Layer Conditions Errors
Nucleus OH to OFH 8000H to 800FH
1/0 Systems 20H to 5FH 8020H to 805FH
Application Loader 60H to 7FH 8060H to 807FH
Human Interface 80H to AFH 8080H to 80AFH
Universal Development Interface COH to DFH 80COH to 80DFH
Comm Service EOH to EFH 80EOH to 80EFH
Reserved for Intel FOH to 2CFH 80FOH to 82CFH
iNA Networking 2DOH to 3FFH 82DOH to 83FFH
Reserved for RadiSysl 400H to 3FFFH 8400H to BFFFH
Available for applications 4000H to 7FFOH COOOH to FFFOH

Handling Exceptions Inline
Y ou can write tasks that handle exceptionsinline.

Each system call hasexcept _ptr asitslast parameter. After asystem cal, the
Nucleus returns the resulting condition code to this parameter. By checking this
parameter after each system call, you can determine if the call was successful or
which exceptional condition occurred. Thisinformation can sometimes enable the
task to recover. In other cases, more information is needed.

If asystem call returns an exception code to indicate an unsuccessful call, all other
output parameters of that system call are undefined.

See also: Condition codes for each system call, System Call Reference

118 Chapter 9 Exception Handling and System Accounting

Assigning an Exception Handler

Usethe set_exception_handler system call to enable atask to use its own exception
handler and exception mode. Otherwise, the task inherits the exception handler and
mode of its job.

You can also usetherge set_exception_handler system call to set or modify the
exception handler or exception mode for the current task's job or for the system.

Exception handlers execute in the context of the task that caused the problem.

OS-Assisted Handling of Hardware Exceptions

As an dternative to writing a custom hardware exception handler, the iIRMX nucleus
creates a system-wide data mailbox during initialization and catalogs it in the root
job’s object directory with aname of HW_FAULT_MBX. If the active system
hardware exception mode is either Delete the Job, Delete the Task, or Suspend the
Task, then the Nucleus handles hardware exceptions as shown in this figure:

1

Task waits at
HW_FAULT_MBX

HW exception
occurs

¥

iRMX nucleus
sends data to
HW_FAULT_MBX

3

Task awakes
and executes
instructions

1 Anapplication task waits at the HW_FAULT_MBX for a message.

2 When ahardware exception occurs and Soft-Scope isinactive, the iIRMX
nucleus sends a message to this mailbox in the format listed in the tagFaultinfo
structure.

3 When amessage arrives, the task awakes and executes its instructions.
Y ou can set up hardware exception handling in these ways:

e System-wide: When a message arrives at HW_FAULT_MBX, you can call
ra$gettype to determine the system hardware exception mode, and thus
determine the state of the offending task:

» |f thetask and job are valid, then the offending task is suspended.

System Concepts Chapter 9 119

« |fthejobisvalid but thetask is not, then the offending task has been
deleted.

» If both the task and the job are invalid, then the offending task’ s job has been
deleted.

e Job-specific: You can set up your application to create its own data mailbox and
catalog it in its object directory with a name of HW_FAULT_MBX. Then the
iRMX nucleus sends the message to this mailbox as well as to the system-wide
HW_FAULT_MBX. When the message arrives, you can determine the
offending job's state as described above and, since you are in the job whose
member just experienced the hardware fault, you can instruct the program to
remedy the situation.

TagFaultinfo structure

If the system hardware exception handler is set to Delete Job, Delete Task, or
Suspend Task, and a hardware exception handler is encountered, the iIRMX nucleus
sends a message to the HW_FAULT_MBOX with this form:

typedef struct tagFaultlnfo {
TOKEN t ask;
TOKEN j ob;
U NT_16 exception;
UNIT_32 faulting_eip;
TOKEN faul ting_cs;

} FAULT_I NFO

Where:

t ask Isthe TOKEN of the task which encountered the hardware fault.

job Isthe job that contains the task which encountered the hardware fault.

exception IsaWORD that contains the hardware fault exception as follows:
EH_ZERO_DIVIDE 8100H Divide by zero error
EH_SINGLE_STEP 8101H Single step trap
EH_NMI 8102H Non-maskable interrupt
EH_DEBUG_TRAP 8103H Debug interrupt
EH_OVERFLOW 8104H Overflow error
EH_ARRAY_BOUNDS 8105H Array bounds error
EH_INVALID_OPCODE 8106H Invalid op code error
EH_DEVICE_NOT_PRESENT 8107H No numerics device error
EH_DOUBLE_FAULT 8108H Double fault error
EH_DEVICE_ERROR 8109H Device error
EH_INVALID_TSS 810AH Invalid TSS error

EH_SEGMENT_NOT_PRESENT 810BH Segment not present error

120 Chapter 9 Exception Handling and System Accounting

EH_STACK_FAULT 810CH Stack fault error
EH_GENERAL_PROTECTION 810DH General protection error

EH_PAGE_FAULT 810EH Page fault error
EH_RESERVED_INT15 810FH Reserved
EH_DEVICE_ERROR1 8110H Device 1 error
EH_ALIGNMENT_CHECK 8111H Alignment check error

Faul ti ng_ei p Isthe OFFSET of the instruction which caused the hardware
exception.

Faulting_cs Isthe SELECTOR of the instruction which caused the hardware
exception.

Writing Your Own Exception Handler

Y ou need to consider several things when you write your own exception handler. For
example, 32-bit code requires 32-bit exception handlers, and 16-bit code requires 16-
bit exception handlers. The only time thisis not true isif the exception handler
deletes the offending job, deletes the offending task, or suspends the offending task.

Another consideration is the type of exception you are processing. Asof release 2.2
of theiRMX OS, you can write exception handlers that process hardware traps. This
means that your handler can process three groups of errors:

e Hardwaretraps
* Numeric Processor Extension (NPX) exceptions
e All other programming and environmental conditions

Also, the exception handler executes in the context of the task that caused the
problem. Because of this, deleting the task will kill the exception handler.

Finaly, if you set the system’s default exception handler in the ICU on the (NUC)
Nucleus screen by setting DSH equal to "User", your exception handler module must
have these characteristics:

» The public entry point must be named r gsysex
e It must be 32-hit code

e It must be compiled as Near using Intel OMF386 tools (iC-386, PL/M-386, or
ASM386)

System Concepts Chapter 9 121

Handler Prototype

Y ou can create your exception handler to determine the type of problem and act
accordingly by creating a FAR, typed procedure that follows this prototype
definition:

U NT_8 _Fparam far my_exception_hndlr(
(UI'NT_16) err_code,
(Ul NT_16) param num
(UINT_16) param 1,
(UI'NT_32) param 2);

Where:

err_code Indicatesthe type of error. Vauesfrom 8100H through 8111H
represent hardware traps. A value of 8007H represents an NPX
exception. The ranges shown in Table 9-1 on page 118 represent all
other programming errors and environmental conditions.

par am num Represents the offending parameter number of the call that caused the
problem. par am numis not valid for hardware traps or NPX
exceptions.

param 1 For hardwaretraps, par am 1 isthe selector part of the pointer to the
CPU_FRAME_STRUCT structure (see CPU_FRAME_STRUCT later
in this chapter). For al other exceptions, par am 1 is meaningless.

param 2 For hardwaretraps, par am 2 isthe offset part of the pointer to the
CPU_FRAME_STRUCT structure (see CPU_FRAME_STRUCT later
in this chapter). For NPX exceptions, par am 2 isan NPX status. For
all other programming errors and environmental conditions, par am 2 is
meaningless.

122 Chapter 9 Exception Handling and System Accounting

Handler Contents

The first task your new handler (and all existing user-written handlers) must perform
isto examine the value of err _code. Next, the handler must perform one of the
following, based on the type of error:

e Usethe BUILDPTR function to build a pointer (f r ame_p) out of param 1 and
par am 2 that pointsto the CPU_FRAME_STRUCT if the exceptionisa
hardware trap.

» Derivethe NPX status from par am 2 if the exception is from the Numeric
Processor Extension.

e Ignoreparam 1 and par am 2 if the error is a programming error or
environmental condition.

Once your handler determines the type of exception and casts the parameters to the
right types, it must processthe error. Usually thisinvolves correcting, logging, or
reporting the condition. However, for hardware exceptions you have two choices
after processing the error:

* Returnto the task that caused the exception. If you write the handler to do this
your handler must also fix the task’ s problem.

» Prevent the task from running again by either deleting or suspending it. Because
the operating system already has handlers that delete tasks, delete jobs, and
suspend tasks, you can write your handler to return to the appropriate system
exception handler.

The value returned in the AX register by your typed exception handler procedure
determines which of these two optionsistaken. A returned value of 0 causesthe
exception handler dispatcher to call the currently active system hardware trap handler
to deal with the offending task. Returning a value of OFFH causes the exception
handler dispatcher to return to the offending task at the code segment (CS.EIP)
present in the CPU_FRAME_STRUCT structure.

System Concepts Chapter 9 123

The following pseudo-code example shows how to handle any exceptional condition.
Thefirst conditional handles NPX conditions. The second conditional handles
hardware traps. The default condition handles all other programming and
environmental exceptions.

if err_code is 8007H then {
derive NPX status as foll ows:
NPX_status = (U NT_16) param?2 ;
Correct, log, or report the condition ;
return ;

if err_code ranges from 8100H t hrough 8111H then {
generate pointer using the built_in BU LDPTR as foll ows:
frame_p = BU LDPTR((sel ector)param1),
(void near *)param?2) ;
Log or report the condition ;
If calling active system handler then {
return (0) ;
}
else if returning to the offending task then {
return (OFFH);

}
}

el se exception is env/prog error, handle normally {
Correct, log, or report the condition ;
return ;

}

Compiling Your Exception Handler

124

If you are writing your own exception handlers, compile them as far procedures by
EXPORTING the procedure with the PUBLIC attribute.

Chapter 9 Exception Handling and System Accounting

Parameters Used With Hardware Traps

When the value for the er r _code parameter isin the range 8100H to 8111H, a
hardware trap has occurred. As shown earlier, your handler must generate the pointer
f rame_p that points to the CPU_FRAME_STRUCT structure when processing a
hardware trap. The type definition of this structure is as follows:

t ypedef struct{
SELECTOR runni ng_t ask;
U NT_16 fillo;
Ul NT_32 reg_cr2,
SELECTOR reg_gs;
U NT_16 filla;
SELECTOR reg_fs;
U NT_16 fill2;
SELECTOR reg_es;
U NT_16 fill3;
SELECTOR reg_ds;
U NT_16 fill4;
SELECTOR reg_|ldt;
U NT_16 fillb;
Ul NT_32 reg_edi;
Ul NT_32 reg_esi;
Ul NT_32 reg_ebp;
Ul NT_32 reg_esp;
Ul NT_32 reg_ebx;
Ul NT_32 reg_edx;
Ul NT_32 reg_ecx,
Ul NT_32 reg_eax,
Ul NT_32 error_code;
Ul NT_32 ret_eip
SELECTOR ret_cs;
U NT_16 fille;
Ul NT_32 ef | ags;
Ul NT_32 ret_esp;
SELECTOR ret_ss;
U NT_16 fill7;

} CPU_FRAVE_STRUCT;

System Concepts Chapter 9 125

126

where:

fill<n>

Reserved

runni ng_t ask
The token of the task whose CPU register state is being provided.

reg_cr2

reg_gs

reg_fs
reg_es
reg_ds
reg_|dt
reg_edi
reg_esi
reg_ebp
reg_esp
reg_ebx
reg_edx
reg_ecx

reg_eax
error_code

ret_eip
ret_cs
ef | ags
ret_esp

ret_ss

Chapter

Thetask’s CR2 register;
exception handler.

Thetask’s GSregister.
Thetask’'s FSregister.
Thetask’sESregister.
Thetask’s DSregister.

reg_cr 2 isonly validin the context of an

Thetask’'sLDTR register.

Thetask’sEDI register.
Thetask’s ESI register.
The task’s EBP register.
The task’s ESP register.

Thetask’'s EBX register.
Thetask’sEDX register.
Thetask’s ECX register.
Thetask’sEAX register.

The error code returned by the processor; error _code isonly validin
the context of an exception handler.

Thetask’s EIP register.
Thetask’s CSregister.

The task’s EFLAGS register.

The task’ s ESP register.
The task’s SS register.

9

Exception Handling and System Accounting

Exception Handler System Calls
These are the system calls that relate directly to exception handlers.

get_exception_handler
set_exception_handler
rqe_get_exception_handler
rqe_set_exception_handler

Table 9-2 lists common operations on exception handlers and the system calls that
perform the operations.

Table 9-2 Exception Handler System Calls

Operation Description

set handler Set_exception_handler sets the exception handler and exception
mode attributes of the calling task. Rge_set_exception_handler
sets or modifies the exception handler and exception mode for
any task, job, or the system.

get handler Get_exception_handler returns to the calling task the current

attributes task’s exception handler and exception mode attributes.
Rge_get_exception_handler returns to the calling task the
current exception handler and mode for any task, job, or the
system.

See also: Nucleus system calls, System Call Reference

System Accounting

Several system calls alow you to check on the state of tasks, the CPU, and other
high-level system information. These calls can be useful at any time but are
particularly useful after exceptions occur. The calls allow you to:

* Return information about the execution state and CPU registers of atask
» Return information about when a task was created and how long it has run

» Enable and disable tracking of CPU use by the operating system

Enabling and Disabling CPU Tracking

Use the system_accounting system call to enable or disable tracking of CPU usage
by the operating system. Accounting must be enabled to use the
get_task_accounting call.

See also: Nucleus System Calls, System Call Reference

System Concepts Chapter 9 127

Returning Information About a Task

Use the get_task_info system call to return high-level information such as task
priority, exception handler, the containing job, and execution state. For amore
detailed look at the state of atask, usethe get_task _state system call. Thiscall
returns information about the state of any task in the system, including such items as
the execution state and the CPU registers for the task’ s execution context.

|:| Note

CPU context isonly available for tasks that are suspended by atask
other than itself.

See also: Nucleus System Calls, System Call Reference

Returning Task Creation and Duration Statistics

Usethe get_task_accounting system call to find out when atask was created and
how long it hasrun. Thiscall can be useful in debugging a system when exceptions
cause atask to be suspended.

See also: Nucleus System Calls, System Call Reference

System Accounting System Calls
These are the system calls that relate directly to system accounting.

get_task_info
get_task_state
get_task_accounting
system_accounting

128 Chapter 9 Exception Handling and System Accounting

Table 9-3 lists the type of system accounting you can perform with these calls.

Table 9-3 Accounting System Calls

Operation Description

get high-level Get_task_info returns high-level information about the

task information target task.

get CPU Get_task_state returns some high-level information

information about the target task. This call also returns CPU register
context for suspended tasks.

get accounting Get_task_accounting returns accounting information for

information the target task.

enable or disable System_accounting enables or disables tracking of
accounting CPU use.

See also: Nucleus system calls, System Call Reference

System Concepts Chapter 9 129

130 Chapter 9 Exception Handling and System Accounting

Interrupts

How Do Interrupts Work?

Many different events can cause an interrupt. An interrupt which signals the
occurrence of an external event, triggers an implicit call using an address supplied in
the IDT. Thisdirects control to an interrupt handler.

If handling the interrupt takes little time and requires no system calls other than
certain interrupt-related system calls, the interrupt handler can process the interrupt
itself; the interrupt handler executes in the context of the task running when the
interrupt occurred. Otherwise, the handler should invoke an interrupt task to finish
processing the interrupt. Interrupt tasks have their own context and are not dependent
on the context of the task that was interrupted.

After the interrupt has been serviced by either the interrupt handler or the interrupt
task, control returns to the interrupted task.

Interrupt Controllers and Interrupt Lines

External interrupts pass through programmable interrupt controllers (PICs) such as
the 8259A PIC. The master PIC can manage interrupts from as many as eight
external sources, one being the system clock. But the iRMX OS supports a cascaded
environment in which up to seven input lines of one master PIC are connected to
dave PICs, each with eight input lines.

A cascaded environment in native mode (non-PC architecture) lets the OS manage
interrupts from up to 56 external sources aswell as the system clock in native mode.
Figure 10-1 on page 132 illustrates the concept.

System Concepts Chapter 10 131

System
clock is
usually
here

104--
‘ 114-
; 124--
M d_. &---- .
Mg--- <= Slave 1 134-
PIC
M24- o 14
. Master ~ M3{- e 154--
Microprocessor PIC M4l o D 16+
‘ M5+-- o 179~
| M6+-- o °
CPU M7+-- :
traps
L 704-
- 714
Numeric 721
coprocessor,
if present Slave 7 734-
PIC 744--
754--
764--
774-
W-2828

1. If your system includes an Intel387 numeric processor, do not connect the NPX to a PIC.
The Intel386 processor uses CPU interrupt traps 7 and 16 to communicate directly with the
Intel387 numeric processor.

2. The interrupt lines on the master PIC are numbered MO through M7. The interrupt lines on
the slave PICs are numbered nl through n7. You can connect a master PIC input line
either to an external interrupt or to a slave PIC, but not to both.

Figure 10-1. Processor and PIC Interrupt Linesin Native Mode

PC-compatible Mode

In PC-compatible mode, attach the keyboard to M 1, attach the only slave PIC to level
M2 and attach the NPX to line 5 onthe dave PIC.

See also: PIC, ICU User's Guide and Quick Reference

132 Chapter 10 Interrupts

Interrupt Levels

Theinterrupt lines of the master and slave PICs are associated with interrupt levels.
An interrupt level names an interrupt line and indicates the priority of theline: the
lower the number, the higher the priority.

Lower-numbered lines like M2 (or lines from the dave PIC connected to it) have
higher priority than higher-level lineslike M5 (or lines from the slave PIC connected
toit). If two interrupts occur simultaneoudy, the PIC informs the CPU of the higher-
priority interrupt first. The Nucleus often disables low-priority interrupts to service
high-priority interrupts.

Interrupt Descriptor Table

The processor usesthe IDT entry as a pointer to the interrupt handler to execute for
the specific interrupt. Each IDT entry contains the physical address of the interrupt
handler.

The hardware assigns a number to the cause of each interrupt and givesit an entry in
the IDT. TheIDT is composed of up to 256 entries, numbered 0-255. Inan ICU-
configurable system, you specify the number of IDT entries your application needs
using the NIE parameter. Y ou will probably not need more than 128 entries. If, for
example, your system has only the 8259A master PIC with no slaves, the first 64
entries are enough. The Nucleus does not use entries 128-255. The entries are
allocated as shown in Table 10-1 on page 134.

See also: IDT, user's guide for your microprocessor;
NIE parameter, ICU User's Guide and Quick Reference

System Concepts Chapter 10 133

Table 10-1. Allocation of Interrupt Entries

IDT Entry Description
0 divide by zero
1 single step (used by the SDM monitor)
2 power failure (nonmaskable interrupt, used by the SDM monitor)
3 one-byte interrupt instruction (used by the SDM monitor)
4 interrupt on overflow
5 run-time array bounds error
6 undefined opcode
7 NPX not present/NPX task switch
8 double fault
9 NPX segment overrun
10 invalid TSS
11 segment not present
12 stack exception
13 general protection
14-15 reserved
16 NPX error
17-55 reserved
56-63 8259A PIC master (external interrupts)
64-127 8259A PIC slaves (external interrupts)
128-255 unused

Assigning Interrupt Levels to External Sources

To assign interrupt levels to external sources, use these guidelines:

134

Assign the system clock to a master interrupt level, usually MO.

Assign the most critical interrupts to the lowest-numbered levels. To provide
preemptive, priority-based scheduling, the Nucleus usually disables less-
important interrupts.

Y ou cannot attach both an interrupting device and a slave PIC to the same master
level. Suppose you physically attach adeviceto level M3: entry 59 decimal of
the IDT contains the address of the interrupt handler for the device; entries 88
through 95 decimal of the IDT (the dlave level entries that correspond to master
level M3) will not be available.

Chapter 10 Interrupts

« You cannot connect adave PIC to MO if an interrupting device connects directly
to any other master level. If you assign the system clock to level MO, you can
connect seven slave PICs. |If you assign the system clock to another interrupt
level, you can connect at most six dave PICs to the master PIC.

« ThelIntel387 NPX does not require a dedicated interrupt line in native mode. In
PC-compatible mode, it uses M2, level 25.

See also: PIC, ICU User's Guide and Quick Reference

Interrupt Handlers and Interrupt Tasks

Whether an interrupt handler services an interrupt level by itself or invokes an
interrupt task to service the interrupt depends on the system calls (these are limited)
and the amount of time needed. Aninterrupt signal disables all interrupts; they
remain disabled until the interrupt handler either services the interrupt and exits, or
invokes an interrupt task. Invoking an interrupt task enables higher priority interrupts
(and in some cases, the same priority interrupts) to be accepted.

See also: Random access support for interrupt-driven devices for examples of
interrupt tasks, Driver Programming Concepts

System Calls and Interrupt Handlers
When writing an interrupt handler, you need to keep these pointsin mind:

« Interrupt handlers can make only the Nucleus enter _interrupt, exit_interrupt,
get_level, disable, and signal_interrupt system calls. If you need other system
callsto service the interrupt, create an interrupt task.

« Interrupt handlers should not use C library calls that perform high-level 1/0
operations such as printf(). Thesetypesof C library calls may be unsafe for use
by handlers because they use signaling or blocking objects or they use
high-level I/0O.

« Interrupt handlers can use system calls that signal the Kernel such as
KN_send_units. However, the handler must take steps to prevent a task switch.

See also: Using iRMX Kernel Callsin iRMX Interrupt Handlers later in this
chapter

System Concepts Chapter 10 135

Writing an Interrupt Handler

Interrupt handlers are generally written as C or PL/M interrupt procedures, but they
can be written in assembly language. If you use assembly language, you must save
and restore all register values.

An interrupt handler uses the stack of the interrupted task.

If an interrupt handler services interrupts for a given level without invoking an
interrupt task, it must do these things:

1

5.
6.

Save all register contents (C and PL/M do it for you when the procedure is given
the | NTERRUPT attribute).

If the handler can load its own DS register with the data segment selector, do so.
If the handler requires a special data segment, call enter_interrupt.

Service the interrupt.

Call exit_interrupt. This sends an end-of-interrupt (EOI) signal to the
hardware.

Restore all register contents.
Return using an IRETD instruction.

See also: Designing an Application, Programming Techniques;

examples in /rmx386/demo/c/int directory

Using set_interrupt With a Handler Only

136

Before an interrupt handler can service an interrupt level, atask must invoke the
set_interrupt system call to bind the handler to the interrupt level. Set_interrupt
places a pointer to the first instruction of the handler in the appropriate entry in the
IDT.

These are the parameters you supply in set_interrupt:

Usethei nt er rupt _handl er parameter to specify the starting address of the
interrupt handler. When an interrupt of that level occurs, control automatically
transfers through the IDT to the handler.

Set thei nterrupt _task_f| ag parameter to 0, to specify that thereisno
interrupt task for the level.

Set thei nt err upt _handl er _ds parameter to null to specify that the handler
loads its own data segment. (Interrupt handlers written in PL/M, including
COMPACT model, have their DS registers |oaded automatically on invocation.)

Chapter 10 Interrupts

What the OS Does With a Handler Only

1

2.

3.

4,

When an iRM X application system starts running, all interrupt levels are
disabled.

When set_interrupt binds an interrupt handler to alevel, the Nucleus enables
the level immediately.

When an interrupt occurs, the processor automatically transfers control to the
handler. The handler executes in the context of the interrupted task with all
interrupts disabled.

When the handler calls exit_interrupt, this sends an end-of-interrupt (EQI)
signal to the hardware. Control returnsto the interrupted task when the handler
issues an IRETD instruction.

Usereset_interrupt to cancel the assignment of a handler by clearing out the
appropriate entry inthe IDT. The call aso disables the specified level.

Using an Interrupt Handler and an Interrupt Task

If an interrupt handler invokes an interrupt task, it must do these things.

1

Save all register contents (C and PL/M do it for you when the procedure is given
the | NTERRUPT attribute).

If the handler needs to pass information to the interrupt task in a special data
segment, call enter_interrupt. Usualy the interrupt handler and interrupt task
are in the same system and share the same data areas.

Possibly begin servicing the interrupt.
Do one of these:

Call signal_interrupt to start the interrupt task and enable higher (and possibly
equal) priority interrupts.

or

Call exit_interrupt. This sends an end-of-interrupt (EOI) signal to the
hardware.

Restore all register contents.
Return using an IRETD instruction.

System Concepts Chapter 10 137

An interrupt task must perform these functions in the indicated order, although the
first two functions may be interchanged:

1. Do any required task initialization, such as preloading variables.
2. Call set_interrupt.
3. Enter aloop which:

a. Cdlsrge_timed_interrupt or wait_interrupt.

b. Servicesthe interrupt when notified by asignal_interrupt call from the
handler.

Cc. Returnsto step a.

An interrupt task, once initialized, is alwaysin one of two modes: either servicing an
interrupt or waiting for notification of an interrupt. However, the Nucleus does not
enable the level or any lower levels until the task invokes the wait_interrupt or
rqe_timed_interrupt system call.

Theinterrupt task has its own resources and runs in its own environment. The
interrupt task can use exception handlers, whereas the interrupt handler aways
handles exceptionsinline.

Using set_interrupt With a Handler and Task

138

These are the parameters you supply in set_interrupt:

« Usetheinterrupt _handl er parameter to specify the starting address of the
interrupt handler.

e Settheinterrupt_task_fl ag parameter to not 0, to specify that thereisan
interrupt task for the level and to indicate how many pending interrupts can be
gueued before E_INTERRUPT_SATURATION occurs: the interrupt limit.

« Usethei nterrupt _handl er _ds parameter to specify the data segment for the
interrupt task. The interrupt handler can later load this data segment into the DS
register by calling enter_interrupt. In most cases, an interrupt handler and an
interrupt task are in the same subsystem and share the same data areas.

(Interrupt handlers written in high-level languages that have a FAR interface,
have their DS registers loaded automatically on invocation.)

See also: EXPORT control for PL/M Compact subsystems

While the interrupt task is processing, the Nucleus disables al lower interrupt levels.
The associated interrupt level is either disabled or enabled, depending on the
interrupt_task_flag parameter.

Chapter 10 Interrupts

If the number of pending interruptsisless than the interrupt limit specified, the
associated interrupt level isenabled. All signal_interrupt callsthat the handler
makes (up to the limit specified) are logged.

If the associated interrupt level is disabled (the number of pending interruptsis equal
to the pending interrupt limit) while the interrupt task is running, the call to
wait_interrupt enablesthat level.

Using rge_timed_interrupt or wait_interrupt

You should call rge_timed_interrupt or wait_interrupt from interrupt tasks
immediately after initializing and immediately after servicing interrupts. These calls
suspend the interrupt task until the interrupt handler for the same level resumesit by
invoking signal_interrupt.

If the number of pending interrupts from signal_interrupt callsis greater than 0
when the interrupt task callsrge_timed_interrupt or wait_interrupt the task is not
suspended. Instead, it continues processing the next signal_interrupt request.

Shared Interrupts

The PCI bus architecture as used in the PC allows less flexibility to the system
designer regarding how interrupts are routed and separated from other sources. While
it may be possible on a system consisting of a PCl Local Bus architecture to separate
PCI device interrupts from each other, as soon as a bridge is added, and more buses
connected, then it is almost impossible to avoid the possibility that different devices
may be sharing the same interrupt line.

TheiRMX 111.2.3 OS provides support to alow different devices to share the same
interrupt line by providing generic interrupt handlersinternally, which call out to
user-supplied, device-specific handlers. When an interrupt occurs on such aline, all
the handlersinstalled for that hardware interrupt level are called in sequence, starting
with the first installed. Thisresultsin alittle extra overhead over standard handlers,
s0 use of this feature should be restricted to situations where you cannot guarantee
exclusive access to an interrupt line.

Another consequence of interrupt sharing is that the interrupt signals are level-
triggered. That is, the PIC is programmed to recognize an interrupt condition
whenever the interrupt line is asserted. Non-PCl (non-shared) interrupts are edge-
triggered; the PIC recognizes when the interrupt line changes state to active. The
practical consequence of thislevel triggering isthat if the device is not instructed to
de-assert itsinterrupt line before the CPU exits from the handler, then the interrupt
condition is till asserted, and the handler isimmediately re-entered. Against that,
remember that while the CPU is executing an interrupt handler, no other interrupt
will occur until the CPU interrupt mask is cleared. Thus we want to minimize the

System Concepts Chapter 10 139

time spent in each shared interrupt handler, but do sufficient work to remove the
interrupt condition.

Toinstall ashared handler, usetherge_set_interrupt system call, and specify that
thisisto be a shared interrupt handler by setting bit 15 of the hardware interrupt level
parameter.

Asyou write an interrupt handler that will be used with a shared interrupt level, take
into account that some interrupt system calls will have no effect. For example,
signal_interrupt isignored for shared handlers, since this action is taken
automatically after all handlers have been called.

Shared interrupt handlers should not call get_level sincethe return valueis
meaningless in shared handler context. The encoded interrupt level is supplied as a
parameter to the handler. Calling enter _interrupt is also superfluous since the
process context is already set up on shared handler entry.

Interrupt Task Priorities

140

When atask becomes an interrupt task by calling set_interrupt, the Nucleus assigns
apriority to it according to the interrupt level to be serviced. Table 10-2 on page 141
shows the relationship between the encoded level (the value used for the | evel
parameter of set_interrupt), the Master and Slave interrupt levels, the IDT dlot and
the priorities of tasks that service those levels.

|:| Note

If an interrupt task's priority exceeds the maximum priority
attribute of itsjob, the interrupt task fails to set up and the Nucleus
returns an exceptional condition code. Prevent this by increasing
the job's maximum task priority using rge_set_max_priority

Chapter 10 Interrupts

Table 10-2. Interrupt Level and Task Priority Information

Interrup Interrup
iRMX PIC Level IDT t iRMX PIC Level IDT t
Encodin Master Slave Slot Task Encoding Master Slot Task
g Priority Slave Priority
O0H 00 64 4 40H 40 96 68
01H 01 65 6 41H 41 97 70
02H 02 66 8 42H 42 98 72
03H 03 67 10 43H 43 99 74
04H 04 68 12 44H 44 100 76
05H 05 69 14 45H 45 101 78
06H 06 70 16 46H 46 102 80
0o7H 07 71 18 47H 47 103 82
08H MO 56 18 48H M4 60 82
10H 10 72 20 50H 50 104 84
11H 11 73 22 51H 51 105 86
12H 12 74 24 52H 52 106 88
13H 13 75 26 53H 53 107 90
14H 14 76 28 54H 54 108 92
15H 15 77 30 55H 55 109 94
16H 16 78 32 56H 56 110 96
17H 17 79 34 57H 57 111 98
18H M1 57 34 58H M5 61 98
20H 20 80 36 60H 60 112 100
21H 21 81 38 61H 61 113 102
22H 22 82 40 62H 62 114 104
23H 23 83 42 63H 63 115 106
24H 24 84 44 64H 64 116 108
25H 25 85 46 65H 65 117 110
26H 26 86 48 66H 66 118 112
27H 27 87 50 67H 67 119 114
28H M2 58 50 68H M6 62 114
30H 30 88 52 70H 70 120 116
31H 31 89 54 71H 71 121 118
32H 32 90 56 72H 72 122 120
33H 33 91 58 73H 73 123 122
34H 34 92 60 74H 74 124 124
35H 35 93 62 75H 75 125 126
36H 36 94 64 76H 76 126 128
37H 37 95 66 77H 77 127 130
38H M3 59 66 78H M7 63 130

System Concepts Chapter 10 141

Using iRMK Kernel Calls in iRMX Interrupt Handlers

The Nucleus assigns prioritiesto iRM X interrupt tasks based on the handler's
interrupt level. Lessimportant interrupts are disabled when an interrupt task is
running and can be missed. If thisisa problem for your application, you can use
iRMK callsto signal an ordinary or non-interrupt task. This enables you to control
the task's priority. When you use iRMK Kernel callsin an iRMX interrupt handler,
you need to create the service task, cause the service task to perform specific
functions, and cause the handler to perform specific functions.

Creating the Service Task
Y ou need to create atask to handle the interrupt. When creating the task, set the task
priority so that it will not disable lower-level interrupts.

Things to do from the Service Task

From the service task you need to do the following:

1. UseKN_create semaphore or KN_create mailbox to create a Kernel
semaphore or mailbox. Store the token in your application’s global memory
referenced by the DS.

2. Cdl set_interrupt withi nt errupt _task_f| ag setto 0. Thisindicatesthere
isno associated iRM X interrupt task.

Specify ini nt er r upt _handl er _ds whether the handler's DS is self-loaded
(null selector) or loaded using enter _interrupt.

3. Enter aninfinite loop in which you wait at the Kernel semaphore or mailbox for
notification of an interrupt. Process the interrupt then wait again, etc.
Things to do from the Handler
From the interrupt handler you need to do the following:

1. Loadyour own DS or use enter_interrupt to load DS from which you access
the Kernel semaphore or mailbox which will signal your service task.

2. Obtain ascheduling lock by using KN_stop_scheduling prior to signaling the
task. This prevents atask switch from immediately occurring as aresult of the
signaling call. If atask iswaiting, it will be made ready but will not run
immediately.

3. After doing the required handler-level processing use KN_send_unit or
KN_send_data to signal the task that handles the interrupt.

4. Send an End of Interrupt (EOI) to the interrupt controller by using the
exit_interrupt call.

142 Chapter 10 Interrupts

5. Release the scheduling lock by using KN_start_scheduling. This call resumes
normal scheduling. Under normal scheduling the highest priority ready task
runs. If KN_start_scheduling causes an immediate task switch, the remainder
of KN_start_scheduling and the rest of the handler code will not execute until
the originally interrupted task getsto run again. For this reason, you should
placethe KN_start_scheduling call just prior to the interrupt return (IRET).

Example Using iRMK Kernel Calls in iRMX Interrupt Handlers

The following code shows how you can use iIRMK Kernel Callsin iRMX interrupt
handlers:

void interrupt IntHdlr(void)

{
U NT_16 | ocal _stat us;

/*

* Call RQenter_interrupt if the handler requires access to a

* gpecific application Data Segnment. The segnment is specified in the
* call to RQset_interrupt, which establishes the handler.

*/

/*
* performany handl er | evel interrupt processing here
*/

/*

* The handler will now signal an ordinary i RMX task which is waiting at
* a Kernel semaphore.

* Get scheduling lock prior to nmaking the signaling call.

*/

KN_st op_schedul i ng();
/*

* The KN_stop_scheduling call prevents a task switch fromimediately
* occurring as a result of KN_send_unit.

* |f atask is waiting at knsemaphore, it will be made ready but wll
* not run inmrediately.

*/

KN_send_uni t (knsenmaphore); /* signal ordinary task */

/*

System Concepts Chapter 10 143

* The rq_exit_interrupt call sends an End of Interrupt (EQ) to the
* interrupt controller.
*/

rg_exit_interrupt(lntLevel, & ocal _status);

* Rel ease the scheduling | ock and resume normal scheduling.
* At this point the highest priority ready task will run, possibly
* even before the return from KN_start_schedul i ng.

* |f KN_start_scheduling causes an i medi ate task sw tch, the remnainder
* of KN_start_scheduling and the rest of the handler code will not be
* executed until the *interrupted* task gets to run again. For this

* reason, the KN start_scheduling call should be the very last call in
* the handler, just prior to the interrupt return (IRET).

*/

KN_start_schedul i ng();

Interrupt Servicing Patterns

144

Figure 10-2 on page 145 illustrates the relationships between the servicing patterns of
interrupt handlers and interrupt tasks.

The handler performs the simple, less time-consuming functions; it signals the
interrupt task to perform more complicated functions. The handler sends information
to the task in data buffers. The number of pending interrupts influences when and
how interrupts are disabled.

An interrupt handler might call an interrupt task sometimes, but not every time. For
example, an interrupt handler may put characters entered at aterminal into a buffer.

If the character is an end-of-line character, or if the character count maintained by the
interrupt handler indicates the buffer isfull, the interrupt handler calls
signal_interrupt to activate the interrupt task to process the contents of the buffer.
Otherwise, the interrupt handler calls exit_interrupt and then returns control to
application tasks.

Chapter 10 Interrupts

Save
current
task
content

DS
is known

to handler
?

Interrupt
handler
starts

Y
Call Load DS
rq_enter_interrupt from CS

Interrupt
handler
does some
interrupt
servicing

Interrupt
handler calls
rg_signal_interrupt

Interrupt
handler calls
rqe_exit_interrupt

Need
to invoke
interrupt
task
?

Interrupt task calls
rq_wait_interrupt or
rqe_timed_interrupt

Control returns to the
interrupted application tiy\

OMO02964

Figure 10-2. Flow Chart of Interrupt Handling

System Concepts Chapter 10 145

Single Buffer Example

146

An interrupt handler that reads data from an external device, character by character,
and places the charactersinto a buffer is an example of a single-buffer interrupt
handler. When the buffer fills, the handler calls signal_interrupt to signal an
interrupt task to further processthe data. Thereisonly one buffer for the data, so the
interrupt level associated with the interrupt task must be disabled while the task is
processing.

Because the task called set_interrupt with max_i nt er r upt s equal to 1, the OS
automatically disables the interrupt level when the handler invokes signal_interrupt.

This prevents the interrupt handler from destroying the contents of the buffer by
continuing to place datainto an already full buffer. Figure 10-3 illustrates single
buffering.

Interrupt . D D |
! .

1. The handler places data into the buffer.

Y

W-2824

2. When the buffer is full, the handler calls signal_interrupt to start the task.
3. Upon completion, the task calls wait_interrupt or rge_timed_interrupt.

Figure 10-3. Single-Buffer Interrupt Servicing

If you require only single buffering in interrupt servicing, specify 1 for the
i nterrupt _task_fl ag parameter in set_interrupt.

Chapter 10 Interrupts

Multiple Buffer Example

In this example, the interrupt handler and the interrupt task provide the same
functions as in the previous example, but they use multiple buffers. In this case, the
interrupt level associated with the task need not always be disabled while the task
runs. Instead, the task can process afull buffer while the handler continues to accept
interrupts. When the handler fills a buffer, it callssignal_interrupt to start the
interrupt task, asin the first example. However, because the

i nterrupt _task_fl ag isgreater than 1, theinterrupt level is not disabled.
Instead, the handler continues to accept interrupts, placing the datainto the next
empty buffer.

While this occurs, the interrupt task processes the full buffer. When the task
completes the processing, it callswait_interrupt or rge_timed_interrupt to indicate
that it is ready to accept another signal_interrupt request (ancther full buffer) and to
indicate that the buffer it just finished processing is available for

re-use by the handler.

Because the handler and the task are running somewhat independently, the handler
may fill abuffer and call signal_interrupt before the task has finished processing the
previous buffer. To prevent the signal_interrupt request from becoming lost, the OS
maintains a count of pending interrupt requests. Each time the handler calls
signal_interrupt, the count of pending interruptsisincremented by one. Each time
the task callswait_interrupt or rge_timed_interrupt, the count of pending
interrupts decrements by one. Y ou can use the SDB vt command to view an interrupt
task and the count of pending interrupts.

See also: vt command, System Debugger Reference

If the count of pending interruptsis still greater than O after the interrupt task calls
wait_interrupt or rge_timed_interrupt, the task does not wait for the next
signal_interrupt to occur before resuming execution. Instead, it immediately starts
processing the next full buffer. Neither the interrupt task nor the interrupt handler
has to wait for the other. The interrupt handler can continually respond to interrupts
without having the task disable the interrupt level. The interrupt task can continually
process full buffers of data without waiting for the handler to call signal_interrupt.

System Concepts Chapter 10 147

Figure 10-4 illustrates this multiple buffering handler.

Interrupt p— D A J
— — 4
— 7
- [— D/
/
—/
OM02885

1. The interrupt handler starts filling the empty buffer.
2. The handler calls signal_interrupt to start the task on processing the full buffer.

3. The interrupt task processes the full buffer, then calls wait_interrupt or
rge_timed_interrupt to wait for the next full buffer.

4. The handler keeps filling buffers.
5. The task keeps processing them and calling wait_interrupt or rge_timed_interrupt.

Figure 10-4. Multiple-Buffer Interrupt Servicing

148 Chapter 10 Interrupts

Table 10-3 describes the actions of the handler and the task. The table is divided into
three parts: actions of the interrupt handler, actions of the interrupt task, and the
count of pending interrupts specified in thei nt er rupt _t ask_f | ag parameter of
signal_interrupt. The count is set to three. The table shows the actions of both the
handler and the task through time, and the change in value of the count.

Table 10-3. Handler and Task Interaction through Time

Time Interrupt Handler Interrupt Task Count
Task A calls set_interrupt to set 0
handler and task for level, setting
interrupt_task_flag to 3.

A calls wait_interrupt to wait for 0
first request from handler.

Intrpt Handler processes interrupt, starts

filling first buffer.
Intrpt Process interrupt. Buffer is full. Call
signal_interrupt.
A starts processing 1st full buffer. 1
Intrpt Process interrupt. Start filling next
buffer.

Intrpt Process interrupt. Buffer is full. Call 2

signal_interrupt.

Intrpt Process interrupt. Start filling next 2

buffer.

Intrpt Process interrupt. Buffer is full. Call 3

signal_interrupt. Countis 3.

Interrupt level is disabled.
Call wait_interrupt. Start 2
processing next buffer.

Intrpt Process interrupt. Buffer is full. Call 3

signal_interrupt.
Call wait_interrupt. Start 2
processing next full buffer.
System Concepts Chapter 10 149

Theinterrupt task, when it initially calls set_interrupt, specifies the number of
pending interrupt requestsinthei nt er rupt _t ask_f | ag parameter. When the
interrupt handler calls signal_interrupt, causing the number of pending interruptsto
be incremented to the maximum:

« Theinterrupt level is disabled; the handler won't receive further interrupts until
the interrupt task makes await_interrupt or rge_timed_interrupt call, which
reduces the number of pending interrupts below the maximum. The OS then
enablesthe level.

« TheE INTERRUPT_SATURATION condition code returns from
signal_interrupt to the handler, indicating that the number of pending interrupts
limit has been reached. The only exception to thisruleisif the set_interrupt
call limitis1; then signal_interrupt will not return the
E INTERRUPT_SATURATION condition code. Theleve is disabled until the
task callswait_interrupt or rqe_timed_interrupt and decrements the number
of pending interrupts below the limit specified ini nt errupt _t ask_fl ag in
set_interrupt. Theinterrupt level is enabled, allowing the handler to resume
accepting interrupts.

Alwaysseti nterrupt _task_f I ag equal to the number of buffers that the task and
handler use. If thetask setsi nt er rupt _t ask_f | ag larger than the number of
buffers, the handler will accept interrupts when no buffers are available and data will
belost. If thetask setsi nterrupt _t ask_f | ag smaller than the number of buffers,
there will always be empty buffers and space will be wasted.

For example, if you need one buffer, seti nt err upt _t ask_f | ag to one. Inthis
case, the Nucleus disables the interrupt level while the task is processing the buffer.
If you need two buffers, seti nt errupt _t ask_f | ag totwo. Then, the handler can
fill one buffer while the task is processing the other. Additional buffersrequire
correspondingly higher limits. However, if the task sets the limit to O, the interrupt
handler operates without an interrupt task.

Disabling Interrupts

150

The Nucleus masks less important interrupts automatically while the interrupt task is
running. Occasionally you may want to prevent interrupt signals from causing an
immediate interrupt at the task's own level. For example, in adevice driver finish
procedure, you may want to disable interrupts from the device before deleting
resources an interrupt handler or task would require. Y ou can disable each interrupt
level except the system clock. You disable alevel by using the disable system call.
Or you can set thei nt er rupt _t ask_f | ag parameter in set_interrupt to 1.

Chapter 10 Interrupts

If the level isdisabled, the interrupt signal is blocked until the level is enabled, at
which time the signal is recognized by the CPU. However, if the signal is no longer
emanating from its source, it is not recognized and the interrupt is not handled.

If the associated interrupt level is disabled while the interrupt task is running and the
number of outstanding signal_interrupt requestsisless than the limit you specified
ini nterrupt_task_fl ag, thecall torge_timed_interrupt or wait_interrupt
enablesthat level.

Aninterrupt level can be disabled in these ways:

« A task can disable a specific interrupt level by calling disable, then re-enable the
level by calling enable.

« The number of pending interrupts received can reach the limit you set in the
set_interrupt system call. Whenever this happens, the OS automatically
disablesthe interrupt level until the number of pending interrupts falls below the
maximum.

Whenatask callsreset_interrupt to cancel the assignment of a particular
interrupt handler to a particular interrupt level, the OS automatically disables that
interrupt level. If thereisaninterrupt task for the level, reset_interrupt deletes
it. Delete task does not delete interrupt tasks.

« To provide preemptive priority-based scheduling, the OS can automatically
disable or re-enable some interrupt levels whenever atask begins running,
depending on the priority of the new running task and the priority of the interrupt
level. Thisenables high-priority tasks to run faster, without interrupts from
lower-priority external devices. Table 10-4 on page 152 shows the correlation
between the level s disabled and the priority of the running task.

System Concepts Chapter 10 151

Table 10-4. Interrupt Levels Disabled for Running Task

Task Disabled Levels Task Disabled Levels
Priority Slave Master Priority Slave Master
0-2 00-77 MO - M7 65-66 40 - 77 M4 - M7
3-4 01-77 M1 - M7 67-68 41 - 77 M5 - M7
5-6 02-77 M1 - M7 69-70 42 - 77 M5 - M7
7-8 03-77 M1 - M7 71-72 43 - 77 M5 - M7
9-10 04 -77 M1 - M7 73-74 44 - 77 M5 - M7
11-12 05-77 M1 - M7 75-76 45 - 77 M5 - M7
13-14 06 -77 M1 - M7 77-78 46 - 77 M5 - M7
15-16 07 -77 M1 - M7 79-80 47 - 77 M5 - M7
17-18 10-77 M1 - M7 81-82 50 - 77 M5 - M7
19-20 11-77 M2 - M7 83-84 51-77 M6 - M7
21-22 12-77 M2 - M7 85-86 52-77 M6 - M7
23-24 13-77 M2 - M7 87-88 53-77 M6 - M7
25-26 14 -77 M2 - M7 89-90 54 -77 M6 - M7
27-28 15-77 M2 - M7 91-92 55-77 M6 - M7
29-30 16 - 77 M2 - M7 93-94 56 - 77 M6 - M7
31-32 17-77 M2 - M7 95-96 57 -77 M6 - M7
33-34 20-77 M2 - M7 97-98 60 - 77 M6 - M7
35-36 21-77 M3 - M7 99-100 61-77 M7
37-38 22-77 M3 - M7 101-102 62 - 77 M7
39-40 23-77 M3 - M7 103-104 63 -77 M7
41-42 24 -77 M3 - M7 105-106 64 - 77 M7
43-44 25-77 M3 - M7 107-108 65 - 77 M7
45-46 26 -77 M3 - M7 109-110 66 - 77 M7
47-48 27 -77 M3 - M7 111-112 67 - 77 M7
49-50 30-77 M3 - M7 113-114 70 -77 M7
51-52 31-77 M4 - M7 115-116 71-77 None
53-54 32-77 M4 - M7 117-118 72-77 None
55-56 33-77 M4 - M7 119-120 73-77 None
57-58 34-77 M4 - M7 121-122 74 -77 None
59-60 35-77 M4 - M7 123-124 75-77 None
61-62 36-77 M4 - M7 125-126 76 -77 None
63-64 37-77 M4 - M7 127-128 77 None
152 Chapter 10 Interrupts

Enabling Interrupt Levels from within a Task

Sometimes, an interrupt task may finish with a buffer of data before it finishesits
processing. An example of thisis atask that processes a buffer and then waits at a
mailbox, possibly for a message from a user terminal, before calling wait_interrupt.
If other buffers of data are available to the handler (the number of pending interrupts
has not reached the limit), this does not present a problem. The handler can continue
accepting interrupts and filling empty buffers. However, if the interrupt task is
processing the last available buffer (i.e., the limit has been reached), the interrupt
handler will not receive further interrupts because the interrupt level isdisabled. This
may be an undesirable situation if the interrupt task takes along time before calling
wait_interrupt.

To prevent this situation, the interrupt task can call enable immediately after it
processes the buffer, enabling its associated interrupt level. This meansthat while
the task engages in its time-consuming activities, the interrupt handler can accept
further interrupts and place the data into the buffer just released by the task. You can
use this technique whenever the limit is 1, whether or not you use a buffer.

However, if the interrupt handler fills the buffer and calls signal_interrupt before
the task callswait_interrupt, these events occur:

« The count of outstanding signal_interrupt requestsisincremented, causing it to
exceed the limit you specified.

« The condition code E INTERRUPT_OVERFLOW isreturned to the interrupt
handler to indicate this overflow.

« Theinterrupt level isagain disabled. The interrupt task cannot explicitly enable
the level again until the count falls to or below the limit.

If the interrupt task calls enable when the count is below the limit, nothing happens
and no exception code is returned. However, if the interrupt task tries to enable the
interrupt level when the count is greater than the limit, the enable system call returns
the E_CONTEXT condition code.

System Concepts Chapter 10 153

If atask other than an interrupt task tries to enable the level, one of three events may
occur:

- If thelevel isaready enabled, the enable system call returnsthe E. CONTEXT
condition code.

« If the noninterrupt task tries to enable the level (presumably following a disable)
and the interrupt task is not running (i.e., the interrupt task has called
wait_interrupt and iswaiting for a service request), the level is enabled
immediately.

- If theinterrupt task is running, the enable does not take affect until the interrupt
task next invokes wait_interrupt.

Handling Spurious Interrupts

154

When a PIC receives asignal from an interrupting device, it informsthe iRMX OS of
the interrupt level. If the interrupting device sends interrupt signals of short duration
(that is, theinput lineis active for very short periods), the interrupt signal might be
gone when the PIC tries to determine the interrupt level. If this happens, the PIC
cannot determine the interrupt level and thus treats the interrupt as a spurious
interrupt.

Each time the PIC detects a spurious interrupt, it responds as if alevel 7 interrupt had
occurred. Thus, if amaster PIC detects a spurious interrupt, it responds asiif the
interrupt occurred on level M7. If adave PIC detects a spurious interrupt (for
example, a dave connected to master level M3), it responds asif the corresponding
level 7 interrupt occurred (in this case, level 37).

A spurious interrupt indicates a problem; the PIC detected an interrupt signal but was
unable to determine the level.

Y our application system should provide some means of isolating spurious interrupts
to prevent further problems (such as falsely responding to alevel 7 interrupt). This
involves judiciously selecting interrupt levels and adding code to al level 7 interrupt
handlers (handlers that service master level M7 or dave levels X7, where x ranges
from 0 through 7). Once the spurious interrupt has been isolated, the level 7 interrupt
handler can either attempt to correct the problem or ignore the spurious interrupt and
resume system processing.

In either case, before the handler returns control it should call exit_interrupt to clear
the hardware.

These sections describe several options for isolating spurious interrupts.

Chapter 10 Interrupts

Calling get_level

Oneway that alevel 7 interrupt handler can check for spurious interruptsis by
invoking the get_level system call as soon asthe handler startsrunning. Get_level
returns the level of the highest priority interrupt that a handler has started but not yet
finished processing. If the level returned is not the level associated with the interrupt
handler, the interrupt is spurious.

This method is simple to implement, but it does take more handler time to execute
get_level. Your handlers may have speed requirements that prohibit the use of
get_level.

Judicious Selection of Interrupt Levels

Another way to isolate spurious interruptsis to avoid connecting devicesto level 7
interrupts (master level M7 and slave levels X7, where x rangesfrom 0to 7). If you
have no devices connected to these levels, and thus no handlers servicing them,
spurious interrupts will not affect system operation. Instead, each time a spurious
interrupt occurs, the PIC reacts asif alevel 7 interrupt had occurred and sends control
to the appropriate interrupt table entry. Because no handler is associated with level 7,
that entry contains a pointer to the default handler, which returns control to the
interrupted task.

Examining the In-service Register

Another way that alevel 7 interrupt handler can check for spuriousinterruptsis by
immediately reading the ISR (In-Service Register) of the corresponding PIC. If the
BY TE value obtained from that register does not have a 1 in the high-order bit, the
interrupt is spurious. To read the value, the handler must know the port address of
the ISR. In PL/M, these lines perform this check when placed at the beginning of the
interrupt handler:

if ((inbyte (port address of ISR)) & 0x80) == 0
interrupt is spurious

Only use this method of isolating spurious interrupts as alast resort. It requires the
handler to know the address of the ISR, which may vary from system to system.

System Concepts Chapter 10 155

Interrupt System Calls
These are the system callsthat relate directly to interrupts.

set_interrupt
rqe_set_interrupt
reset_interrupt
exit_interrupt
signal_interrupt
rqe_timed_interrupt
wait_interrupt
enable

disable

get_level
enter_interrupt

Table 10-5 lists common operations for interrupts and the system calls that perform
the operations.

Table 10-5. Interrupt System Calls

Operation Description

assign handler Set_interrupt assigns an interrupt handler and, if desired, assigns an
interrupt task to an interrupt level.

assign shared Rge_set_interrupt assigns an interrupt handler and, if desired, assigns

handler an interrupt task to an interrupt level which is being shared by multiple
devices.

remove Reset_interrupt cancels the assignment made to a level by

interrupt level set_interrupt and, if applicable, deletes the interrupt task for that level.

send EOI Exit_interrupt sends an EOI signal to the PICs. *

invoke task Signal_interrupt invokes interrupt tasks and sends an EOI signal to
PICs. *

put task to Rge_timed_interrupt puts the calling interrupt task to sleep for a

sleep specified time. The task awakens either when the specified time elapses

or signal_interrupt is called.

suspend task Wait_interrupt suspends the calling interrupt task until it is called by an
interrupt handler using signal_interrupt.

enable level Enable enables an external interrupt level.

disable level Disable disables an external interrupt level.

continued
* |f the interrupt is on a slave, this call sends the EOI to the slave and the master.

156 Chapter 10 Interrupts

Table 10-5. Interrupt System Calls (continued)

Operation Description
get current Get_level returns the interrupt level of highest priority for which an
level interrupt handler has started but has not yet finished processing.

set up segment Enter_interrupt sets up a previously designated data segment base
address for the calling interrupt handler.

See also: Nucleus system calls, System Call Reference

How to Use Interrupt System Calls
Figure 10-5 shows the order in which you make interrupt system calls.

enter_interrupt
] wait_interrupt signal_interrupt
set_interrupt rqe_timed_interrupt exit_interrupt
get_level
. disable
reset_interrupt

1. Make this call from the interrupt task.

OM02943

2. Make these calls from the interrupt task.

3. Make these calls from the interrupt handler.
4. Make these calls from the interrupt task.

5. Make this call from the interrupt task.

Figure 10-5. Interrupt System Calls

oo

System Concepts Chapter 10

157

158 Chapter 10 Interrupts

Descriptors

What is a Descriptor?

The Nucleus assigns each object a descriptor when it is created. Each descriptor isan
entry in the Global Descriptor Table (GDT); it contains the physical base address, the
access rights, and the segment size of a given segment. The descriptors are managed
by the OS, which uses them to address an area of memory. Every segment must have
at least one descriptor, or the segment is not addressable. Figure 11-1 shows how the
16-hit selector indicates an entry in the Global Descriptor Table. The descriptor
contains a base address, to which the processor adds the offset part of the logical
address, forming an address in physical memory.

Offset |

| Selector

C-D_) Memory operand

> Base address

Y

Segment

Descriptor Table
W-2834

Figure 11-1. Descriptor and Offset Used To Access a Segment's Physical Memory

D Note

The paging mechanism that you use with flat model applications
forms addresses differently than in the previousfigure.

See also: Segments, in this manual

System Concepts Chapter 11 159

Advanced Uses for Descriptors

The OS enables you to access physical memory anyplace you want to.

A CAUTION
Descriptors are very powerful. If misused, they can affect the
integrity of the entire OS and can corrupt the interaction between
tasks in an application system. Do not use descriptors unless you
are an experienced programmer with full understanding of iIRMX
addressing.

Y ou can create, change, and delete descriptors just like segments. To the OS, they
look like segments. If you call get_type and specify a descriptor, the type code
returned is for a segment.

Advanced uses of descriptors are:

« To address areas of memory that are not defined when the system is configured
and are therefore excluded from the OS. Y ou might do thisfor aVGA
controller. A device driver can access the controller using a descriptor you
create.

« Tocreatediasesfor existing segments. Aliases enable you to define a different
segment type or different access rights for the same segment. Y ou might have a
piece of code that requires changing in the course of processing. Y ou could
create a read/write segment that you write a change to in the course of
processing. After the change, you could use a descriptor to create an alias for the
segment so you could executeit.

Descriptors for Undefined Memory

160

When you configure the OS, you specify which areas of memory theit uses. The
memory pools for dynamic allocation to jobs comes from this memory. Y ou can use
descriptors to address areas of memory that were not defined when the system was
configured. These memory areas are not allocated from the Free Space Manager
(FSM), or from the job's memory pool. When you create them, they do not reduce
the size of the job's memory pool, nor do they reduce the size of free space. When
you delete them, only the GDT entry is affected; the memory that was referenced by
the descriptor remains outside of the control of the OS.

See also: Memory poals, in this manual

Chapter 11 Descriptors

Descriptors with Aliases

Y ou can use descriptors to alias existing segments. Aliases provide segments with
alternate names and access rights.

Using rge_create_descriptor

A CAUTION
Only userge create descriptor when you need to alias memory
already allocated to ajob as an object, usually a segment, or when
you need to access memory outside the FSM.

Be careful! You can create adescriptor for any physical address; if
you make an error in calculating the address, you may corrupt
system and user data and overwrite program code.

Y ou specify the full 32-bit physical base address and the segment sizein

rqe create descriptor. The segment can lie anywhere in available memory, even
outside the range managed by the OS. The memory can overlap that contained in
other segments, if desired. The OS automatically sets up the new segment as a data
segment with read/write access.

When you create a descriptor, the Nucleus assigns a slot in the GDT with the physical
address and marks the object as a descriptor.

Using rqe_delete_descriptor

When you call rge_delete_descriptor, the Nucleus removes the association between
the GDT dot and the memory but does not del ete the memory addressed by the
descriptor. The system call returnsthe GDT dot to the OS for re-use.

Using rqe_change_descriptor

This system call isintended for system programs that need to access areas of memory
in special ways. You can userge _change descriptor to access areas of memory
that are not part of the OS and to alias segments, giving you the ability to change
segments that were originally read/write segments to execute segments.

System Concepts Chapter 11 161

Descriptor System Calls
These are the system calls that relate directly to descriptors.

rqe_create descriptor
rqe_delete descriptor
rqe_change descriptor

Table 11-1 describes operations on descriptors and what the related system calls are.

Table 11-1. Descriptor System Calls

Operation Description

return token Rge_create_descriptor places a descriptor, including the base physical
for segment address and segment size, in the GDT.

delete Rge_delete_descriptor removes the association between a GDT slot and
descriptor an area of memory and returns the slot to the OS for re-use.

change Rge_change_descriptor changes the base address contained in the GDT
address or and/or the size of the segment described.

segment size

See also: Nucleus system calls, System Call Reference

162 Chapter 11 Descriptors

Other Nucleus Features 1 2

Date and Time Subsystem

TheiRMX I11.2.3 Nucleus provides a Y ear 2000 compliant date/time system call that
allows applications the ability to set and get time and date information from both the
local CPU clock as well as from some external Real-Time Clock (RTC) devices.

See: rqe_time system call, System Call Reference;

Live Insertion Support

TheiRMX OS supports the live insertion capability of Multibus Il systems. Live
insertion allows you to replace or add a Multibus 11 board in a system with the power
on and with minimal disruption to the other boards.

Multibus |1 live insertion requires a particular Central Services Module (CSM) and
backplane. If you are uncertain whether your hardware supports live insertion,
contact the manufacturer(s) or the Multibus Manufacturer’ s Group for information.

InaMultibus 1l live insertion environment, if an OS on one board depends on
another board (such as afile server) or communicates with another board, it must
know if that board fails or isreset. TheiRMX OS contains mechanisms to detect
these conditions and notify your application. Once the application is notified of
board failure or reset, it can take action based on recovery procedures specific to your
reguirements.

Watchdog Timer

The watchdog timer is the main component of iRMX live insertion support. The
watchdog timer detects when another board fails or is reset and informs applications
of the event.

The watchdog timer on each board performs the following functions:

e Periodically broadcasts an existence message to inform other boardsin the
system that this board exists.

» Monitors the existence messages of other boards in the system to determine
when they fail or are reset.

» After receiving an existence message from a board, sets an alarm period and
waits for the next existence message. |If the board’s alarm period expires before

System Concepts Chapter 12 163

the expected existence message arrives, the watchdog timer assumes that the
remote board has failed and notifies applications on its own board.

164 Chapter 12 Multibus|I Live Insertion Support and I nterconnect Space

« Examines each incoming existence message to determine the slot ID of the
sender. If the sending board has an alarm associated with it, the watchdog timer
deletes the dlarm before it expires. The watchdog timer checks the incarnation
number in the existence message to determine if the remote board has been reset.
If the remote board has been reset, the watchdog timer notifies applications on its
own board and creates an alarm for the remote board.

Existence messages include the board ID (dot ID) and incarnation number. The
incarnation number gives the watchdog timer enough information to determineif a
remote board has been reset since the last existence message.

Reconfiguration Mailboxes

Reconfiguration mailboxes et your application receive notification of board failure
or reset in the system. Y ou can design arecovery task in your application to act on
the type of failure.

To create areconfiguration mailbox, first create a data mailbox with the
rq_create mailbox system call. Then usetherq_add_reconfig_mailbox system
call to assign it as areconfiguration mailbox.

See also: rq_add_reconfig_mailbox, rq_create mailbox system calls, System
Call Reference;
Reconfiguration Mailboxes; Chapter 3

Failure Handling

The watchdog timer on one board can detect that any board in the Multibus Il system
has either failed or been reset, if those other boards have also enabled a watchdog
timer.

If the watchdog timer detects afailure, it informs all reconfiguration mailboxes on its
board with the appropriate message:

» For aremote host failure, it sends out aWD_HOST_FAILURE message to all
reconfiguration mailboxes on its own board. The WD_HOST_FAILURE
message indicates that the alarm expired without receiving an existence message
from the remote board.

System Concepts Chapter 12 165

e For aremote host reset, it first sends out aWD_HOST_FAILURE message to all
reconfiguration mailboxes for all incarnations of that board starting with the last
known incarnation and up to but not including the current incarnation number.
Following this messageisaWD_HOST _RESET for the current incarnation.
The WD_HOST _RESET indicates that the incarnation number in the existence
message is not the same as previously received from the remote board.

See also: rq_add_reconfig_mailbox, System Call Reference

Internal Failure Recovery

The operating system has internal procedures to handle WD_HOST _FAILURE
messages and WD_HOST_RESET messages. Currently, the ATCS 279/ARC server
and client(s) use this mechanism.

Application Failure Recovery

166

Y ou can assign any data mailbox as a reconfiguration mailbox by using the
rq_add_reconfig_mailbox system call. Write arecovery procedure to wait at each
reconfiguration mailbox. When the watchdog timer sends a message to
reconfiguration mailboxes on a host, your recovery procedure can respond as
required.

For example, suppose you have a client weather station that receives weather data
from a number of server collection stations. Y ou could write a procedure that would
keep your client from asking for data from a server that was not operating, and that
would begin asking for data from that server again after it came back on line. The
following pseudocode example shows how you might create a reconfiguration
mailbox and use it to begin such arecovery procedure.

Chapter 12 Multibus|I Live Insertion Support and I nterconnect Space

moni t or _t ask()

{
RQ_TCKEN mox;
Ul NT_32 nmeg_si ze;

RQ_RECONFI G_M5G_STRUC nessage;

mbox=RQ cr eat e_mmai | box(0x20, &xcepti on);
RQ _add_r econfi g_mai | box(nbox, &xception);

/*wait for failure or reset nessage*/

FOR (53)

{

msg_si ze=RQ r ecei ve_dat a(nbox, &ressage, RQ WAI T_FOREVER,
&exception);

/* 1f get failure nessage, performserver failure
procedur e*/

| F (message. nsg_t ype==RQ_HOST_FAI LURE)
server_fail (message. host);

/* 1f get reset nessage, perform server recovery
procedur e*/

ELSE | F (message. msg_t ype==RQ HOST_RESET)
server_recover (nessage. host);

}

See also: rq_add_reconfig_mailbox system call, System Call Reference;
Reconfiguration Mailboxes, Chapter 3

System Concepts Chapter 12 167

Configuring the Watchdog Timer

Y ou set up the watchdog timer on the (MBII) Multibus I hardware screen of the
ICU. From this screen you can:

« Enable or disable the watchdog timer.

» Specify the number of reconfiguration mailboxes that can be in use
simultaneously. Allow enough for any ARC server and each ARC client on your
board in addition to the number needed by your application.

e Set the time the board waits between each broadcast of its existence message.

* Set the time the board waits for the next existence message from other boards
before notifying the reconfiguration mailboxes that the other board failed.
Broadcasts of existence messages must occur more often than wait periods. A
good ratio to use is two broadcasts for every wait period.

See dlso: MBI screen, ICU User’s Guide and Quick Reference

168 Chapter 12 Multibus|I Live Insertion Support and I nterconnect Space

What is Interconnect Space?

Interconnect space is a collection of 512 one-byte registers on every board in a
Multibus |1 system. The registers contain information about the board: the
manufacturer, model number, memory configuration, and other board-specific
information. The first 32 interconnect registers of every board have an Intel-
specified format and are called the header record. The hardware specification for the
board defines the format of the rest of the interconnect registers.

See also: Architecture of interconnect space, Multibus |1 Interconnect
Interface Specification;
the hardware reference manual for your board

How the OS Uses Interconnect Space

The OS uses interconnect space to automate board identification on the parallel
system bus (PSB) at system start-up. The interconnect registers configure a board
dynamically, replacing many functions previously handled by onboard jumpers. The
OS uses interconnect space to determine the available resources and load system
utilities as necessary. Most registers are set during system initialization and remain
unchanged until the board is reset.

The OS a so uses interconnect space when the watchdog timer has been configured
into the system. The watchdog timer detects board failures and resets by monitoring
certain interconnect space registers.

How an Application Uses Interconnect Space

A CAUTION
The interconnect registers are not intended for general run-time
communication. Using the interconnect registers during normal
system operations may have a severe impact on the system
response.

Y ou can corrupt the operation of the board or the system by
specifying incorrect values in interconnect registers.

System Concepts Chapter 12 169

Y ou can read the interconnect registers to determine current board configuration and
set them to modify identification, configuration, and diagnostic information. The
registers are organized modularly. A group of contiguous registers, called arecord,
describes asingle function. To access registers at the record level, you access each
register in arecord individually. The Nucleus Communication Subsystem (NCS)
provides direct read and write access to individual interconnect registersin the
system. The NCS provides mutual exclusion on the access to any single interconnect
register.

If you want to read or write a series of registers arranged as a record, you must
provide mutual exclusion by using a semaphore or region. Y ou must access multiple
interconnect registersin awell-known record format.

Referencing Interconnect Space

Y ou reference interconnect space for each board using the board's slot 1D in the PSB
backplane; the slot number of ahost isequal to itshost ID. Using slot 31 specifies
the host of the calling task, so atask can access registers on its board without
knowing the slot number. Y ou also specify the register number.

Reading and Writing Interconnect Space

170

Y ou can read or write interconnect space from the command line using the ic
command. This command performs several functions, such as displaying the dot ID
and product code for each board in the system and displaying register contents.

See dso: ic command, Command Reference

Chapter 12 Multibus|I Live Insertion Support and I nterconnect Space

Interconnect Register System Calls
These are the system calls that you use to access interconnect registers.

set_interconnect
get_interconnect

Table 12-1 lists operations on interconnect registers and what the related system calls

are.

Table 12-1. Interconnect Register System Calls

Operation Description

get settings Get_interconnect gets the value of a specified interconnect
register on a host in the specified slot number.

change Set_interconnect sets the value of a specified interconnect

settings register on a host in the specified slot number. It will not write a
read-only register, but will not return a condition code. Check the
general status register, 24, for results.

See also: Nucleus system calls, System Call Reference

System Concepts Chapter 12 171

172 Chapter 12 Multibus|I Live Insertion Support and I nterconnect Space

OS Extensions and Type Managers

How Do You Add a System Call?

If more than one job in your application system requires a function that is not
supplied by the OS, you can add the function in these ways:

« Write the function as a procedure and add it to the OS. Invoke the function with
asystem call you write. Thisis called extending the OS; the procedures you add
are OSextensions. Thisalternative isthe subject of this chapter.

« Write the function as a procedure and place it in alibrary, using the LIB386
librarian utility. After compiling each job that requires the function, bind the
library to the object module for the job.

« Write the function as atask and allow application tasks to invoke the function
through a mailbox interface.

Table 13-1 compares the ways of adding functions.

Table 13-1. Comparing Techniquesfor Creating System Calls

Good (slow functions)

OS Extension Library Task
Difficulty Simple Simple Complex
Performance Fair (slow functions) Good (all functions) Poor (quick functions)

Fair (quick functions)

System calls

Both asynchronous
and synchronous

Both asynchronous and
synchronous

Asynchronous only

Programmer

System

Application

Application

Duplicate code

Avoided automatically

Hard to avoid

Easy to avoid

Relinking Not required Required Not required
New objects Supported Not supported Not supported
System Concepts Chapter 13 173

Creating an OS Extension

Every OS extension consists of an interface and a function procedure. An entry
procedure is optional. Figure 13-1 shows the simplest arrangement of an extension.
The figure shows two OS extensions, each containing one system call. Thereisno
entry procedure.

A B
A
o
Y
A B |
I
Y z |0

omozs74
1. The application tasks are linked to the interface procedures.

2. The interface procedures are part of the application software.

3. The interface procedures pass control to the function procedures by using a call gate.
4. The function procedures are part of the system software.

Figure 13-1. OS Extension Using Interface and Function Procedures

Call gatesredirect flow within a task from one code segment to another. Each
system call uses a call gate to transfer control to the requested function. This makes
it possible to go directly from the interface procedure to the function procedure. In
an | CU-configurable system, you can specify the GDT dot reserved for call gates
using the GSN parameter; iniRMX for PCs and DOSRM X, use the OSX parameter
in the rmx.ini file. For compatibility between the OSs, use consecutive slots starting
with 440.

See also: GSN parameter, ICU User's Guide and Quick Reference;
OSX parameter, System Configuration and Administration

174 Chapter 13 OS Extensions and Type Managers

Interface Procedures

An interface procedure connects your application code to an OS extension call gate.
Since they are very small, you can provide an interface procedure for each supported
compilation model. The OS provides alibrary of interface procedures for various
compilation models of the Intel iC-386, Watcom C, Microsoft C, and PL/M
compilers.

For example, to issue anew_function system call, your task executes a statement
like
new function (......);

Thisisacall to an interface procedure, named new_function, which transfers control
tothe OS. For each system call in your OS extension, you must write a reentrant
interface procedure.

1. Theinterface procedure uses acall gate to transfer control from the task that
invoked the call to afunction procedure.

For example, when transferring control to a function procedure whose call gate
number is 441H, the interface procedure is bound to a .GAT file produced by
BL D386 and then calls GATE 0441, which isthe PUBLIC name for this gate.
Y ou can find a gate's PUBLIC name in the mp2 file generated by BLD386.

2. If an entry procedure exists, the interface procedure must give a code to the entry
procedure that identifies the function procedure to call. The interface procedure
does this by loading the code into a previously designated register or onto the
stack of the calling task.

3. Theentry procedure, when invoked, extracts the code from this register or the
stack.

See also: Assembly Language Reference

System Concepts Chapter 13 175

Function Procedures

The duties of the function procedure are mainly to do what the calling task asks. One
function procedure is required for each customized system call. If thereisno entry
procedure, the function procedure should inform the interface procedure of the
system call's exception status by setting CX and DL. Function procedures should be
reentrant and can be written in any high-level language or in assembly language.

These are the ways to specify a call gate:
« Using the .GAT file created by BLD386
« Using an assembly language macro
See also: Developing applications in assembly language, OS extension example,
Programming Techniques
Entry Procedures

The entry procedure is associated with a call gate. Each OS extension with multiple
system calls assigned to it must include a reentrant entry procedure. Its main purpose
isto route the call from the interface procedure to the appropriate function procedure.
This procedure is optional.

Write the entry procedure in assembly language so you can directly access the stack
and the registers. This gives you access to the input parameters passed by the calling
task and the interface procedure. It also enables you to set the CX and DL registers
in the event of an exceptional condition.

The entry procedure must send a code identifying the function procedure called by
thetask. The interface procedure does this by loading the code into a previously
designated register or onto the stack of the calling task.

Other possible functions of entry procedures are:
+ To set up exception handling for the OS extension, if thisis needed.
« To perform aroutine common to all system callsin this OS extension.

« Totransmit the exception incurred by the function procedure back to the
interface routine in the CX and DL registers.

176 Chapter 13 OS Extensions and Type Managers

Figure 13-2 shows a single OS extension with an entry procedure.

L]
L

A e |0
NS
]
J 0
v z |0

1. The application tasks are linked to the interface procedures.

2. The interface procedures are part of the application software.

3. The interface procedures pass control to the entry procedure by using a call gate.
4. There is one entry procedure for the OS extension.

5. The entry procedure passes control to the designated function procedure.

6. The function procedures are part of the system software.

Figure 13-2. OS Extensionswith Entry Procedure

System Concepts Chapter 13 177

Figure 13-3 summarizes, in agorithmic form, what the procedures do.

Call an interface procedure ----
:--->| Do more processing

Calling { Do some processing

Load into a specific pair of registers a pointer to the
parameters on the task's stack

If there is an entry procedure, then
load into a specific register a code identifying the function
being called

Interface : Call a call gate to call the entry procedure or a function

rocedure : PrOCEAUIE ----c--ooooooooooiiniiii i B

,,,,, NN Examine the CX register ;

| B If the CX contains a nonzero value, then call RQERROR to Or
inform the task of the exception |
Store CX register contents in a word pointed to by status_p ;
Return (RET)--- :

“>| If using default RQERROR procedure and if desired, then save]
task's exception handler §et_exception_handler) and
set up a temporary replacement
(set_exception_handler)
If possible then
: do processing common to all function procedures in this
(Optional)] OS extension
Entry H Get function code stored by interface procedure :
rocedure : Call the designated function procedure-----------................. >
: If exception handlers were switched earlier then restore :
---->| original et_exception_handler)
If notified of an exception by a function procedure, then place
condition code in CX register
Place parameter number In DL register
Return (RET)_,

i iy| Obtaininput parameters

Function o Perform actions expected by calling task

| Return condition code and any values expected
By Calling Task

Return (RET)---

rocedure

W-2815

Figure 13-3. Summary of Duties of Proceduresin OS Extensions

Exception Handling for Custom System Calls

Exception handling for custom calls usually results in the OS extension calling iIRM X
system calls. This section lists the appropriate calls.

The interface procedure must inform the calling task (or its exception handler) of any
exceptional conditions that occurred:

1. Thefunction procedure places the condition code in the CX register and the
number of the parameter that caused the error in the DL register.

2. Theinterface procedure then checks the CX register for the condition code. If
this register contains a value other than 0 (E_OK), an exceptional condition
occurred.

178 Chapter 13 OS Extensions and Type Managers

3.

The interface procedure calls RQERROR, NUCERROR, or a custom exception
handler you write, or it handles exceptionsinline.

RQERROR and NUCERROR Procedures

RQERROR isaprocedure in theiRMX OS that is called by the interface procedures
of al iIRMX layers except the Nucleus. For example:

1

If atask callscreate file and incurs an exceptional condition, the I/O System
returns control to the 1/O System interface library linked to that task.

Theinterface procedure in that library calls RQERROR to process the error.

RQERROR gets the condition code and parameter number from the CX and DL
registers and then makes a signal_exception system call to inform the calling
task (or its exception handler) of the exception.

When signal_exception returns to the RQERROR procedure, RQERROR
restores CX and DL with the condition code and parameter number and places a
value of OFFFFH in the AX register.

Y ou should link RQERROR to your tasks to ensure that their exception handlers
are called when exceptional conditions occur.

NUCERROR performs the same functions for Nucleus interface procedures as
RQERROR, except it does not call signal_exception. Instead, when a Nucleus
system call returns with an exceptional condition, the stack contains extra UINT_16s
used to process the exception. They include the exception mode and a pointer to the
exception handler. If the mode specifies calling the handler, NUCERROR calls the
exception handler directly. Figure 13-4 on page 180 shows the flow of control from
an application task to an exception handler when the task incurs an exception.

System Concepts Chapter 13 179

180

A

0 Nucleus interface library

: Interface procedure
I

O
(|

E > Return

NUCERROR procedure

Save register:

[

H

P Pop bytes :
= Return :

H Call NUCERROR (— : Exception occurs

Call exception handlen—% Exception handler

Restore reglsters(— Return

Nucleus

Nucleus callgate% rq_send_message

[

[

0OM02941

The task makes a call which goes through the interface procedure and call gate.

The function procedure is called.

An exception occurs and control passes to NUCERROR.

NUCERROR saves the CX and DL registers.

NUCERROR calls the exception handler to process the exception.

The exception handler returns. NUCERROR restores CX and DL and places OFFFFH in

AX.

NUCERROR returns, cleaning the stack.

Figure 13-4. Handling Exceptionswith an iRM X Exception Handler

Chapter 13

OS Extensions and Type Managers

Writing Your Own RQERROR or NUCERROR Procedure

If you do not want to use the default RQERROR or NUCERROR procedure provided
by the OS, you can write your own. Y our procedure can do any functions needed to
inform the application task of the exceptional condition, aslong as you do this:

« Your RQERROR procedure should place OFFFFH in AX and then issue a
RETURN, returning control directly to the application task to avoid the task's
normal exception handler.

+ You must always clear three stack words (12 bytes for 32-bit code and 6 bytes
for 16-bit code) on return.

« Toensurethat your procedure instead of the default versionis called, link it
directly to the interface procedure or includeit in alibrary with the rest of your
interface procedures. When linking modules together, this library should always
precede the Nucleus interface library in the link sequence.

The function procedure must change the exception handler from that of the calling
task to an exception handler for the OS extension. To make this change:

1. Thefunction procedure should first call get_exception_handler or
rqe_get_exception_handler to get and save the task's exception handler address
and exception mode.

2. It should call set_exception_handler or rge_set_exception_handler to set new
values for these entities.

3. Just before returning control to the interface, the function procedure should call
set_exception_handler or rge_set_exception_handler to restore the original
values. Inthe case of an entry procedure, the entry procedure saves and restores
the exception handler and mode.

Handling Exceptions Inline

If you want the OS extension to handle exceptions inline, you can follow the above
steps, calling either set_exception_handler or rge_set_exception_handler with the
excepti on_node parameter set to NEVER. Thisisthe simplest and most
straightforward method. However, it uses the three Nucleus calls listed above upon
entry and exit from the function procedure.

Another way of handling exceptionsinline isto link your OS extension to your own
version of RQERROR or NUCERROR. The RQERROR procedure may simply
place OFFFFH in the AX register (so that OFFFFH isreturned for system calls that
are invoked as functions) and then do a RETURN, to return control directly to the
interface library. The interface library then returns control to your OS extension,
allowing the OS extension to process the exception inline.

System Concepts Chapter 13 181

Figure 13-5 illustrates the flow of control for an OS extension that incurs an
exceptional condition, processes the exception inline, and then returns an exception to
the application task that called it. Notice that both the OS extension and the
application task, although not linked together, are linked to interface libraries and an
RQERROR procedure. The RQERROR procedure linked to the OS extension returns
control to the OS extension.

2~ — Return €<———— ®
® | | L >e |
= eturn g E
— | CallRQERROR — : :
—=—> Retun : : NUCERROR
@ : procedure 8
-IRQERROR procedure : @ %l Place OFFFFH in AXT
_ : Pop bytes g E " n
: Save registers H Return : [rq_signal_exception
Call to nucleu . @ . > Transfer to
: :) H exception handler
1 rg_signal_exception [&
g-signal_excep : ® Exception handler(#

® OS Extension
Interface Library

Nucleus Interface Library

1 Customized system

call interface procedure; @

Nucleus

E| Nucleus system call

e i Interface procedure :
Ccall IOH‘ OS extension| Call to nucleusl;%:: Exception
OS extension @ ‘: Call NUCERROR% occurred

Restore <

Return

Return

OM02942

Follow the numbered arrows. These are descriptions of some steps.
6. NUCERROR places OFFFFH in AX.

7. NUCERROR clears three stack words on return.

10. RQERROR saves the CX and DL registers.

13. RQERROR restores CX and DL places OFFFFH in AX.

Figure 13-5. Control Flow for Handling Exceptions Inline

Overriding NUCERROR

To override NUCERROR with your own procedure, return from your version of the
NUCERROR procedure by popping three stack words using RET 12 for 32-hit or
RET 6 for 16-bit code. These words were placed on the stack to use for the call to
rq_signal_exception.

Even though your OS extension processes its own exceptions inline, you should
return exceptions to tasks (or other OS extensions) that invoke the custom system
cals. The function procedure of your OS extension should place the condition code

182 Chapter 13 OS Extensions and Type Managers

and parameter number in CX and DL, and return to the interface linked to the
application task.

Overriding RQERROR

Y ou can provide your own RQERROR routine and bind it to your programs.

|:| Note

Y our routine must contain a public procedure named RQERROR
and you must bind the routine to application code before binding
the UDI or RMX interface library.

Inthe BND statement, place the name of the file containing your RQERROR routine
before the name of the interface library. This causes your RQERROR routine to be
bound in place of the default routine. 'Y our RQERROR routine must adhere to the
model of segmentation you used in the application program itself.

The source code of the default UDI RQERROR routine is available in the
/rmx386/udi directory. Y ou can use this source code as an example when building
your own RQERROR routine. The file UCERR.A38 applies only to COMPACT
applications.

When the RQERROR procedure invokes signal_exception, control can passto an
exception handler. If the default exception handler isin effect, it displaysthe
appropriate error message at the console and can terminate the application.

Establish your own exception handler by calling rq_set_exception_handler or
dg_trap_exception. The new exception handler will be called whenever you invoke
rq_signal_exception.

System Concepts Chapter 13 183

After an exceptional condition occurs and before your exception handler gains
control, theiRMX OS:

1. Pushesthe condition code on the stack of the program that made the system call
generating the condition code.

2. Pushesthe number of the parameter that caused the exception on the stack (1 for
the first parameter, 2 for the second, etc.).

3. PushesaUINT_16 on the stack (reserved).
4. PushesaUINT_16 for the NPX on the stack.
5. Initiatesafar call to the exception handler.

If the exceptional condition was not caused by an erroneous parameter, the
responsible parameter number is 0. If the condition codeisE_NDP_ERROR, the
fourth item pushed onto the stack isthe NPX statusword. The NPX exceptions are
cleared.

Custom Condition Codes

When you add your own system calls, you may need to add your own exceptional
conditions and condition codes. Y ou can use values 4000H to 7FFOH for
environmental conditions and 0COO0H to OFFFOH for programmer errors.

Linking the Procedures

184

For each OS extension, you should produce one library of interface procedures for
each segmentation model in which the calling task can be written. Within each
library, you should have one interface procedure for each custom system call. Each
module in your system should be linked to the appropriate interface library for each
OS extension that it calls.

For each OS extension, link all the function procedures (and the entry procedures, if
any) along with any OS interface libraries that the procedures need. Do not link them
to any application code because they are connected to the application tasks with call
gates.

Any RQERROR or NUCERROR procedure that you write should be linked to the
appropriate routines:

« Toinform the application task of an exception, place your RQERROR procedure
in the interface library you create.

« To process exceptions that your OS extension incurs, link your RQERROR or
NUCERROR procedure directly to the function procedures.

Chapter 13 OS Extensions and Type Managers

Link theiRMX OS interface library, and the interface libraries for any of the
other subsystems that you use, to the application task and/or the OS extension,
whichever uses these subsystems. If you provide your own RQERROR or
NUCERROR procedure, either for your interface procedures to call or to process
exceptionsin your OS extension, this procedure must precede the iRMX OS
interface library in the link sequence.

Including OS Extensions

Before an interface procedure can successfully transfer control to an OS extension,
you must establish an entry point. You can add your OS extension to the OS at build
time using the ICU or you can add it at boot time using the sysload command from
the : config:loadinfo file or you can add it dynamically.

For ICU-configurable systems:

— Toonly reserve the gate number when you configure the system, enter the
next available OS extension dot in the GSN parameter and |eave the EPN
field blank.

— Tohavethe OS assign your OS extension to acall gate at build time, fill in
both the GSN and EPN parameters.

For non-1CU-configurable systems, use the OSX loadtime parameter in the
rmx.ini file to reserve your OS extension slot.

Use the system call rqe_set_os extension to include extensions dynamically.
When you invoke the call, enter the gate number and the start address of the first
instruction of your entry or function procedure. Y ou cannot use the same call
gate for more than one OS extension simultaneously.

CAUTION

Always reset the OS extension with anull value in the
start_address parameter first. Thenissue the call again with
thedesired st art _addr ess. Otherwise, the system will not
initialize on awarm reset.

See also: GSN and EPN parameters, ICU User's Guide and Quick Reference;

OSX |oadtime parameter, System Configuration and Administration

System Concepts Chapter 13 185

System Calls for OS Extensions
These system calls are used extensively by OS extensions:

rqe_set_os extension
signal_exception

Table 13-2 lists operations on OS extension system calls and what the related system

calsare.
Table 13-2. OSExtension System Calls
Operation Description
attach call Rge_set_os_extension attaches the entry point address of the
gate OS extension to a call gate.
signal error Signal_exception advises a task that an exceptional condition
has occurred in an OS extension.

See also: Nucleus system calls, System Call Reference

186 Chapter 13 OS Extensions and Type Managers

Protecting Objects From Deletion

Normally, you delete an object by a call to the delete system call corresponding to
the object's type. However, you can use the disable_deletion system call to make the
object immune to thiskind of deletion. A subsequent call to enable_deletion
removes the immunity. Y ou can use deletion immunity anywhere in your
application, not just in OS extensions.

An object can have its deletion disabled more than once. An object's disabling depth
is the number of times the object has had its deletion disabled.

Each call to disable_deletion must be countered by a call to enable_deletion before
the object can be deleted.

Usually, an object cannot be deleted until its disabling depth is 0. The only exception
isthat acall to force delete deletes objects whose disabling depth isone. Also,
calling enable_deletion for an object whose deletion depth is O resultsin the
E_CONTEXT condition code.

A CAUTION
When you attempt to delete an object whose disabling depth is too
high to permit deletion, the deleting task goesto deep. The task
remains asleep until the object's deletion depth becomes small
enough to permit deletion. At that time, the object is deleted and
the deleting task is awakened. Because these circumstances can
cause system deadlock, be careful when deleting objects and when
disabling deletion.

Never disable deletion in applications that rely on <Ctrl-C> for
program termination.

System Concepts Chapter 13 187

System Calls for Deletion Immunity
These system calls are used for deletion immunity:

force delete
enable deletion
disable deletion

Table 13-3 lists deletion immunity operations and what the related system calls are.

Table 13-3. Deletion Immunity System Calls

Operation Description

delete object Force_delete deletes objects whose disabling depths are 0 or 1.

increase Disable_deletion increases the deletion disabling depth of an
disabling object by one.

enable Enable_deletion removes one level of deletion disabling from an
deletion object.

188 Chapter 13 OS Extensions and Type Managers

Type Managers and Custom Objects

Some applications require both custom objects and system calls for manipulating
them. A type manager isan OS extension that provides these services. If you require
custom objects, you must write a manager for each type. The duties of type
managers are:

« Creating objects of the new type.
« Deleting objects of the new type.

« Optionally providing the system calls that your tasks can invoke to create,
manipulate, and del ete objects of the new type.

This section describes creating and del eting objects of a new type.

See also: Appendix A for an example that creates and del etes objects of a new
type;
Extending iRM X, Real-Time and Systems Programming for PCs by
Christopher Vickery

Creating New Objects
Creating custom objects requires:
+ Creating the type
« Creating objects of that type

In create_extension, you specify the type code for the new object and whether you
want a deletion mailbox. If you specify a mailbox, delete extension and delete job
will send composite objects to the mailbox for the type manager to delete.
Otherwise, delete_extension and delete job will delete composite objects. The
create_extension system call returns atoken for the new type. The token represents
alicense to create objects of the new type.

The create_composite system call creates objects of the new type; it accepts the
token returned from create_extension as a parameter. Create_composite aso
accepts alist of tokens for the component objects that will compose the new object.
It returns a token for the new object, called a composite object. Figure 13-6 on page
190 shows the order for creating composite objects.

create_extension create_composite

OM02887

Figure 13-6. Composite Object System Call Order

System Concepts Chapter 13 189

When you create a composite object:

« Itscomponent objects are all iIRM X objects, either provided by the iIRMX OS or
by other objects you have created.

« No structureisimposed on composite objects of a given extension type. Two
objects of the same extension type can be completely different in structure or in
the number of component objects they comprise. This feature allows for
maximum flexibility in the creation of new objects.

Once a type manager creates a new object type by calling create_extension, the type
manager owns the type. Only the type manager can create composite objects of that
type. Inaddition, when it creates composite objects, the type manager can request
that atoken for the composite object be sent back to the type manager when the
object has to be deleted.

Deleting Composite Objects and Extension Types

Delete_composite deletes a particular composite object, but not its components.
Delete _extension deletes a specified extension type, and either deletes all composites
of that type or sends them to a deletion mailbox, in which case the type manager must
delete them.

Delete job, also deletes composite objects as a part of its processing. Although
delete_job cannot delete extension types (it returns an exception code if the job
contains any extension objects), it can delete composites or send tokens for them to
deletion mailboxes where their type managers del ete them.

190 Chapter 13 OS Extensions and Type Managers

Using delete_job

When atask calls delete job, the Nucleus normally deletes every object in the job.
However, if the job contains a composite object whose extension has a deletion
mailbox, the Nucleus sends the token for the composite object to the deletion
mailbox. The Nucleus then waits until the type manager calls delete_composite
before continuing the deletion process. In that case:

1. Thetype manager must wait at the deletion mailbox to receive the tokens for the
objects to be del eted.

2. It must perform any special processing required to delete the composite object.
For example, it might want to wait until all tasks have stopped using the
composite.

3. It hasthe option of deleting those component objects not contained in the job
being deleted. It cannot, however, delete any objects contained in the job being
deleted or it will incur an exceptional condition. (Thisis not a problem because
the objectsin the job being deleted will automatically be deleted during the
delete job call.)

4. It must call delete_composite, which deletes the composite object (but not the
component objects) and informs the Nucleus that the type manager has finished
the special processing that deletes the composite object. After the type manager
calls delete_composite, the Nucleus resumes the delete job processing. If the
type manager failsto call delete_composite, the delete_job system call will not
finish processing.

System Concepts Chapter 13 191

Figure 13-7 shows the type manager's involvement in the delete_job process.

g
delete_job
T
LD
CEEED) A
>
7777777 < g
iiiiiiii A
delete_composite
A g

OM02888
1. The task calls delete_job.
2. The Nucleus sends the composites to the deletion mailbox.

3. The type manager waits at the mailbox. It performs any cleanup required and calls
delete_composite.

4. Control returns to delete_job.

Figure 13-7. Type Manager Involvement in Delete job

The type manager is not required to delete all objects. The Nucleus sends the tokens
for all other composite objectsto their own deletion mailboxes, where their type
managers are responsible for deletion. Therefore, al the component objects are
eventually deleted, as long as they are in the job being deleted.

In the course of delete job, the Nucleus deletes any Nucleus objectsin the job. It
sends the tokens for any 1/0 System, EIOS, or Human Interface objectsto their
respective deletion mailboxes, where the subsystems themselves del ete the objects.

Using delete_extension

You can call delete_extension to delete an extension type. Use this call when you no
longer need to create composite objects of a given extension type. When you call
delete extension and the extension has a deletion mailbox, the Nucleus sends the
tokens for all composite objects of that extension type to the deletion mailbox. Then
the Nucleus waits until the type manager calls delete_composite before sending the
next composite to the mailbox. The type manager has responsibilities during
delete_extension similar to delete job:

192 Chapter 13 OS Extensions and Type Managers

1. Fird, it waits at the deletion mailbox for the objects' tokens.
2. Then, it handles any special processing necessary to delete the object.

3. Findly, it calsdelete_composite to delete the composite. The type manager
must call delete_composite for each token it receives at the deletion mailbox. 1f
it does not, the delete_extension system call will not finish processing.

However, unlike delete job processing, the type manager has the choice during
delete_extension of whether or not to delete individual component objects. If it
wishes to delete the component objects, the type manager must explicitly delete them.
Delete_extension does not delete any component objects.

Deleting Nested Composites

A composite object can contain objects of any type, and as aresult, some of its
component objects may be composite objects themselves. This can cause problems
for type managers when they delete the composite objects if the type manager for any
of the composite objects depends on the existence of any of the other composite
objects to complete its processing.

For example, suppose objects A and B are compositesin the same job. They have
different extension types, and B is a component of A. Each composite has atype
manager that performs special cleanup functions before it can delete the
corresponding composite. If neither type manager requires information contained in
the other composite to perform its special processing, the deletion process can
proceed without difficulty.

However, if the type manager for composite A requires some information contained
in composite B to complete its processing, the deletion process becomes more
complex. For this deletion scheme to work, you must guarantee that composite A
will be deleted before composite B. Thus, you must know the order in which the
delete_job call deletes objects and sends composites to deletion mailboxes, so that
you can set up your composites correctly.

System Concepts Chapter 13 193

Delete job deletes composite objects before it del etes non-composite objects. It
deletes composite objects on a last-in-first-out basis; that is, in the reverse order from
which they were created. Therefore, atype manager can depend on receiving the
tokens for composite objects that it creates before the Nucleus del etes the component
objects contained in them. The only exception is when a composite (composite A) is
created before another composite (composite B), and composite B isinserted as a
component into composite A using alter_composite. In this case, composite B will
be deleted first, and the type manager of composite A cannot rely on the existence of
composite B when it receives composite A’ s token for deletion.

Writing a Type Manager
A type manager consists of two parts:

« Theinitialization part creates the type and optionally creates a deletion mailbox
to which the system can send tokens for objects when deleting either jobs or the
typeitself.

« The service part provides system calls so tasks can create and manipul ate objects
of the type.

Because the initialization phase must be completed before any task attempts to obtain
tokens for objects, you should execute the initialization part early in the life of the
system.

« InanICU-configurable system, the task should be part of the initialization task
of afirst-level user job to ensure early execution.

« Innon-1CU-configurable systems, make the type manager part of the first
sysloaded job. Add the -w option (synchronization), to the sysload command
and implement the necessary synchronization steps in the type manager's
initialization module.

Write the service part of the type manager as an OS extension.

See dso: USERJ screen, |CU User's Guide and Quick Reference;
sysload command, Command Reference

194 Chapter 13 OS Extensions and Type Managers

Type Manager System Calls

These are the system calls that you use to manipul ate extensions and composite

objects:

create extension
delete extension
create_composite
inspect_composite
alter_composite
delete_composite

Table 13-4 lists operations on extensions and composite objects and what the related

system calls are.

Table 13-4. Type Manager System Calls

Operation Description

create Create_extension creates an extension object that you may use

extension as a license for creating composite objects.

delete Delete_extension deletes an extension object and optionally,

extension sends all composite objects of that extension type to the
associated deletion mailbox.

create Create_composite creates a composite object of a specified

composite extension type.

list Inspect_composite returns a list of the component object tokens

components contained in a composite object.

replace Alter_composite replaces a component in a composite object

component with either a null or another object.

delete Delete_composite deletes a composite object.

composite

See also: Nucleus system calls, System Call Reference

System Concepts

Chapter 13 195

196 Chapter 13 OS Extensions and Type Managers

IRMX Kernel Programming Concepts

TheiRMX Kernel isapart of the Nucleus that provides high performance task and
time management and message passing; it enhances the OS. This chapter describes
how to use the Kernel within theiRMX OS.

The Kernel does not provide the protection and validation features available in the
Nucleus:

« Kernel system calls do not validate parameters. Use Nucleus system calls
instead, if you need parameter validation.

« TheKernel assumesthat all memory reference pointersit receives are valid.
« Kernel objects are not protected against unexpected del etion.

« TheKernel usesthe flat, 4 Gbyte addressing capabilities of the microprocessor.
It does not use segmentation.

Use the Kernel in these situations:

« Only for very well-tested code

« Forisolated parts of the application
« When performanceis critical

It isagood ideato write, test, and debug your application using Nucleus system calls.
When the application is correct, substitute Kernel system calls where appropriate.

What Does the Kernel Provide?

Object Includes creating, deleting, and manipulating object types defined

management by the Kernel. Y ou must provide memory for Kernel objects and
may allocate memory beyond the Kernel's needs to store
application-specific state information associated with the object.

Time Includes areal-time clock, alarms that simulate timer interrupts,
management and the ability to put tasks to sleep.

Task Includes scheduling locks that protect the currently running task
management from being preempted and task handlers, which perform
additional functions during task creation, deletion, and transition.

Memory Implements memory pools from which it allocates memory in
management response to application requests.

Kernel Object Management

Each Kernel object type has its own set of operations and unique attributes. The
Kernel defines these object types:

« Semaphores
» Mailboxes

« Memory Pools

D Note

A Kernel object is not the same as an iRM X object. Y ou cannot
useiRMX callswith Kernel objects. Conversely, you cannot use
Kernel callswithiRMX objects.

Y ou can create objects anywhere in the application's memory space. Y ou must
provide sufficient memory to contain the data structures that define the object.
Literals declared in the Kernel's include files specify the amount of memory the
Kernel needs for each object type. Y ou may allocate extra memory for the object, to
be used by the application.

When you create an object, the Kernel returns a 32-bit kn_token that identifies the
object. Thereafter you access the object by passing the kn_token to the appropriate
system call.

The Kernel provides system calls to delete objects that you no longer need. Deleting
an object removes the Kernel's association of state data with an object.

A CAUTION
The Kernel does not protect itself against unexpected object

deletion. Do not attempt to access objects either while they are
being deleted or after they have been deleted.

198 Chapter 14 iRMX Kernel Programming Concepts

Kernel Semaphores
The kinds of Kernel semaphores are:
» FIFO semaphores, which enable tasks to queue in First-1n, First-Out order.
« Priority semaphores, which enable tasks to queue in priority order.

« Region semaphores, which are a special type of semaphore with priority
adjustment capabilities. Region semaphores are useful for mutual exclusion.

FIFO and Priority semaphores are general -purpose semaphores that can have up to
65,535 units.

See also: Semaphores, Chapter 4

Creating and Deleting Semaphores

Create semaphores with the KN_create_semaphor e system call and delete them
with the KN_delete_semaphor e system call. To create a semaphore specify:

« The memory areafor the semaphore object.
« Thekind (priority-based or FIFO task queue, or region semaphore).

« Theinitial number of unitsin the semaphore, 0 or 1. If aregionis created with O
initial units, the creating task is the owner of the region and the region cannot be
used by other tasks until the creating task sends a unit.

To provide additional units to a semaphore after creation, use the KN_send_unit
system call once for each additional unit you need. Region semaphores cannot accept
more than one unit.

If asemaphoreis deleted, all tasks in the semaphore's task queue are awakened with
an E_NONEXIST status code.

Sending and Receiving Semaphore Units

Request a unit from a semaphore with the KN_receive _unit system call; you must
repeat the call for each unit you need. If the semaphore contains units, the count of
units decrements by one and the task proceeds. If the semaphore has no units and the
task iswilling to wait, the task goesto sleep in the semaphore'stask queue. Send a
unit to a semaphore with the KN_send_unit system call. If tasks are waiting at the
semaphore, the task at the head of the queue is awakened.

System Concepts Chapter 14 199

Using Region Semaphores

A region semaphore can provide mutual exclusion and synchronization. If atask
must get a unit from aregion before entering acritical section, and if it returns the
unit when leaving the area, only one task will ever executein the critical section at a
time. Region semaphores contain a maximum of one unit and support priority
adjustment.

Kernel region semaphores are similar to iRMX regions. iRMX regions additionally
protect atask inside the region from being suspended or del eted.

See also: Regions, Chapter 5

Priority Adjustment

The same priority bottleneck and inversion problems may arise when using non-

region Kernel semaphores as Nucleus semaphores. Region semaphores, like Nucleus

regions, provide dynamic priority adjustment to avoid blocking a high priority task.
Kernel Semaphore System Calls

These are the system calls you use to manage Kernel semaphores:

KN_create semaphore
KN_delete semaphore
KN_receive_unit
KN_send_unit

Table 14-1 lists operations on semaphores and what the related system calls are.

Table 14-1. Kernel Semaphore System Calls

Operation Description

create KN_create_semaphore creates a semaphore of the specified
semaphore type with 0 or 1 initial units.

delete KN_delete_semaphore deletes the specified semaphore.
semaphore

request unit KN_receive_unit requests a unit from the specified semaphore.
return unit KN_send_unit adds a unit to the specified semaphore.

200 Chapter 14 iRMX Kernel Programming Concepts

Mailboxes

When you create a Kernel mailbox, you may reserve one of the slots in the mailbox
message queue for a high priority message. This enables the mailbox to
accommodate at least one high priority message even if the queue isfull.

Creating and Deleting Mailboxes

Create mailboxes with the KN_create mailbox system call and delete them with the
KN_delete mailbox system call. To create a mailbox specify:

« The memory areafor the mailbox.

« The message size for the mailbox.

« The maximum number of messages the mailbox can hold.

« Whether the task queue will be priority based or FIFO.

* Whether the mailbox will reserve adot for ahigh priority message.

If you delete a mailbox and there are tasks waiting for messages, all tasks are
awakened with an E_NONEXIST status code and all messages queued at the mailbox
arelost.

Sending and Receiving Mailbox Messages

Send ordinary messages to a mailbox with the KN_send_data system call. If atask
iswaiting at the mailbox, it receives the message. Otherwise, the message is queued.
If the mailbox isfull, an exception returns.

Send high priority messages with the KN_send_priority_data system call. If atask
iswaiting at the mailbox, it receives the message. Otherwise, the message is placed
at the head of the queue. If the mailbox isfull, an exception returns.

Specify the actual message size, which must be less than or equal to the maximum
message size for the mailbox. The maximum message size is the size you specified
when creating the mailbox. The KN_send_dataand KN_send_priority data
system calls return a status value indicating either that the message was accepted or
the mailbox was full.

Receive data from a mailbox with the KN_receive data system call. If the mailbox
contains at least one message, the message at the head of the queue is returned to the
caler. Thisiseither the oldest message or the latest high-priority message. You
must provide a message area equal to the maximum message size of the mailbox for
the task.

System Concepts Chapter 14 201

The call returns the actua size of the received message and a status value indicating:
« Thetask received a message.
« Thetimelimit expired while the task was waiting.
« The mailbox was deleted while the task was waiting.
If no messages are available and the task iswilling to wait, the task is put to sleep in
the task queue.

Handling Mailbox Overflow

If amailbox contains its maximum number of messages when a message is sent, the
Kernel returns an exception stating that the mailbox limit was exceeded. The
mailbox enforces flow control by rejecting messages when the queueis full.
Depending on your application, there are several ways to handle mailbox overflow:

« Design the application so mailboxes never overflow.
« Consider mailbox overflow afatal system error.
« Abort the activity causing the overflow.

« Send the message again, if you know that a task received a message, creating
room in the message queue.

If you reserved adot for ahigh priority message, mailbox overflow may be indicated
when sending an ordinary message, even though the mailbox can still accept a high

priority message.

202 Chapter 14 iRMX Kernel Programming Concepts

Kernel Mailbox System Calls
These are the system calls you use to manage mailboxes:

KN_create mailbox
KN_delete mailbox
KN_receive data
KN_send_data
KN_send priority data

Table 14-2 lists operations on mailboxes and what the related system calls are.

Table 14-2. Kernel Mailbox System Calls

Operation Description
create KN_create_mailbox creates a mailbox in the specified area.
delete KN_delete_mailbox deletes the specified mailbox.

get message KN_receive_data requests a message from the specified
mailbox.

send message KN_send_data sends a message to the specified mailbox.
KN_send_priority_data sends a high priority message to the
specified mailbox.

System Concepts Chapter 14 203

Kernel Time Management

The Kernel provides time management calls that allow tasksto create alarms (virtual
timers) and to deep for a specified amount of time. The Kernel also provides areal-
time clock.

Using the Kernel Tick Ratio

204

The Kernel uses the Nucleus to provide an external source of periodic signalsto
implement its time management facilities. All time valuesin the Kernel are specified
in units of clock ticks. Y ou decide the frequency of the clock ticks.

Y ou can use the Kernel Tick Ratio (KTR) parameter to configure support for timed
events at a granularity of less than 10 milliseconds (the Nucleus clock tick interval).
To use this feature, you must adhere to these rules:

1. Youmust use Kernel calls when you need an event granularity of <10 ms. The
Nucleus event granularity is still 10 ms.

2. When mixing Kernel and iRMX system calls, remember that a Nucleus tick
interval may not equal aKernel tick interval.

3. Thesmaller the Kernd tick interval, the higher the system overhead for handling
clock interrupts. This does not affect average and maximum interrupt latency.

See also: KTR parameter, ICU User's Guide and Quick Reference and System
Configuration and Administration;
RQSY SINFO structure, System Call Reference, to programmatically get
the KTR value

The KTR parameter sets the ratio of the Nucleustick interval (10 milliseconds) to the
Kernel tick interval.

KTR Kernel tick

01 10 milliseconds (default)
02 05 milliseconds

05 02 milliseconds

10 01 millisecond

20 500 microseconds

Do not change the default value of KTR unless you need aKernel tick interval
smaller than 10 milliseconds. The KTR parameter only affectsthetick interval in
Kernel system calls. The value of KTR does not affect timed wait operations using
Nucleus cals.

The Kernel provides areal-time clock by counting clock ticks. The KN_get_time
and KNE_get_time system calls return the current value of the counter. The value of

Chapter 14 iRMX Kernel Programming Concepts

thereal time clock isset to O at initialization. Y ou may set the count to any value by
using the KN_set_time or KNE_set_time system calls.

Y ou can measure elapsed time by reading the real-time clock with the KN_get_time
or KNE_get_time system calls at the beginning and end of the interval to be
measured. By subtracting, you determine the elapsed time.

Using Alarms

The Kernel lets you to create dlarmsto simulate timer interrupts. Alarmsinvoke
alarm handlersthat you write. Alarm handlers operate in similar fashion to iIRMX
interrupt handlers. Y ou cannot make blocking calls from them. Alarm handlersrun
in the context of the timer interrupt handler. Y our alarm handler should be as short
aspossible sinceit is called with interrupts disabled and scheduling stopped.

Two kinds of alarms exist: single-shot alarms and repetitive alarms. A single-shot
alarm invokes its alarm handler once when itstime interval elapses. The alarm then
becomes inactive and its memory can be re-used. A repetitive alarm invokes its
alarm handler after itstime interval elapses and then resets itself for the sametime
interval. It continuesto invoke its handler until the alarm is explicitly deleted.

|:| Note

Y ou cannot write alarm handlersin applications that use the flat
memory model.

Create an alarm with the KN_create _alarm system call and delete it with the
KN_delete alarm system call. To create an alarm specify:

« The memory areain which the alarm object will exist.

« Whether it isasingle shot or arepetitive alarm.

+ Thetimeinterval for which the alarmis set.

« A pointer to the application handler that the alarm invokes when the time period
elapses.

After atask callsthe KN_delete alarm system call, the handler associated with that
alarm will no longer be invoked and the memory that the alarm occupies can be re-
used. Alarms may be deleted whether or not they have invoked the associated alarm
handler. This meansthat deleting an alarm does not have to be synchronized with the
expiration of the alarm.

The KN_reset_alarm system call resets an alarm, returning it to itsinitial state.
KN_reset_alarm usesthe alarm's kn_token; the alarm parameters are not required.
Both single shot and repetitive alarms can be reset. Regardless of whether the alarm's
time limit has expired, resetting an alarm returnsit to its creation state and starts it

System Concepts Chapter 14 205

running asif it were just set. Resetting a single shot alarm after it has gone off is
equivalent to setting the alarm again.

Using Sleep

The Kernel enables tasks to sleep for a specified time, using the KN_sleep system
call. Theamount of time the task will be in the asleep state can vary from no time to
forever. If the specified timeis KN_DONT_WAIT, the task will not goto sleep. A
KN_DONT_WAIT time limit gives the processor to another task of equal priority, if
one exists.

KN_WAIT_FOREVER means the task will never wake up. When atask seeps
forever, it is effectively deleted, but its memory is not released. Use the
KN_WAIT_FOREVER literal only with blocking system calls, indicating that the
task will wait until an event occursto wake it. For example, atask might wait
forever until a message arrives at a mailbox.

Time Management System Calls

206

These are the system calls you use to manage time:

KN_create alarm
KN _reset_alarm
KN_delete alarm
KN_get_time
KN_set time
KN_deep
KNE_get_time
KNE_set_time

Chapter 14 iRMX Kernel Programming Concepts

Table 14-3 lists operations on alarms and time and their related system calls.

Table 14-3. Time Management System Calls

Operation Description

create alarm KN_create_alarm creates and starts a virtual alarm clock.

delete alarm KN_delete_alarm deletes an existing alarm.

get elapsed KN_get_time returns the number of clock ticks that have

time occurred. KNE_get_time is an extended version that allows use
of 32-bit data types.

reset alarm KN_reset_alarm returns an existing alarm to its creation state.

reset time KN_set_time sets the counter that the Kernel uses to count the

clock ticks that have occurred. KNE_set_time is an extended
version that allows use of 32-bit data types.

put task to KN_sleep puts the calling task in the asleep state for the specified
sleep number of clock ticks.

Kernel Task Management

The Kernel uses the same scheme of preemptive, priority-based scheduling as the
Nucleus. In addition, it provides ways for controlling or monitoring task switches.

Y ou can protect the currently running task from being preempted by performing a
scheduling lock. A scheduling lock provides protection for the running task; the
running task can make other tasks ready without losing control of the processor. The
Kernel delays atask switch to the running state until the task rel eases the scheduling
lock. Then the running task may be preempted.

|:| Note

Scheduling locks delay the preemptive, priority-based scheduling
of the OS. Only use them if absolutely necessary and be very
careful.

To lock scheduling, usethe KN_stop_scheduling system call. Calling
KN_stop_scheduling multiple times causes multiple scheduling locks to be in effect.
Any scheduler task state transitions that would move a task from the running state to
the ready state are delayed until scheduling isresumed. KN_stop_scheduling does
not prevent atask switch if the running task becomes blocked or calls one of the
rescheduling system calls.

System Concepts Chapter 14 207

To resume scheduling, call KN_start_scheduling. You must call
KN_start_scheduling once for each lock in effect. Normal task switching resumes
after you remove all scheduling locks. Tasks signaled into operation by interrupt
handlers won't run until scheduling is resumed.

[

Note

A scheduling lock does not prevent task switchingin all cases. A
system call that causes blocking or rescheduling can initiate a task
switch even if there is a scheduling lock.

Disabling interrupts and locking scheduling can cause the system to
be less responsive.

Controlling Task State Transitions

Before making a system call, you must determine whether atask switchis
appropriate and perform a scheduling lock if necessary. Kernel system calls can be
classified into four categories, based on their ability to cause state transitions:

208

Non-scheduling system calls never cause state transitions.
KN_create semaphoreis an example of a non-scheduling system call.

Signaling system calls can put tasks into the ready queue and potentially cause
gtate transitions. KN_send_unit is an example of asignaling system call. If
invoking such a system call would cause a higher priority task to become ready,
the running task can use a scheduling lock to keep control of the processor.

Blocking system calls will cause the Kernel to put the running task to sleep
(block) and thus initiate a state transition. KN_receive_unit isan example of a
blocking system call. When you use KN_receive_unit, rescheduling occurs
unless the unit is actually available. A scheduling lock does not prevent a system
call in this category from causing rescheduling.

Rescheduling system calls always cause rescheduling or will cause rescheduling
when invoked on the running task, regardless of a scheduling lock. For example,
KN_sleep aways causes rescheduling.

Chapter 14 iRMX Kernel Programming Concepts

Using Task Handlers

Y ou may configure the Kernel to invoke application procedures, called task handlers,
which you write to perform additional functions during these situations:

« Task creation
« Task deletion
« Task switching

Y our handlers can enhance the Kernel operations. By writing these procedures, you
can add functionality and/or handle error situations. For example, if your application
requires a hierarchical structure for tasks, you can write atask handler to implement
the setup when the task is created.

These are the task handlers you can write:
« create task _handler
« deete task handler
« task switch_handler

Task handlers may invoke non-blocking Kernel system calls to perform various
functions. The Kernel expects these procedures to be as correct as one of its own
internal cals.

|:| Note

Incorrect task handler code can impact performance and can
corrupt application operation. The duration of these handlers can
adversely affect system performance and interrupt latency.

The Kernel invokes task handlers when the task makes a system call such as the
Nucleus system callsrq_create task or rq_delete task, or when a system call
causes atask switch or change in priority of atask. All handlers are invoked with
interrupts disabled and scheduling locked. Handlers cannot enable interrupts or
unlock scheduling.

System Concepts Chapter 14 209

Figure 14-1 illustrates the interrel ation between the Kernel and task handlers. The
application has installed task handlers. When any task creation, deletion or switching
occurs after the handlers have been installed, the Kernel calls the appropriate handler.

Application handlers

\
| Task
\
I}

Nucleus

Kernel

OM01095

Figure 14-1. Kernel Invoking of Task Handlers

Installing and Removing Task Handlers

210

You install task handlers dynamically with the KN_set_handler system call. You
may install multiple handlers of each type. The KN_reset_handler system call
dynamically removes your task handler.

|:| Note

Multiple task handlers degrade the performance of your system;
remove them using KN_reset_handler when they are not needed.

This example describes Kernel operation using task creation handlers.

1. With no task creation handlers installed, the application calls the Nucleus system
cal rq_create task. No handlersareinvoked.

2. Using KN_set_handler, the application installs two task creation handlers
(createA hdlr andcreateB hdlr).

3. Then, when an application callstherq_create task system call, the Kernel
initializes the new task. Before the task is allowed to execute, the Kernel calls
createA hdl r,thencreateB_hdl r. Findly, it enablesthe task to execute.

4. Next, the application callsKN_reset_handler to removecreat eA hdl r.
When rg_create task isnext called, the Kernel initializes the new task. It calls
cr eat eB_hdl r, then enables the task to execute.

Chapter 14 iRMX Kernel Programming Concepts

5. Now the application reinstallscr eat eA_hdl r using KN_set_handler. When
rq_create task iscalled, the Kernel initializes the new task, calls
creat eB_hdl r, thencreat eA_hdl r, then enables the new task to execute.

6. Finaly, the application removes both task creation handlers using
KN_reset_handler. Whenrq_create task iscalled, the Kernel performs only
its standard create task functions.

See dso:

Kernel system calls and handlers, System Call Reference

Task Management System Calls

These are the system calls you use to manage tasks:

KN_start_scheduling
KN_stop_scheduling
KN_set_handler
KN_reset_handler

Table 14-4 lists Kernel task operations and their related system calls.

Table 14-4. Task Management System Calls

Operation Description

restart KN_start_scheduling cancels one scheduling lock imposed by

scheduling KN_stop_scheduling. When it cancels the last outstanding
schedule lock, the Kernel carries out all delayed task state
transitions.

lock KN_stop_scheduling temporarily locks (or places an additional

scheduling lock on) scheduling for the running task.

install task KN_set_handler dynamically installs your task handler. You may

handler install multiple task handlers of each type by invoking
KN_set_handler multiple times.

remove task KN_reset_handler dynamically removes your task handler.

handler

System Concepts

Chapter 14 211

IRMX Memory Management for Kernel System Calls

InaniRMX system, you can obtain memory for the Kernel to use as a memory pool
in these ways:

« Cdl rg_create segment, which returns atoken for a 16-byte aligned memory
segment. This method gives the best performance since the memory specified in
the Kernel ar ea_pt r parameter should be aligned on a 4-byte boundary.

« Exclude the memory from free space memory using the ICU or the rmx.ini file
and then create a descriptor for the excluded memory.

In either case, supply a pointer to the memory, t oken: 0, and use this pointer in
Kernel object creation system calls, which require an ar ea_pt r parameter. If you
use the iIRMX OS to manage memory, specify:

area_ptr = token:0
or
area_ptr = malloc (size)

If you use your application to manage memory, specify:

memarray [n] U NT_8
area_ptr = &rem array

Aligning Application or malloc Allocated Memory

If you provide memory directly from your application's data segment or using
malloc, you may need additional steps to align the memory, for these reasons.

« Thesizeliteras supplied by the Kernel in the literal declarationsfiles are
specified in units of bytes, causing the areas to be declared as byte arrays.

« Compilersdo not necessarily align byte arrays that appear in the data segment.

To force the compiler to align arrays on 4-byte boundaries, declare memory
allocations asinteger arrays. Aninteger is4 bytes, so you should declare one-fourth
the number of array elements. For example, when declaring memory to be used by
an alarm object for the KN_create alarm call, you might use these statementsin C:

i nt al arm area [KN_ALARM S| ZE/ 4] ;
KN create_alarm (alarmarea,...)

212 Chapter 14 iRMX Kernel Programming Concepts

To align an 80-byte array that you need to accessin byte values rather than in integer
values, you might use these statements:

i nt y[20] ;
char *X;
X =;

This guideline of using an integer declaration works for all compilers. There are
other methods, such as declaring the array at the beginning of a structure, or testing
the alignment of the pointer and adjusting it. If you already use another technique to
align memory, make sureit still works if you change compilers.

Using malloc

If you use malloc, you will need to test the alignment of the pointer and adjust it
yourself. To do so, request a size 3 bytes larger than you need for a particular
area_ptr. Thenadjust thear ea_ptr to be 4-byte aligned using code similar to

this.

char *array;

Ul NT_32 align_factor;
Ul NT_32 kn_sema_t;

array = malloc (KN_SEMAPHORE_SI ZE + 3);
align_factor = ((long)(near *) array) & 3;
kn_sema_t = KN _create_semaphorg(

U NT_32 *) &array[align_factor], /* area_ptr */
(KN_FI FO_ QUEUEI NG | KN_ZERO UNITS)); /* flags */

System Concepts Chapter 14 213

Demo Files for the Kernel
There are two files installed with the OS that create a demo program for the Kernel:
« A makefile to use with the make command to generate the demo.
+ g.c, the Clanguage demo source code.

Make requires that you load clib.job. If it isnot aready loaded (for example, by
your : config:loadinfo file), enter this command:

sysl oad /rnx386/jobs/clib.job <CR>
To generate the demo enter:

cd /rmx386/ denp/ c/ rnk/src <CR>
make <CR>

These commands generate the executable file sr. The sr program performs a
send/receive semaphore test, first using the Nucleus and then using the Kernel. Use
this syntax to run the demo:

Sr <priority> <iteration_count> [K]
where:
<priority> isthe priority of tasksin the demo

<iteration_count>
is the count of iterations of sends and receives.

[K] indicates that both the iRM X and iIRMX semaphore functions are used.
If you don’t specify that both types of functions are used, only iRM X
semaphore functions will be used by the demonstration program.

For example, to run the demo, enter:

- sr 128 100000 K <CR>

214 Chapter 14 iRMX Kernel Programming Concepts

Include Files for the Kernel

Thefilesin thistable are for compatibility with existing code that makes Kernel calls.
For example, if your C code already includes the files listed under rmk.h in Table 14-
5, you need not include file rmk.h (it includes the other filesitself). Compilers
automatically include only the code needed from include files.

Table 14-5. Kernel Include Files

PL/M C Assembler
rmk.h

rmk_type.lit rmk_type.l rmk_type.equ

rmk_ex.lit rmk_ex.equ

rmk_base.lit rmk_base.l rmk_base.equ

rmk_base.ext [rmk_base.h rmk_base.edf

For C applications, also include rmk_ex.| for definitions of exception codes.

Kernel Memory Management

This section is provided for compatibility with existing Kernel applications. It is not
necessary that you create Kernel pools and areas to use the Kernel system callsfor
object, time, and task management.

The Kernel Memory Manager defines and implements memory pools, providing
Kernel applications with a physical memory management facility.

A CAUTION

The Kernel Memory Manager does not protect memory areas from
unauthorized access. Any task could ignore the rules and access
memory given to another task, sometimes with disastrous results.

System Concepts Chapter 14 215

Creating Memory Pools and Areas

Use the KN_create pool system call to create a memory pool in a specific range of
memory. Specify where in memory to create the memory pool object and the size of
the pool, including overhead.

To use the memory in amemory pool, invoke the KN_create area system call.
Specify the memory pool's kn_token and the size of the requested area, including area
overhead. If the requested spaceis available in the pool, the Kernel Memory
Manager returns a pointer to the area. Use this pointer to access the area, to create a
segment descriptor to the area, or to create a memory sub-pool from the area. If the
reguest cannot befilled, KN_create area returns a null pointer.

|:| Note

If amemory poal is created on a 4-byte boundary, all areas created
from that pool will be on a 4-byte boundary. To align the memory,
the pool can be the start of a Builder-defined segment or alarge
array of integers defined statically in your application.

Deleting Memory Pools and Areas

When the application is through using an area, call KN_delete area, specifying the
areato be released and the pool from which the area came. The KN_delete area
system call returns the memory to the memory pool, making it available for re-use.

When an application no longer needs a memory pool, call the KN_delete pool
system call. The KN_delete pool call does not require al of the areas to be returned
in order to delete apool. However, if an areais still in use when the pool is deleted,
there is a chance that the same memory could be used simultaneously for two
purposes, with undefined results.

|:| Note

When using memory pools, do not access memory within the pool
except for areas allocated by the KN_create area system call. Do
not invoke memory pool system calls on a memory pool after
invoking the KN_delete poal system call onit.

216 Chapter 14 iRMX Kernel Programming Concepts

Pool and Area Overhead

A memory pool occupies exactly the size specified when it is created. Thereisa
minimum size that can be requested, represented by the literal
KN_MINIMUM_POOL_SIZE. Thissize isthe minimum number of bytesthat the
Kernel requires for amemory pool. It includes overhead data structures whose
memory cannot be allocated from the pool. The usable space for a pool is actually
the reguested size minus the pool overhead. Theliteral KN_POOL_OVERHEAD
defines the number of bytesin the overhead. To create apool of size n, the total
number of bytes required would be n + KN_POOL _OVERHEAD.

Theliteral KN_MINIMUM_AREA_SIZE designates the smallest area that can be
allocated from amemory pool. If an application requests an area smaller than the
minimum size, the memory manager rounds the requested size up to the minimum
size. Thereisalso an overhead associated with each area created from a memory
pool. Theliteral KN_AREA_OVERHEAD defines thisamount. Thus, if an area of
sizenisdesired, n+ KN_AREA_OVERHEAD bytes are required.

Performance Issues

Y ou gain the highest level of performance from a memory pool if you allocate
memory areas of the same size. In addition to minimizing wasted space, the times to
allocate and deallocate fixed-size areas are | ess.

Allocating memory areas on 4-byte boundaries enables Kernel system callsto
execute faster because the objects created in the areas are also aligned on 4-byte
boundaries. Memory pool properties provide that, if amemory pool is created
aligned on a 4-byte boundary, all areas allocated from within that pool are also
aligned on 4-byte boundaries.

To create a pool that can allocate exactly n areas al of sizem, the arearequired isas
follows:

n* (m + KN_AREA_OVERHEAD) + KN_POOL_OVERHEAD

If mislessthan KN_MINIMUM_AREA_SIZE, replace m with
KN_MINIMUM_AREA_SIZE in the expression.

System Concepts Chapter 14 217

Figure 14-2 shows the relationship between a memory pool and memory aress.
Although areas may be different sizes, access to the areas is more efficient if all areas
in apool are the same size.

Memory Pool
Pool overhead
(" Area)
overhead
Area Area

\ J overhead|

Area
(" Area

overhead|

Area

—
—_———

OM02862

Figure 14-2. Memory Poolsand Areas

Getting Information about a Pool

Using the KN_get_pool_attributes system call, you can get thisinformation about a
specific memory pool:

« Thesize of the pool
« Thetotal available space in the pool

« Thelargest contiguous available areain the pool

Allocating Memory in an Interrupt Handler

In general, managing memory from within an interrupt handler is unwise because it
impacts performance. The KN_create area and KN_delete area system calls use
an internal semaphore for mutual exclusion and may cause tasks to go to sleep.
Interrupt handlers may safely use these system calls on a pool only if you perform all
operations on the memory pool (by either the interrupt handler or any other
procedure) with interrupts disabled. This ensures that the memory pool will always
be accessible when the interrupt handler invokes a system call oniit.

218 Chapter 14 iRMX Kernel Programming Concepts

Kernel Memory Management System Calls

These are the system calls you use to manage memory:

KN_create area
KN_delete area
KN_create pool
KN_delete pool
KN_get_pool_attributes

Table 14-6 lists operations on memory and the related system calls.

Table 14-6. Management System Calls

Operation

Description

create area

KN_create_area allocates an area of memory of specified size
from a specified memory pool.

create pool KN_create_pool creates a memory pool in a specified range of
memory.

delete area KN_delete_area returns an area to the memory pool it was
allocated from.

delete pool KN_delete_pool deletes a memory pool.

get available KN_get_pool_attributes returns the size of the pool, the total

space size in the pool, and the largest contiguous available area in the

pool.

System Concepts

Chapter 14

219

220 Chapter 14 iRMX Kernel Programming Concepts

/0 SYSTEMS PROGRAMMING CONCEPTS

This section describes the Basic 1/0 System, the Extended I/O System, and the
Universal Development Interface.

See also:

Chapter 15.
Chapter 16.
Chapter 17.
Chapter 18.
Chapter 19.
Chapter 20.
Chapter 21.

System call descriptions, System Call Reference;
I/0 System, and UDI overviews, Introducing the iRMX Operating
Systems

I/O System Basic Concepts

I/O Jobs and Connections

Named Files

Physical Files

Stream Files

Connections and Objects

UDI Basic Concepts and System Calls

221

222

/O System Basic Concepts 1 5

This chapter introduces concepts which apply to both the Basic 1/0 System (BIOS)

and the EIOS (EI0S), as well as those that apply only to the BIOS or the EIOS.

See also: BIOS and EIOS, Introducing the iRMX Operating Systems

The concepts presented in this chapter are:

System programming (BIOS only)

Synchronous and asynchronous calls

Device controllers and device units

Volumes

Files

Communication between tasks and device units

Logical Names

Pat h_pt r parameters and default prefixes (EIOS only)
1/0 Jobs (EIOS only)

System Concepts

Chapter 15

213

System Programming (BIOS)

There are two programming roles associated with the iRM X OSs: application
programming and system programming.

System programming affects the performance and security of the entire system;
application programming has a more limited effect because it involves individual
jobs. Although the roles have different names, separate people are not required. One
individual can perform both roles.

The BIOS system call descriptions include notes for system callsthat, if misused, can
have serious consequences for an application system. These system calls should be
used by the designated system programmer.

Synchronous and Asynchronous Calls

214

The I/0O System provides synchronous and asynchronous system calls. Both the
BIOS and the EIOS provide synchronous calls; only the BIOS provides asynchronous
cals.

Synchronous calls begin running as soon as the application invokes them and
continue running until they detect an error or complete. While a synchronous system
call isrunning, the calling task cannot run. It resumes running only after the
synchronous call has either failed or succeeded. Synchronous calls act like
subroutines.

Asynchronous calls complete their operation by using tasks that run concurrently
with the application. The application can accomplish some work while the BIOS
accesses disk drives or tape drives, for example.

Each asynchronous system call hastwo parts. one sequential and one concurrent.

« The sequential part behavesin much the same way that synchronous system calls
do. It verifies parameters, checks conditions, and prepares the concurrent part of
the system call. If any problem is detected during the sequential part, an
exception code returns to the caller and the concurrent part does not start. 1f no
error is detected, an E_OK condition code returns to the caller and the concurrent
part starts.

« Theconcurrent part runsasan iRMX task. Thistask is readied by the sequential
part of the call and runs only when the priority-based scheduling of the OS gives
it the processor. The concurrent part also returns a condition code as part of an
1/0 Request/Result Segment (IORS) sent to the response mailbox specified in the
asynchronous call.

See also: BIOS and EIOS Layer Specific Information, System Call Reference

Chapter 15 I/0O System Basic Concepts

Asynchronous Call Order of Operations

This example shows how an application can use an asynchronous call to retrieve
some information stored on disk. Figure 15-1 on page 217 illustrates how the
sequential and concurrent parts of the call relate.

1

The application issues a_read and specifies a response mailbox for
communicating with the concurrent part of the system call.

The sequential part of a_read beginsto run. This part checks the parameters for
validity. These operations execute in context of the application code. Figure 15-
1 on page 217 labelsthisarea as “sync”.

The sequential part returns a condition code. If itisE_OK, the BIOS readies the
concurrent part of the call to perform the read; otherwise, it does not.

The application receives control and tests the sequential condition code. If itis
E_OK, the application continues running until it needs the information from
disk. Now, the application can take advantage of the asynchronous and
concurrent behavior of the BIOS to perform other tasks. Figure 15-1 on page
217 labels the asynchronous area as “async”.

For example, the application can implement multiple buffering by issuing other
a read callswhile waiting for the first call to complete. Alternatively, the
application can use this overlapping processing to perform computations.

For the balance of this example, assume that the sequential part of the system
call returned E_OK. (If the sequential condition codeis not E_OK, the
application must respond appropriately.)

Before taking the information from the buffer, the application verifies that the
concurrent part of a_read ran successfully. There are three ways the task can do
this.

Oneway istoissue areceive_message call to check the response mailbox
specifiedina_read. In this case, the application obtains an IORS that contains a
condition code for the concurrent part of the system call. If itisE_OK, the
application can get the data from the buffer. Otherwise, the application should
analyze the code to determine why the read was not successful.

See also: IORS, System Call Reference;
Accessing the IORS, Programming Techniques

System Concepts Chapter 15 215

Another way, which can be used only after a_read, a write, or a_seek, isto
issue wait_io, which passes a token for the response mailbox to the application.
In this way, the application can receive the condition code directly for the
concurrent part of the system call. In addition, if the concurrent condition code
isE_OK, the application also receives the number of bytes successfully read.
Otherwise, the number of bytes returned has no significance.

Thefinal way isused for flat applications. Thisway callswait_iors. You could
use either of the previous methods with a flat application but you can't do
anything practical with the returned 1ORS structure.

See also: wait_iorscall, System Call Reference

216 Chapter 15 I/0O System Basic Concepts

Application Code 1/0 System Code

From Response Mailbox
Send Message To

Response Mailbox

Examine Status

\4
Await Next I/O Request

For This Connection

Do Error
Processing

Get Data
From Buffer

|

Invoke ‘ Test For

a_read ‘ Validity
| v
| Yes Make 1/0
‘ Task Ready
‘ No
|
| Return With
‘ Exception Code
| Sync

\4 |
Examine | Return With
Exception Code ‘ E OK
|
T T T T L
‘ \4
| 1/0 Task
| Performs 1/O
Concurrent Processing ‘ \L
| Put Status of
Vv ‘ Operation in Message
Receives Message \ Async

|
|
|
|
|
|
|
|
|
|
|

W-2795

Figure 15-1. Behavior of an Asynchronous System Call

System Concepts Chapter 15 217

Using Asynchronous Calls

These explanations apply to all asynchronous calls.

218

All of the asynchronous system calls consist of two parts: one sequential and
one concurrent. The BIOS activates the concurrent part only if the sequential
part runs successfully and returns E_OK.

Every asynchronous system call requires a response mailbox for communication
with the concurrent part of the system call. Use the create_mailbox system call
to create a message mailbox.

Whenever the sequential part of an asynchronous system call returns a condition
code other than E_OK, the application should not attempt to receive a message
from the response mailbox nor should it call wait_io. Doing so can cause the
application to wait indefinitely. The BIOS cannot run the concurrent part of the
system call.

Whenever the sequential part of an asynchronous system call returns E_OK, the
BIOS runs the concurrent part of the system call. The application can take
advantage of the concurrency by doing some processing before receiving the
message at the response mailbox or calling wait_io.

After the concurrent part of a system call runs, the BIOS signals its completion
by sending an object to the response mailbox. The precise nature of the object
depends upon which system call the application invoked. Usereceive message
to receive the message. The application can determine the returned object type
by calling get_type.

The application, with one exception, must delete the IORS when it is no longer
needed. The BIOS uses memory for such segments so if the application failsto
delete the IORS, it might run short of memory. Use delete_segment to delete
the IORS.

The exception is when the application callswait_io. The application does not
have access to the IORS and cannot delete it. This enables the BIOS to maintain
asupply of IORSsthat it can use repeatedly. Because most 1/O-related
operations are reads, writes, or seeks, this means a significant performance
enhancement for the application.

Chapter 15 I/0O System Basic Concepts

Condition Codes for Asynchronous Calls

For those system calls that require a response mailbox parameter, the BIOS returns a
condition code for the sequential portion of the call to the word pointed to by the
except _pt r parameter and a condition code for the concurrent portion of the call to
the st at us field of the IORS.

See also: IORS, System Call Reference;
Accessing the IORS, Programming Techniques

Some calls can return a connection instead of an IORS. If a sequentia exceptional
condition occurs, the BIOS either returns control to the calling task or passes control
to an exception handler. It does not process the asynchronous portion of the call. If a
concurrent exceptional condition occurs, the calling task must signal the exception
handler or process the exceptional condition inline.

If the application handles the exception inline, use the Nucleus get_type system call
to obtain the type of object returned, for example an IORS.

See also: get_type, System Call Reference;
exception handling, in this manual

Creating I/O Buffers

A read, s read_move, a write, and s write_move each require a buffer to read
from or write to while performing 1/0. When you create these buffers, these
restrictions apply:

« The memory segments used for the 1/0O buffers must have the appropriate access
rights. be readable for read operations or writable for write operations.

« Oncethe I/O operation has been invoked, the application tasks should not change
the contents of the buffer until the BIOS finishes the operation.

+ Do not delete an iRM X segment used as a buffer while an I/O operation isin
progress.

Using segments from one job as buffers for 1/O operationsin a different job can
cause unintentional deletion. If Job A ownsaniRMX segment, that segment is
automatically deleted when the job is deleted. If Job B usesthis segment asa
buffer for 1/O, the buffer will be deleted even if Job B has1/O in progress.

System Concepts Chapter 15 219

Device Controllers and Device Units
TheiRMX OS distinguishes between device units and device controllers.

A device unit is a hardware entity that tasks use to read or write information, or both.
Device unitsinclude diskette drives, hard disk drives, tape drives, printers, and
terminals.

A device controller is ahardware entity that talks directly with iRMX software and
controls device units. Typically, adevice controller enablesiRMX applicationsto
communicate with several device units. For example, a 2215 SCS| Disk Controller
acts as an interface between an application program and several disk drives (device
units).

Setting Mass Storage Device Granularity

When information is stored on a mass storage device, space is allocated in granules
and the block sizeis called granularity. If your device supports multiple device
granularities, selecting the larger value usualy gives higher performance, but you
may waste storage space due to large granules containing only a few bytes of data.

See also: Granularity, Introducing the iRMX Operating Systems
Use these guidelines when setting granularity:

« For diskettes, always set the volume granularity equal to the device granularity,
unless you plan to store many large files on the volume. Don't select a volume
granularity larger than 1 Kbyte.

« For hard disks, set the volume granularity equal to the device granularity, unless
the device granularity islessthan 1 Kbyte. Then set the volume granularity to
1Kbyte.

« For sequential file access, larger granularity sizes generally improve access time.
Each access can handle more data.

« For random file access, smaller granularity sizes generally improve accesstime.
Each access handles only that data that is needed, thereby spending lesstime
transferring needless data.

« When creating alargefile, assign alarge file granularity to minimize the number
of noncontiguous blocks that make up the file. This decreases the fragmentation
of the volume.

« For smaller files, set the file granularity equal to the volume granularity to
minimize wasted space on the volume.

220 Chapter 15 I/0O System Basic Concepts

File Granularity Example

This example uses only one small mass storage unit containing a file of 20,010 bytes.
It illustrates how performance interacts with use of space. Performance may not be
critical if you do not use the device often enough for the data transfer rate to have
much impact.

1. If the granularity is 10,000 bytes, the file occupies three granules. The first two
granules are full and the third contains only 10 useful bytes.

Although this file wastes 9,990 bytes of storage space, the data transfer rate is
quicker than with asimilar file of smaller granularity.

2. If thefile granularity is 200 bytes, the file occupies 101 granules. Each of the
first 100 granulesis full, while the last granule contains only 10 useful bytes.

The file now wastes only 190 bytes of storage space, but the data transfer rateis
dower than with a granularity of 10,000 bytes.

If the application system has many mass storage units and space is readily available,
alargefile granularity will give faster average transfer rates and shorter access times,
at the expense of device space.

Volumes

A volume is the medium used to store the information on a device unit. For example,
if the device unit is adiskette drive, the volume is a diskette; if the device unitisa
multi-platter hard disk drive, the volume is the disk pack; if the device unit is atape
drive, the volume is the cartridge tape.

System Concepts Chapter 15 221

File Types

The I/O System defines afile to be information, not adevice. The BIOS and EIOS
provide these types of files:

« Named files allow random access, hierarchical file structure, and access control.

« EDOS (Encapsulated DOS) and DOS files are DOS files accessible to
DOSRMX and iRMX for PCs applications using EIOS and BIOS system calls.

|:| Note

The EDOS and DOS file drivers are mutually exclusive.
DOSRMX provides the EDOSfile driver. iRMX for Pcs and the
iRMX I11 OS provide the DOSfile driver.

« Remote files are named files that exist on another system and are accessed on an
iNA 960/iRMX-NET network.

« Network File System (NFS) files are files that exist on another system and are
accessed on a TCP/IP network using NFS. NFSfiles are accessible between
systems using different operating systems.

« Physicd filesalow more direct hardware control over a device.
« Stream files allow one task to write to afile while another readsiit.

Each kind of file has characteristics that make it unique. Regardless of the kind of
file, the BIOS and EIOS provide information to applications as a string of bytes,
rather than as a collection of records.

See also: Named Files, Physical Files, and Stream Files chaptersin this section
for more information on files;
remote files, Network User's Guide and Reference;
NFS chapters, TCP/IP and NFSfor the iRMX Operating System

222 Chapter 15 I/0O System Basic Concepts

Communication Between Tasks and Device Units

Several layers of software and hardware must be bound together before
communication between application tasks and device units can occur. Figure 15-2
shows these layers.

Application Software

Tasks Tasks Tasks

File Driver Software

Device Driver

Device Controller

> Hardware

Device Unit

W-2796

Figure 15-2. Hardware and Softwar e L ayers Between Tasks and a Device

There are severa kinds of bonds:

The bond between the application tasks and the file driver is supplied during the
linking or binding process. A file driver provides the interface between the
BIOS and adevice driver. The information needed to perform the binding
process is specified at configuration time. Loadable file drivers provide almost
the same function as using the ICU.

The bond between a device driver and a device controller isdataresiding in a
data structure called a Device Unit Information Block (DUIB). Datafor DUIBs
is specified at configuration time. Critical datainvolvesthe DUIB parameters
updat e_ti meout andfi xed_updat e. Loadable device drivers provide
almost the same function as using the ICU.

System Concepts Chapter 15 223

« The bond between the device controller and the device unitsis a physical bond,
typically wires or cables.

See also: Loadable file and device drivers, System Configuration and
Administration;
File and device drivers and DUIB data structure definition, Driver
Programming Concepts

The tasks access files and devices through connections. Two kinds of system calls
produce connections. one kind produces a device connection and the other produces
afile connection. Before atask can use afile, it must invoke both of these kinds of
cals.

See dso: 1/0 Jobs and Connections, in this section

Device connections are like conduits (pipes); file connections like wires through the
conduits. These descriptions apply to device and file connections.

« Device connections extend from the application software to the individual device
units and each passes through only one file driver.

« Thereisonly one device connection to each connected device. However,
multiple file connections can share the same device connection.

« Thereis only one device connection through the stream file driver, because one
logical device contains all stream files.

« Unconnected device units are not connected to the application software.

- Different device units with the same controller can be connected by different file
drivers.

« Tasks can share access to the same device unit through the physical file driver
and they can share access to the same files on the same device unit through the
named file driver.

An application task must attach a device before accessing the files on that device and
must establish a connection to the file before accessing the data in that file.

224 Chapter 15 I/0O System Basic Concepts

Logical Names

Y ou can use logical names to identify file connections or device connections. A
logical nameisan iIRMX STRING of 12 or fewer characters with a unique syntax.

Every 1/O job has three distinct object directories in which objects can be catal oged.
When looking up alogical name, the EIOS searches these directories in this order
and stops when it finds the name.

« The object directory of thelocal job
« The object directory of the global job for a user session
« The object directory of theroot job

See also: Logical names, Command Reference;
Connections and Objects in this section

Path_ptr Parameters and Default Prefixes (EIOS)

Some EIOS calls refer to files rather than to connections. All such callsrequire a
pat h_pt r parameter to identify the file to be attached, created, or otherwise used.

One aspect of the pat h_pt r parameter appliesto al kinds of files. If the parameter
isset to null, or if it pointsto anull String (an iIRMX STRING containing O
characters), the EIOS selects the file based on the default prefix of the calling task's
job.

The default prefix is an attribute of an 1/0 job and it isalogical name for adevice or
afile connection. It is cataloged under the name $ in either the local or the global
object directory for the job. Whenever atask invokes a system call but does not
specify alogical name, the EIOS looks up the default prefix and uses the associated
connection.

The complete interpretation of the pat h_pt r parameter depends upon the kind of
file being accessed.

See also: Named Files, paths, prefixes and subpathsin this section

System Concepts Chapter 15 225

I/O Jobs (EIOS)

Any job using EIOS calls must be an 1/0 job. The advantage of using EIOS callsis
that they perform many functions automatically, making them simpler to use than
BIOS calls.

I/O jobs can be created when programs are running and, for ICU-configurable
systems, when the system isinitialized. An 1/O job must have:

A global job A token for the user session’s global job must be cataloged in
the 1/0 job's aobject directory under the name rqglobal.

A default prefix The default prefix is a connection cataloged under the name $
in either the local job object directory or the global job object
directory.

A default user object This user object is required to access named files using EIOS
calls and must be cataloged in the I/O job's object directory
under the name.

See also: Named Files, default prefix, default user object in this section

For 1CU-configurable systems, specify the characteristics of 1/O jobs that are created
when the system isinitialized.

226 Chapter 15 I/0O System Basic Concepts

/0O Jobs and Connections

Creating I/O Jobs

I/O jobs differ from other jobs in these ways.

Many of the parameters required by the Nucleus' create job system call are not
required by the EIOS job creation system calls. Instead, some of these values are
specified at system configuration time. These parameters include:

directory_size

par am obj ect

max_obj ects

max_t asks

max_priority
The EIOS calls automatically initialize the new job with a default user object,
global job for that user session, and default prefix, inherited from the parent job.

The EIOS system calls allow the new job to send a termination message to the
parent jab.

Therge create io job system call creates 1/0 jobs while the system is running
and reserves memory for the job's memory pool.

See also: EIOS calls, System Call Reference

Any task that invokes this system call must be running within an 1/0O job. For

| CU-configurable systems, you can create the initial 1/0 job during system
configuration. For iRMX for PCs and DOSRMX systems, the initial /O jobis
already configured into the system.

System Concepts Chapter 16 227

Creating Device Connections
These system calls apply to device connections:
a physical_attach_device (BIOS) logical_attach_device (EIOS)
a physical_detach_device (BIOS) logical_detach_device (EIOS)

The device connection is the application's only pathway to the device. There can be
only one device connection between a device unit and all of the application tasks that
need to use that device.

See also: Named Files, Physical Files, Stream Files, and call sequencesin this
section

Using BIOS System Calls
To attach adevice for BIOS calls, usea physical_attach_device, which:
« Creates adevice connection that represents the device.

« ldentifiesthe owner of the device connection, to prevent other users from
detaching devices that they do not own.

Use thiscall only once for each device because devices cannot be attached multiple
times. Only one or afew selected tasks should call a_physical_attach_device.
These tasks can be in one these forms:

« Aninitiaization task can create all of the device connections and catalog them in
the root object directory. Then all required device connections are available to
all application tasks that need them.

» Severa tasks can make the device connection available to selected application
tasks by sending the connection to certain mailboxes or by cataloging it in certain
object directories.

Usea physical_detach_device to delete the device connection when the deviceis no
longer needed by the application.

The OS keeps track of the number of tasks using the device. It does not detach the
device until it isno longer being used by any task.

228 Chapter 16 [/0 Jobs and Connections

Using EIOS System Calls
To attach adevice for EIOS calls, uselogical_attach_device. This system call
« Creates adevice connection that represents the device.

« Catalogs atoken for the connection under the specified logical name, which the
EIOS uses to access the device.

« ldentifies the owner of the device connection, to prevent other users from
detaching devices that they do not own.

Use this call only once for each device because devices cannot be attached multiple
times.

Logical_attach_device callsa_physical_attach_device, but may not do so
immediately. Instead, physical attachment occurs transparently during processing of
any system call that references the logical device object. Thistiming can be an issue
when BIOS system calls use logical device objects, as described in the next section.

When the device is no longer needed by the application, use logical_detach_device
to delete the device connection.

The OS keeps track of the number of tasks using the device. It does not detach the
device until it isno longer being used by any task.

Using a Logical Device with BIOS System Calls

You can assign alogical name to any device with logical_attach_device. Typicaly,
you use these logical device objects with EIOS calls. However, BIOS calls also
permit the pr ef i x parameter to be alogical device object; it is a shorthand way to
traverse the directory structure.

When you use alogical device object in BIOS calls, the BIOS examines the logical
device object to determine the device connection. In such cases, you could receive
the E_ DEV_OFF_LINE condition code. If the deviceisonline, the device has not
yet been physically attached with a_physical_attach_device.

Y ou can correct this situation by invoking at least one EIOS system call that refersto
the logical device by itslogical name. The calling task must reside in an I/O Job
before it can invoke EIOS system calls.

System Concepts Chapter 16 229

Creating File Connections

When an application task is ready to use afile, it establishes a connection to that file.
These system calls apply to file connections:

a attach_file (BIOS) s attach_file (EI0S)
a create file (BIOS) s create file (EIOS)
a_open (BIOS) s open (EIOS)
a seek (BIOS) s seek (EIOS)

Unlike device connections, there can be multiple file connections to asingle file.
This allows different tasks, if necessary, to have different kinds of access to the same
file at the same time.

Using BIOS System Calls

230

Usea create fileto obtain afile connection:

« When the task does not know if the file already exists.
« When the task knows that the file does not yet exist.
If thefile already exists, usea_attach file.

In either case, the I/O System returns a connection to the physical file.

/A CAUTION
Itispossibleto usea create fileto obtain afile connection for a
file that already exists, however the file will be truncated to O
length in the process. Other tasks having other connections to that
file will lose access to data because the end-of-file marker will
have moved to the beginning of thefile.

The distinction between the file creation and the file attachment system calls enables
the application to work with named files as well as physical files.

After receiving afile connection, use a_open to open the connection. Use the node
parameter to specify if the connection is open for reading only, for writing only, or
for both reading and writing. Use the shar e parameter to specify if other
connections to the file can be opened for reading only, for writing only, or for both
reading and writing.

Chapter 16 [/0 Jobs and Connections

Using EIOS System Calls
Uses create fileto obtain afile connection:
« When the task does not know if the file already exists.
« When the task knows that the file does not yet exist.
If thefile already exists, use s attach_file.

In either case, the 1/O System returns a connection to the physical file.

A CAUTION
It ispossibleto use s create file to obtain afile connection for a
file that already exists, however the file will be truncated to O
length in the process. Other tasks having other connections to that
file will lose access to data because the end-of -file marker will
have moved to the beginning of thefile.

The distinction between the file creation and the file attachment system calls enables
the application to work with named files as well as physical files.

After receiving afile connection, use s_open to open the connection. Use the node
parameter to specify if the connection is open for reading only, for writing only, or
for both reading and writing. Also specify if other connections to the file can be
opened for reading only, for writing only, or for both reading and writing.

|:| Note

If atask in one job obtains a file connection that was created in a
different job, the task cannot successfully use the connection to
perform 1/O operations. However, the task can catalog the
connection under alogical name and use the logical namein

s attach_fileto obtain a second connection that can be used
without restriction.

A connection can be open, such as during read or write operations, or closed, such as
during renaming or file status operations. Connections created by one I/O system can
be used by the other aslong as the connection is closed. For example, you can use an
EIOS call to create afile and obtain a connection with the BIOS calls that rename a
file or get afile's status. However, the connection cannot be used with a BIOS read,
write, or truncate call, which require an open connection.

The same restriction applies if the BIOS creates the connection. The EIOS can use
the connection as long as the system call does not require an open connection.

System Concepts Chapter 16 231

Moving File Pointers

The BIOS and EIOS maintain afile pointer for each open file connection to a
random-access device unit. Thisfile pointer tellsthe 1/0 System the logical address
of the byte where the next 1/0O operation on the fileisto begin. The logical addresses
of the bytesin afile begin with 0 and increase sequentially through the entire file.

Normally the pointer for afile connection points to the next logical byte after the one
most recently read or written. However, atask can modify the file pointer by
invoking the EIOS s seek or BIOS a_seek system call. Thisisuseful when
performing random-access operations on afile.

232 Chapter 16 [/0 Jobs and Connections

Named Files 1 7

Named files are used with random-access, secondary storage devices such as disks
and diskettes. Named files provide several features that are not provided by physical
or stream files. These featuresinclude:

Multiple files on a single device or volume
« Hierarchical file names

« Access control

+ Extension data

« Diskintegrity

Named files are useful in systems that support more than one application and in
applications that require more than onefile.

iRMX named files can also reside on remote systems. Y ou access remote named
filesin the same way as local named files, using iNA 960 and/or iIRMX-NET.

Named files can also reside on the DOS partition of DOSRMX systems and iRMX
for PC systems. Y ou access DOS files using the Encapsulated DOS (EDOS) file
driver if you are using DOSRMX. Y ou can access DOS files using the DOS file
driver if you are running the iRMX OS on a PC that does not run DOS.

See also: Accessing EDOS Files, in this chapter;
Accessing DOS Files, in this chapter;
Remote Files, Network User's Guide and Reference;
EDOS, Programming Concepts for DOS and Windows

System Concepts Chapter 17 233

Using Prefixes, Subpaths and File Paths in System

Calls

Y ou designate named filesin system calls by specifying their path. There are two
components to a path: the prefix and subpath. A prefix isalogical name for adevice
or the name of adirectory file or datafile. A subpath isadata-file nameor a
sequence of directory names optionally followed by a data filename.

Y ou can represent the character string that designates a path for a named file with an
iRMX string. To represent a string of n characters, you must use 1+n consecutive
bytes. Thefirst byte contains the character count. The next n bytes contain the
ASCII codes for the characters, in the same order asthe string. Thisstringisa
pathname.

Use a pointer to this pathname as the subpat h parameter in the system call and use
the file or device connection asthe pr ef i x parameter in the system call.

Subpaths

234

The subpath ASCII string isalist of filenames separated by dashes, terminating with
the desired file. A file name can be 1-14 ASCII characters, including any printable
ASCI| character except the/ (dash), 1 (up-arrow) or ~ (circumflex). These special
characters are reserved for use in designating directory levels or dividing components
in a pathname. The subpath can also be null or can point to anull string, in which
case the prefix indicates the desired connection.

This subpath is an example of the most common form:

A/B/C/D
Where:
AB,C Are the names of directory files.
D Isthe name of either adirectory or datafile.

This example causes the I/0 System to start at the default directory and descend to
directories A, B, and Cinorder. ThenitactsonfileD.

An example of aless common form of subpathiis:

t A/B/IC/D
Where:
tor” Tellsthe 1/O System to ascend one level in the hierarchy of files; then

descend to directories A, B, and C in order; then act on file D.

Chapter 17 Named Files

The I/O System also accepts consecutive up-arrows. For example:
11 A/B/C

This construction causes the I/0O System to start with the directory indicated by the
default prefix and ascend two levels before interpreting the remainder of the subpath.

A subpath can begin with a/ (dash). For example:
/A/BIC

Whenever the I/O System detects a slash at the beginning of a subpath, the I/0
System starts interpreting the remainder of the subpath at the root directory of the
deviceindicated by the prefix.

Prefixes

A prefix isalogical name for a connection to either a device, anamed directory file,
or anamed datafile. The device may be either alocal or remote device. Thefiles
may also be either local or remote files. The prefix isthe only component that
distinguishes alocal connection from aremote connection. The prefix tellsthe I/O
System where to begin interpreting the subpath:

- If the prefix isaconnection to alocal device, the I/O System begins scanning the
subpath at the root directory of the device.

- If the prefix is a connection to aremote device, the I/O System begins scanning
the subpath at the virtual root directory of the device.

- If the prefix isaconnection to alocal or remote named directory file, the 1/O
System begins scanning the subpath at the specified directory.

- If the prefix isaconnection to alocal or remote named data file, the 1/0 System
checksto seeif the subpath isnull. If itis, the 1/O System uses the file indicated
by the prefix. If the subpath is not null, the 1/O System returns a condition code
indicating that the application program is attempting to use a data file as though
it were adirectory file.

All other syntax appliesto both local and remote files.
Using the Default Prefix

Within oneiRMX job, most references to a named file tree are generally confined to
one branch of thetree.

System Concepts Chapter 17 235

For afile, a default prefix is a connection to adirectory at the head of the most
commonly used branch in the named file tree. To use the default prefix, set the

pr ef i x parameter to null. The I/O System keeps track of ajob's default prefix by
using the job's abject directory.

Y ou can specify one default prefix for each iRMX job. A default prefix provides a
job with two advantages. First, it enables the application to use subpath names
instead of pathnames. If your treeis severa levels deep, this can save programming
time during development. Second, a default prefix provides a means of writing
generalized application code that can work at any of several locations within atree.

For example, suppose that an assembler (implemented asaniRM X job) usesa
default prefix to find alocation in anamed file tree. The assembler could then use a
subpath name of temp to find or create atemporary work file. Before an application
invokes the assembler, it sets the default prefix of the assembler job to adirectory in
the application's named file tree. This enables more than one job to invoke the
assembler concurrently without the risk of sharing temporary files.

Specifying Paths in System Calls

236

System calls referring to named files need a path (prefix and subpath) to locate the
file. If you specify anull prefix, the default isused. Specify atoken to override the
defaullt.

Y ou can specify pathsin these forms:

Prefix Subpath Designated Connection
null pointer to a Connection is the default prefix.
null string
null pointer to an ASCII string defines a path from the
ASCII string default prefix to the target connection.
token pointer to a Prefix parameter contains a token for a
null string connection and overrides the default prefix.

Since the subpath is null, acts on the directory
or file specified in the prefix.

token pointer to an Prefix parameter contains a token for a
ASCII string connection and overrides the default prefix.
The ASCII string defines a path from that
connection to the target connection.

If the ASCII string begins with a slash, the prefix merely designates the tree and the
subpath is assumed to start at the root directory of the tree associated with the prefix.

Chapter 17 Named Files

Named files can also be addressed relative to other filesin the tree, using © (up
arrow) or ~ (circumflex) as a path component. These two symbols have the same
meaning. (Some terminals do not have the up-arrow key.) The 1 or ” refersto the
parent directory of the current file in the path scan.

Those system calls that require paths have apat h_pt r parameter. You can use this
pat h_pt r parameter, along with the default prefix, to specify the file to be used.
This parameter is a pointer to an iIRMX STRING that must be in one of these forms:

Null string If the STRING is 0 characters long, the I/0O System will act on thefile
indicated by the default prefix of the calling task's jab.

L ogical name only
If the STRING consists only of alogical name enclosed in colons (such
as:g: for the Deptl directory) the 1/O System will look up the logical
name and obtain the associated connection. Then, because the subpath
is empty, the 1/O System will act on the data file or directory file
indicated by the connection.

Subpath only
The STRING can consist of a subpath without a prefix. The 1/O System
interprets such subpaths by starting at the directory indicated by the
default prefix of the calling task's job. Then the I/O System follows the
subpath from directory to directory until it reaches the final component
of the subpath. Thisfinal component isthe file on which the I/O
System acts.
Whenever the STRING contains a subpath without alogical name, the
default prefix must be alogical name for a connection to adevice or to
anamed directory file. If the default prefix represents a connection to a
named datafile, the I/O System returns a condition code indicating that
your task is attempting to use a data file as a directory.

System Concepts Chapter 17 237

L ogical name and subpath
The application code can use a STRING with alogical name in colons
followed immediately by a subpath. For example:

:g:tom/test_data/batch_1

The I/O System interprets this example asfollows. First, it looks up the
logical name :g: in the object directory of the local job, or if necessary,
the global or root job. Then it follows the subpath from the directory
associated with the connection. So in the example, the I/O System
would find the directory associated with :g: and it would step through
directoriestom and test_data. Finally, the 1/O System would act on file
batch_1.

Using Connections

238

Once you have a connection to a particular file, you can use it asthe pr ef i x
parameter of any system call by setting the subpat h parameter to null. The I/O
System will ignore the subpath and use only the prefix to find that particular file.

Suppose the application has a connection to directory deptl/tom. Use the connection
to directory deptl/tom as the prefix, and use a pointer to a filename as the subpath.
For example, if the subpath name istest_data/batch_1, the specified fileis
dept/tormtest_data/batch_1.

A file connection obtained in one job cannot be used as a connection by another job.
However, afile connection can be used as a prefix by other jobsin any call requiring
prefi x and subpat h parameters. The only exceptionsto thisrule are that the other
jobs cannot use the connection as a prefix while specifying a null subpathin callsto
a change access, s change access, s delete file, or a_delete file. Thismeansthat
afile connection can be passed to another job and the other job can obtain its own
connection to the same file by calling a_attach_file, with the passed file connection
being used asthe pr ef i x parameter in the call.

However, if the connection was created by atask in a different job, your task should
not use the connection in any of these system calls. Rather, your task should first
obtain a new connection to the same file by performing these steps:

1. Catalog the current connection in the object directory of your task'sjob. This
establishes alogical name for the current connection.

2. Using the newly-defined logical name, invoke s _attach_file to obtain another
connection to the same file.

If your task does attempt to use a connection created in another job, the I/0O System
will return a condition code rather than performing the requested function.

Chapter 17 Named Files

Controlling File Access

In environments where files are shared among multiple users and operating systems,
you may need to control user access and the level of user accessto files. The
iRMX OS provides this control by identifying users with user |Ds and embedding
accessrights for these IDs into the files. This section describes the user 1D and file
access along with the mapping process used for NFSfiles.

Users

TheiRMX OS defines all entities, such as people or iRMX jobs, that use named files
in your system as users. If youwant all of these entities to be able to access any file,
consider them asasingle user. However, if different entities require different
accesses, you must divide the entities into subsets, each of which is a separate user.

Alternatively, if the application does not interact with people (or enables only one
person to interact), you might consider each iRMX job asauser. This setup would
enable the application to control the files that each job can access.

User Ids

A user ID isa 16-hit number that represents any individual or collection of
individuals requiring a separate identity for the purpose of gaining accessto files.

Two user 1Ds have special meaning. One isthe number O (the system manager or
Super user). The other isthe number OFFFFH (the World user). If specified during
system configuration, user I1D O represents the system manager. When the system
manager creates or attaches files, the resulting file connection automatically has read
accessto data files and list access to directory files, even if afile's access list does not
contain ID 0. The system manager can aso change any file's access list.

The user 1D OFFFFH represents World (all usersin the system). Placing the ID for
World in the list of user IDsfor every user object enables the application to set aside
certain files as public files, giving everyone limited access to a series of utilities, such
as compilers. The HI follows this convention by ensuring that all users who log on
dynamically have the World 1D in their user object.

|:| Note

Including the World ID in every user object, lets anyone modify the
accesslist of afile whose owner 1D is OFFFFH (World).

See also: permit command, Command Reference
Accessing NFSFiles, later in this chapter

System Concepts Chapter 17 239

Figure 17-1 shows the relationship between a user and the user ID.

User
Operator

irMx" 0S Job

v

16-bit Identifier:

User ID

0 = System Manager
OFFFFH = World User

OM02123

Figure 17-1. User and User 1D Relationship

User Objects

The I/O System uses a user object when determining accessrightsto files. A user
object contains alist of one or more user IDs. When atask attemptsto use afile, it
must supply the token for a user object. To determine access, the OS compares the
IDsin the supplied user object with information contained in the file itself.

Most 1/0 operations performed within a particular iRM X job are performed on behal f
of one user object. The 1/O System enables the application to designate a default user
object for each job, which defines the access rights for all tasks in that job.

The I/O System uses the job's object directory to keep track of the job's default user
object, which is named r?iouser. Consider r?iouser to be areserved name and do not
useit.

Whenever the application invokes a BIOS call on behalf of the default user object,
the application can use anull selector as the token for the user parameter. Usea
null selector to designate the default user in BIOS system calls.

For ICU-configurable systems, you set up the default user objects for your initial
EIOS 1/0O jobs (which start running immediately upon system initialization). Later,
when atask creates an 1/0 job, the new /O job inherits the default user object of its
parent 1/0O job. The EIOS automatically catalogs the parent job's user object in the
new 1/0 job's object directory under the name r?iouser.

240 Chapter 17 Named Files

File Access List

For each named file (data or directory), the 1/O System maintains an access list which
defines the users who have access and their accessrights. Each accesslistisa
collection of up to three ordered pairs with each pair having the form:

I D, ACCESS MASK

The ID portionisauser ID. Thelist of user IDs defines the users who can access the
file. For systemsthat use NFS, the three iRMX user IDs map to NFS user IDs as
described earlier.

The access mask portion defines the kind of file access that the corresponding user
has. An access mask isabyte in which individual bits represent the various kinds of
access permitted or denied that user. When abitissetto 1, it signifies that the
associated kind of accessis permitted. When set to O, the bit signifies that the
associated kind of accessis denied.

iRMX-NET uses adlightly different access mask for remote files than is used for
local files. A fileislocal if it residesin the same physical system to which the
terminal is connected. A fileisremoteif it resides on another system accessible
through a network.

See also: Remote files, Network User's Guide and Reference;
File access attributes in this chapter for DOS and EDOS;
permit command, Command Reference

|:| Note

NFSfile accessis mapped to theiRM X OS file access scheme.
For information on this mapping see Accessing NFS Files, in this
chapter.

The association between the bits of the access mask and the kinds of access they
control are as follows:

Bit Data Files Directory Files
3 Update Change Entry

2 Append Add Entry

1 Read List

0 Delete Delete

The remaining bits in the access mask have no significance.
For example, an access list for a data file might look like this:

5B31 00001110
9F2C 00000010

System Concepts Chapter 17 241

The ID numbers (left column) are in hexadecimal and the access masks (right
column) arein binary. This meansthat the ID number 5B31 has update, append, and
read access rights, while the ID number 9F2C has the read access right.

Thefirst entry in the file's access list is placed there automatically by the 1/0 System
when it createsthefile. TheID portion of that entry isthe first ID number in the user
object specified in the call that createsthefile. Thefirst ID isthe owner ID for the
file. The accessrights portion is supplied as a parameter in the same call. The owner
ID has full (unlimited) accessto the file.

The system callsto add or delete ID-access pairs, or change the access rights of 1Ds
already in the accesslist are a_change_accessor s_change access.

D Note

Only the system manager and the file's owner can change the file's
access list without being granted explicit permission to do so.

Computing Access for File Connections

242

Whenever atask creates adirectory or creates or attaches afile, the I/O System
constructs an access mask and binds it to the file connection object returned by the
call. Thisaccessmask is constant for the life of the connection, even if the accesslist
for the file is subsequently altered. When the connection is used to manipulate the
file, the access mask for the connection determines how the file can be accessed. For
example, if the computed access rights for a connection to a data file do not include
appending or updating, that connection cannot be used for writing.

When atask uses BIOS callsto create adirectory or file, the access mask for the
connection is the same as the access mask that the task suppliesintheaccess
parameter of the system call. When atask uses EIOS callsto create a directory or
file, the EIOS supplies an access mask that grants full access to the connection.

However, when atask attaches afile, the I/O System compares the user object
specified inthe user parameter with the file's access list and computes an aggregate
mask.

Figure 17-2 on page 243 illustrates the algorithm that the 1/0 System uses during a
call to attach afile. Asthe figure shows, the OS compares the IDs in the default user
object with the IDsin the file's access list. The access masks corresponding to
matching IDs are logically ORed, forming an aggregate mask.

Chapter 17 Named Files

User Object For
Calling Task's Job

UserID 1

ID 2

ID3

D4

ID5

[

(Matches)

\

Access List for

Target File
1D Access
ID Access J

ID Access

or >

Access
Mask for
File
Connection

W-2800

Figure 17-2. Computing the Access Mask for a File Connection

Normally, the I/O System uses the aggregate access mask embedded in the

connection to determine atask's ability to access afile. However, there are two

circumstances in which the I/O System computes access again: during

a _change accessor s change access, and during a_delete fileor s delete file.

When a task invokes one of these system calls, the 1/O System computes the access to

the target file (or to the datafile or directory specified in the pr ef i x parameter, if
the subpath portionis null). If the user object specified in the system call does not

have appropriate access rights, the 1/O System denies the task the ability to delete the
file or change the access.

|:| Note

When computing access, the I/0 System checks the access only to
the last file in the specified subpath and to the parent directory of

thelast file. It does not check the access to any other directory files

specified in the path. If the subpath is null, the BIOS checks the

accessto the file indicated by the pr ef i x parameter.

System Concepts

Chapter 17

243

File Access Rights Example

244

This example illustrates using | Ds, access masks, access lists, and user objects to
permit each user in a system to have exactly the kinds of access that you want that
user to have.

This example shows that one ID humber can give certain access rightsto an
individual and that another ID number can give different access rights to a collection
of individuals. Here are the individuals and their access rights:

« Tomisto have full accessto thefile batch 1

« Bill isto have read and append access only

« Members of Department 2 are to have read access only

Tom (or whoever creates batch_1) can arrange for these kinds of access by doing:

1. Create anumber of user objects, one for Tom, one for Bill, and one for each of
the members of Department 2 (George, Harry, and Sam). When creating the
user objects, assign unique owner 1Ds for each user: 4000H for Tom and 8000H
for Bill. Assign unique owner IDsfor each of the members of Department 2, but
also include a common user ID, FOOOH, as an additional 1D in each of their user
objects.

2. Usea_ create fileto createthefile batch 1. Use the token for the user object
containing the 4000H 1D number and specify the access mask 00001111B. This
call returns afile connection that gives Tom full accessto batch_1. The access
list for batch_1 hasjust one | D-access mask pair.

3. Usea_change accessto add an I D-access mask pair to the access list of
batch _1: 1D 8000H and access mask 00000110B. This gives Bill read and
append accessto batch 1. Now the access list has two | D-access mask pairs.

4. Usea change accessto add athird pair to the access list of batch_1: 1D FOOOH
and access mask 00000010B. This gives the people in Department 2 read access
to batch 1.

Chapter 17 Named Files

Bill can read the contents of batch_1 and append new information to it, if he knows
the prefix and subpath that are needed to attach batch 1 and he creates a user object
with the ID 8000H. He specifies that user object when attaching batch_1.

The members of Department 2 can read the contents of batch_1, if they know the
prefix and subpath that are needed to attach batch 1 and they create a user object
with the ID FOOOH. They specify that user object when attaching batch 1.

When Bill attaches batch 1, he receives afile connection that he can use to read the
file. He aso can write, provided that the file pointer for that connection is at the end
of thefile.

When a member of Department 2 attaches batch_1, he receives a file connection that
he can usein callsto read thefile.

Getting and Setting Extension Data

For each named file on a random access volume, the BIOS creates and maintains a
file descriptor on the same volume. The first portion of the descriptor contains
information for the BIOS. The last portion, called extension data, is available to your
OS extension. Y ou specify the number (from 0 to 255, inclusive) of bytes of
extension data for each named file on the volume, when formatting the volume with
the format command.

See also: format command, Command Reference

The BIOS system calls that enable you to record special information in the trailing
portion of the file's descriptor and to access this datawhen it is needed |ater are
a get_extension_data and a_set_extension_data.

System Concepts Chapter 17 245

Maintaining Disk Integrity

The BIOS has several features that enable programs to maintain disk integrity and
determine whether files or volumes have been corrupted. The next sections outline
these features.

Attach Flags

The BIOS maintains flags that can indicate the integrity of named volumes and
named files. When you attach a named volume, the BIOS sets a flag in the volume
label to indicate that the volume is attached. When you attach a named file, the BIOS
sets aflag in the fnode (file descriptor node) file to indicate that the file is attached.
When you detach avolume or file, the BIOS clears the associated flag, indicating that
the file or volume was successfully detached.

Y ou can check the condition of avolume by invoking a_get_file statusor
s get file status. You can write your own programs to check the file flag, or you
can use the Disk Verification Utility to examine the fnode file.

The Disk Verification Utility (DVU) enables you to inspect, verify, and correct the
data structures of named or physical volumes. Y ou can use the DVU to reconstruct
the fnode file, the volume label, the fnode map, the volume free space map, and the
bad blocks map of the volume.

See also: Disk Verification Utility, Command Reference

Fnode Checksum Field

The BIOS uses the fnode file to keep track of every named file on avolume. The
fnode file lists such information as the file name, the creation and last modification
dates, and the location of every disk sector that makes up the file. When you access a
file, the BIOS uses the fnode file to determine the file's location on the volume.

When you create, modify, or delete afile, the BIOS modifies the fnode file to match
the changes you made.

When the last connection to the file is deleted, the BIOS writes to the fnode file, and
calculates a checksum and writes that value in one of the fields of the fnodefile.
This checksum can be used to determine whether any data errors occurred when the
BIOS wrote the fnode file. Y our programs can use the checksum field to determine
whether the fnode file has become corrupted. Using the shutdown command helps
prevent fnode corruption; use the diskverify command to repair damaged files.

246 Chapter 17 Named Files

Getting and Setting the Bad Track/Block Information

It is not uncommon for a hard disk to have afew sectors or tracks that cannot reliably
storeinformation. Many of these disks have arecord of these bad tracks written on
the second-highest cylinder of the disk. When the BIOS formats adisk, it usesthis
bad track/sector information to assign alternate tracks or sectors for the bad
tracks/sectorslisted. The a_special system call also hasthe ability to retrieve and set
the bad track/sector information on avolume. One subfunction enables you to
retrieve the current list of defective tracks or sectors. Another subfunction enables
you to set up a new bad track/sector list.

Bad tracks and bad blocks are different. Bad tracks are handled by the device drivers
in conjunctions with the hardware, whereas bad blocks are handled by the Basic 1/0
System. The Disk Verification Utility mainly deals with bad blocks. It can view bad
track information with getbadtrackinfo but the format command must be used to
changeit.

|:| Note
Use theiRMX ability to read and set bad track and block
information only with ST506 drives. Drive electronics on newer
SCSI and IDE drives handle this mapping.

System Concepts Chapter 17 247

Accessing Remote Files

The I/O System supports the iIRMX-NET local area network (LAN) by providing the
Remote File Driver (RFD) and the encrypt system call. Remote (public) filesare
accessed by the RFD, which is similar to the Named File Driver.

The encrypt call encrypts passwords. Y ou can use this system call to enable remote
file access through iIRMX-NET or in any application that needs to perform password
encryption. No password decryption or data decryption facilities are provided in the
iRMX OSs.

Systems that Include IRMX-NET

248

iIRMX systems can be networked together using iRMX-NET. iRMX-NET gives you
access to the files on hard disks of other systems on your network. The root directory
of aremote deviceisreferred to asavirtual root. The remote system selects the
directories and files to be made accessible by using the offer command. Not all files
and directories on aremote system are automatically accessible.

A file owner specifies what kind of access will be given to other users using the
permit command. IniRMX-NET, giving or denying network file accessis called
making files public or private. Use the offer command to make files public. Files
retain the same file permissions even when they are made public. Making directories
public has the effect of making all files below that directory public.

Chapter 17 Named Files

Figure 17-3 illustrates public and private files on two networked systems. User Bob,
working on the system shown on the right of the figure, is able to access the public
datafiles on systeml. Bob'sfiles are not accessible from systeml, because none of
hisfilesare public.

See dso: offer command, Command Reference

Local CPU

Remote
CPU Board)
Client Board :SD:

Server | for systemi

g =

Directory o, Directory
Structure System1 S Structure
Work User User

__ L .
Public Files } ‘ Bob
Legend

I:I = Private Directory
\Zl = Public Directory

A = Public Data File
A = Private Data File
W-2802

Figure 17-3. Example of Public and Private Filesin an iRMX-NET System

System Concepts Chapter 17 249

Dynamic Logon and iRMX-NET

250

In a system that supports the dynamic logon facilities of the Human Interface or
iRMX-NET, aUser Definition File (UDF) lists the user name, password (in
encrypted form), user ID, and other information about everyone who is allowed to
log on to theiRM X system. The EIOS provides get_user_ids so that you can look
up the permitted user 1D of any user whose user name you know. Thissystem call is
useful for tasks that need to set up user objects based on the information listed in the
UDF.

The EIOS a so helps control remote file access through verify_user. This system
call validates user names and passwords to ensure file security. Asaresult, the EIOS
enables users to access remote files when logged on to dynamic terminals controlled
by the Human Interface.

Access rights to remote files are dightly different than for named files.

See also: per mit, Command Reference

Chapter 17 Named Files

Accessing NFS Files

On a TCP/IP network you can use NFS for transparent file access between systems.
The NFSfile driver enables application programs and users to access files on an
NFS-shared resource. Before using NFS from a client system, you must define the
files as NFS-shared on the server system. This section describes how file
characteristics are mapped between operating systems when you use NFS. The NFS
client or server software running on anon-iRMX OS (DOS or UNIX) isresponsible
for mapping file characteristics to or from files on the non-iRM X system during NFS
file operations.

See also: attachdevice and per mit, Command Reference
Using NFS, TCP/IP and NFSfor the iRMX Operating System

Volume Names

The volume name for NFSfilesis the hostname. The number of freefilesis not
returned to the IRMX OS when you access files using NFS.

File Names

NFS filenames cannot be longer than 14 characters. If you try to access afile whose
name exceeds 14 characters, the system displays a truncated version of the name and
marksit as “file not found”.

Non-iRMX hosts can further restrict filename lengths. For example, DOS machines
limit filenames to eight characters followed by a three-character suffix.

NFS supports case-sensitive filenames. For hosts whose filenames are case-
insensitive, the filename is converted to comply with the host. For example, if you
use NFSto copy the file My_Stuff.txt to a DOS machine, it is saved asthe DOSfile
MY_STUFF.TXT. Copying the same file to a UNIX host resultsin thefile
My_Suff.txt. Y ou need to reference files using the same case as they appear in the
directory.

System Concepts Chapter 17 251

File Ownership

File ownership mapping occurs between iRM X, DOS, and UNIX files when using
NFS. Thefollowing list describes the mapping:

252

When you use NFS between two iRM X systems, file owners are maintained on a
one-to-one basis.

When you use NFS between an iRMX system and a UNIX system, the following
mapping occurs regardless of which OSisthe NFS client:

iRMX UNIX
First owner in accesslist “owner”
Second owner in access list “group”
Third owner in accesslist (ignored)
World Owner is user |D 60000 and
Group isuser ID 1 (other)
Super Owner and group user IDs are O (root)
Note

Y ou can modify iRM X to UNIX file ownership mapping values for
the World user by setting parameters in the /etc/stune.ini file.

Seealso: Tunable Parameters, TCP/IP and NFSfor the iIRMX Operating
System

When you are the Super user on an iRMX client and you copy filesto an
NFS-shared file system on a UNIX host and the host does not allow root access,
the files get an owner ID of 60001 (nobody) and agroup ID 1 (other).

When you use NFS between an iRMX system and a DOS system, file ownership
mapping does not apply. Thisis because DOS has no concept of file owners.
The NFS package you use on a DOS system may make certain assumptions. For
example, a DOS-based NFS product might translate a file owned by user ID 0
(Super) asread-only from the DOS side. See the documentation for your non-
iRMX NFS product for such details.

Chapter 17 Named Files

User ID Translation

User IDs map one-to-one across NFS except as noted for the Super and World users
between iRM X and UNIX systems described in the previous section.

When you use NFS between two machines that happen to have different user
accounts with the same user ID, the file's ownership is determined by the client’s
account. For example, assume that afile on an NFS server is owned by Sam with a
user I1D of 33. User Sarah on an NFS client also hasauser ID of 33. If Sarah
accesses the file on the NFS server through NFS, the user |Ds map one-to-one.
However, Sarah’s access rights to the file will be whatever rights Sam has for the file
on the server machine. Also, if Sarah lists the directory that contains the file, the
owner will appear as Sarah, not Sam.

This user ID mechanism works similarly between iRM X systems or between iRMX
and UNIX systems.

File and Directory Creation

When an iRMX user creates afile or directory across NFS, the default access rights
are asfollows:

UNI X Access Rights DOS Access Rights
“owner” ="rwx” read/write

“group” =*“---" (not applicable)
“other” =*"---" (not applicable)

Y our NFS software on the non-iRM X host can further define these default access
rights.

File Access Rights

When you change file access permissions programmatically or with the per mit
command from an iRMX client, the access rights are mapped through NFS as
follows:

Setting any of these bits | Resultsin all of these bits being set on
on an iRM X Client iRM X, UNIX, and DOS Servers
iRM X iRM X UNIX DOS
Files D- AU D- AU - W read/write
-R-- -R- r-x read-only
Directories D- AC D AC - W read/write
-L-- -L-- r-x read-only

System Concepts Chapter 17 253

254

For example, if you set only the Delete (D) bit from an iRM X client system, thisis

trand ated across NFS to mean D- AU access on an iRMX server, - w (write) access
on aUNIX server, and read/write access on a DOS server.

When you change access permissions from another OS through NFS, the access
permissions on an iRM X server are set as follows:

Setting any of these bitson UNIX and Resultsin all of these
DOS Clients bitsbeing set on an
iRM X Server
UNIX DOS

Files - W read/write

r-Xx read-only
Directories - W read/write

r- X read-only

For example, if you set theread (r) bit or the execute (x) bit from UNIX, it resultsin

afilewiththe“- R- - ” accesson the iIRMX server.

Chapter 17

Named Files

Accessing EDOS Files

The EDOS file driver enables application programs to access files on a DOS partition
and uses DOS as afile server. Before using any DOS partition or diskette, attach the
drive or the diskette using attachdevice.

See dso: attachdevice, Command Reference

Directories

Users cannot rename a DOS directory or file to another subdirectory (such as
renaming dir1 to dir3/dirl). DOS directory files can only be read a multiple of 16
bytes at atime on 16-byte boundaries.

File Attributes

DOS file access attributes include read-only and read/write permission; iRM X access
attributes include read, change-entry, delete, update, add-entry, and append. An
iRMX user that has any of delete, change, update, add, or append permission has
write permission for DOS files.

The DOS user aways has read (list) accessto DOS files and directories; write
(delete, append, update, add-entry, and change-entry) accessis optional. The DOS
user must have write access to the file to rename it or to delete a connection to it.
DOS and the iRMX OS have different ways for handling invisible files.

See also: Invisible files, iIRMX Programming Concepts for DOS and Windows

File Names

DOS filenames must be eight characters or lessin length, with a three character (or
less) extension. DOS truncates iRMX filenames, which may be up to 14 characters
and may contain one or more . (period). Any DOS filenameisavalid iRMX
filename, but the converseis not true.

Time Stamps

Thecreate_tinme,access_tinme,and nodi fy_ti me elementsare not valid for
DOSfiles. Theonly time stamp for DOS filesis creation time or last-modified time.

File Ownership

Oaner _access does not apply to DOS files because DOS does not support multiple
file owners. EDOS files have only one user, which is World.

System Concepts Chapter 17 255

Accessing DOS Files

The DOSfile driver enables application programs to access files on a DOS partition
and uses DOS as afile server. Before using any DOS partition or diskette, attach the
drive or the diskette using attachdevice.

See dso: attachdevice, Command Reference

Directories

DOS directory files can only be read a multiple of 16 bytes at atime on 16-byte
boundaries.

File Attributes

DOS file access attributes include read-only and read/write permission; iRMX access
attributes include read, change-entry, delete, update, add-entry and append. An
iRMX user that has any of delete, change, update, add, or append permission has
write permission for DOS files.

The DOS user aways has read (list) accessto DOS files and directories; write
(delete, append, update, add-entry and change-entry) accessis optional. The DOS
user must have write access to the file to rename it or to delete a connection to it.
DOS and the iRMX OS have different ways for handling invisible files.

See also: Invisible files, Programming Concepts for DOS and Windows

File Names

DOS filenames must be eight characters or lessin length, with a three character (or
less) extension. DOS truncates longer iRM X filenames, which may be up to 14
characters and may contain one or more . (period). Any DOSfilenameisavalid
iRMX filename, but the converse is not true.

Time Stamps

Thecreate_tinme,access_tinme,and nodi fy_ti me elementsare not valid for
DOSfiles. The only time stamp for DOS filesis creation time or last-modified time.

File Ownership

Oaner _access does not apply to DOS files because DOS does not support multiple
file owners. DOS files have only one user, which is World.

256 Chapter 17 Named Files

Accessing CDROM Files

The CDROM file driver enables application programs to access files on a CDROM.
Before using any CDROM, attach the drive using attachdevice.

See dso: attachdevice, Command Reference

Directories

CDROM directory files can only be read a multiple of 16 bytes at atime on 16-byte
boundaries.

File Attributes
CDROM files are read-only.

File Names

CDROM filenames must conform to 1SO9660. The CDROM file driver cannot read
any other format currently. Filenames must be eight characters or fewer in length,
with athree character (or fewer) extension.

File Ownership
Oaner _access does not apply to CDROM files.

System Concepts Chapter 17 257

Using Nucleus System Calls for the Default User and
Default Prefix

Several system calls provided by the Nucleus alow you to specifically manipulate
user objects and prefix objects.

« catalog_object
« uncatalog_object
+ lookup_object

The default user and default prefix for each 1/0 job are cataloged in the job's object
directory.

System Calls for Named Files

258

Some system calls are useful for both data and directory files, some for only one kind
of file, and some (such as create_user) do not relate directly to either kind of file.
Generally, system calls that relate to named files also relate to remote files and DOS
files.

The brief descriptionsin Tables 17-1 through 17-Error! Reference sour ce not
found. on pages 259 through Error! Bookmark not defined. are grouped by
function, not alphabetically. Where a prefix is not used, an a_ prefix isrequired for
BIOS system callsand ans_ prefix for EIOS system calls. For example, the full
syntax for the BIOS system call for create fileisrq_a_create file.

Chapter 17 Named Files

BIOS and EIOS System Calls for Named Files

Table 17-1. Getting and Deleting Connections

Call Target Used To
create_file data Create a new data file and automatically add
an entry in the parent directory. Obtain a
connection to an existing data file.
create_directory directory Create a new directory file and automatically
add an entry in the parent directory.
attach_file data and Obtain a connection to an existing data or
directory directory file.
delete_connection data and Delete a file connection, not a device
directory connection.

*a_physical_attach_device device

Obtain a connection to a device.

a_physical_detach_device device

Delete a connection to a device.

*s_logical_attach_device device

Obtain a connection to a device and catalog
the logical name for the device in the object
directory of the root job.

s_logical_detach_device device Delete a connection to a device and remove
the logical name of the device from the
object directory of the root job.

hybrid_detach_device device Delete a connection to a device. Does not

remove the device's logical name from the
object directory of the root job. Use to
temporarily attach a device in a different
manner.

* For a_physical_attach_device and s_logical_attach_device, the device connection can be used as

the prefix for the root directory of the device.

Table 17-2. Getting and Setting Default Prefixes

Call Target Used To

‘set_default_prefix job Set the default prefix for any iRMX job and
catalog the connection under the name $ in
the job's object directory.

‘get_default_prefix job Determine the default prefix for any

iRMX job.

* These system calls do not require a prefix of a_ors_.

System Concepts

Chapter 17 259

Table 17-3. User Objects

Call

Target

Used To

‘create_user

user object

Create a user object and return a token to
the calling task.

‘delete_user

user object

Delete an existing user object.

‘inspect_user

user object
token

Return the ID list in an existing user object
to the calling task.

‘set_default_user

user object

Establish a default user for any existing
iIRMX job.

‘get_default_user

user object

Determine or change the default user for
any existing iRMX job.

* These system calls do not require a prefix of a_ors_.

260 Chapter 17

Named Files

Table 17-4. Using Data

Call

Target

Used To

open

data and
directory

Open a connection to the file.

close

data and
directory

Close the file connection.

seek

data

Position the file pointer of the file
connection. Tells the BIOS the location in
the file where the read, write or truncate
operation is to take place. Requires that the
file connection be open.

a_read
s_read_move

data and
directory

Read file data from the location indicated by
the file pointer and place the data in a
memory buffer. Use the seek system call to
position the file pointer. Requires that the
file connection be open. Requires that the
segment to which you copy the data be
writable.

a_write
S_write_move

data

Copy information from a memory buffer and
place it in the file at the position indicated
by the file pointer. Use seek to position the
file pointer. Requires that the file
connection be open. Requires that the
segment from which you copy the data be
readable.

a_truncate
s_truncate_file

data
data

Drop information from the end of the file.
Use a_seek to position the file pointer at
the first byte to be dropped. Requires that
the file connection be open.

‘wait_io

file

Receive the concurrent condition code of
the prior system call and the number of
bytes read or written. Use after a_read,
a_write, or a_seek.

‘a_update

BIOS

Transfer data remaining in internal buffers
immediately to the files on a device. Use to
ensure that all files on removable volumes
(such as diskettes) are updated before
removal.

* These system calls do not require a prefix of a_ors_.

System Concepts

Chapter 17 261

For close, the application can elect to leave the file open, letting the BIOS close it
when the connection is deleted, but when a connection is shared between two or more
applications, some of the applications can place restrictions on the manner of sharing.
For instance, an application can specify sharing with writers only. By closing
connections, the application can improve the likelihood that the connections can be
used by other applications. A connection is not closed until all pending I/O requests
have been handled.

Each entry in adirectory consists of 16 bytes. The first two bytes contain a 16-bit file
descriptor number corresponding to the file descriptor number associated with
get_file_status. Theremaining 14 bytes are the ASCII characters making up the
name of the file to which the directory entry points. A file's nameisthe last
component of a pathname. Using read to read a directory lets the application obtain
severa entries with one operation.

Table 17-5. Getting Status

Call Target Used To
get_file_status data and Get file status.
directory
get_connection_status data and Get connection status.
directory
‘get_logical_device_status device Retrieve information about devices.

* This system call does not require a prefix of a_ors_.

Table 17-6. Reading Directory Entries

Call Target Used To

a_read directory Get contents of the directory.

a_get_directory_entry directory Read directory entries; can be used without
opening a connection.

Note: These system calls are for the BIOS only.

262

Chapter 17 Named Files

Table 17-7. Deleting and Renaming Files

Call Target Used To

delete_file data and Delete files or empty directories.
directory

rename_file data and Rename files or directories. Add entries to
directory directories.

Deleting afileinvolvestwo steps. First, call a_delete file. This marksthe file for
deletion. The second step, actual deletion, is performed by the BIOS. The BIOS
deletes marked files only after all connections to the file have been deleted.

For rename file, the application can move the file to any directory in the same
named file tree. For example, you can rename A/B/C to be A/X/C. Thisexample
moves file C from directory B to directory X. This means that the application can
change every component of afile's pathname except the root directory.

See also: Accessing DOS and EDOS Files, in this chapter;
rename file system call, System Call Reference

Table 17-8. Changing Access

Call Target Used To
change_access data and Change the file's access list, or change
directory access rights of files in a directory, when

used by only the owner of a file or a user
with change entry access to the directory
containing the file.

Table 17-9. Identifying a File's Name

Call Target Used To
a_get_path_component data and Find out the last component of a file's
directory pathname. Use repeatedly to obtain the

entire pathname for a file.

Note: This system call is for the BIOS only.

System Concepts Chapter 17 263

Table 17-10. Changing Extension Data

Call Target Used To

a_set_extension_data data and Writes extension data. Use even if the file
directory connection is not open.

a_get_extension_data data and Reads extension data. Use even if the file
directory connection is not open.

Note: These system calls are for the BIOS only.

When you format a volume to accommodate named files, you have the option of
allowing each file to include extension data.

Table 17-11. Detecting Changesin Device Status

Call Target Used To

a_special device Perform functions that are device
dependent, such as formatting a disk or
setting terminal characteristics.

Note: This system call is for the BIOS only.

Table 17-12. Deleting Connections

Call Target Used To
s_delete_connection data and Delete a file connection, not a device
directory connection.

Note: This system call is for the EIOS only.

264 Chapter 17 Named Files

Table 17-13. Using Logical Names

Call Target Used To
s_catalog_connection object Create a logical name by cataloging a
directory connection in the object directory of a job.
s_lookup_connection object Accept a logical name from an application
directory task, look up the name in the object
directories of the local, global, and root jobs
(in that sequence), and return a token for the
first connection found.
S_uncatalog_connection object Delete a logical name from the object
directory directory of a job.

Note: These system calls are for the EIOS only.

Table 17-14. Creating and Deleting 1/0O Jobs

Call

Target

Used To

‘create_io_job

/0 job

Create an 1/O job while the system is
running. Available for compatibility with the
iIRMX | OS. The memory pools associated
with those 1/O jobs cannot exceed 1 Mbyte.
Specify if you want the initial task to start
running automatically, or wait until
start_io_job.

‘rqe_create_io_job

/0 job

Create an 1/O job while the system is
running. The memory pools can be up to
4 Gbhytes for iRMX Il systems. Use this
system call (instead of create_io_job) for
all new applications, because it takes full
advantage of iRMX features.

‘start_io_job

1/0 job

Start the initial task in an I/O job.

‘exit_io_job

/0 job

Terminate an I/O job and inform the parent
job of the termination.

Note: These system calls are for the EIOS only and do not require a prefix of a_ or s_.

System Concepts

Chapter 17 265

These EIOS system calls perform operations that do not fit into any other category.

Table 17-15. Miscellaneous Functions

Call Target Used To

s_special file Perform functions that are device
connection dependent, such as formatting a disk or
setting terminal characteristics.

s_get_directory_entry filename Look up the name of any file in a directory.

s_get_path_component filename Look up the name of a file as it is known in
the file's parent directory.

Note: These system calls are for the EIOS only.

See also: BIOS and EIOS calls, System Call Reference

Call Sequence for Named Files

System calls for named files cannot be used in arbitrary order. The following figure
shows the sequence for the most frequently used 1/0 System calls. Start with the
leftmost box and follow the arrows. Any path that you can trace is alegitimate
sequence of system calls. Figure 17-4 on page 267 is not acomplete list of all
sequences.

266 Chapter 17 Named Files

Figure 17-4. Sequence of Fregquently Used System Callsfor Named Files

System Concepts

Chapter 17

Create |_
File m
Read
e Write Delete Delete
Open N
g Sz(:k > Close > File “"|Connection
? Truncate W
Attach [
> File
\4
— Data Files
Attach - - Detach
Device Directories Device
A
Ly | Create | > Seek > |
Directory Open or Close
Read
> Delete Delete | |
File Connection
Get
—> AE?Ch I Directory
e Entry
W-2801

267

268 Chapter 17 Named Files

Physical Files

Physical files enable applicationsto read or write strings of bytes from or to a device.
A physical file occupies an entire device or the device's entire volume; the 1/0O
System provides applications with the ability to access the device driver directly.

Although there is a one-to-one correspondence between the bytes on a device and the
bytes of a physical file, the device connection is different from the file connection.

Situations Requiring Physical Files

Physical files are useful when the application system uses sequential devices, such as
line printers, display tubes, plotters, and magnetic tape units.

Physical files are also useful to communicate with random access devices, such as
disk drives and diskette drives, in these situations:

« When formatting volumes, the task accesses every byte on the volume. Only
physical files provide this kind of access.

« When using volumes in formats other than the iRM X format, you must use
physical files. Taskswill have to interpret information such as labels and file
structures, but a physical file can provide tasks with accessto the raw
information.

« When implementing your own file format, such as a structure different from
iRMX named files, you can build a custom file structure using a physical file as
afoundation.

Maintaining Physical File Independence

To alow application tasks to use stream or named files in addition to physical files,
create two tasks: one to obtain a connection to the file and one to use the connection
to perform 1/0. By maintaining this separation, the second task can work with any
kind of file.

To use this two-task approach, be sure that both tasks are in the samejob. This
avoids passing a file connection from one job to another.

System Concepts Chapter 18 269

BIOS Calls for Physical Files

270

1. Obtain adevice connection to tell the I/O System that the file isa physical file

and which device contains the file using

a physical_attach_device

2. Obtain afile connection using

a create fileor a_attach_file

« For a_create file, use the device connection token as the pr ef i x parameter
to tell the BIOS which device you want as the physical file.

« For a_attach_file, use the device connection for the device, or use an
existing file connection to the file asthe pr ef i x parameter in the system
cal.

3. Open thefile connection using

a_open

4. Usethefile. Therearefour system callsthat can read, write, or otherwise use

the physical file.
These system calls read and write information from or to the physical file:
a read and a_write

This call moves the file connection's file pointer if the device is arandom access
device such as adisk or diskette.

a seek
This call requests device dependent functions from the device driver.
a special

Tasks can use this call to format adisk for use with the iRMX OS. The kinds
and number of functions supported depends upon the device and device driver.
Using special functions generally prevents atask from being device independent.

Chapter 18 Physical Files

5. Closethefile connection using
a close

Thisisimportant if the connection share mode restricts the use of the file
through other connections. The application can repeat steps 2, 3, 4, and 5 any
number of times.

6. Delete the connection using
a_delete connection

Thisis only necessary if the tasks of the application are completely finished
using thefile.

7. Detach the device when the task no longer needs the device using
a physical_detach_device
See also: BIOS calls, System Call Reference

EIOS Calls for Physical Files

1. Obtain adevice connection to tell the I/O System that the file isa physical file
and which device contains the file using

logical_attach_device

The application program must use the device name that was assigned to the
device during system configuration. This system call obtains a device
connection and catal ogs the connection under the specified logical name. Other
tasks wishing to use the device connection can look up the connection by using
the logical name.

See also: attachdevice, Command Reference;
for ICU-configurable systems, ICU User's Guide and Quick
Reference

System Concepts Chapter 18 271

2. Obtain afile connection using
s create fileor s attach file

« For s create file, usethepat h_ptr parameter to point to an iRMX
STRING containing the device's logical name enclosed in colons, asin :FO:.
Thistells the EIOS which device you want as the physical file.

« For s attach_file, usethe pat h_pt r parameter of the call to point to an
iRMX STRING containing the device's logical name enclosed in colons, as
in:FO:, or usethe pat h_pt r parameter of the call to point to an iRMX
STRING containing the connection's logical name enclosed in colons, asin
:database:.

3. Open thefile connection using
s open

The task must also specify how many buffers the EIOS can use when reading
from or writing to the file.

4. Usethefile. Therearefour system callsthat can read, write, or otherwise
manipulate the physical file.

These system calls read and write information from or to the physical file:
s read_moveor s write move

This call moves the file connection's file pointer if the device is arandom access
device such as adisk or diskette.

s seek

If you are writing adevice driver for a magnetic tape unit, you can design it to
support s_seek.

This system call requests device dependent functions from the device driver.
S special

Tasks can use these callsto format adisk for use with the iRMX OS. The kinds
of and number of functions supported depends upon the device and device driver.
Using special functions generally prevents atask from being device independent.

272 Chapter 18 Physical Files

5. Closethefile connection using
s close

Thisisimportant if the connection share mode restricts the use of the file
through other connections. The application can repeat steps 2, 3, 4, and 5 any
number of times.

6. Delete the connection using
s delete connection

Thisis only necessary if the tasks of the application are completely finished
using thefile.

7. Detach the device when the task no longer needs the device using
logical_detach_device
See also: EIOS calls, System Call Reference

System Concepts Chapter 18 273

Call Sequence for Physical Files

Y ou can use several system callswith physical files. Figure 18-1 shows the system
call sequence for physical files. To usethe figure, start with the leftmost box and
follow the arrows. Any path that you can trace is a legitimate sequence of system
calls. The steps on the next pages provide a brief description of how an application
can use aphysical file.

S Read |

Data

Write
> -

Data

Attach N Obtain 3 Open | Close N Delete N Detach
Device Connection File File Connection Device

vy

Ly Seek |]

Pointer

Perform
L—> Special [—

Functions

W-3252

Figure 18-1. Sequence of System Callsfor Physical Files

274 Chapter 18 Physical Files

Stream Files 1 9

Stream files enable one task to send large amounts of information to a second task,
even when the two tasks are in different jobs. The first task communicates with the
second task as though the second task were adevice. This extends device
independence to include tasks.

Stream files are only one of several techniques for job-to-job communication.

Maintaining Stream File Independence

Two tasks, the reading task and the writing task, are alwaysinvolved in using a
stream file. To alow your reading and writing tasks to use named files or physical
filesin addition to stream files, add a third task to the application: creating thefile.
This enables both the reading and writing tasks to be independent of the kind of file
being used.

Creating the File

The creating task obtains a device connection to the stream file device and creates the
stream file. It also catal ogs the file connection under alogical name so the reading
and writing tasks can attach the file. Thistask isnot device independent; it works
only for stream files.

BIOS Calls for Creating Stream Files
1. Obtain aconnection to the stream file device using
a physical_attach_device

Use the configured stream file name, typically stream, for thedev_name_ptr
parameter. For stream files, thereisonly one device.

2. Createthe stream file and obtain a token for afile connection using
a create file

Use the token for the device connection as the pr ef i x parameter, to tell the
BIOS o create a stream file.

A_create file examines the device connection to determine what kind of file to
create.

System Concepts Chapter 19 275

3. Passthefile connection to the reading task.
There are several ways of doing this, including using object directories and

mailboxes.
EIOS Calls for Creating Stream Files
1. Create astream fileusing

s create file

Useapat h_ptr parameter pointing to an iRMX STRING of this form:
:stream filename:

Where:
stream filename isthe logical name for the stream file device connection.

S create file returns a connection to the newly created stream file.

Thelogical name for the stream file device is a configuration parameter. During
system initiaization, the EIOS attaches the stream file device and catalogs the
device connection under that logical name. Y our tasks can use the logical name
to obtain the device connection.

2. Catalog the file connection under a unique logical name for each specific stream
fileusing

s _catalog_connection

The reading and writing tasks can then use the logical name to attach the file.

Writing the File
The writing task obtains a device connection to the stream file device and opens the
file for writing. It also closes and removes the connection. Figure 19-1 on page 281
illustrates the file writing process.
BIOS Calls for Writing Stream Files
1. Openthefilefor writing using
a open

Use the token for the file connection asthe connect i on parameter. Set the
nmode parameter for writing; set the shar e parameter for sharing only with
readers.

276 Chapter 19 Stream Files

2. Write information to the stream file using
a write

Use the token for the file connection asthe connect i on parameter. Use
multiple invocations of a_write if necessary. In this case, the BIOS uses the
concurrent part of the call to synchronize the writing and reading tasks. The
BIOS sends aresponse to each invocation of a_write only after the reading task
has finished.

3. Close the connection using
a close
The writing task can repeat steps 1, 2, and 3 as many times as needed.
4. Delete the connection using

a_delete connection

EIOS Calls for Writing Stream Files
1 Obtain aconnection to the stream file using
s attach file

Set the pat h_pt r parameter of the system call to point to an iRMX STRING
containing the file connection's logical name, enclosed in colons asin :sf23:.

2. Open thefile connection for writing using
s open

Use the token of the file connection for the connect i on parameter and set the
nmode parameter to write.

3. Write information to the stream file using
s write_ move
Use the token for the file connection asthe connect i on parameter.
4. Close the connection when finished writing to the stream file using
s close
The writing task can repeat steps 2, 3, and 4 any number of times.
5. Delete the connection using

s delete connection

System Concepts Chapter 19 277

Reading the File

The reading task obtains a device connection to the stream file device and opens the
filefor reading. It also closes and removes the connection. Figure 19-1 on page 281
illustrates the file reading process.

BIOS Calls for Reading Stream Files

278

The reading task performs these steps to successfully read the information written by
the writing task:

1. Thereading task must have a different file pointer than the writing task. Create a

file connection for the stream file using
a attach file
Set the pr ef i x parameter to the token for the original file connection.

The reading task can also use a_create file to obtain the new connection to the
same stream file. If the specified pr ef i x parameter is a device connection, the
BIOS will create anew file and return a connection for it. If the specified
parameter is afile connection, the BIOS will just create another connection to
the samefile.

Open the file connection for reading using
a open

Use the token of the file connection for the connect i on parameter. Set the
nmode and shar e parameters to read and sharing with all connections to the file.

Read information from the stream file using
a read

Read the file until reading is no longer necessary or until an end-of-file condition
is detected. Use the token for the file connection asthe connect i on parameter.

Close the connection when finished reading from the stream file using
a close
The reading task can repeat steps 2, 3, and 4 any number of times.
Delete the connection using
a_delete connection

The writing task deletes the old connection, and, as soon as both connections
have been deleted, the BIOS del etes the stream file.

Chapter 19 Stream Files

EIOS Calls for Reading Stream Files

The reading task performs these steps to successfully read the information written by
the writing task:

1. Thereading task must have a different file pointer than the writing task. Create a
file connection for the stream file using

s attach file
Set the pat h_pt r parameter to point to an iRMX STRING containing the file
connection's logical name enclosed in colons, asin :sf23:.

The reading task can also use s _create file to obtain the new connection to the
same stream file. If the specified pr ef i x parameter is a device connection, the
EIOS will create a new file and return a connection for it. If the specified
parameter is afile connection, the EIOS will just create another connection to the
samefile.

2. Open thefile connection for reading using
S open
Use the token of the file connection for the connect i on parameter. Set the
nmode and shar e parameters to read and sharing with all connections to thefile.
3. Read information from the stream file using
s read_move

Read the file until reading is no longer necessary or until an end-of-file condition
is detected. Use the token for the file connection asthe connect i on parameter.

4. Close the connection when finished reading from the stream file using
s close
The reading task can repeat steps 2, 3, and 4 any number of times.
5. Delete the connection using
s delete connection
6. Deletethefile'slogical name created by the creating task using
S_uncatalog_connection
Do not delete the logical name for the stream file device.
7. Delete the file connection created by the creating task using
s delete_connection

The reading task deletes the file connection that the creating task obtained. Once
this connection is deleted, the EIOS automatically deletes the stream file.

See also: BIOS and EIOS calls, System Call Reference

System Concepts Chapter 19 279

Call Sequences for Stream Files

Figure 19-1 on page 281 illustrates three tasks: one each for creating, writing, and
reading the file. The writing task can create the file before it performs the write, but
this forces the writing task to use only stream files.

This figure shows the system call sequence for stream files. To use the figure, start
with the leftmost box and follow the arrows. Any path that you can traceisa
legitimate sequence of system calls. The sequences of steps on the next pages work
even if the three tasks are in different jobs. They aso work regardless of the order in
which they are executed.

280 Chapter 19 Stream Files

Task 1: Creating the File

Pass
Connection
Obtain to I?_eaimg
Connection B?OSS
(BIOS) (BIOS)
Create | —
File Catalog
Connection
Under
Logical
Name
(EIOS)
Task 2: Writing to the File
Open File .
> Write S Close 3 Delete
fp_r Data Connection Connection
Writing
Obtain
Connection
(EI0S)
Task 3: Reading the File
Open File
Create > > Read > Close 3 Delete
Connection for . Data Connection Connection Delete
Reaching) Delete
Logical -
Name Connection
Cataloged > Created
by Task 1
by Task 1 (E10S)
(EIOS)
W-3251

Figure 19-1. Sequence of System Calls for Stream Files

System Concepts Chapter 19 281

282 Chapter 19 Stream Files

Connections and Objects

Cataloging Connections

Use s catalog_connection to control which directory the connection is cataloged in,
depending on the specified job token.

« To share aconnection with tasks in the same job, but not other jobs, catalog the
token for the connection under alogical name in the local object directory.

« To share connections among tasks in several jobs, designate one global job for a
user session. Then catalog tokens for shared connectionsin the global job object
directory.

« To share certain connections with all tasks in the system, catalog tokens for the
connections in the root job's directory.

D Note

Before an 1/0O job exits, it must uncatalog any tokensit cataloged in
other directories (global or root). If it does not and the logical
name and token remain even though the connection is deleted,
other tasks referring to the logical name or attempting to use the
connection will receive an error.

System Concepts Chapter 20 283

Cataloging Objects

The EIOS catal ogs entries in the object directory of the system's root job and each
[/Ojob. Thisisalist of the namesthat the EIOS uses.

284

rqglobal

r?iojob

r?message

r?iouser

The EIOS uses this name to identify the user session’s global
job for each 1/O job. Whenever you create an I/O job, the
ElIOS automatically catalogs the token for the global job in the
object directory of the I/O job. Y ou may redefine this name,
but doing so may alter the interpretation of any logical names
that are cataloged in the object directory of your job's global
job.

Whenever you create an I/O job, the EIOS catal ogs an object
under this name in the object directory of the 1/0 job.
Do not redefine this name!

Whenever you create an I/O job, the EIOS catal ogs an object
under this name in the object directory of the 1/0 job.
Do not redefine this name!

Whenever you create an I/O job, the EIOS catal ogs an object
under this name in the object directory of the 1/0 job.
Do not redefine this name!

The EIOS uses this name to catalog the default prefix for each
I/Ojob. If you modify the definition associated with this name
by invoking catalog_object, you change the job's default
prefix. If you catalog an object other than a device connection
or afile connection under this name, the EIOS generates a
condition code whenever you attempt to use the default prefix.

With the exception of raglobal and $, do not use catalog_object to modify any of the
definitions described here. If you do, the results will be unpredictable.

The EIOS uses object directories for two other purposes:

« Whenever you use catalog_connection to define alogical name for a
connection, the EIOS catal ogs the connection in the object directory of the job

that you specify.

« Whenever you use logical_attach_device, the EIOS catal ogs the device
connection in the object directory of the system'sroot job.

Chapter 20

Connections and Objects

UDI Basic Concepts
and System Calls

The Universal Development Interface (UDI) isaset of system calls compatible with

multiple OSs. If an application program makes only UDI system calls, it can be

transported between OSs. Y ou can use the UDI as an dternative to the iIRMX 1/0
Systems; if you do so, you should only use UDI callsfor 1/O operations.

Figure 21-1 illustrates the relationship between application code, processing

hardware, and layers of software. The downward arrows represent command flow
and data flow from the application code to the hardware. All interaction between the
application code and the OS is through the UDI software.

Run-time libraries for
non-mathematical features

Application code in application language(s)

+

Intel386 1, Intel4860, or Pentium processor

v

UDlI Ii‘braries ‘ Intel3870

support

\ \ library
Operating system interface libraries
\ \
Operating system
\ \
Intel387

math coprocessor

W-2570

Figure21-1. The Application Software-Hardware M odel

System Concepts

Chapter 21

285

To make an application transportable between OSs, you need a UDI library for each
OS. All libraries present the same interface to applications. UDI OS interfaces,
however, are designed for specific operating systems, including the iRMX, iNDX,
UNIX, and XENIX OSs.

The UDI system calls, while presenting a standard interface to user programs, behave
somewhat differently when used in different OS environments. Thisis because
different OSs have unique characteristics.

UDI System Calls

The calls are divided into functional groups.

UDI Memory Management System Calls

When iRMX OSsload and run a program, the program is allocated memory. The
portion of memory not occupied by code and data, the free space pooal, is available
dynamically while the program runs. The OS manages this memory as segments that
programs can obtain, use, and return.

Programs can use the UDI system calls dg_allocate and dg_mallocate to get
memory segments from the pool. They can use the system callsdq_free and
dg_mfree to return segments to the pool. Programs can also call dq_get_size and
dg_get_msize to receive information about allocated memory segments.

Y ou can reserve memory for the 1/0O System by using the system call
dg_reserve io_memory. Thisensuresthat the OS allocates memory to
accommodate the buffers needed to open files.

Dg_reserve io_memory is particularly useful to an application that has used all of
its allocated memory and must open atemporary file to store data. The system call
reserves additional memory for this purpose. If an application program has not
invoked dg_reserve io_memory and is out of memory, the OSreturnsan E_ MEM
condition code when the application triesto create a temporary file.

A program obtains a connection by calling dq_attach (if the file already exists) or
dg_create (to create anew file). Dqg_detach deletes the connection. To delete both
the connection and the file, use dq_delete.

286 Chapter 21 UDI Basic Conceptsand System Calls

Once a program has a connection, it calls dgq_open to prepare the connection for 1/0
operations. The program performs input or output operations using dg_read and
dg_write. It can move the file pointer associated with the connection by calling
dg_seek. It can truncate thefile by calling dg_truncate.

When the program finishes input and output to the file, it closes the connection by
calling dg_close. The program closes the connection, not the file. Unlessthe
program del etes the connection, by calling dg_detach, it can continue to open and
close the connection as necessary.

If aprogram calls dg_delete to delete afile, the file cannot be deleted while other
connections and 1/0 requests exist. In that case, the file is marked for deletion but is
not actually deleted until the last of the connectionsis deleted. During the time that
the file is marked for deletion, no new connections or 1/O requests to the file may be
issued.

Using Program Control Calls
UDI provides two system calls for program control: dq_exit and dq_overlay.

Dq_exit terminates a program, closing all open files and freeing allocated resources.
Y ou should always include this system call as the last statement in your program.

Dq_overlay lets you take advantage of the overlay support provided by the OS. This
system call loads an overlay into memory.

|:| Note
Prepare the overlay with the BND binder and the OV L 286 overlay
generator.

Using Utility and Command-parsing Calls

UDI provides system calls for command parsing, date stamping, time stamping, and
system identification. The system callsare dq_get_time, dq_decode _time,
dg_get_system_id, dq_get_argument, and dq_switch_buffer.

Dqg_get_timeand dq_decode_time return the date and time information maintained
by the OS. Both calls provide the same kind of information, but dg_get_timeis
provided for compatibility with previous releases. Use dq_decode time instead of
dg_get_time when possible.

Dq_get_system_id returns a string that identifies the name of the OS. This system
call isuseful for programs that need to perform operating-system-specific functions.

Dqg_get_argument and dq_switch_buffer enable programsto retrieve parameters
from the command line (or from any other program buffer). Dq_switch_buffer

System Concepts Chapter 21 287

switches to a new buffer so that the next time you call dg_get_ar gument, you will
retrieve a parameter from the new buffer.

Dq_get_argument parses the command line, returning the next parameter in the
sequence. The parameters are separated by delimiters, which include the space,
<CR>, ASCII character values ranging from 1 through 20H and 7FH through OFFH,
and these:

) (= #0 %+ - & ;o< > [1\ o~

Using Condition Codes and Exception-handling Calls

Every UDI call (except dg_exit) returns a numeric condition code specifying the
result of the call. Each condition code is equated with alabel. For example, the code
0 hasthename E_OK. E_OK indicates that a call has been successful. Conditions
may also indicate a problem or require a response (exceptional conditions). The
dg_decode _exception returns the mnemonic description of any condition code
generated by a UDI system call.

See also: Condition codes, System Call Reference

A routine in the UDI interface library called rq_error handles UDI exceptional
conditions. Thisroutineis called whenever a condition code is generated by a UDI
system call. Rq_error performs these operations:

« If an environmental condition occurs (device error, incorrect file reference,
insufficient memory, etc.), the condition code is returned to the calling program.
The calling program handles the exceptional condition inline.

« If aprogrammer error occurs, rg_error invokes the Nucleus system call
signal_exception. The action that signal_exception takes depends on the
Nucleus exception mode. |If the exception mode isnever (the default) or
envi ron, signal_exception passes control back to the calling program so that it
can process the exceptional condition inline. If the exception modeisal | or
pr ogr am signal_exception passes control to the exception handler that isin
effect at the time the exception occurs.

See also: signal_exception, Nucleus calls, System Call Reference

288 Chapter 21 UDI Basic Conceptsand System Calls

Overriding the <Ctrl-C> handler

UDI provides a method for a program to handle <Ctrl-C> characters entered while
the program is running. The system default <Ctrl-C> handler terminates any
program that is active when <Ctrl-C> is entered. However, a program can override
the default handler for the duration of its execution by calling dg_trap_cc and
supplying along pointer to a new <Ctrl-C> handler. The OSwill call this new
<Ctrl-C> handler whenever a <Ctrl-C> istyped at the terminal. The new handler
remainsin effect until the program calls dq_exit, or until it establishes another
handler by calling dq_trap_cc again.

Writing Portable Programs Using the UDI

Not all programs making UDI calls are portable across all UDI-supported OSs.
Employ these techniques to ensure that the programs you write are as portable as
possible:

+ Never examine filenames (and pathnames) in your program. The rulesfor
forming pathnames are OS dependent.

+ Maodify filename strings only by calling the UDI procedure
dg_change _extension.

« Work only with pathnames supplied by the user, pathnames created by calling
dg_change _extension, or predefined filenames.

« Always check the condition code to see if acall failed.

« When handling condition codes, create the necessary file connectionsin the
initial part of programs or make adq_reserve io_memory call before making
any other UDI system call.

System Concepts Chapter 21 289

Call Sequence for File-Handling System Calls

Figure 21-2 shows how file-handling calls are related. A program needing to access
afile obtains atoken for a connection to the file. It then uses the connection to
perform operations. Other programs can simultaneously have connections to the
same file. Each program having a connection to afile uses its connection as if it had

exclusive access.

ATTACH

L

CREATE

OPEN

~,|

> CLOSE > DETACH DELETE

SEEK
TRUNCATE

=

s

290

Chapter 21

W- 2574

Figure 21-2. Sequence of System Callsfor UDI

UDI Basic Conceptsand System Calls

Application Loader
Programming Concepts

This section describes the Application Loader subsystem. The AL loads programs
from secondary storage into memory under the control of iIRMX tasks or tasks that
are part of application programs. The AL enables:

« Programsto run in systems with insufficient memory to accommodate all
programs at onetime.

« Seldom used programsto reside on secondary storage rather than in memory.
These are the chaptersin this section:

Chapter 22. Application Loader Basic Concepts

Chapter 23. Preparing Code for Loading

Chapter 24. Application Loader System Calls

291

292

Application Loader
Basic Concepts

This chapter defines terms used in Application Loader (AL) system calls and the AL
concepts described in this section.

These terms are used in the AL concepts and system call descriptions:
+ Object code, object module, and object file

« Synchronous and asynchronous system calls

+ 1/Ojob

« Overlay, root module, and overlay module

« Device independence

« Configurability

Object Code

Object code may be:
e Output of atrandator (for example, PL/M and ASM).
« Output of the BIND command.

An object file contains object code. An object module is the output of asingle
compilation, a single assembly, or a single invocation of the BIND command.

Synchronous and Asynchronous System Calls

The AL provides both synchronous and asynchronous system calls. Whilea
synchronous system call isrunning, the calling task cannot run. The calling task
resumes running only after the loading operation has either failed or succeeded.

While an asynchronous system call is running, the calling task runs concurrently. To
explicitly overlap processing with loading operations, use asynchronous system calls.

See also: Asynchronous and synchronous calls, in this manual

System Concepts Chapter 22 291

Situations Requiring an I/O Job

Some of the system calls provided by the AL usethe EIOS. These system calls must
be part of an 1/0 job: if atask isnotinan 1/O job, it cannot successfully use system
callsthat require the EIOS. The AL createsthe I/O job when oneis required.

See also: 1/O jobs, in this manual

Overlays

292

Overlays are logically independent subsections of a program which need not all be
present in memory at the same time during program execution. Using overlays can
reduce the memory space required for a program to execute, as these designs of a
data processor illustrate.

« |If the data processor is structured as a monalithic program that resides on
secondary storage, the entire collection of object code will be loaded into RAM
when needed.

« |If the data processor isan overlaid program, pieces (overlays) of the data
processor reside on secondary storage; individual overlays are loaded as needed.
In thisway, the data processor can run in a much smaller area of memory
because different overlays are alternately loaded into the same memory space.
The data processor might be slower if it uses overlays, depending on how it uses
the time when the overlays are being loaded.

To implement an overlaid program using the AL, create a program with aroot
module and one or more overlay modules. A root module is an object module that
controls the loading of overlays. When you invoke an overlaid program, the
application system loads the root module. The root module then loads overlay
modul es as needed.

Overlays are supported in OMF86 and OMF286 programs; they are not supported in
OMF386 programs.

See also: Overlays, root modules, and overlay modules, Intel386 Family Utilities
User's Guide

Chapter 22 Application Loader Basic Concepts

Device Independence and the AL
The AL can load object code from any mass storage device supported by the BIOS.

Configuring the AL

For ICU-configurable systems, you can configure the kind of load function required
by your system. Y our system may be configured for:

« Loadjob, which includes al the AL system calls.
« Load, which includes only a_load.

If you choose al AL system calls, the ICU will incorporate the EIOS into your
system.

Y ou can configure the read buffer size to optimize loading time: asmaller buffer
size may cause alonger load time.

Y ou can configure the memory pool minimum size used by the AL to create an 1/0
job for newly loaded programs. If you specify 0 in the pool minimum parameter, the
Application Loader computes the required size.

See also: ICU User's Guide and Quick Reference

System Concepts Chapter 22 293

294 Chapter 22 Application Loader Basic Concepts

Preparing Code for Loading

To process your code so that the AL can load it:

e Usean Intel 386 trandator or assembler (PL/M-386, ASM 386, or iC-386) to
produce object modules that you can bind. COMPACT isthe only supported
compilation model for Intel386 trandators. Then use BND386 to produce aload
file. Usethe RCONFIGURE control. The load file must be an OMF-286 Single
Task Loadable (STL) object file with LODFIX records.

STL format isthe only supported object code format. LODFIX records enable
the AL to replace each selector in the object file, with the new GDT selector
assigned at random by the iRMX OS, at load time. Use the debug command to
determine which GDT slots were allocated for your program.

» Useanon-Intel compiler to produce your application. Some of these third-party
tools produce flat model (non-segmented) _applications. The AL recognizes and
can load aflat model application.

See also: debug, Command Reference;
porting code, Programming Techniques,
Third-party Compilers, Flat Model, Programming Techniques

Specifying Pool Sizes for 1/0 Jobs

There are two ways to specify memory requirements for the 1/0 job's memory pool.
Both involve setting the BND386 RCONFIGURE control when you create the object
file. You can:

« Letthe AL decide how large amemory pool to allocate to the new /O job.

« Manually set the pool size.

System Concepts Chapter 23 295

296

The AL determines the size of the 1/O job's memory pool using this information:
« Thepool _ni n parameter, as a number of 16-byte paragraphs.
« Thepool _nax parameter, as a number of 16-byte paragraphs.

« TheDMPICU configuration parameter specifying the default dynamic memory
reguirements.

« Memory requirements specified in the target file with the RCONFIGURE
parameter.

If the AL allocates the memory pool, it uses the requirements of the target file and
the configured DMP parameter to make this decision. Unless you have unusual
reguirements, choose this option. Make sure the values specified by the
RCONFIGURE parameters provide more than enough memory for the program.

If you override the AL's decision on pool size, the AL usesthe pool _ni n parameter
or pool _max parameter specified in the system call to decide how large a memory
pool to allocate. If the value you enter in pool _ni n islessthan what isrequired to
load the file, the AL ignores your input and sets pool _ni n to the minimum amount
of memory required by your file. If you set pool _nmax to max_pool _si ze, the
created /O job can borrow unlimited memory from its parent.

The pool size parametersin AL system calls are specified in 16-byte paragraphs.
However, the pool parameters in the RCONFIGURE control of BND386 are entered
inBYTES.

See also: Pool sizesfor 1/0 jobsin this manual

Chapter 23 Preparing Code for Loading

Producing an STL Object File

This example illustrates how to produce an STL object file. The directory attached as
:lang: containsthe PL/M runtime libraries. The source code for the program is
located in aPL/M file named my_prog.plm. This source is common to both the 16-
and 32-bit OSs. The program uses COMPACT model. The 16-bit version islinked
to the compatibility interface library, rmxifc.lib. The 32-bit version islinked to the
COMPACT library, rmxifc32.lib. Use this sequence to produce an object module
from my_prog.plm. The SEGSIZE control and DYNAMICMEM option of the
RCONFIGURE control are described after the example.

The 16-bit version runs on 16-bit systems.

PLM286 MY PROG. PLM COVPACT
BND286 &
MY_PROG OBJ, &
. LANG PLM286. LI B, &
/ RMX386/ LI B/ RMKI FC. LI B &
OBJECT(MY_PROG 16) SEGSI ZE(STACK(+500H)) &
RCONFI GURE(DYNAM CVEM 5000H, 10000H))

The 32-bit versioniis:

PLMB86 MY PROG. PLM COMPACT WORD16
BND386 &
MY_PROG OBJ, &
. LANG PLMB86. LI B, &
/ RMX386/ LI B/ RMKI FC32. LI B &
OBJECT(MY_PROG 32) SEGSI ZE(STACK(+500H)) &
RCONFI GURE(DYNAM CVEM 5000H, 10000H))

Binary compatibility support enables the 16-bit version to run on a 16- or 32-bit
system. The WORD16 compiler control tells the compiler that a WORD is a 16-bit
guantity in the source; this enables the source modules to be truly common.

Upon completion, the object module my_prog_16 or my _prog_32 isready for
loading.

System Concepts Chapter 23 297

Specifying Stack Requirements with SEGSIZE Control

The SEGSIZE control specifies the stack requirements for your program and the
stack requirements for the highest iRMX layer used. Table 23-1 lists the stack
requirements for each layer. The value given as the minimum stack size for an
individual layer includes the requirements of all lower layers. For example, if you
use the Nucleus, BIOS and EIOS, add 550 bytesto the stack. Then add your
program's stack requirements.

Table 23-1. OS Stack Sizes

OS Layer Minimum Stack Size
Nucleus 250 bytes

BIOS 350 bytes

EIOS 550 bytes
Application Loader 700 bytes

Human Interface 1500 bytes

uDI 1750 bytes

When any task is created in the iRM X OS, the Nucleus ensures that it has at least a

1 Kbyte stack unless you have specified a size with the SEGSIZE control. Sixteen bit
tasks need appropriate stack padding so they run properly with the iRMX OS. If you
use the SEGSIZE control, make sure to specify at least a 1 Kbyte stack.

Specifying Dynamic Memory Allocation with DYNAMICMEM
Option

BND386 enables you to specify the amount of memory your program will allocate
dynamically, so that your program has enough dynamic memory once it isloaded and
running. The value specified by pool _ni n isaways available for your program,
while the value specified by pool _max enables your program to borrow from its
parent. Pool _mi n and pool _max apply only for programsthat are loaded as 1/0
jobs.

298 Chapter 23 Preparing Code for Loading

Application Loader System Calls

The AL system calls divide into two categories:
« |/Ojoband non-1/0 job system calls
« Synchronous and asynchronous system calls

AL System Calls Requiring an I/O Job

The AL creates an I/O job and loads a program within it when one of these system
calsisissued:

a load_io job
rqe a load_io_job
s load_io_job
rqe s load_io job

The AL task which loads the job isatask in the new job. Once the code is|oaded,
the AL task terminates itself, unless the new program contains overlays. If so, the
AL task waits for requests to load new overlays.

Specify the pool size parametersin AL system callsin 16-byte paragraphs; enter the
pool parametersin the RCONFIGURE control of BND386 in BY TES.

System Concepts Chapter 24 299

a_load Does Not Require an 1/O Job

A_load isthe only system call that does not create an I/O job. Instead, the AL task
that loads the program runsin the context of the caller's job.

The AL places the loaded code in memory; it does not create atask for it. If you
want this code to run, explicitly create atask for it using the Loader Result Segment
(LRS) that the caller receives on completion of loading. Because no 1/O jobis
created, you can use a_load in systems configured without the EIOS layer.

The LRS containstwo fields, code_seg_base and st ack_seg_base, that list the
tokens of the segments (up to 255) created by loading afile. Thesefieldslet you call
a_load while loading OMF286 programs that use MEDIUM and LARGE models.
Only COMPACT model OMF386 programs are supported for callsto a_load.

D Note

The system call a_load is not supported in flat-model applications.
See also: LRS, System Call Reference

Synchronous System Calls

300

The synchronous system calls are:
rqe s load_io job
s load_io_job
s overlay
If the system call returns to the calling routine after the service has completely

finished, an E_OK condition code returns, using the specified exception pointer. 1f
the system call terminates due to an error, an exception condition code is returned.

Chapter 24 Application Loader System Calls

Using rqe_s_load _io_job and s_load_io_job

These two system calls load the specified file and create an I/O job as the
environment for the loaded code.

Either call canimmediately start or delay execution of the loaded code, depending on
thet ask_f | ags parameter. If you specify delayed execution, call start_io_job
after the AL has successfully returned and you are ready to start the program.

Ther esp_nbox parameter specifies the exit mailbox for the newly created 1/0O job.
The EIOS sends an exit message to this mailbox when the loaded program, contained
within the newly created I/O job, terminates using exit_io_job.

See also: create io_job, start_io_job, and exit_io_job, System Call Reference

Loading Overlays with s_overlay

To create OMF286 overlaid programs on an Intel system, use OV L 286 to produce the
object files. The AL assumesthat you adhered to these rules when writing the
overlaid program.

« Theroot isaways present in memory.

« Nooverlay, except theroot, is present in memory unlessits parent is also
present.

« Theonly possible request from any given overlay isto load a descendent
overlay.

« Any previously loaded sibling is no longer accessible once an overlay has been
loaded.

« No assumptions are made about the preservation of data across multiple requests
to load the same overlay.

Use s overlay whenever the loaded program requires that a new overlay be present
inmemory. Thiscall can be used only by an overlaid program. It can be issued by
any overlay (including the root) to load any of its descendants.

Although s overlay is synchronous, it can be used in conjunction with the
asynchronous AL system calls. When you invoke an overlaid program, use

a load_io job or s load_io job to load the root module. The root module then uses
s overlay to load overlay modules as needed.

System Concepts Chapter 24 301

Asynchronous System Calls

The asynchronous system calls are:

rqe a load_io_job
a load_io job
a load

The concurrent part of the call runsasaniRMX task. Thetask isreadied by the
sequential part of the call and runs only when the priority-based scheduling of the OS
givesit control of the processor. The concurrent part also returns a condition code as
part of an LRS sent to the response mailbox specified in the asynchronous AL call.

See also: Synchronous and asynchronous calls, in this manual

Asynchronous Call Order of Operations

302

This example shows how an application can |oad a program stored on disk. The
application issues a_load to have the AL load the program into memory.

1

The application issues a_load and specifies a response mailbox for
communication with the concurrent part of the system call.

The sequential part of a_load begins to run and checks for valid parameters.

TheiRMX OS returns a sequential condition code. It then returns control to the
application. If the condition codeis E_OK, the AL readiesthe AL task;
otherwise, it does not ready the AL task.

The application receives control and tests the sequential condition code. If the
codeis E_OK, the application continues running. At this point, the application
can take advantage of the asynchronous and concurrent behavior of the AL to
perform computations.

If the sequential condition codeis not E_OK, the AL did not ready atask to
perform the function and the application must respond appropriately.

For the balance of this example, assume that the sequential part of the system
call returned an E_OK sequential condition code.

Before using the loaded program, the application verifies that the concurrent part
of a_load ran successfully. The application issues areceive_message system
call to check the response mailbox specified in a_load.

Chapter 24 Application Loader System Calls

6. After receiving the LRS indicating successful loading, the application uses
rq_create task (using the entry point, data segment, and stack segment
specified in the LRS) to activate the loaded program.

7. When the loaded program is no longer required, the application can delete all the
segments that the AL created for this program by using the segment list in the
end of the LRS. The LRS itself can then be deleted.

See also: Asynchronous and synchronous callsin this manual;
Application Loader calls, System Call Reference

Response Mailbox Functions

All AL system calls except over lay have aresponse mailbox parameter. The
response mailbox has two different functions, depending on the system call used.

When you invoke an asynchronous system call, this mailbox enablesthe AL to notify
the caller that the concurrent part of the system call isfinished. The AL sendsan
LRS to this mailbox on completion of the loading process.

In general, the LRS indicates the result of the loading operation. The format of an
L RS depends upon which system call was invoked.

See also: LRS, System Call Reference

For s load_io job andrge s load_io_jab, this mailbox also receives the exit
message from the loaded 1/0 job. The EIOS sends the exit message when the |oaded
program terminates using exit_io_job.

Therefore, you can wait at the same mailbox two times: first for the LRS and then
for the exit message, in this order.

Avoid using the same response mailbox for more than one concurrent invocation of
asynchronous system calls because the AL may return LRSsin an order different
from the order of invocation. However, it is safe to use the same mailbox for
multiple invocations of asynchronous system callsif these conditions are met:

+ Onetask invokesthe calls.

« Thetask always obtains the result of one call viareceive_message before
making the next call.

System Concepts Chapter 24 303

304 Chapter 24 Application Loader System Calls

HUMAN INTERFACE
PROGRAMMING CONCEPTS

This section documents the Human Interface (HI) layer of theiRMX OSs. This
section isintended for the programmers who write application programs that can be
loaded and executed using keyboard commands. It isalso for system administrators
who use the HI command lines to configure the system.

This documentation assumes that you are familiar with the C or PL/M programming
language.

See also: iC-386 Compiler User's Guide;
PL/M-386 Programmer's Guide

These are the chaptersin this section.

Chapter 25. Human Interface Basic Concepts

Chapter 26. The Command Line Interpreter

Chapter 27. Writing and Parsing Commands

Chapter 28. Communicating with the User

Chapter 29. Invoking HI Commands Programmatically
Chapter 30. Writing a <Ctrl-C> Handler

Chapter 31. Creating Human Interface Commands

Human Interface Basic Concepts

The HI provides features to aid both console operators and programmers. These
features include:

« A setof HI commands, such as general utilities and file, volume, and device
management commands.

« Aninitia program, the Command Line Interpreter (CLI), with its own set of
commands.

« Alogon facility to validate users and set up their environment.
« Multiuser support.

« A recovery/resident user for |ICU-configurable systems that enables accessto the
system if it does not initialize properly.

« Wildcard pathname support.

« A group of system callsto aid programmers in writing application-specific
commands.

Sample Code

Code fragmentsillustrating HI concepts are included in the demo directory.
Filenames for the programs are listed in the respective chapters.

Resident HI Commands

Y ou can use resident HI commands with any application system that includes the HI.
Here are some of the commands:

« File management commands such as copy, delete, and backup.

« Device and volume management commands such as attachdevice, format, and
diskverify.

« General utility commands such as debug and date.

See dso: HI commands, Command Reference

System Concepts Chapter 25 307

CLI:

The Initial Program

Theinitial program isthe first program to run when a user logson. Aninitial
program typically reads commands from the terminal and executes the commands
based on that terminal input. The iIRMX-supplied initial program is called the HI
CLI. The CLI readsinput from the terminal, enables the user to edit that input if
necessary, and executes commands (either CLI or HI) based on the input. Some CLI
commands are alias, history, and submit.

The CLI provides a number of additional features such as aliasing, background
processing, and recalling of previously entered command lines.

Loading Other Initial Programs

308

Theinitial program does not have to be the HI CLI; it can be amost anything from an
editor, to aBASIC interpreter, to aloadable command interface that you write. The
system manager determines which initial program runs when a user logs on when he
adds new usersto the system. There can be a separate initial program for each user.

A CAUTION

Unloading jobs that contain interrupt handlers using sysload -u or
<Ctrl-C> will cause unpredictable results.

See also: path command, Command Reference

Chapter 25 Human Interface Basic Concepts

Logon

Logon validates terminal users and sets up their environment.

Validation

On some terminals, typically those used by a single user, the logon and validation
processisinvisible. On other terminals, typically those used by several users, logon
and validation requires entering a name and password. The kinds of terminals are:

« Static terminals
« Dynamic terminals

Static terminals are configured to service a specific user. The static terminal’s
attributes are usually taken from the user configuration files during logon. The logon
process is automatic and invisible to the user. When the HI starts running, it has
information about the user such as user 1D, the amount of memory available to this
user, and the user's priority. The only way to change the HI's assumptions about
static terminals is to change the OS's user configuration files and restart the OS.

See also: Configuration files, System Configuration and Administration

Dynamic terminals are configured to service many different users on a request-by-
request basis. The HI requests alogon name and a password before allowing the user
to access the system. The HI verifies that the information entered is valid by
checking user configuration files set up by the system manager. Then it sets up the
termina based on the information listed in those files.

Unlike static terminals, dynamic terminals have dynamic memory partitions. That is,
the HI does not assign any memory to the terminal at system startup. Instead, it
assigns the memory when a user logs on. When the user logs off a dynamic terminal,
the memory goes back into the general free space memory pool. If thereisno free
memory left in the system, a user will be notified of this condition and will not be
abletolog on.

The amount of memory assigned varies depending on the user's requirements, as
listed in the user configuration files. The advantage of dynamic terminalsisthat the
memory available to users varies depending on the needs of the user.

See also: Dynamic terminals, Static terminals, System Configuration and
Administration

System Concepts Chapter 25 309

Environments

The HI creates ajob for each user that logs on. This job furnishes the application
environment by assigning:

« Memory for the user to use for running commands.
« Theinitial program for the user.

Any commands that the user invokes use the assigned area of memory. If thereis not
enough memory in the system to initialize a user, the system assigns whatever
memory is available at the time and issues a warning message to the terminal.

Users can use CLI commands (alias, background, etc.) which are executed in the
interactive job or HI commands (copy, format, etc.) which run as child jobs of the
user's interactive job.

This table shows the process of entering CLI and HI commands. Either of these
commands can be entered with optional parameters.

CLI HI
Invoke by command name Invoke by pathname/command name
Interpret command CLI loads command into main memory from

secondary storage

Execute command Create achild job of the interactive job for the
command Execute command

Some commands are available from both the HI and the CLI. In thiscase, CLI
commands are executed before HI commands. For example, if you enter submit, the
CLI version of the submit command is executed, not the HI version.

Network Access

310

If the system is set up as aworkstation on an iRMX-NET communications network,
any user who logs onto the system on a dynamic terminal automatically becomes a
verified user of the network and can access remote files using the iIRMX-NET
network.

See also: iRMX-NET environment, Network User's Guide and Reference

If the system has NFS enabled and has files or directories defined as NFS-shared,
users can access these files and directories using Human I nterface commands asiif the
filesand directories were local.

See also: Using NFS, TCP/IP and NFSfor the iRMX Operating System

Chapter 25 Human Interface Basic Concepts

Logging Off

When users of dynamic terminals finish accessing the OS, they should use the logoff
command to terminate their sessions. Other users can then log onto the same
terminals.

Multiuser Support

Multiuser support enables multiple users to communicate with the OS. The BIOS
supports multiple terminals by providing device drivers that communicate with
multiple-terminal hardware. The HI supports multiple users by providing
identification and protection of users based on logon names and user IDs. The
multiuser HI also enables a programmer in the devel opment environment to execute
commands, run development programs (editors, compilers, etc.), and run other
application programs.

The system manager must first set up the proper directory structure and provide
severa files containing information about the users that can access the system.
However, you can till tailor your system to meet your individual needs by selecting,
for each user, the initial program that runs when that user accesses the HI. The user
configuration files maintained by the system manager identify this choice to the HI.

Figure 25-1 on page 311 shows how the HI handles multiple users.

System Manager establishes the user environment by:
e Creating a directory structure

e Providing file containing access rights for users

e Creating initialization program(s) for users

User Human Interface

H assigns a ser 1D

User sends command to HI identifies the user ID
create a file and/or as the command owner
attach a device

HI checks access rights
for the user

HI completes command
depending on access rights

i

0OM02104

Figure 25-1. Multiuser Support under the HI

System Concepts Chapter 25 311

Recovery/Resident User

The recovery/resident user is available in ICU-configurable systems only. The
recovery/resident user only gains control if an initialization error occursin the
configuration files and the system cannot initialize. The recovery/resident user (and
the associated terminal) is defined during ICU configuration.

User attributes are defined in HI memory during the configuration process and are
loaded with the system. A resident user does not use any of the system configuration
filesand is not presented with alogon prompt. Because this user isonly activeif an
initialization error occurs, the user istypically configured as the system manager
(user ID 0).

Wildcards

312

The HI supports using wildcard charactersin filenames. This provides a shorthand
method of specifying severa filesin asingle reference. The wildcard characters
supported by the HI are:

? Matches any single character
* Matches any sequence of characters (including no characters)
See also: Wildcard characters, Command Reference

Programmers who write their own HI commands do not have to provide specia code
to support wildcard pathnames as long as they use the HI system calls
c_get_input_pathname and c_get_output_pathname to obtain the file names from
the command line.

See also: Writing and Parsing Commands, in this manual

Chapter 25 Human Interface Basic Concepts

Human Interface System Calls

The HI provides a set of system calls that you can use in writing custom commands
for applications. These categories of HI system calls are available:

Command parsing system calls

These calls provide the ability to parse the command line, enabling you to isolate
and identify the parametersin a command line. They also enable you to
determine the command name and parse other buffers of text.

See also: Writing and Parsing Commands, in this manual
I/0O and message processing system calls

These calls enable you to establish connections to input and output files,
communicate with the terminal, and format condition codes into a ready-to-
display form.

See also: Communicating with the Operator, in this manual

Command processing system calls

These calls enable you to invoke interactive HI commands programmatically.
See also: Invoking HI Commands Programmatically, in this manual
Program control system call

This call enables you to override the default <Ctrl-C> handler task provided by
the HI.

See also: Writing a <Ctrl-C> Handler, in this manual

Human Interface Operations
When the HI begins running, it:

1
2.
3.

Initiates alogon process that validates users.

Displays an initialization error on the terminal if an initialization error occurs.
Creates an iRM X job for each user logged into the HI.

a. Assignsan area of memory for the user to use for running commands.

b. Startsaninitia program which isthe user's interface to the OS.

System Concepts Chapter 25 313

314 Chapter 25 Human Interface Basic Concepts

The Command Line Interpreter 2 6

The HI Command Line Interpreter (CL1) isinvoked by the HI when the user logs on.
The CLI provides the user with:

Line-editing
Aliasfacilities
Background processing
Session history
Terminal definition

Execution of its own set of commands

For ICU-configurable systems, the HI can also operate with a user extension, which
enables you to add customized features to the CLI.

Y ou can also write aloadable command interface to use as an initial program instead
of the CLI. Thischapter liststhe rules for writing aloadable command interface.

See also: password command, Command Reference;

User definition files, Terminal configuration files, System Configuration
and Administration

System Concepts Chapter 26 315

CLI Features

The CLI provides a number of features that make it a useful tool in a development

environment:

Line-editing enables the user to re-edit input.

Aliasing enables the user to abbreviate commonly used commands and
assign parameters to them.
CLI commands: alias, dealias, logoff

Background enables the user to run jobs in a background environment

processing while continuing to invoke commands at the terminal. The
user is notified when a background job starts and finishes. It
ispossible to request alist of the active background jobs or
cancel a background job.
CLI commands: background, jabs, kill, logoff

Session history Displays the last 40 commands and enables the user to select
lines for re-editing.
CLI command: history

I/O redirection enables standard input and output to be directed somewhere

other than the user's terminal.
CLI command: submit

CLI environment enables the user to perform online changesto certain CLI
attributes, such as the prompt and the background memory
pool size.

CLI commands: set, super

|:| Note

CLI commands such as alias, submit, and super do not recognize
continuation characters.

If the CLI satisfies the needs of your application, you can assign it to each user as an
initial program.

See also: CLI commands, Command Reference

316 Chapter 26 The Command Line Interpreter

Initializing the CLI

The CLI can be invoked during either static or dynamic logon. During initialization,
the CLI performs these operations:

« Initializesthe CLI environment
« CdlsCLI extensions, if necessary
- Digplaysasign-on message

« Creates acommand connection object where it places information received from
the terminal

See also: Invoking HI Commands Programmatically, in this manual
« Attachesthe user's directory
« Submitsthefile for processing (if it exists)

After thisinitial processing, the CLI displaysthe - (HI default) prompt and reads
input from the terminal. Input from the terminal can be a CLI command, an HI
command, or auser application program that isto be executed.

System Concepts Chapter 26 317

Invoking and Executing Commands

318

The CLI begins executing a command after a user enters a<CR> or an <Esc>.
However, before execution, the CL1 enables the user to edit the input line or recall
previoudly entered lines. When input stops, the CLI performs these operations:

1. Readsthe command line from the terminal into a CLI buffer.
2. Determinesif the commandisaCLI or an HI command.

3. Expandsall aliases.

4. Handlesany I/O redirection that may be necessary.

5

Passes control to the user extension procedure CLI $user $pr ocess, if
applicable.

See also: User Extensions, in this manual
6. Searchesfor CLI or HI commands.
If the CLI encountersa CLI command, it executes the action requested.
If the CLI encounters an HI command or any user application program, it:
a. Loadsthe file containing the command
b. Passesthe parameters to the command

For long commands, it may be necessary to continue an HI command. The CLI
recognizesthe & (ampersand) mark at the end of a command line as a continuation
character, and displays a** (double asterisk) on the continuation line.

The user can recall either the complete continuation line or only part of it. A double
asterisk on the screen indicates that a continuation line is being recalled. The user
can then edit the relevant section of the line. However, after the section has been
edited, the entire command line is executed if the user presses <Esc> to terminate
input.

The CLI displays error messages for each command if the user does not invoke the
command properly or if the CLI cannot execute the command as requested.

See also: Continuation character, and specific CL1 command error messages,
Command Reference

Chapter 26 The Command Line Interpreter

Adding User Extensions to the CLI

Only 1CU-configurable versions of the OS enable the CL 1 to be extended to include
customized functions.

With this feature, you can create an initial program that takes advantage of the CLI
features, such asline-editing and aliasing, and still meets your precise needs. This
section explains how to extend the CL I to include user extensions that parse
commands differently or implement your own commands using CL I user extensions.

Creating User Extensions

The CLI isa 16-hit application that uses 16-bit user extensions. Creating an
extension involves writing three procedures:

« Aninitialization procedure
« A processing procedure
« Anepilog procedure

Y ou can combine these procedures, described in the next sections, into one module.
An empty default PL/M module called (located in) provides you with null instances
of the three procedures. The CLI has three entry pointsto the user extensions, one
before each procedure. Y ou can make alocal copy of the example module to develop
your CLI extension.

Initialization Procedure

When the CLI isinitialized, it first definesits own alias tables (the memory area
where user-defined aliases are stored) and data structures. It then calls your user-
supplied initialization procedure one time only. If you have tables or data structures
to add during initialization, they should be part of the initialization procedure. The
CLI entersthe user extension by calling:

CALL CLI $USERS$I NI T(except _ptr);

Y ou can bind this procedure to the CLI library supplied with the HI. Examples of
how to do this are given later in this section.

System Concepts Chapter 26 319

Processing Procedure

After each command line (entered either from aterminal or in a submit file), the CLI
trandates all aliases, and checks again for user extensions. At this point, you can
change a command, perform additional functions before execution, or process the
command. To access your user extension, the CLI calls:

cont _flag = CLI $USER$PROCESS(comrand_ptr, except_ptr);

Where:

comand_pt r A pointer to a STRING containing the expanded command
ready for execution.

cont _flag A BYTE indicating whether the CL 1 should continue

executing the command line modified by the user extension, or
ignore it and continue to the user extension epilog procedure.

Epilog Procedure

After the CLI executesan HI, CLI, or user-supplied command, it calls the epilog
procedure. This procedure handles error conditions or performs any other functions
that cannot be performed until the command has been executed. The epilog
procedureis called by:

CALL CLI $USER$EPI LOG(except _ptr);

Bind this procedure to the CLI library as shown in the example given later in this
section.

Error Handling

Each of the three user extension procedures returns a condition code in the exception
pointer, except _pt r. If the procedure returns anything other than E_OK, the CL I
outputs an error message in addition to the message issued by ¢ _send_command or
the CLI command.

The CLI catal ogs the condition code generated by the last command under the name
r?error in the global directory before executing the epilog procedure. You can
access thisvalue and use it in your application. However, any changesto r?error are
not recognized by the CLI.

320 Chapter 26 The Command Line Interpreter

ThisPL/M code enables you to access the value in r?error.

DECLARE error_t TOKEN,
error BASED error_t WORD,
except WORD;
error_t = RQBLOOKUP$OBJECT (SELECTOR$OF(NI L),
@7, RRERROR), 0, @xcept);

After execution of this system call, theer r or field will contain the condition code
that the last command sent to r?error.

This C code also enables you to access the value in r?error.

main ()

{

sel ector error_t;
unsi gned short excep;

error_t = rqg_l ookup_object ((selector)
NULL, "\O7R?ERROR', 0, &excep);
print_error (5);

Demonstration Program - User Extension

A PL/M example, which isinstalled with the iIRMX OS, shows how to create a user
extension using the CLI initialization, process, and epilog procedures described
above. Thisuser extension enables you to measure the time required to execute a
CLI command, an HI command, or any application program. The PL/M code shown
isastraightforward example. Many special cases have been omitted.

System Concepts Chapter 26 321

Binding a User Extension

The CLI isa16-bit PL/M application. Use BND286 to bind the user extension to the
CLI library. This section provides an example of the bind process.

Y ou can combine the three user extension procedures into one module, but this is not
necessary.

Binding your extensions as shown below creates a CL| with your user extension.

Y ou can add this newly created CLI to the application boot file using the ICU. Then
this new CLI will be called by its pathname, mycli, as a nonresident CL 1 during the
logon process.

If you want the default resident CLI to include user extensions, specify the pathname
of the user extension module during configuration.

See also: For ICU-configurable systems, ICU User's Guide and Quick
Reference

If you have named your user extension module myext.p28, you can use this example
exactly asit iswritten. Otherwise, replace myext.obj with the name of the object
module you wish to bind.

: LANG BND286
MYEXT. OBJ,

 RMX: HI / HCLI . LI B(HCLI),
 RMX: HI / HCLI . LI B,

“RMK: HI/ HI . LI B,

: RVX: LI B/ RWXI FC. LI B,
 RMX: HI / HUTI L. LI B,

: LANG PLM286. LI B &

RENAMESEG(CODE TO CLI _CODE, DATA TO H _DATA, &

H _CODE TO CLI _CODE, Hl _DATA TO CLI _DATA) &
OBJECT(MYCLI) NOLOAD NODEBUG SEGS| ZE(STACK(2400H)) &

RC(DM 1000H, OFFFFH))
Where:

Ro R0 Ro RO Ro Ro Ro

MYCLI is the name you use to invoke this CLI.

322 Chapter 26 The Command Line Interpreter

Creating a Loadable Command Interface

If the CLI, with or without a user extension, does not meet your needs, you can
provide your own loadable command interface. Y our loadable command interface
may be a completely different kind of program from the CLI. For example, you
could write aloadable command interface that enables accessto filesin selected
directories only. Thiswould prevent a user from accidentally modifying other files.

Use the selections of static or dynamic terminal type, password or no password
required, and a loadable command interface, to create the user environment needed
for your application. For example, you can define a static terminal using the file.
Then, use the password command to assign your application program as the initial
program. By deleting all other users except Super (again, using the password
command), you would have created a system running only your application (with or
without a password requirement, depending on your needs).

If you provide your own loadable command interface, the program must obey these
rules:

« It must select the initial program for each user, and specify the selection in the
user configuration files maintained by the system manager.

e It mustinitialize its own data segment. The HI does not set the DS register for
the CLI.

« It must perform input and output using logical names :ci: (console input) and
:co: (console output).

« If it requiresthe ability to run HI commands, it must create a command
connection object using the c_create_command_connection system call.

If the loadable command interface does not create a command connection, it
(and any other application tasks) cannot use these HI system calls:

C_get_input_pathname
C_get_output_pathname
C_get_input_connection
C_get_output_connection

¢ _send_co_response

¢ _send_eo response
¢_send_command

c set_control_c

c_delete_ command_connection

System Concepts Chapter 26 323

« If it does not create a command connection, it must first invoke the
c_set_parse buffer system call before using the HI system calls
C_get_parameter, c_get_char, and c_backup_char.

« It must invoke the EIOS call exit_io_job to terminate processing. It must not
use the PL/M or ASM RETURN statement for this purpose.

See also: HI system calls and exit_io_job, System Call Reference;
path command, Command Reference

Alternatively, if you want a particular user to use only BASIC-language programs, a
BASIC interpreter might be theinitial program for that user.

A CAUTION

Unloading jobs that contain interrupt handlers using sysload -u or
<Citrl-C> will cause unpredictable results.

324 Chapter 26 The Command Line Interpreter

Writing and Parsing Commands 2 7

This chapter deals only with HI command parsing. HI commands are handled
differently than CL1 commands.

When the user invokes a command, the OS places the command's parametersinto a
parsing buffer. One of the first things that the invoked command must do is read the
parsing buffer, identify the individual parameters, and determine the correct action to
take, based on the number and meaning of the parameters.

See also: The Command Line Interpreter, in this manual;
CLI commands, Command Reference

The HI provides several system calls to parse command lines that follow a standard
structure. It also provides other system callsto process nonstandard formats. This
chapter:

» Definesthe standard structure of command lines.

+ Describesthe system calls used to parse standard commands.

« Discusses how to switch from one parsing buffer to another parsing buffer.
« Discusses wildcards used in input and output pathnames.

» Describes system calls used to parse honstandard commands.

« Describesthe c_get_command_name system call used to obtain the command
name the user used when invoking a command.

System Concepts Chapter 27 325

Standard Command-line Structure

The standard structure of an HI command line consists of elements separated by
spaces. Y our commands should follow this structure to enable parsing by the Hi

system calls.

See dso:

For different command structures,
Parsing Nonstandard Command Lines in this chapter

Command-line Structure Parameters

In this example, square brackets[] indicate optional portions of the standard

structure.

command [inpath-list [preposition outpath-list]] [parans] <CR>

Where:

command Pathname of the file containing the command's executabl e object code.
The pathname may include a prefix and a subpath. A prefix isalogical
name of a directory and isunique if it is not duplicated in one of the
directoriesin the command search sequence defined during
configuration.
See also: Pathnames, logical names, Command Reference

i npath-1i st

One or more pathnames of files, separated by commas, that the HI reads
asinput during command execution. Individual pathnames can contain
wildcard characters to signify multiple files. Usethe
c_get_input_pathname system call to process this inpath-list.

See dlso: Wildcard characters, Command Reference

326 Chapter 27 Writing and Parsing Commands

preposition
Tellsthe HI how to handle the output. The standard structure supports
these prepositions. Usethec_get output_pathname system call to
process the preposition.

to TheHI writes the output to a new file indicated by the output
pathname. If the file already exists, the HI asksif you want to
overwrite thefile.

Answering with aY (uppercase or lowercase) causes the HI to
overwrite the existing file with the new output. An R tellsthe HI
to continue overwriting existing files without prompting for
permission. An R causes the HI to proceed with the next pair of
input and output files.

over The HI writesthe output to the file indicated by the output
pathname. It overwrites any information that currently existsin
thefile.

after The HI appends the output to the end of the file indicated by the
output pathname.

out pat h-1i st
One or more pathnames of files, separated by commas, that receive the
output. The total number of pathnamesin thislist and the number of
wildcards used depends on the inpath-list. Usethe
c_get_output_pathname system call to process the outpath-list.

See dso: Pathnames, Command Reference

par ams Parameters that cause the command to perform additional or extended
services during command execution.

See dso: Command-line Structure Parameter Formats

<CR> and <LF>
Line terminator characters. The <CR> and the <LF> are both line
terminators.

These examples show how to enter an HI command using the command structure
described above.

- copy :home:filel to /tnp/file2 <CR>
- format :f: files=300 interleave=1l bs <CR>

See dso: HI commands, Command Reference

System Concepts Chapter 27 327

Command-line Structure Parameter Formats

The standard structure supports parameters with these formats:

val ue-11i st
One or more groups of characters (called values) separated by commas.
Whenval ue- | i st is present, the command performs the service
indicated by the values.

See also: permit command, access value, Command Reference
keyword Predefined keyword functions without added user values.

See also: format command, f or ce parameter, Command Reference

keyword = A keyword with an associated value or value-list. The keyword
val ue-1ist portionidentifiesthe kind of serviceto perform, and each value
or supplies further information about the service request.

keywor d

(val ue-

list)
See also: format command, FILES=num, diskverify, kill
commands, Command Reference

keyword val ue-1li st
A keyword with an associated value or value-list. The keyword portion
identifies the kind of service to perform and each value portion provides
more information about the service. However, the keyword must be
identified to the command as a preposition. Usethe c_get parameter
system call to process the parameter.

See also: HI call c_get_parameter, System Call Reference
See also: Parsing Other Parametersin this manual

328 Chapter 27 Writing and Parsing Commands

Command-line Structure Special Characters

The HI supports these special characters:

& (continuation
character)

; (comment
character)

System Concepts

Continuation characters are recognized by all HI commands
found in. When using an & (ampersand) in the command line
asthe last character before the line terminator, the HI assumes
that the command continues on the next line. If the CLI (or
any loadable command interface that uses ¢_send_command
to invoke commands) processes the user's command entry, the
& and the line terminator that follows are edited out of the
parsing buffer. Then the continuation lineis read and
appended to the parsing buffer.

This process continues until the user enters aline terminated
by a <CR> without a continuation character. Therefore, when
the command receives control, its parsing buffer contains a
single command invocation, without intermediate continuation
characters or line terminators.

The HI considers this character and all text that followsit on a
line to be a non-executable comment.

If the CLI (or any loadable command interface that uses
¢_send_command to invoke commands) processes the user's
command entry, all comments are edited out of the parsing
buffer. Therefore, individual commands do not have to search
for and discard comments.

Chapter 27 329

330

"and" or
"and ' (quoting
characters)

Chapter 27

Two ' (single-quote) or " (double-quote) characters remove the
semantics of special characters they surround. Use the same
character for both the beginning and ending quote.

If acommand line contains quoted characters, HI system calls
that invoke the command and parse the command line do not
perform any special functions associated with the surrounded
characters. For example, the"&" (ampersand surrounded by
double quotes) isinterpreted as a single ampersand and not a
continuation character.

The quotes do not remove the semantics of charactersthat are
special to other layers of the OS, such as:, /, and », which are
special to the I/O System.

To include the quoting character in the quoted string, the user
must specify the quoting character twice or use the other
quoting character. For example:

‘can''t'
isread in the command line as

can't

Writing and Parsing Commands

Parsing the Command Line

The HI maintains a pointer for a parsing buffer, which initially points to the first
parameter used when invoking a command. Table 27-1 lists system calls used in

parsing command lines and their functions.

Table 27-1. Parsing System Calls

Call Name Function

command line

c_get_input_pathname gets input pathname
c_get_output_pathname gets output pathname

c_get_parameter parses command line by parameter
c_backup_char traverses backward by character in a command line
c_get_char traverses forward by character in a command line
c_set_parse_buffer changes parsing buffer from the HI to the one in the

c_get_command_name obtains command pathname

Use any of the HI system callsin Table 27-2 to read the parameters from the parsing

buffer.
Table 27-2. Parsing Buffer System Calls
Understands
Call Name Reads Quotes Moves Pointer
c_get_input_pathname parameter yes to next parameter
c_get_output_pathname parameter yes to next parameter
c_get_parameter parameter yes to next parameter
c_backup_char character no back one character
c_get_char character no to next character

Note: System calls c_get_input_pathname, c_get_output_pathname, and c_get_parameter
remove the special meaning from quoted characters and discard the quote characters.

A CAUTION

Because ¢_backup_char and c_get_char move the pointer
character by character, not parameter by parameter, ensure that
they leave the pointer pointing at the beginning of a parameter (or
at blank characters which immediately precede the parameter)
before invoking any of the other system calls.

System Concepts

Chapter 27 331

Parsing Input and Output Pathnames

332

Use the system callsc_get_input_pathname and c_get_output_pathnameto
identify the input and output pathnames in the command line. For command lines
that contain multiple pathnames, invoke these system calls several times to obtain all
the pathnames. These calls return the pathnamesin the form of iIRMX STRINGs. If
c_get_input_pathname returns a O-length string (that is, the first byte is 0), there are
no more pathnames to obtain.

Thefirst call to c_get_input_pathname:

1. Readstheentireinpath-list (thelist of pathnames separated by commas) into a
buffer.

2. Movesthe parsing pointer to the next parameter.

3. Returnsthe first input pathname to the command.

Thefirst call toc_get_output_pathname:

1. ldentifiesthe preposition (t o, over, or af t er).

2. Readsthe entire outpath-list into a buffer.

3. Movesthe parsing pointer to the parameter after the outpath-list.
4. Returnsthe first output pathname to the command.

Succeeding c_get_input_pathname and c_get_output_pathname calls return
additional pathnames from the buffers created previoudly, but they do not move the
parsing pointer to the next parameter.

This example illustrates parsing the buffer. The parsing buffer contains:
A Bto CD
The call sequence to this buffer and the associated results are listed below:

Call Sequence Result

C_get_input_pathname Obtains input pathnames (A and B)
Returns A to the caller
Positions the pointer at the preposition "to

C_get_output_pathname Obtains output pathnames (C and D)
Returns C to the caller

C_get_input_pathname Returns B to the caller

C_get_output_pathname Returns D to the caller

Chapter 27 Writing and Parsing Commands

|:| Note

Use the system callsc_get_input_connection and
C_get_output_connection to obtain input and output file
connections so the necessary /O operations can be performed.

See also: C_get_input_connection and ¢_get_output_connection system calls,
Communicating with the user, in this manual

File Connection Demo Programs

There are two demo programs (one written in C, the other in PL/M) installed with the
OSthat use c_get_input_pathname and c_get_output_pathname in their
command-line parsing; they also use c_get_input_connection and
C_get_output_connection to obtain connections to the files. These programs are a
partial example of a copy command that you could implement.

Wildcard Characters In Input/Output Pathnames

Thec_get_input_pathnameand c_get_output_pathname system calls
automatically handle pathnames that contain wildcard characters. They treat a
wildcarded pathname as alist of pathnames.

See also: Wildcard characters, Command Reference

C_get_input_pathname matches wildcards. When called, it compares the
wildcarded component with the files in the specified directory and returns the
pathname of afile that matches.

C_get_output_pathname generates wildcards. Each time you call it, it compares
the wildcarded output pathname with the wildcarded input pathname and with the
most recent pathname returned by ¢_get_input_pathname. Then it generates a
corresponding output pathname based on that information. The output pathname
could refer to an existing file or to afile that does not yet exist. A query isissued
when an existing file will be overwritten.

When both ¢_get_input_pathnameand c_get_output_pathname use wildcard
characters, obey these rules:

1. Cadll c_get_input_pathname first to obtain the input pathname and then call
c_get_output_pathname so there is a corresponding output pathname. The
identity of the output pathname depends on the identity of the input pathname.

2. Alwaysadlternate multiple callsto c_get_input_pathname and
c_get_output_pathname. Thisis necessary to handle wildcard characters and
lists of pathnames.

System Concepts Chapter 27 333

If you invoke two callsto c_get_input_pathname without an intermediate call
toc_get_output_pathname, you will not be able to obtain the first output
pathname.

If you invoke two callsto c_get_output_pathname without an intermediate call
to c_get_input_pathname, the second call returnsinvalid information.

Parsing Other Parameters

You can also usethec_get parameter system for parsing standard command linesin
these instances:

« To parse parameters which appear after the input and output pathnames.
+ Toparseal parameters, if the command does not use input and output files.

« To parsetheinput and output pathnames, if the command requires a preposition
other thant o, over, or after.

|:| Note

If you use c_get_parameter to parse input and output pathnames,
you must provide additional code to handle wildcard characters that
may appear in the command line. This call does not wildcard
characters automatically.

For example, a command line contains the pathname file*. If you
use c_get_parameter to parse this parameter, the system call
returns the value literally as fi | e*.

It does not know that the characters represent a pathname, nor does
it know that the asterisk represents awildcard.

When called, c_get_parameter parses a single parameter and moves the pointer of
the parsing buffer to the next parameter. The parameter returned as a result of this
cal is one of these:

val ue- One or more groups of values separated by commas. The system call returns the
list entirelist in the form of astring table. 1t places each of the valuesin the value list
in a separate string.

See also: String table and string, System Call Reference
Individual parameters are separated by spaces.

C_get_parameter returns each listed value as a string in a string table. However, an
individual value can itself consist of avalue-list. If agroup of values separated by
commas is enclosed in parentheses, c_get_parameter treats the valuesasasingle
value, returning them in asingle string. For example, consider this value-list:

334 Chapter 27 Writing and Parsing Commands

A (B,CD,E
C_get_parameter recognizes three values. A, thegroup B, C, D, and E.
See dso: Command-line Structure Parameter Formats in this manual

There are two demo programs (one written in C, the other in PL/M) installed with the
OSthat use c_get_parameter in their command-line parsing.

See also: Examples in /rmx386/demo/c/hi directory

System Concepts Chapter 27 335

Parsing Nonstandard Command Lines

The next sections discuss two kinds of nonstandard command lines: onethat is
similar to the standard and one that is completely different.

Variations on the Standard Command Line

If you want to structure your commands so that other parameters appear before the
input and output pathnames, you can still use ¢_get_input_pathname and
c_get_output_pathname to parse the input and output pathnames. However, ensure
that your command knows which of the parameters contain the input and output
pathnames. Two waysto do thisare:

« Enforce arigid structure on the command line. For example, suppose you want
two parameters to appear before the input and output pathnames, such as:

conmand pl p2 input-pathname prep output-pathnane

These commands can parse the command line:

Command Parameter
c_get_parameter pl1, p2
c_get_input_pathname input-pathname

c_get_output_pathname output-pathname

If you do this, p1 and p2 are position-dependent parameters which must be included
whenever the command is invoked.

« Useaseparate parameter as a switch to inform the command that the parameters
that follow are input and output pathnames. This method requires more code to
implement but it can enable you to make all your parameters (including the input
and output pathnames) position-independent.

This command line example shows how users can specify what they want to
retrieve before they specify where to get the information. The example usesa
hypothetical command called retrieve (which retrieves information from various
data bases) and a parameter called FROM

retri eve names addresses phones fromfilel to file2

The parameter FROMsignals that the next parameters are input and output
pathnames. An example of how to process this command line follows:

whi | e not end-of-command |ine
call c_get_paraneter
if paraneter = FROM t hen
call c_get _input_pat hnane
call c_get_out put _pat hnane
end

336 Chapter 27 Writing and Parsing Commands

Other Nonstandard Command Lines

In some instances, you might want your command line to look completely different
from that described earlier in this chapter. For example, suppose you require a syntax
in which these rules apply:

« Spaces have no significance and can be omitted between parameters.

« A prefix character must be before each parameter ($ indicates an input file, @
indicates an output file, and - indicates all other parameters).

With thiskind of syntax, a user could invoke a command (in this example, refine) as

follows:

refine $infile-mediumautfile <CR>
Where:
infile The file from which to read information.

outfile Thefileinwhich refine should place its output.
medi um A parameter that further directs the processing.

If you require any nonstandard syntax, you must use the ¢_backup_char and the
c_get_char system calls to parse the command line. Using calls requires you to
provide the parsing algorithm in your own program, because they make no
assumptions about the structure or order of parameters. However, by using these
system calls, you can enforce any command syntax you choose.

|:| Note

You cannot use ¢_get_input_pathname,
C_get_output_pathname, and c_get_parameter to parse the
individual parameters. Any of these system calls would return the
entire parameter list as a single parameter.

System Concepts Chapter 27 337

Switching To Another Parsing Buffer

Some commands might require the ability to parse additional lines of text after the
original command invocation, for example, an editor needsto parse individual editor
commands. A command such as this cannot use the HI-provided parsing buffer
because it has no way of placing information in the buffer, and because it cannot reset
the parsing pointer to the beginning of the buffer.

Using the system call ¢c_set_parse_buffer changes the parsing buffer from the one
the HI providesto one that the command provides. This call also sets the parsing
pointer to the beginning of the buffer.

Resetting the parsing pointer to the beginning of the buffer enables you to use one
buffer for parsing many lines of text. For example, suppose your command has
several sub-commands. Each time the user enters a sub-command, your command
reads the sub-command into a buffer, callsc_set_parse buffer to reset the parsing
pointer, and parses the sub-command.

Thebuf f _p parameter (inthe c_set_parse buffer system call) isapointer to a
buffer containing the text to be parsed. This buffer can contain text read from the
terminal, text read from afile, or even text that you hard code into the command.
After the call to c_set_parse buffer, these command parsing system calls obtain
information from the new parsing buffer:

C_get_parameter
C_get_char
¢_backup_char

The other command parsing cals (c_get_input_pathname and
c_get_output_pathname) are not affected by callsto c_set_parse buffer. These
calls always obtain pathnames from the command line parsing buffer.

338 Chapter 27 Writing and Parsing Commands

The program flow for an operation like this could be:

1

Read the information from the terminal into a buffer (use c_send_co_response,
¢_send_eo_response, or an EIOS call).

Call c_set_parse_buffer to set the parsing buffer to the buffer containing the
sub-command. This sets the parsing pointer to the beginning of the buffer.

Parse the sub-command using ¢_get_parameter, c_backup_char or c_get_char
system calls.

Perform the operations requested by the sub-command.

Go back to step 1. Continue this loop until the user exits from the command.

Note

If you specify null or a0 value for the buf f _p parameter, the
parsing buffer switches back to the original command line buffer
which remains pointing at the next parameter in the command line.
This enables you to parse part of the command line, switch buffers
and parse a portion of another buffer, and switch back to the
command line.

Every timeyou call ¢ set_parse buffer, the parsing pointer moves to the start of the
new buffer. However, ¢c_set_parse buffer returns, initsof f set parameter, the
previous position of the pointer in the new buffer. If you switch back to that buffer
by again calling c_set_par se_buffer, you can use this value to move the pointer to its
previous position in two ways:

Usethec get char system call to move the parsing pointer back to its previous
position in the new buffer. Call ¢_get_char the number of times specified in the
of f set parameter of thefirst ¢ set_parse buffer call. This positionsthe
pointer to its previous location. Y ou can then continue parsing parameters from
the point at which you left off.

Treat your parsing buffer as an array of characters (called CHAR, for example).
When you call ¢_set_parse buffer thefirst time, specify the buf f _p parameter
to point to the first element of the array. Then, when you switch parsing buffers,
c_set_parse buffer returns, inthe of f set parameter, the number of bytes
already parsed. When you switch back to the new parsing buffer, you can use
this offset value as an index into the array.

System Concepts Chapter 27 339

Obtaining the Command Name

340

The HI places the invoked command name in abuffer. Thec_get_command_name
obtains the command's pathname.

C_get_command_name does not operate on the parsing buffer, nor isit affected by
the c_set_parse buffer system call. It can be called multiple times; each time it
returns the same command name.

If the user enters the complete pathname of the command (including the logical
name), the command-name buffer contains exactly what the user entered. However,
if the user enters a command name without a logical name, the HI automatically
searches a number of directories for the command. In this case, the command-name
buffer contains not only the name the user entered, but also the directory containing
the command (such as : system:, :prog:, or :$:).

Therefore, acommand can use the value returned by ¢_get_command_name and the
circumflex (") pathname separator to access the directory in which it resides. For
example, if command- nane isthe name received from c_get_command_name, a
command could access its directory by using the pathname:

commrand- name”?
It could access another file in the directory by specifying the pathname:

command- nane”fil e

Chapter 27 Writing and Parsing Commands

Communicating with the User

This chapter discusses the HI system calls that:
« Establish connections to input and output files.
« Communicate with the user'sterminal.

- Format condition codes into messages that can be sent to the user.

Establishing Input and Output Connections

The HI provides two system calls for establishing connections to input and output
files. c_get_input_connection and ¢c_get_output_connection. These system calls
are structured so that you can use the output from other system calls as input to these
system calls.

Using c_get_input_connection
Usethe c_get_input_connection system call for establishing file connections:

1. Get the pathname for the file which will be connected (either through the
c_get_input_pathname function or by directly specifying the pathname).

2. Usethe pathname as one of the parametersfor the ¢c_get_input_connection
system call.

3. Cdl c_get_input_connection to establish the connection to the file.

If c_get_input_connection cannot obtain a connection to the specified file, it returns
a condition code and writes an error message to :co: (normally, the user'sterminal).
For example, if the specified input file does not exist, c_get_input_connection
displays this message:

<pat hname>, file not found

See also: c_get_input_connection HI system call, System Call Reference

System Concepts Chapter 28 341

Because c_get_input_connection returns messages to the user in the event of an
exceptional condition, your command does not have to return additional messages
unless you require them. The command must decide only whether to abort or to
continue processing.

Using c_get_output_connection

Usethec_get output_connection system call for establishing file connections:

342

1. Get the pathname for the file which will be connected (either through the
c_get_output_pathname function or by directly specifying the pathname).

2. Usethe pathname as one of the parameters for the c_get_output_connection
system call.

3. Cdl c_get output_connection to establish the connection to thefile.

A second parameter in c_get_output_connection specifies the preposition used when
writing to the output file (t o, over, or af t er). This preposition governs how the
output fileis processed.

to

over

after

C_get_output_connection prompts the user for permission to delete the
existing file. This prompt appears as:
<pat hnanme>, al ready exists, OVERWRI TE?

A user'sY ory response (yes), causes the system call to obtain the
connection to the existing file.

A Rorr response (repeat), causes the establishes the connection to that
existing file, and obtains any additional output connections, without
prompting for permission to delete other existing files.

Any other response causes the system call to return a condition code
without obtaining a connection to the file.

If you specify the over preposition, c_get_output_connection obtains
the connection without prompting the user for permission.

If you specify the af t er preposition, c_get_output_connection
obtains the connection without prompting the user for permission. It
also sets the file pointer to the EOF before returning control. Thus, new
information does not overwrite existing information.

Thisisunliket o and over which cause c_get_output_connection to
leave the file pointer at the beginning of thefile.

If the user does not have the proper accessrights to the file, or if
C_get_output_connection cannot obtain a connection to the file, the system call
returns a condition code and displays a message at the user's terminal.

Chapter 28 Communicating with the User

See also: C_get_output_connection HI system call, System Call Reference

A normal scenario for using ¢_get_input_connection and ¢c_get_output_connection
isshownin Figure 28-1.

DO WHI LE rmore input and output files

ot ai n i nput pathnanme from comand |line with
c_get _i nput _pat hnane

ot ai n out put pat hnane from command line with
c_get _out put _pat hnane

otain connection to input file with
c_get _i nput _connection

otain connection to output file with
c_get _out put _connection

Read information frominput file

Per f orm conmand operati ons on infornmation

Wite information to output file

Del ete connections to input and output files
END

Figure 28-1. c_get_input_connection and c_get_output_connection Example

System Concepts Chapter 28 343

Communicating With the User's Terminal

The HI provides two system calls that communicate with the user'sterminal. They
arec_send_co_responseand c_send_eo _response. Each of these system calls
combines into asingle system call several operations that you would normally
perform when communicating with the terminal.

c_send_co_response System Call

Initsgeneral form, c_send_co_response attaches and opens connections to :ci: and
:co:. Depending on the values you choose as parameters for this system call you can:

« Send amessage and receive a message (write to :co: and read from :ci:).
« Send amessage without waiting to receive a message (read from :ci:).
« Receive amessage without sending a message (write to : co:).

C_send_co_response deals specifically with the logical names :ci: and :co:.
Therefore, itsinput and output can be redirected to files by changing the pathnames
represented by these logical names. For example, when a user places acommand in a
submit file, submit assumesthat :ci: isthe submit file and that : co: is the output file
specified in the submit command. Figure 28-2 on page 344 shows how to use

¢ _send_co_response.

See also: c_send_co_response HI system call, System Call Reference

Parameters:
Message to be sent
Size of message to be received|
Buffer to receive message

Input

call c_send_co_response

Write to :co: ‘ Write to :co: | ‘ Read from :ci:
and
Read from :ci:

OM02105

Figure 28-2. Usingc send_co_response

c_send_eo_response System Call

C_send_eo_response, athough it performs the same operations as
¢_send_co_response, only reads information from and writes information to the

344 Chapter 28 Communicating with the User

user'sterminal. Input and output cannot be redirected. This system call isuseful if
you have multiple tasks communicating with a single terminal.

For example, if atask uses either of these system calls and requests a response from
the terminal, no other output is displayed at the terminal until the user enters a
response to the first system call. After the user responds, tasks can send further
information to the terminal.

When used by all the tasks which communicate with the terminal, this prevents the
user from receiving severa requests for information before being able to respond to
thefirst one.

See also: ¢_send_eo _response HI system call, System Call Reference

System Concepts Chapter 28 345

Formatting Messages Based on Condition Codes

Whenever you include OS callsin the code of a command that you write, it is
possible for those system calls to encounter exceptional conditions, such as:

+ Programming errors

« Environmental conditions

Even the most thoroughly debugged commands can encounter exceptional conditions.

The exceptional conditions can arise from invalid user entries, lack of secondary
storage space, media errors, and other problems over which the command has no
control.

The HI provides a default exception handler to handle exceptional conditionsin

commands that you write. This exception handler receives control on all occurrences
of exceptional conditions. It displays the condition code value and mnemonic at the

user's terminal and aborts the command.

Y ou can use the Nucleus system calls get_exception_handler, rqe_get_exception
handler, set_exception_handler, and rge_set_exception_handler to provide your
own exception handling, either to pass additional information to the user or to enable
the user another chance to enter correct information. Y ou can also use these callsto
cancel the effect of the default exception handler on some or all exceptions that occur

in your command.

See also: get_exception_handler, set_exception_handler,

rqe_get_exception_handler, and rqe_set_exception_handler, System

Call Reference

c_format_exception System Call

When you perform your own exception handling, you can create messages that return

to the user under specific exceptional conditions so they can correct the problem.
The c_format_exception system call accepts a condition code value as input and

returns a string whose contents describe the exceptional condition. You can use this
string as input to a system call such asc_send_co_response to write the information

to the user'sterminal.

By using c_format_exception, you can return a message to the user for all

exceptional conditions, but you do not have to enlarge your program by including the

text of these messages in the code of your command.

346 Chapter 28 Communicating with the User

The text portion of the string produced by c¢_format_exception consists of the
condition code value and mnemonic in this format:

val ue : mmenonic

You can display this string asis, or you can place additional explanatory text in the
string before displaying it.

This PL/M example shows you how to use ¢c_format_exception to write an error
message to the screen every time a procedure named DoSonet hi ng encounters an
exception. You can declare a message as follows:

DECLARE
error_nsg STRUCTURE(
| ength BYTE,
char (80) BYTE) ,
failed(*) BYTE DATA(33,' DoSonet hi ng procedure failed ***
",
excep WORD,

| ocal _excep WORD;

Now, whenever DoSonet hi ng encounters an exception during execution, you can
call c_format_exception, as shown below, to create the default message for the
exception contained in the excep variable and concatenate it to the failed message
you declared in the variablef ai | ed.

CALL MOVB(@ ai |l ed, @rror_nsg, SlZE(failed));

CALL rgCsf or mat $excepti on(@rror_nsg, Sl ZE(error_nsg),
excep, 1, @ocal _excep);

You can writetheer r or _msg string to the screen. For example, if the excep

variable contains 05H, the string contained in er r or _nsg would be:

' DoSonet hi ng procedure failed *** 0005: E_CONTEXT'

See also: Examples in /rmx386/demo/c/hi directory;
c_format_exception, System Call Reference

System Concepts Chapter 28 347

348

Chapter 28

Communicating with the User

Invoking HI Commands
Programmatically

When you write your own command, you might want to perform an operation that is
already provided in another command (such as copying one file to another, displaying
adirectory, etc.). Instead of duplicating the code for this operation in your command,
you can invoke HI system calls to issue the commands themselves. The effect of
making these system calls is the same as that produced by a user entering an HI
command at the terminal. The HI provides the three system callsin Table 29-1 to
help process command invocations:

Table29-1. Command Invocation System Calls

Call Name Function

c_create_command_connection Creates a command connection object to
store the command invocation lines

¢_send_command Sends the command line to the command
connection and invokes the command

c_delete_command_connection Deletes the command connection

This chapter discusses these operations and provides an example of how the system
calls appear in a program.

Creating a Command Connection

The c_create_command_connection system call creates the object and returns a
token for it. The token can be usedin callsto ¢_send_command (to send command
linesto the abject) and in callsto c_delete_ command_connection (to delete the
object after using it).

When you call ¢_create_ command_connection, you a so specify tokens for the
connections that serve as command input and command output for the invoked
command. This enablesyou to redirect input and output for the invoked command to
secondary storage files. Or you can specify :ci: and :co:.

System Concepts Chapter 29 349

The command connection supports processing multiple-line commands without
interference from other tasks. Without the command connections, the OS would be
unable to determine which continuation line went with which command when many
tasks were sending command lines to be processed. The command connection
provides a place to store command lines until the command is complete.

Sending Command Lines to the Command
Connection and Invoking the Command

350

The c_send_command system call sends command lines to a command connection
and, when the invocation is complete, invokes the command. The format of the
command line is the same as entering the command line at aterminal. The command
can be any HI command or any command that you write. However, it cannot be a
CLI command and it cannot use the alias feature of the CLI.

See dso: HI commands, Command Reference

If the string specified as a parameter to ¢_send_command contains a complete
command invocation then this takes place:

1. C_send_command places the command line in the command connection.
2. C_send_command invokes the command.

However, if the string does not contain the entire command invocation (that is, it
contains the & as a continuation character), then this takes place:

1. C_send_command places the command line in the command connection
without invoking the command.

2. C_send_command returns a condition code, E_ CONTINUED, to inform the
calling program that the command is continued.

3. Theprogrammer callsc_send_command to combine continuation linesin the
command connection with the command lines already there.

4. Repeat Step 3 until ¢_send_command encounters the end of the command
invocation (aline without a continuation character).

5. C_send_command loads the command from secondary storage.
6. C_send_command invokes the command.

The c_send_command call that invokes the command does not return control until
the invoked command finishes processing. Once the command finishes processing,
you can use the command connection for invoking other commands.

Chapter 29 Invoking HI Commands Programmatically

The c_send_command system call contains two pointers to WORDs or unsigned
shorts that receive condition codes. One of these points to alocation that receives the
status of the ¢_send_command system call. The other points to alocation that
receives the status of the invoked command.

Priority Considerations

Every command has a priority (usually based on the priority of the user who invoked
the command) that determines when the command will be able to run in relation to
the other tasks in the system. When commands are invoked using command
connections, their priorities are lowered (numerically increased) by one. This ensures
that the calling task (the one that created the command connection) retains control
over the commands it invokes.

Asaresult, acommand invoked directly at the terminal will have a higher priority
(and possibly compl ete sooner) than the same command invoked using a command
connection.

See also: rqge_set_max_priority command, System Call Reference

Deleting the Command Connection

After you have finished invoking commands programmatically, del ete the command
connection. The c_delete_command_connection system call performsthis
operation. You do not need to delete the command connection after each command
invocation, because the command connection is reusable. However, delete the
command connection after performing all ¢_send_command operations. Thisfrees
the memory used by the data structures of the command connection.

Command Connection Calls Demo Programs

There are two demo programs (one written in C, the other in PL/M) installed with the
OSthat use c_create_command_connection, ¢_send_command, and

c_delete_ command_connection. These programs invoke the HI copy command
programmatically.

See also: Examples in /rmx386/dema/c/hi directory

System Concepts Chapter 29 351

352 Chapter 29 Invoking HI Commands Programmatically

Writing a <Ctrl-C> Handler 3 O

Normally, when an HI command is executing, a user canhot communicate with the
system until the command requests input from the user. This can present problems if
auser enters the wrong command or needs to access the system. However, there are
anumber of ways the user can abort command execution.

- |If the command is executing interactively, the user can enter a <Ctrl-C>
character to abort a command.

« If the command is running in the background environment, the user can enter the
CLI commandsjobs and kill to abort a job.

This chapter explains how to override the default <Ctrl-C> action by providing your
own code to process a <Ctrl-C> character.

See also: Aborting background jobs, Command Reference

How the Default <Ctrl-C> Works

When the user enters a <Ctrl-C>, the OS sends a unit to a semaphore. In the default
case, thisis a semaphore established by the HI. An HI task waits at that semaphore
to receive the unit. When it receives the unit, it aborts the command that is currently
executing and returns control to the user. The HI task then waits at the semaphore for
another unit.

This <Citrl-C> facility enables users to cancel commands while the commands are
executing. It can be used with your commands without requiring special
implementation code.

System Concepts Chapter 30 353

Providing Your Own <Ctrl-C>

With some commands that you write, you might want to override the default
<Citrl-C> handling. For example, suppose you write atext editor. A user invokesthe
editor with an HI command and then specifies edit commands to enter text into a
buffer and modify that text.

While using the editor, the user does not want a <Ctrl-C> character to abort the entire
editing session, destroying text in the editing buffer that could have taken hoursto
create. Instead, the user might want a <Ctrl-C> to abort a single editor command
only. In order to provide this facility, your HI command (the editor) must override
the default <Ctrl-C> handling and provide its own code to handle <Ctrl-C> entries.

By changing the semaphore to one that you create, you can circumvent the default
<Citrl-C> task of the HI. You can usethe HI system call ¢c_set_control_c to replace
the <Ctrl-C> semaphore. This system call changes the calling job's <Ctrl-C>
semaphore to the semaphore you specify. There isonly one parameter in this system
cal: control _c_semaphor e which isatoken for your new <Ctrl-C> semaphore.
A single unit is sent to the new semaphore each time a <Ctrl-C> is entered from the
terminal.

See dso: HI system call ¢_set_control_c, System Call Reference

If you create an HI command that does not use the default <Ctrl-C> semaphore, that
command must service the new <Ctrl-C> semaphore. It can do this by:

« Using inline code that periodically checks the semaphore for a unit.
+ Creating atask that waits continually at your <Ctrl-C> semaphore for a unit.

In either case, when a unit is sent to the semaphore, the command (or the task) must
perform the necessary <Ctrl-C> operation.

A CAUTION

If you aso include the UDI in your application, the <Ctrl-C>
handler will revert to the UDI default handler unless you establish
the new <Ctrl-C> handler in the UDI with the dq_trap_cc call.

Using Inline Processing
The program flow of such acommand using inline processing would be;
1. Call create semaphore to create the <Ctrl-C> semaphore.

2. Cadl c_set_control_c to switch the <Ctrl-C> semaphore to the one just created.
Use the token for the semaphore you created in Step 1 as input.

34 Chapter 30 Writing a <Ctrl-C> Handler

Continue with command processing. Periodically check the semaphore (by
calling receive_unitswiththeti me_l i mi t parameter set to 0) to determineif it
contains any units. If you obtain any units from the semaphore, perform the
necessary <Ctrl-C> processing.

If your command services the <Ctrl-C> semaphore with inline code, you can perform
any operation you want. Y ou can branch to various locations, you can start new tasks
running, you can abort the command, or you can perform any other function that you
wish.

However, in order to service the <Ctrl-C> semaphore with inline code, check the
semaphore periodically, to seeif it contains aunit. When doing this, ensure that you
place the checksinside all program loops that perform operations a user might want
to abort. Also, because you can check the semaphore only periodically, you cannot
always guarantee a quick response to the <Ctrl-C>.

Using a <Ctrl-C> Task

The program flow of such acommand using a task would be:

1
2.

5.

Call create_semaphor e to create the <Ctrl-C> semaphore.

Call catalog_object to catalog the token for the semaphore in an object
directory.

Call create task to start the <Ctrl-C> task.

Call ¢c_set_control_c to switch the <Ctrl-C> semaphore to the one just created.
Use the token for the semaphore you created in Step 1 as input.

Continue with command processing.

The program flow of the <Ctrl-C> task could be;

1
2.

Call lookup_object to obtain the token for the semaphore.
Do forever:

a. Cdl recelve unitswiththetime_li mi t parameter set to OFFFFH to
obtain a unit from the semaphore.

b. Perform the operation that must occur when the user enters a <Ctrl-C>.

System Concepts Chapter 30 355

If you use a <Ctrl-C> task, you can guarantee quick service because the task is
always waiting at the semaphore. However, because a separate task services the
<Citrl-C>, you can perform only alimited number of operationsin response to the
<Citrl-C>.

« Thetask can send a message to the command, but then the command would have
to periodically check amailbox. This hasthe same disadvantages asinline
servicing with none of the advantages.

« Thetask can delete or suspend the command. However, the task has no way of
knowing what operations the command was performing when the user entered
the <Ctrl-C>. If the command was updating an internal table, deleting the
command could corrupt your entire system. Suspending the command could
enable the <Ctrl-C> task to interrogate the command's state. The <Ctrl-C> task
could delete the command if appropriate, or it could enable the command to run
until it was safe to be deleted.

Returning to the Default Handler

Once your command assigns a new <Ctrl-C> semaphore, that assignment remains
until either:

« Your command invokesthe HI ¢_send_command system call. Invoking this
system call automatically reverts back to the default <Ctrl-C>. To continue
using your own <Ctrl-C>, invoke c_set_control_c (to switch back to your
<Ctrl-C> semaphore) immediately after invoking ¢_send_command.

« Your command isdeleted. When this happens, the HI automatically reactivates
its default <Ctrl-C> semaphore. For example, once the example text editor
described earlier in this chapter terminates, the HI resets the semaphore so that
<Ctrl-C> again becomes active.

<Ctrl-C> Task Demo Programs

356

There are two demo programs (one written in C, the other in PL/M) installed with the
OS that are examples of a user-supplied <Ctrl-C>.

See also: Examples in /rmx386/demo/c/hi directory

Chapter 30 Writing a <Ctrl-C> Handler

Creating Human 3 1
Interface Commands

This chapter discusses the steps that you must perform to create your own Hl
commands. It discusses the necessary elements of a command as well as how to
compile (or assemble) and bind your code.

Y ou can make your application into an HI command and run it on an DOSRM X
system. Thisrequires these steps.

1. Program your application.

2. Givethe application a command name and specify parameters, if any.
3. Provide for the command to parse its command line parameters, if any.
4

Provide for the command to terminate itself when finished. If you plan to use
sysload to load it, use the delete job system call. Otherwise, use exit_io_job.

o

Compile the command using the appropriate compiler.

Bind the command to the appropriate libraries to make a Single Task L oadable
(STL) file. The RCONFI GURE control makes the command loadable.

7. Load the command manually (x in these examples), using one of these methods.

- sysload x paraneter 1 parameter n <CR>
Thejob will continue to be available.

- background x parameter 1 paraneter n <CR>
The command runsin the background. Redirect :ci: and :co: to log files.

- SS x parameter 1 paranmeter n <CR>
The command runs in the foreground; debug it using Soft-Scope.

- debug x parameter 1 paranmeter n <CR>
The command runsin the foreground and you can debug it.

If you use sysload to load your application, that job will continue to be available.

System Concepts Chapter 31 357

Detailed instructions for steps 3, 4, 5, and 7 are described in sections which follow.

To perform the operations described in this chapter, you must have a system that
includes the HI commands. The system must have an editor, the necessary compiler
or assembler, and the appropriate binder, such as BND286 for 16-bit HI commands
and BND386 for 32-bit HI commands.

Elements of a Human Interface Command

This section discusses the rules that every user-written command must obey. It also
suggests some programming practices to make coding and using your commands
easer.

|:| Note

When coding your commands, avoid duplicating CLI command
names such as, alias and submit. If you do name a new command
with the same name as a CLI command, execute it with the full
pathname, for example, : utils:alias. Otherwise, the CLI command
will be executed instead of your command.

358 Chapter 31 Creating Human I nterface Commands

Parsing the Command Line

If you are going to enable the user to enter parameters when invoking the command,
the first thing your command should do is parse the command line. To support lists
of pathnames and wildcarded pathnames, the flow of a program that uses input and
output files should be:

1. Cadl c_get_input_pathname to obtain the entire list of input pathnames.

2. Cdl c_get_output_pathname to obtain the preposition and the entire list of
output pathnames.

Call c_get_parameter as many times as necessary to get all the parameters.
4. Do until no more input pathnames remain:

a. Cdl c_get_input_connection to obtain a connection to the input file.

b. Call c_get_output_connection to obtain a connection to the output file.

¢. Read the information from the input file, perform the command operations
based on that input, and write the information to the output file.

d. Call the EIOSs delete connection call to delete the connections to the
input and output files.

e. Cdl c_get_input_pathnameand c_get_output_pathname to obtain the
next input and output pathnames.

System Calls and Objects to Avoid

Although you can use any of the OS calls you require, some system calls are intended
primarily for use in system-level jobs (those jobs that you configure into the OS
rather than invoking as HI commands). The command descriptions for those calls
describe when the calls should be avoided.

In particular, avoid objects (and their associated system calls) that, by their use, make
your command immune to deletion. Regions and extension objects are exampl es of
such objects. If your command becomes immune to deletion, a <Ctrl-C> that a user
enters to cancel the command will have no effect; the user's terminal may also lock
when the command finishes processing.

See also: Regions, extension objects, in this manual

System Concepts Chapter 31 359

Terminating the Command

When the user invokes a command, the OS loads the command into memory and
creates an 1/0O job as the environment in which the command runs. The user can use
the CLI background command to process commands in background mode, and at the
same time continue processing another command in the foreground. In order to
finish processing a foreground command correctly, any task in the command that
exits must do so by calling exit_io_job. This system call causes the OSto delete the
1/0O job containing the command, therefore returning control to the user.

See also: 1/O jobs, in this manual;
ElIOS system call exit_io_job, System Call Reference

If the command running in the foreground omits the call to exit_io_job, the user
might not be able to enter further commands. To terminate a command before it
reaches its normal completion, the user should enter <Ctrl-C> to abort a command
running in the foreground or the CLI kill command to abort a command running in
the background environment.

Include Files

When writing the code for your commands, declare each OS call as an external
procedure. Instead of writing these declarations yourself, you can use thei ncl ude
statement. Usingi ncl ude statements makes it possible to include code from an
external file into your program. Thisinformation may beinani ncl ude file:

« External declarations of system calls

- Literal definitions of condition codes

« Common literal definitionsthat you declare
See also: Header files, System Call Reference

360 Chapter 31 Creating Human I nterface Commands

Producing a 16-bit Executable Command

After you have written the source code for your command, produce object code that
can be executed in a 16-bit environment. Follow these steps:

|:| Note

This section applies to object code developed using Intel tools only.

See also: C Compiler-specific Information for information
on building executable code with non-Intel tools,
Programming Techniques

1. Compile (or assemble) the command using the appropriate trandators. When
you do this, ensure that the names you specify ini ncl ude statements specify
the correct devices and directories.

2. Using BND286, hind the code to the interface libraries (and any other libraries
that you require) and produce a rel ocatable object module that the OS can load
anywhere in memory. The format of the BND286 command is.

BND286
command- nane,
: RMX: LI Bf RMKI F*. LI B
cdir:other.lib,
RCONFI GURE (DYNAM CMEM i n, nex)) &
OBJECT(out put - pat hnane) &
SEGSI ZE(STACK(st acksi ze))

R Ro Ro Ro

Where:

comand- name The complete pathname of the file containing your compiled
(or assembled) command. You can bind in several files or
libraries at this point, if necessary.

cdir: A generic logical name you create for directories containing
miscellaneous libraries.

other.lib Any other files or libraries that you need to bind with your
command, for example, plm286.lib.

* Replace this character with Cif you are using COMPACT.

out put - pat hname Complete pathname of the file in which BND286 places the
command after binding.

System Concepts Chapter 31 361

362

st acksi ze

m n, max

Size, in bytes, of the stack needed by the command and any
system calls that the command makes. The HI uses this value
when it creates ajob for the command. Be sure the stack is
large enough to handle both user and system requirements.

See also: Stack requirements,
Programming Techniques

Minimum and maximum amount of dynamic memory, in
bytes, required by the command.

The command uses this memory when it createsiRM X
objects. The AL usestheni n and nax values when it loads a
job for the command. Be sure that these values are large
enough to satisfy the needs of your command and small
enough to enable the command to be loaded into the user's
memory partition.

For example, suppose a sort command requires at least

64 Kbytes of dynamic memory but can use any additional
dynamic memory for buffers to increase performance. If you
do not define a maximum memory parameter, all of your
dynamic memory will be allocated to the sort command,
preventing you from executing other commands at the same
time. Therefore, assume that you want to limit the max value
to 1 Mbyte. Specify:

RCONFIGURE(DY NAMICM EM (10000H,100000H))

Consider these factors when calculating the values for i n and
max.

« Thevaueyou givefor theni n field plus the memory
required by the HI program must fit into
contiguous memory. |f there is not enough contiguous
memory for them, you may not be able to load your
command.

« Thevaluefor the max field should be large enough to
ensure enough memory for commands that request
memory dynamically.

The command is now ready for execution. A user can invoke the command by
entering the pathname of the file containing the command (the out put - pat hnane in
the BND286 command).

Chapter 31

Creating Human I nterface Commands

Producing a 32-Bit Executable Command

After you have written the source code for your command, produce the object code.
To generate a 32-bit command, use these steps. (16-bit commands can run on
iRMX [l and DOSRMX also.)

|:| Note

This section applies to object code developed using Intel tools only.

See also: C Compiler-specific Information for information
on building executable code with non-Intel tools,
Programming Techniques

1. Compile (or assemble) the command using the appropriate trandators. When
you do this, ensure that the names you specify ini ncl ude statements specify
the correct devices and directories.

2. Using BND386, bind the code to the OS interface libraries (and any other
libraries that you require) and produce a relocatable object module that the OS
can load anywhere in memory. The format of the BND386 command is:

BND386 &
conmand- nane, &
: RMX: LI B/ RMKI FC32. LI B &
cdir:other.lib, &
RCONFI GURE (DYNAM CMEM i n, nex)) &
OBJECT(out put - pat hnane) &
SEGSI ZE(STACK(st acksi ze)) &
RENAMESEG (CODE to CODE32, DATA to DATA32)
Where:
comand- nane The complete pathname of the file containing your compiled
(or assembled) command. You can bind in several files or
libraries at this point, if necessary.
cdir: A generic logical name you create for directories containing
miscellaneous libraries.
other.lib Any other files or libraries that you need to bind with your

command, for example, plm386.1ib.

out put - pat hname Complete pathname of the file in which BND386 places the
command after binding.

System Concepts Chapter 31 363

364

st acksi ze

m n, max

Stack size, in bytes, needed by the command and any system
callsthat the command makes. The HI usesthis value when it
creates ajob for the command. Be surethe stack islarge
enough to handle both user and system requirements. The OS
supports compact interface procedures.

See also: Stack requirements, Programming Techniques

Minimum and maximum amount of dynamic memory, in
bytes, required by the command.

The command uses this memory when it creates objects. The
Application Loader (AL) usesthe ni n and max values when it
loads a job for the command. Be sure that these values are
large enough to satisfy the needs of your command and small
enough to enable the command to be loaded into the user's
memory partition.

For example, suppose a sort command requires at least
64 Kbytes of dynamic memory but can use any additional
dynamic memory for buffers to increase performance. If you
do not define a maximum memory parameter, all of your
dynamic memory will be allocated to the sort command,
preventing you from executing other commands at the same
time. Therefore, assume that you want to limit the max value
to 1 Mbyte. Specify:

RCONFI GURE(DYNAM CMVEM 10000H, 100000H))

Consider these factors when calculating the values for mi n and
max.

« Thevaueyou givefor m n and the memory required by
the HI program must fit into contiguous memory. |If
there is not enough contiguous memory for them, you
may not be able to load your command.

« The max value should be large enough to ensure memory
for commands that request memory dynamically.

The command is now ready for execution. A user can invoke the command by
entering the pathname of the file containing the command (the out put - pat hname in
the BND386 command).

Chapter 31

Creating Human I nterface Commands

INtime® 2.0 Compatibility 3 2
and Interoperablilty

TheiRMX [11.2.3 OS includes components of the INtime 2.0 Windows NT

Enhancement software. These components allow an iRMX 111.2.3 system to function
as a Remote INtime Client, thus allowing communications between a Windows NT
Host and itself (as a Remote INtime Client), aswell as running INtime RT software

directly ontheiRMX 111.2.3 system. Asadirect benefit of this communications

mechanism (NTX) with an NT system, an updated version of Soft-Scope can be used
on the NT Host that can communicate either serially (at up to 115KB) or via UDP/IP
with the iRMX [11.2.3 system to download and debug iRM X or INtime applications

on theiRMX I11.2.3 system (acting as a Remote INtime Client).

Becoming a Remote INtime Node

The following jobs/components must be running on the iIRMX 111.2.3 system to allow
it to act as a Remote INtime Client, both for communications and application cross
debug purposes:

Paging Job

Flat Job

Remote INtime Personality Job

Appropriate Remote INtime low level drivers
serdrvr.job for seria interface

ne.job, tulip.job, eepro.job, or eepro100.job for
UDP interface

New iRMX TCP/IP Stack components (TBD)
Appropriate Channel Interface Module (CIM)
rtcimcom.rtafor serial communications
rtcimudp.rta for UDP/IP communications
NTX Proxy Job (ntxproxy.rta)

System Concepts Chapter 32

365

366 Chapter 32 INtime” 2.0 I nter oper ability an dCompatibility

Windows NT Host 3 3
Cross-Development Environment

Y ou can now develop iIRMX Applications on aWindows NT Host and debug them
on a Remote iIRMX 111.2.3 system using either serial or UDP/IP communications
interfaces:

To configure and generate an iIRM X 111.2.3 application system, you can run a
DOS-hosted iIRMX Interactive Configuration Utility (ICU) from aWindows NT
Console (DOS Box).

To develop an iRMX application, run the standard I ntel/Radi Sys OMF386 tools
from aWindows NT Console (DOS Box).

To download and debug an iRM X application on aremote iRM X system, usea
Windows NT-hosted version of Soft-Scope.

To drive OMF386 tools in the development of sample iRMX applications, use
the various provided iRM X Demo Applications that use DOS-hosted make files.

For easy setup of aWindows NT Host to communicate viaNTX with a Remote
INtime Client (iIRMX 111.2.3), use the provided Windows NT-hosted

Windows NT-Link Configuration Utility. The Utility also produces working
iRMX Configuration and batch (.CSD) files that you can use to set up the iRM X
system as a Remote INtime Client.

System Concepts Chapter 33 367

368 Chapter 33 Windows NT Host Cross-Development Environment

OS Extension Example

Ring Buffer Manager

This example (in PL/M) illustrates portions of aring buffer manager and various
parts of an OS extension. Be advised, however, that the example is incomplete and
should be imitated with discretion. In particular, the example has these
shortcomings:

Theissue of exception handling is not addressed. Clearly the code supporting a
system call should examine each invocation for validity, but, for brevity, thering
buffer example does not do this.

There are no safeguards against partial creation of an object. When creating a
composite object, a type manager must first create the components of the object.
Occasionaly, after creating some of the components, the manager might be
unable to create the others. A type manager should be able to recover from this
situation, usually by deleting the components already created and returning an
exception code to the caller. The example, again for brevity, does not do this.

The entry routine does not check the entry code for validity.

The potential for problems with deletion isignored. For this reason, you should
imagine that the environment of the exampleis constrained in at least two ways.
First, only one task will ever try to delete aring buffer and, when it doestry, no
other task will be using that buffer. Second, when a job containing atask that
created aring buffer is deleted, no tasksin other jobs are using that ring buffer.

The example has been desk-checked, but the example has not actually been
tested.

The example ring buffer islimited to a maximum of 64 Kbytesin length.

The example assumes use of version V3.1 or later of the desired PL/M compiler,
i.e. PL/M-286 or PL/M-386.

System Concepts Appendix A 369

A ring buffer isablock of memory in which bytes of data are placed at successively
higher addresses. Byte removals are interspersed with byte insertions, with the
restriction that the byte being removed must always be the byte that has been in the
buffer for the longest time. Thus, data enters and leaves aring buffer in a FIFO
manner. Ring buffers are so named because the lowest address logically follows the
highest address. That is, if the last byte placed in (or retrieved from) the buffer is at
its highest address, then the next byte to be placed in it (or retrieved from it) is at the
lowest address. As data enters and leaves the buffer, the portion containing data runs
around the ring, with the pointer to the last byte out chasing the pointer to the last
bytein. Figure A-1 illustrates these characteristics.

Last byte
out pointer

Low Oldest
address data

Newest
address data

\ Last byte

in pointer

OM02889

Figure A-1. A Ring Buffer

The main (service) part of the example consists of four procedures:
CREATE_RING_BUFFER, DELETE_RING_BUFFER, PUT_BYTE, and
GET_BYTE. Thelast two procedures are for placing a character in aring buffer and
for retrieving a character, respectively.

|:| Note

The text description and the figures in this appendix use
C-language syntax. However, these procedure examples arein
PL/M-language syntax.

370 Appendix A OS Extension Example

/***

* NOTE:

The common litera
* in each of the PL/M portions of the exanple
* uses conditiona

file (COMNON.LIT)

conpi | ati on.

* used when conpiling with PL/ M 386.

**/

$I F wor d16

DECLARE

DECLARE
$ELSE

DECLARE

DECLARE
$ENDI F

DECLARE
$IFr_32

DECLARE
$ELSE

DECLARE
$ENDI F

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

System Concepts

WORD_32
WORD_16

WORD_32
WORD_16

TOKEN
S| ZEOFOFFSET
S| ZEOFOFFSET

forever
indefinitely

PO NTER$STRUC

SEGVENT$STRUC

LI TERALLY ' DWORD
LI TERALLY ' WORD ;

LI TERALLY ' WORD';
LI TERALLY ' HWORD

LI TERALLY ' SELECTOR ;

is included
This include file
The conpilation switch 'R 32

LI TERALLY ' WORD 32';

LI TERALLY ' WORD 16" ;

LI TERALLY ' WHI LE 1';
LI TERALLY ' OFFFFH ;
ASTR$STRUC LI TERALLY ' STRUCTURE(

nunssl ots WORD

nunsconponents WORD,

seg TOKEN,

enpt y$ct TOKEN,

full $ct TOKEN) ' ;
LI TERALLY ' STRUCTURE(

of f_set

sel ect or

*

*

*

*

S| ZEOFOFFSET,

SELECTOR) ' ;

LI TERALLY ' STRUCTURE(

si ze
head
tail
buffer(1)

WORD,
V\ORD,
V\ORD,
BYTE) ' ;

Appendix A

371

Initialization

Theinitialization task creates aregion to protect datain ring buffers from being
manipulated by more than one task at atime. This part of the OS extension also
creates the required extension type and creates a deletion mailbox. Inan ICU-
configurable system, the OS extension call-gates are established during configuration.
For this example, they are GDT dlots 440H, 441H, 442H, and 443H. Finaly, this
part of the OS extension waits at the deletion mailbox. Code for the initialization
task includesthis:

$IFr_32

$COVPACT(- CONST | N CODE- has exanpl e)

$LARGE(ot her _|i bs EXPORTS ri ng$buf f er $manager)
$ENDI F

exanpl e:

DG,

$1 NCLUDE(: RMX: | NC/ COWDN. LI T) /* Declares conmon literals
*/

$1 NCLUDE(: RMX: | NC/ NUCLUS. EXT)

Rl NGSBUFFERSMANAGER: PROCEDURE EXTERNAL;
END RI NG$BUFFER$MANAGER;

DECLARE ring$buf fer$type TOKEN PUBLI C;
DECLARE ri ng$buf f er $r egi on TOKEN PUBLI C,

RI NG_BUFFER | NI T: PROCEDURE;

DECLARE del et e$obj ect TOKEN;

DECLARE exception WORD;

DECLARE fifo LI TERALLY ' 0" ;
DECLARE r b$code LI TERALLY ' 8000H ;
DECLARE del eti on$nbox TOKEN;

DECLARE r esponse$nmbox TOKEN;

ri ng$buf f er $regi on = RQBCREATE$SREG ON (
fifo,
@xception);

del eti on$nbox = RQECREATE$MAI LBOX (

fifo,
@xception);

372 Appendix A OS Extension Example

ring$buf f er $t ype=R$$CREATESEXTENSI ON (
r b$code,
del eti on$nbox,
@xception);

$I F rnx86
CALL RQBSET$OSSEXTENSI ON(
224,
@i ng$buf f er Smanager,
@xception);
$ENDI F

CALL RQBENDSI NI T$TASK;

DO FOREVER;
del et e$obj ect = RQERECEI VESMESSAGE (
del eti on$nbox,
indefinitely,
@ esponse$nbox
@xception);

/***

* |f desired, delete the conmponents of the conmposite object. They *
* are not autommtically del eted when DELETESEXTENSI ON i s cal |l ed. *
* See the DELETE$RI NGSBUFFER procedure, shown |ater, for the code *

* that does this. *
***/

CALL RQBDELETE$COVPOSI TE (
del et e$obj ect,
@xception);
END; /* FOREVER */
END RI NG BUFFER I NI T;
END exanpl e;

System Concepts Appendix A 373

The Interface Library

The user interface library consists of four small procedures, one for each of the
system calls provided by the OS extension. The library supports application code
written in the PL/M COMPACT model. If adifferent model had been used for
compiling the application code, these interface procedures would be dlightly
different, reflecting the fact that, when making procedure callsin other models, the
stack is used differently than in the COMPACT model.

See dso:

The interface procedures are as follows:

$IF (% _32)

%def i ne(ax)
%def i ne(bx)
%def i ne(cx)
Y%def i ne(dx)
Y%def i ne(si)
%def i ne(di)
%def i ne(bp)
%def i ne(sp)

%def i ne(nov16) (novzx)
%ef i ne(pusha) (pushad)
%ef i ne(popa) (popad)
%ef i ne(pushf) (pushfd)
%def i ne(popf) (popfd)
Y%define(iret) (iretd)

Y%def i ne(dw)
%def i ne(dd)
) ELSE (%

374 Appendix A

Interface libraries, Programming Techniques,

Interface libraries, System Call Reference

THEN(%

(eax)
(ebx)
(ecx)
(edx)
(esi)
(edi)
(ebp)
(esp)

(dd)
(dp)

define macro to all ow
both 16 and 32 bit
usage

32 bit registers/data types

OS Extension Example

;16 bit
%defi ne(ax) (ax)
%def i ne(bx) (bx)
%define(cx) (cx)
%def i ne(dx) (dx)
Y%define(si) (si)
Y%define(di) (di)
%def i ne(bp) (bp)
%defi ne(sp) (sp)
%def i ne(nov16) (nov)
%def i ne(pusha) (pusha)
%ef i ne(popa) (popa)
%def i ne(pushf) (pushf)
%def i ne(popf) (popf)
Y%define(iret) (iret)
%define(dw) (dw)
%lefine(dd) (dd)
) Fl %

CREATERB PROC NEAR
PUBLI C CREATERB
% F (NOT(% nx86)) THEN (
EXTRN GATE 440: FAR
) FI

PUSH 9BP
MOV 9YBP, YSP

%F (% nx86) THEN (
LEA 98|, SS:9BP+4; SS: S|
MV BX, O ;
INT 224 :

) ELSE (

PUSH SS: ¥BP+4 ;

CALL GATE 440 ;

System Concepts

regi sters/data types

contai ns

| ocation of first
par anet er

code for

CREATE_RI NG_BUFFER
call the
CS-extension via a
sof tware interrupt

paraneter--the size
of the ring buffer
call the
OS-extension via a
call-gate

Appendix A 375

) Fl
POP
RET

CREATERB ENDP
DELETERB PROC
PUBLI C
% F (NOT(% nx86)) THEN (
EXTRN
) FI

PUSH
MOV
%F (% nx86) THEN (
LEA
MOV
| NT
) ELSE (
PUSH
CALL
) FI
POP

RET

DELETERB ENDP

GETRBYTE PROC
PUBLI C
% F (NOT(% nx86)) THEN (
EXTRN
) FI
PUSH

376 Appendix A

vBP

NEAR
DELETERB

GATE 441: FAR

vBP
9BP, %SP

98l , SS. YBP+4 ;

BX, 1

224

SS: YBP+4

GATE 441

vBP

NEAR
GETRBYTE

GATE 442: FAR

vBP

restore BP val ue
return clearing
passed paraneter

cont ai ns

| ocation of first
par anet er

code for

DELETE_RI NG_BUFFER
call the
CS-extension via a
sof tware interrupt

par anmet er - - t ar get
ring buffer

call the
CS-extension via a
call-gate

restore BP val ue

return clearing
passed paraneter

OS Extension Example

%F (% nx86) THEN (

) ELSE (

) FI
GETRBYTE
PUTRBYTE

MoV

LEA

MoV
I NT

PUSH

CALL

POP
RET

ENDP

PRCC

PUBLI C

% F (NOT(% nx86)) THEN (

) FI

%F (% nx86) THEN (

System Concepts

EXTRN

PUSH
MoV

LEA

MoV
I NT

9BP, %SP

%8l , SS:vBP+4; SS: Sl

BX, 2
224

SS: vBP+4

GATE 442

vBP

NEAR
PUTRBYTE

GATE 443: FAR

9BP
9BP, %SP

%8l , SS: vBP+4; SS: Sl

BX, 3
224

contai ns

| ocation of first
par anet er

code for GET_BYTE

call the
OS-extension via a
sof tware interrupt

par anmet er - - t ar get
ring buffer

call the
CS-extension via a
call-gate

restore BP val ue
return clearing
passed paraneter

contai ns

| ocation of first
par anet er

code for PUT_BYTE

call the
OS-extension via a
sof tware interrupt

Appendix A 377

) ELSE (

) Fl

378

PUSH SS: YBP+6 ; paraneter--character
to wite

PUSH SS: YBP+4 ; paraneter--target
ring buffer

CALL GATE 443 ; call the
CS-extension via a
call-gate

POP 98P : restore BP val ue

RET 4 ; return clearing

passed paraneters
PUTRBYTE ENDP

These interface procedures correspond to a set of external procedure declarationsin
the application PL/M code:

CREATERB: PROCEDURE(si ze) TOKEN EXTERNAL;
DECLARE si ze WORD;

END CREATERSB;

DELETERB: PROCEDURE(ri ng$buf f er $t oken) EXTERNAL;
DECLARE ri ng$buf f er $t oken TOKEN;

END DELETERSB;

GETRBBYTE: PROCEDURE(r i ng$buf f er $t oken) BYTE EXTERNAL;
DECLARE ri ng$buf f er $t oken TOKEN;
END GETRBBYTE;

PUTRBBYTE: PROCEDURE(char, ring$buffer$token) EXTERNAL;
DECLARE char BYTE;
DECLARE ri ng$buf f er $t oken TOKEN;

END PUTRBBYTE;

Appendix A OS Extension Example

The Create Ring Buffer Procedure

The sole function of the CREATE_RING_BUFFER procedure isto create aring
buffer for the calling task and to return to the task a token for the composite ring
buffer object.

Each ring buffer consists of three objects: a segment and two semaphores. The
supporting data structure, required by the iRMX OS for callsto create_composite

and inspect_composite, hasfive fields:

The number of slots available for tokens in thislist of component object tokens.
Because ring buffers are composed of three objects and no components will be
added, the number of dotsis set to three.

The number of component objects actually in the composite object. In this case,
the number of componentsisthree.

A token for asegment. The segment contains the ring buffer. The first WORD
in the segment contains the size of the actual ring buffer. The second WORD of
the segment is a POINTER to the most recently entered byte in the buffer. The
third WORD points to the oldest byte in the buffer. The rest of the segment is
used as the buffer itself. In the program, a structure reflecting the intended
breakdown of the segment is superimposed on the segment.

A token for a semaphore. This semaphore is used to keep track of the number of
vacancies in thering buffer. Thus, it isinitialized to the size of the buffer.

A token for a semaphore. This semaphore is used to keep track of the number of
occupied bytesin the ring buffer. Thus, itisinitialized to O.

System Concepts Appendix A 379

The CREATE_RING_BUFFER routine creates the components of the composite ring
buffer object, initializes the appropriate fields, then creates the composite object, as
follows:

$1 NCLUDE(: RMX: | NC/ COWDN. LI T) /* Declares conmmon literals */
$1 NCLUDE(: RMX: | NC/ NUCLUS. EXT)

DECLARE ri ng$buffer$type TOKEN EXTERNAL;

CREATE_RI NG_BUFFER: PROCEDURE (size) TOKEN PUBLI C REENTRANT;

DECLARE si ze WORD;

DECLARE seg$ptr PO NTER;

DECLARE ptr$struc PO NTER$STRUC AT (@eg$ptr);
DECLARE astr ASTR$STRUC;

DECLARE segnent SEGMVENT$STRUC BASED seg$ptr;
DECLARE exception WORD;

DECLARE ri ng$buf f er TOKEN;

DECLARE priority LI TERALLY ' 1';

astr.nuntésl ots = 3;
ast r. nunconponents = 3;
astr.seg = RQPCREATE$SEGVENT (
sSi ze+6,
@xception);
astr.enpty$ct = RQFCREATE$SEMAPHORE (
si ze,
si ze,
priority,
@xception);
astr.full $ct = RQFCREATE$SEMAPHORE (
0,
si ze,
priority,
@xception);

ptr$struc. base = astr. seg;
ptr$struc. off _set = 0;
segment . si ze = si ze;
segment . head -1;

segment . tail 0;

380 Appendix A OS Extension Example

ri ng$buffer = RQSCREATESCOVPCSI TE (
ri ng$buf f er $t ype,
@str,
@xception);
RETURN ri ng$buffer;
END CREATE_RI NG _BUFFER;

Thesegment . head variable is set to -1 because the PUT_BY TE procedure (shown
later) advances this pointer before placing a character in the buffer.

System Concepts Appendix A 381

The Delete Ring Buffer Procedure
DELETE_RING_BUFFER, which can be called by any task, deletes aring buffer.

$1 NCLUDE(: RMX: | NC/ COWDN. LI T) /* Declares conmon literals
*/
$1 NCLUDE(: RMX: | NC/ NUCLUS. EXT)

DECLARE ri ng$buffer$type TOKEN EXTERNAL;

DELETE_RI NG BUFFER. PROCEDURE(ri ng$buf f er $t oken)
REENTRANT PUBLI C,
DECLARE ri ng$buff er $t oken BASED TOKEN,
DECLARE astr ASTR$STRUC;
DECLARE exception WORD;

astr.nuntésl ots = 3;

CALL RQ@I NSPECT$COWPOSI TE (
ri ng$buf f er $t ype,
ri ng$buf f er $t oken,
@str, @xception);

CALL RQBDELETE$COVPOSI TE (
ri ng$buf f er $t ype,
ri ng$buf f er $t oken,
@xception);

CALL RQBDELETE$SEGMVENT (
astr. seg,
@xception);

CALL RQBDELETE$SEMAPHORE (
astr.enpty$ct,
@xception);

CALL RQBDELETE$SEMAPHORE (
astr.full $ct,
@xception);

END DELETE RI NG BUFFER;

382 Appendix A OS Extension Example

The Put Byte Procedure

PUT_BY TE places a character in the buffer by advancing the pointer to the front of
the buffer then placing the character in the byte being pointed to.

$1 NCLUDE(: RMX: | NC/ COWDN. LI T) /* Declares conmon literals

*/

$1 NCLUDE(: RMX: | NC/ NUCLUS. EXT)

DECLARE ri ng$buffer$type TOKEN EXTERNAL;
DECLARE ri ng$buf f er $r egi on TOKEN EXTERNAL;

PUT_BYTE: PROCEDURE(char, ring$buffer$token)

System Concepts

REENTRANT PUBLI C;
DECLARE ri ng$buf f er $t oken TOKEN,

DECLARE char BYTE;

DECLARE si ze WORD;

DECLARE seg$ptr PO NTER;

DECLARE ptr$struc PO NTERSSTRUC AT (@eg$ptr);
DECLARE astr ASTR$STRUC;

DECLARE segnent SEGMVENT$STRUC BASED seg$ptr;

DECLARE exception WORD;
DECLARE units$left WORD;

astr.nuntésl ots = 3;
CALL RQ$! NSPECT$COMPCSI TE (
ri ng$buf f er $t ype,
par ans. ri ng$buf f er $t oken,
@str,
@xception);
uni ts$l eft = RQPRECEI VESUNI TS (
astr.enpty$ct,
1,
indefinitely,
@xception);
CALL RQBRECEI VE$CONTROL (
ri ng$buf f er $r egi on,
@xception);
ptr$struc. base = astr. seg;
ptr$struc. off _set = 0;
segment . head = ((segnent. head + 1) MOD
segment . si ze) ;
segment . buf f er (segnent . head) = parans. char;

Appendix A

383

CALL RQBSEND$SCONTROL (
@xception);
CALL RQBSEND$SUNI TS (
astr.full $ct,
1,
@xception);
END PUT_BYTE;

This procedure enters a region after obtaining the desired unit. To reverse these steps
would create a deadlock situation, particularly if the same reversal occursin the
GET_BYTE routine.

384 Appendix A OS Extension Example

The Get Byte Procedure

GET_BY TE removes the oldest byte in the buffer, then advances the segnent . t ai |

pointer.

$1 NCLUDE(: RMX: | NC/ COWDN. LI T) /* Declares conmon literals
*/

$1 NCLUDE(: RMX: | NC/ NUCLUS. EXT)

DECLARE ri ng$buffer$type TOKEN EXTERNAL;
DECLARE ri ng$buf f er $r egi on TOKEN EXTERNAL;

GET_BYTE: PROCEDURE(ri ng$buf f er $t oken) BYTE PUBLI C REENTRANT;
DECLARE ri ng$buf f er $t oken TOKEN,

DECLARE si ze WORD;

DECLARE seg$ptr PO NTER;

DECLARE ptr$struc PO NTERSSTRUC AT (@eg$ptr);
DECLARE astr ASTR$STRUC;

DECLARE segnent SEGMVENT$STRUC BASED seg$ptr;
DECLARE exception WORD;

DECLARE char BYTE;

DECLARE units$left WORD;

astr.nuntésl ots = 3;
CALL RQ@BI NSPECT$COWPOSI TE (
ri ng$buf f er $t ype,
ri ng$buf f er $t oken,
@str
@xception);
uni ts$l eft = RQSRECEI VESUNI TS (
astr.full $ct,
1,
indefinitely,
@xception);
CALL RQBRECEI VESCONTROL (
ri ng$buf f er $r egi on,
@xception);
ptr$struc. base = astr. seg;
ptr$struc. off _set = 0;
char = segnent. buffer(segnment.tail);
segment.tail = ((segnment.tail + 1) MOD segment. size);

System Concepts Appendix A

385

CALL RQBSEND$SCONTROL (
@xception);

CALL RQBSEND$SUNI TS (
astr.e, pty$ct,
1,
@xception);

RETURN char ;

END GET_BYTE;

Epilogue

Any task in any job linked to these procedures may call any one of the procedures.
The procedure names to be used in such calls are CREATE_RB, DELETE_RB,
GET_RB_BYTE, and PUT_RB_BYTE. Application programs cannot manipulate either
ring buffers or their component objects, except through these system calls. In fact,
application programmers need not be aware that ring buffers are composed of several
other objects. To them, ring buffers appear (except for the absence of "RQ" in the
procedure names) to be standard iIRM X objects.

386 Appendix A OS Extension Example

Index

#DELETE# " (circumflex) character, 234
$, default prefix, 225, 284

1 (up-arrow) character, 234

.GAT file, 175

/ (dash) character, 234
:config:terminals, 323

:prog: directory, 317

‘prog:rAogon, 317

system:, 329

A

a attach_file, 259

a attach filecall, 230, 238, 278

a change accesscall, 238, 242, 243
a closecdl, 261, 271, 277, 278

a create directory call, 259

a create filecall, 230, 259, 270, 275
a delete_connection, 259

a delete_connection call, 271, 277, 278
a delete filecall, 238, 243, 263

a _get_connection_status call, 262

a get_directory_entry call, 262

a _get_extension_datacall, 245, 264
a get_file statuscall, 262

a _get_path_component call, 263

a load call, 300

a load_io_job call, 299

a opencall, 230, 261, 270, 278

a physical_attach_device, 275

a physical_attach devicecall, 228, 259, 270
a physica_detach_devicecall, 228, 259, 271

a read call, 261, 262, 270, 278

a rename filecal, 263

a seek cal, 232, 261, 270

a set_extension_datacall, 245, 264
a gpecia call, 247, 264, 270

System Concepts

a truncate call, 261
a updatecall, 261
a writecal, 261, 270
aborting

command, <Ctrl-C>, 353
accept_control call, 70, 71

access byte
description, 98
access list
changing, 242
example, 241
access mask, 241, 242
aggregate, 242

accessrights, 242, 243
changing, 238, 242, 263
denying, 241
example, 244
file, 230
limitations, 98
shared files, 239

accessing, see also attaching
devicedriver, 269
device unit, 224
DOS diskettes, 255, 256, 257
DOSfiles, 233
file, 224
files, example, 343
memory segments, 97
network, 310
NFSfiles, 251
remotefiles, 233, 310
shared objects, 111

add_reconfig_mailbox system call, 165

adding
functionsto OS, 173

addressing
memory, 158
aggregate mask, 242
AL (Application Loader), 291

Index

387

alarm task, watchdog timer, 165
aarms

creating, Kernel, 205

deleting, Kernel, 205
aliases, 316

memory segments, 160
aligning

4-bytefor Kernel, 212

buffers, 97
allocating

memory, 95, 286, 299
alter_composite call, 195
appending

output, 327
application programming, definition, 214
application recover, watchdog timer, 166
assigning

devicelogical name, 229
asynchronous call, 302
attach flags, disk integrity, 246
attach_buffer_pool call, 103, 106
attach_port call, 88, 89
attachdevice command, 251, 255, 256, 257
attaching

buffer pool to port, 103

connection, 286

devices, 228, 229, 251, 255, 256, 257, 270,

275

DOS diskettes, 255, 256, 257

logical device, 271

named files, 238

NFSfiles, 251

physical files, 270, 272

ports, 88

stream files, 278

B

background processing, 316, 353
bad tracks and sectors, 247
binary compatibility support, 297
binding

example, 361, 363

user extension, 322
BIOS (Basic I/0 System), 213
BND286

example, 361

388 Index

user extension, 322
BND386, 295

dynamicmem option, 298

example, 363

segsize control, 298
borrowing

memory, 95

memory, 296, 298
broadcast cal, 86, 90
broadcasting system-wide, 86
buffer pools

attaching to port, 103

configuring, 102

creating, 100

datachains, 101

deleting, 104

description, 99

detaching from port, 103

filling, 100

initializing, 101

releasing buffersto, 104

requesting, 103

resources required, 100

tokens, 99
buffers

access control, semaphore, 63

aigning, 97

deletion, avoiding in 1/0, 219

parsing, 325

switching example, 339
bytes read, number of, 216

C

¢_backup_char call, 331, 337
c_create_command_connection call, 323, 349
c_delete_command_connection call, 349
c_format_exception call, 346
c_get_char call, 331, 337
c_get_command_name call, 340
C_get_input_connection call, 333, 341, 359
C_get_input_pathname, 331
C_get_input_pathname call, 312, 326, 332, 333,
336, 337, 359
C_get_output_connection call, 333, 342, 359
c_get_output_pathname call, 312, 327, 331, 332,
336, 337, 359

C_get_parameter call, 328, 331, 334, 335, 337,

359

c_send co_responsecal, 344
¢_send_command call, 329, 349, 350
c_set_control_ccall, 354, 355
c_set_parse buffer call, 324, 338
cal gates, 174
cancel cal, 86, 90
cancelling

command, 353

message, 86
case sensitivity

object directory, 112
catalog_connection call, 284
catalog_object call, 44, 112, 113, 284, 355
cataloging

connections, 229, 276, 283

logical name, 225

object, 112
change_accesscall, 263
character

continuation, 350

special, 329
checksum, 246
child job

definition, 25
ci device

connection, 344
circumflex (*) character, 234, 340
CLI (Command Line Interpreter), 308, 315
client-server model, 81
closing

connection, 262, 287

named files, 261

physica files, 271, 273

stream files, 277, 278
co device

connection, 344
command interface

loadable, 308, 315
Command Line Interpreter, see CLI
command usage

aborting, 353

background, 360

cancelling, 353

CLI and HI, 310

comment character, 329

System Concepts

connections, 349, 351

continuation character, 329

creating, 357

directory access, 340

entering, examples, 327

executing, 318

invoking programmaticaly, 349

multiplelines, 350

nonstandard, 336

obtaining name, 340

parameters, 287

format, 328
syntax, 326

parsing, 313, 325, 359

parsing nonstandard, 336, 337

priority, 351

quoting character, 330

sending, 350

standard structure, 326

status, 351

terminating, 360

wildcards, 312

writing, 349
communicating

between tasks, 44
compatibility with INtime, 365
composite objects

creating, 189

deleting, 190

deleting nested, 193
condition codes, 288

asynchronous, 215

concurrent, 216

custom system calls, 184

description, 115

1/0, 219

mnemonic, 117

ranges, 118

sequential, 302

synchronous, 219, 300
configuring

AL, 293

buffer pools, 102

custom CLI, 322

watchdog timer, 168
connect call, 89
connections, 286

Index

389

BlIOS and EIOS, 231

cataloging, 283

closing, 262

created by another job, 238

creating, 287, 341

deleting, 264, 273, 287

device, 228, 275

deviceand file, 224

file, 231

logical name, 238, 265

named files, 259

opening, 342

returned, 219

sharing, 262

stream files, 276, 279

used by another job, 238

using pathname, 341
console input/output, 341, 344
continuation character, 316, 318, 329
continuing command lines, 350
copy command, 263
corrupt volume or file, 246
create_buffer_pool call, 100, 106
create_composite call, 189, 195
create_extension call, 189, 195
create_heap call, 106
create io_job call, 265
create_mailbox call, 50, 56
create_mailbox system call, 165
create port call, 76, 89
create region cal, 68, 71
create_segment call, 95, 97, 100, 106
create_semaphore call, 59, 65, 354, 355
create task call, 35, 47, 303, 355
create_user call, 260
creating

alarms, Kernel, 205

buffer pools, 100

command connections, 349

commands, 357, 360

commands, caution, 358, 359

composite objects, 189

connections, 224, 259, 286, 341

custom objects, 189

descriptor, 160

device connections, 228, 229

file connections, 230, 231

390 Index

1/O buffers, 219

1/0 jobs, 227, 265, 299

jobs, 28

mailboxes, 50

mailboxes, Kernel, 201

memory pools, Kernel, 216

memory segments, 97

object directory, 111

objects, Kernel, 198

OS extensions, 174

physicd files, 270, 272

ports, 76

regions, 68

semaphores, 59

semaphores, Kernel, 199

stream files, 275, 276

task to load program, 303

tasks, 35

user messages, 346
cross-devel opment environment

Windows NT host, 367

D

data
blocking access, semaphore, 61
caution with regions, 68
mailbox type, 49
datachain, 75, 101
date, 287
date/time subsystem, 163
deadlock
avoiding when deleting objects, 187
caution with regions, 68
preventing in regions, 70
debug command, 295
default exception handler, 346
default prefix, 259, 284
cataloged in object directory, 225
definition, 225
using, 236
default user object, 226, 240
delaying
job execution, 301
delete buffer_pool call, 104, 106
delete_composite call, 190
delete_extension call, 190, 195

delete heap call, 106
delete job call, 30, 31, 190
delete_mailbox call, 51, 56
delete port call, 76, 89
delete regioncall, 71
delete_segment call, 98, 106
delete_semaphore call, 60, 65
delete task call, 35, 47
delete_user cal, 260
deleting
adarms, Kernel, 205
buffer pools, 104
caution with tasks and regions, 68
caution, Kernel objects, 198
command connections, 351
composite objects, 190
connections, 229, 264, 271, 273, 277, 278,
286
device connections, 228
extensions, 193
files, 243, 287
I/O buffer, avoiding, 219
I/0 jobs, 227, 265
IORS, 218
jobs, 30
mailboxes, 51
mailboxes, Kernel, 201
memory pools, Kernel, 216
memory segments, 98
named files, 238, 263
nested composite objects, 193
objects, immunity, 187
ports, 76
regions, 68
semaphores, 60
semaphores, Kernel, 199
tasks, 35
delimiters, 288
dependent jobs
definition, 26
descriptors
alias for memory segment, 160
cautions, 159, 160
changing physical address, 160
changing segment size, 160
creating, 160
defining memory, 159

System Concepts

description, 158

type code, 159
detach_buffer_pool call, 103, 106
detach port call, 88, 89
detaching

buffer pools, 103

connections, 286

devices, 228, 229, 271

logical devices, 273

ports, 88
detecting device status change, 264

device connections, 259, 269, 270, 271, 275, 284

creating and deleting, 228

named files, 234

owner, 228, 229
device controller

definition, 220
device granularity

setting, 220
device independence, 275
device unit

definition, 220
Device Unit Information Block, see DUIB
devices

detaching, 271

status change, 264
Direct Memory Access, see DMA
directories

/rmx386/demo/c/rmk, 214

/rmx386/jobs, 214

/RMX386/UDI, 183

:$:, 340

:prog:, 340

:rmx:hi, 319

system:, 340

:utils:dias, 358
directory

access, 340

entry, 262, 266

object, 225, 284

remote device, 248
disable call, 150, 156
disable _deletion call, 187, 188
disabling

interrupt levels, 150, 151
disk integrity, 246

fnode checksum, 246

Index

391

diskverify command, 246 EIOS (Extended 1/0O System), 213

DMA, 97 elapsed time, measuring, 205
DOSfiles enablecall, 156
access attributes, 255, 256 enable deletion call, 187, 188
definition, 222 encrypt call, 248
name components, 255 end_init_task call, 31
names, 256 enter_interrupt cal, 136, 138, 157
renaming, 255, 256, 257 environment
user, 255, 256 cross-development, Windows NT host, 367
dq_alocate call, 286 epilog procedure, 320
dq_attach call, 286 error handling, CLI, 320
dq closecall, 287 examining in-service register, 155
dq_create cal, 286 examples
dq_decode_exception call, 288 accesslist, 241
dq_decode timecall, 287 accessrights, 244
dq_delete cal, 286 accessing files, 343
dq_detach call, 286 asynchronous call, 215, 302
dg_exit call, 287, 288, 289 BIND, 297
dg freecall, 286 BND286, 361
dq_get_argument call, 287 BND386, 363
dg_get_sizecall, 286 buffer pool and port, 103
do_get_system_id call, 287 command connection, 351
dg_get_timecall, 287 entering commands, 327
dq_mallocate call, 286 file granularity, 1/0, 221
dg_opencall, 287 logical name and subpath, 238
dq overlay call, 287 mailbox, different job, 54
dg_read call, 287 mailbox, same job, 51
dq _reserve_io_memory call, 286, 289 memory, borrowing, 95
dg_seek call, 287 multiple-buffer interrupt, 147
dq_switch_buffer call, 287 OS extension, 369
dq_trap_cccall, 354 overlay modules, 292
dq_trap_exception call, 183 parsing buffers, 339
dq_truncate call, 287 parsing commands, 333
dg_write call, 287 ports, fragmented request, 82, 83, 84
DUIB (Device Unit Information Block) ports, fragmented response, 83
definition, 223 ports, request-response, 82
dynamic logon quoting charactersin commands, 330
remote system, 250 r?error, 321
dynamic memory reading file, 215
requirements, 362, 364 region, 69
dynamic terminals, 309 ring buffer, 369
dynamicmem option, borrowed memory, 298 round-robin scheduling, 42
semaphore, bottleneck, 60
E semaphore, multi-unit, 63
semaphore, mutual exclusion, 60
EDOS files Single Task Loadable (STL) file, 297
definition, 222 single-buffer interrupt, 146

392 Index

subpath, 234

task handler, Kernel, 210

user extension, 321

watchdog timer failure recovery, 167

wildcards, 333

writing message to screen, 347
exception handlers

32-bit and 16-hit, 121

assigning, 115

custom, 183

default, 119

inlineg, 118

mode, 117

System Debugger, 116

types, 116

writing custom, 181
exception handling

1/0, 219

uDI, 288
exception mode, 117
exceptiona conditions

description, 115

handling in commands, 346
exit_interrupt call, 156
exit_io_job call, 265, 301, 303, 324, 360
exiting program, 287, 303
extension data, 264

changing, 245, 264

named files, 264
extensions, see OS extensions:

F

failure handling, watchdog timer, 165
file connections

access rights, 242

creating, 230

deleting, 230

getting, 231
filedrivers, 223, 224, 248, 251, 255, 256, 257
file format

implementing your own, 269
file independence, 275

maintaining, 269
file pointers

modifying, 232

moving, 270, 272

System Concepts

seeking, 287
files, 215
accessrightsto, 230
list of, 241
controlling accessto, 239
corrupt, 246
definition, 222
deleting, 287
descriptor, 245
EDOS, see EDOSfiles
granularity of, 1/0, 221
loading with AL, 301
location on volume, 246
name components, 234
name length of, 234
not found message, 341
opening, 342
physical, seephysical files. see physical
files
remote, 222. see remote files. see remote
files
status of, 262
stream, see stream files. see stream files
temporary, 286
truncation of, 230, 231
first level job
definition, 26
flat memory models
alocating memory, 93
execution model, 93
memory management, 93
system calls for memory management, 93
fly-by mode, 97
force_deletecall, 187
format command, 245
format \t, 269
formatting
volumes using physical files, 269
forwarding
message to sink port, 88
message using remote socket, 88
fragmentation
file, reducing, 220
port, 76
fragments
large messages broken up, 76
receiving, 85

Index 393

request message, 82, 83

response message, 83
free space memory, 286
functions

adding to OS, 173

malloc for Kernel, 213

G

get_addresscall, 106
get_buffer_sizecall, 107
get_default_prefix call, 259
get_default_user cal, 260
get_exception_handler call, 127,181
get_heap_info call, 107
get_interconnect call, 171
get_level call, 155, 157
get_logica_device statuscall, 262
get_port_attributes call, 89
get_priority call, 47, 200
get_sizecdl, 97, 106
get_task_accounting, 128
get_task_accounting call, 129
get_task_info, 128
get_task_infocall, 129
get_task_state, 128
get_task_statecall, 129
get_task_tokenscall, 31, 47, 112, 113
get_typecall, 113
get_user_idscal, 250
granularity

device, setting, 220

H

handlers
task, Kernel, 209
handling
exceptiona conditions, 346
exceptions, custom, 183
spurious interrupts, 154
hardware exceptions
tokens, 98
hardware exceptions, 115
hclusr.p28 file, 319
heaps
description, 99

394 Index

tokens, 99
HI (Human Interface), 307
caution with regions, 72
history command, 316
host, Windows NT

cross-devel opment environment, 367

110

redirecting, 316, 344, 349
1/0 buffers

creating 1/0, 219
1/0jobs, 226

and AL, 292

cataloging, 226

creating, 265, 299

creating and deleting, 227

definition, 26

deleting, 265

differences, 227

exiting, 301

naming, 284

parameters, 227
1/0 Request/Result Segment, see IORS
IDT (interrupt descriptor table), 133
initial program, 313

definition, 308
initial task, 30

signaling end of, 31
initialization, 313

CLI, 317

custom, 319

errors, recovery, 312
initializing

buffer pools, 101
inpath-list, 326

reading, 332
input

redirecting, 344, 349
in-service register, examining, 155
inspect_composite call, 195
inspect_object call, 113
inspect_user call, 260
instruction pointer

for task, 34
interactive jobs, 310

interconnect space
caution, 169
description, 169
getting register value, 169
setting register value, 169
utility to read or writeto, 170
interface library, 374
internal recovery, watchdog timer, 166
interoperability with INtime, 365
interrupt descriptor table, see
interrupt handlers
description, 135
iRMK calsin, 142
memory pools, Kernel, 218
writing, 136
interrupt levels, 133
assigning to external sources, 134
disabling, 150, 151
in standard definition files, seeInstallation
and Startup
interrupt lines, 131
interrupt task
priority, 140
interrupts
enabling, 153
example, multiple-buffers, 147
example, single-buffer, 146
servicing patterns of tasks and handlers,
144
spurious, detecting, 155
spurious, handling, 154
INtime
working with, 365
invoking
commands, 318, 350
commands programmatically, 349
IORS (1/0 Request/Result Segment), 214, 215
deleting, 218
iRMX string, definition, 234
iRMX-NET, 310
access remote file, 248
1/0, 250

J

job command, 353
jobs

System Concepts

changing task priority, 31
creating, 28

deleting, 30

global, naming, 284
hierarchy, 25
limitations, 28

resources provided by, 27
specifying resources, 29
tokens, getting, 47

user, 310

K

Kernel

description, 197

examples, task handler, 210

literals, 198

mailboxes, 201

memory management, 215

objects, 198

overhead in memory pools, 217

real-time clock, 205

task management, 207

tick ratio, 204

time management, 204
keyword, 328
kill command, 353
KN_create alarm call, 205, 207
KN_create areacall, 216, 219
KN_create mailbox call, 201, 203
KN_create pool cal, 216, 219
KN_create_ semaphore call, 199, 200
KN_delete aarmcall, 205, 207
KN_delete areacall, 216, 219
KN_delete mailbox call, 201, 203
KN_delete pool cal, 216, 219
KN_delete_semaphore call, 199, 200
KN_get_pool_attributes call, 218, 219
KN_get_timecall, 205, 207
KN_receive datacal, 202, 203
KN_receive_unit call, 199, 200
KN_reset_alarm call, 206, 207
KN_reset_handler call, 210, 211
KN_send _datacall, 201, 203
KN_send priority_datacall, 201, 203
KN_send_unit call, 199, 200
KN_set_handler call, 210, 211

Index

KN_set_timecal, 205, 207 definition, 309

KN_dleep call, 206, 207 lookup_object call, 44, 112, 113, 355
KN_start_scheduling call, 208, 211 LRS (L oader Result Segment), 300
KN_stop_scheduling call, 208, 211
KNE_get_timecall, 207 M
KNE_set_timecall, 207
mailboxes
L advantages and disadvantages, 44
between different jobs, 54
LAN, 310 creating, 50
libraries creating Kernel, 201
rmxifc.lib, 297 datatype, 49
rmxifc32.lib, 297 deleting, 51
line terminator characters, 327 deleting Kernel, 201
line-editing mode, 316 description, 49
liveinsertion, 51, 163 example, different job, 54
load_io_job call, 301 example, samejob, 51
|oadable command interface, 315, 323 Kernel high priority, 201
loadable jobs message or object type, 49
clibjob, 214 queues, 50
definition, 26 queues, Kernel, 202
Loader Result Segment, see LRS reconfiguration, 51, 56, 165, 166
loading response, 214, 302, 303
files, 301 maintaining
overlay modules, 301 file independence, 269, 275
programs, 299, 357 measuring elapsed time, 205
Local AreaNetwork (LAN), 248 memory
locking addressing with descriptors, 158
scheduling, 207 alocating, 95, 286, 299
LODFIX record, 295 borrowing, 95, 296, 298
logging off, 311 buffer pools, 99
logging on, 309 buffers, aligning, 97
logical device datachains, 75, 101
attaching, 229, 271 dynamic partitions, 309
detaching, 273 flat models, 93
logical names, 265 heaps, 99
assigning to device, 229 Kernel aligning, alocating, 212, 215
connections, 238 Kernel alignment, 216
defining, 284 management, 286
definition, 225 overlay modules, 292
named files, 234 pool attributes, 96
prefix, 235 releasing, 286
subpaths, example, 238 reserving, 286
logical_attach devicecall, 229, 271, 284 size, 286
logical_detach _devicecall, 229, 273 tasksusing, 93
logoff command, 311 memory pools
logon atributes, Kernel, 218

396 Index

creating, 94
creating, Kernel, 216
definition, 93
deleting, 94
deleting, Kernel, 216
interrupt handlers, Kernel, 218
overhead, Kernel, 217
reserving, 227
size, 94, 295
specifying, 299

memory segments
allocating, 286
creating, 97
definition, 97
deleting, 98
selector, 97
token, 97

messages
control, description, 80
control/data, description, 80
design, 346
error, 318
exit, 301
file not found, 341

forwarding from remote socket, 88

forwarding to sink port, 87
fragmented request, 82, 83, 84
fragmented response, 83
fragments, 76
mailboxes, 44, 49
overwrite, 327, 342
ports, 45, 80, 81
priority, Kernel, 201
queues, 46
receiving, 302
sending, 44
sending to user, 344, 346
short-circuit, 75
stream files, 275
transaction pair, 81
transfer protocol, 74
writing to screen, 347
moving
file pointer, 270, 272, 287
mp2 file, 175
Multibus 11
ports, 74

System Concepts

dot number, 170
Transport Protocol, 74
multiuser support, 311
mutual exclusion
interconnect registers, 170
Kernel, 200
regions, 67
semaphores, 59, 60

N

named files
definition, 222
extension data, 264
features, 233
getting name, 263

opening, closing, reading and writing, 261

path, 234, 236

system call order, 266
naming

global job, 284

objects, 284
networking

to remotefiles, 248
NFS

access rights mapping., 239

file names, 251

name components, 251

user id mapping, 239
nonstandard commands, 336
NUCERROR, 179

overriding, 183
Nucleus

communication subsystem, functions, 1

interface libraries, functions, 1
resident, functions, 1

O

object code
definition, 291
producing, 363
object directory, 225, 226
case-sensitive, 112
cataloging object, 112
creating, 111
default prefix, 225

Index

397

description, 111
looking up object, 112
number of entries, 111
removing object, 113
object files
definition, 291
object module
definition, 291
objects
cataloging, 112
creating custom, 189
getting address, 106
getting token, 112
immune from deleting, 187
Kernel, 198
naming, 284
Nucleus calls, 258
shared access, 111
user, definition, 240
offer command, 248
off-line device, 229
offspring job, see child job
OMF-286, 295
opening
files, 230, 231, 261, 270, 272, 276, 277,
278, 279, 287
files, example, 343
OS extensions
creating, 174
custom condition codes, 184
deleting, 193
description, 173
entry point, 176
function procedures, 176
including in system, 185
interface procedures, 175
linking procedures, 184
OSs
porting code between, 286
outpath-list, 327
reading, 332
output
redirecting, 344, 349
overlapping
processing, 291
overlay modules, 287, 292, 301
example, 292

398 Index

overriding
NUCERROR, 183
RQERROR, 183
overwrite message, 327, 342
OVL 286 (80286 overlay generator), 287, 301
owner ID, 242
owner, device connection, 229

P

parameter
formats supported, 328
position-independent, 336
parameter object
definition, 29
token, 29
parameters
buff_p, 338
code_seg_base, 300
connection, 276
dev_name ptr, 275
DMP, 296
GSN, 174
KTR, 204
MCE, 102
MCO, 97
MCT, 97
MDC, 97
mode, 230, 231
NIE, 133
offset, 339
0SsX, 174
path_ptr, 225, 237, 272, 276, 277, 279
pool_max, 296
pool_min, 296
prefix, 229, 234, 238, 270, 275, 278
resp_mbox, 301
share, 230, 276
stack_seg_base, 300
task_flag, 301
to, over, and after, 327
parent job
definition, 25
parsing
buffers, 331, 339
buffers, example, 339
buffers, switching, 338

commands, 359
commands, example, 333
nonstandard command, 336
pathnames, 332
pointer, 338
vaue-list, 334
passwords, 309
encrypting, 248
path
named files, 234, 236, 266
pathnames
components, 326
using for file connection, 341
wildcards, 312
permit command, 239, 248
physical files, 269
attaching, 270
closing, 271, 273
creating, 270, 272
definition, 222
deleting connections, 271
detaching devices, 271
detaching logical device, 273
opening, 270, 272
reading, 270, 272
specia functionson, 270, 273
system call order, 274
writing, 270, 272
physical filescal, 274
plm286.1ib file, 361
plm386.1ib file, 363
pointer
parsing, setting, 338
porting
code, 286, 289
ports

advantages and disadvantages, 45

attaching, 88

attaching buffer pools, 103
attributes, getting, 89
broadcasting message, 86
buffer pool, 81

cancelling message, 86
creating, 76

deleting, 76

detaching, 88

detaching from buffer pool, 103

System Concepts

example, request-response, 82

forwarding from remote socket, 88

fragmentation, 76
identifying, 77
large datatransfers, 75
linking response/request, 75
message types, 80
on same host, 75
queues, 76, 81
receiving message, 79
receiving message fragment, 85
receiving reply, 86
sending request, 85
sending response, 85
sink, 87
status, 75
storing data, 103

prefix
default, 235, 259
110, 235
pathname, 326
subpath, 238

priority
adjustment by regions, 45, 67
bottleneck, regions, 67
bottleneck, semaphores, 60
commands, 351
dynamic, Kernel, 200
inversion, regions, 68
inversion, semaphores, 61
messages, Kernel, 201
round-robin threshold, 40
tasks, 39

private files, definition, 248

programmable interrupt controller, see PIC
programmatic command invocation, 349

programs
loading, 357

public directory
definition, 248

public files, 239
definition, 248

Q

queues
control message, 81

Index

399

FIFO, 46
high-performance, 50
mailbox, 50
mailbox, Kernel, 202
overflow, 50

port, 76

priority, 46

region, 68
semaphore, 59

R

reerror

accessing valuesin, 320

example, 321
r7iojob 1/0 job object, 284
riouser user object, 226, 240, 284
r?message object, 284
random access

extension data, 245

files, 232
RCONFIGURE control, 295, 357, 362, 364
reading

byte string, 269

directory entry, 262

files, 287

inpath-list, 332

outpath-list, 332

physica files, 270, 272

stream files, 278
receivecall, 79, 89
receive_control cal, 70, 71
receive_datacal, 55, 56
receive_fragment cal, 85, 89
receive_message call, 50, 53, 56, 302
receive_reply call, 86, 90
receive_unitscall, 65, 355
receiving

message at port, 79

message fragment at port, 85

reply from port, 86

semaphore units, 64
reconfiguration mailbox, 51, 56
reconfiguration mailboxes, 165, 166
recovery/resident user, 312
redirecting

1/O, 344, 349

400 Index

regions
advantages and disadvantages, 45
caution, 68, 72
caution, human interface, 72
creating, 68
deadlock, 69
deadlock, preventing, 68, 70
deleting, caution, 68
deletion/suspension immunity, 67
description, 67
dynamic priority adjustment, 45
example, nesting, 69
Kernel, 199
mutual exclusion, 45, 67
nesting, 69
priority adjustment, 70
priority inversion, 67
queues, 68
releasing control, 71
releasing nested, 70
releasing, symmetry, 69
semaphore, dynamic priority, 200
release_buffer call, 101, 104, 106
releasing
buffer poals, 104
memory, 286
remote files
definition, 222
prefix, 235
remote socket, 88
removing
object from directory, 113
rename _filecall, 263
repetitive alarms, 205
request, linking to response, 75
request_buffer call, 101, 103, 106
request-response transaction, 82
reserving
memory pools, 227
reset_interrupt call, 35, 137, 156
response, linking to request, 75
resume_task call, 47
limitations of, 38
ring buffer example, 369
rmk.h file, 215
rmk_base.edf file, 215
rmk_base.equ file, 215

rmk_base.ext file, 215
rmk_base.h file, 215
rmk_basel file, 215
rmk_basellit file, 215
rmk_ex.equ file, 215
rmk_ex.| file, 215
rmk_ex.lit file, 215
rmk_type.equ file, 215
rmk_type.l file, 215
rmk_type.llit file, 215
root job

definition, 26
root module, 292
round-robin scheduling, 40

description, 40

example, 42
rq_a attach file, 259
rq_a attach filecall, 230, 238, 278
rq_a change accesscal, 238, 242, 243
rq a closecal, 261, 271, 277, 278
rq_a create directory call, 259
rq_a create filecall, 230, 259, 270, 275
rq_a delete_connection, 259
rq_a delete_connection call, 271, 277, 278
rq_a delete filecall, 238, 243, 263
rq_a get_connection_status call, 262
rq_a get directory_entry cal, 262
rq a get_extension datacall, 245, 264
rq_a get file statuscal, 262
rq_a get_path_component cal, 263
rq_a load call, 300
rqa load io_job call, 299
rq_a opencal, 230, 261, 270, 278
rq_a physical_attach device, 275
rq_a physical_attach devicecall, 228, 259, 270
rq_a physical_detach device call, 228, 259, 271
rq_a read cal, 261, 262, 270, 278
rg_a rename filecall, 263
rg_a seek call, 232, 261, 270
rq a set_extension datacall, 245, 264
rq_a specia call, 247, 264, 270
rq_a truncate call, 261
rq_a updatecal, 261
rq_a writecall, 261, 270
rg_accept_control cal, 70, 71
rq_ater_compositecal, 195
rq_asynchronous call, 302

System Concepts

rq_attach_buffer_pool call, 103, 106

rq_attach_port call, 89

RQ_attach port call, 88

rq_broadcast call, 86, 90

rq_c_backup_char call, 331, 337

rq_c_create_command_connection call, 323, 349

rq_c_delete_ command_connection call, 349, 351

rq_c format_exception call, 346

rq_c_get _char cal, 331, 337

rq_c_get command_namecall, 340

rq_c_get_input_connection cal, 333, 341, 359

rq_c_get_input_pathname, 331

rq_c_get_input_pathname call, 312, 326, 332,
333, 336, 337, 359

rq_c_get output_connection cal, 333, 342, 359

rq_c_get_output_pathname call, 312, 327, 331,
332, 333, 336, 337, 359

rq_c_get parameter call, 328, 331, 334, 335,
337, 359

rq_c_send_co_response call, 344

rq_c_send_command call, 329, 349, 350

rq_c set _control_c call, 354, 355

rq_c_set parse buffer call, 324, 338

rq_cancel cal, 86, 90

rq_catalog_connection call, 284

rq_catalog_object call, 44, 112, 113, 284, 355

rq_change accesscall, 263

rq_connect call, 89

rq_create_buffer_pool call, 100, 106

rq_create_composite call, 189, 195

rq_create_extension cal, 189, 195

rq_create_heap call, 106

rq_create io_job cal, 265

rq_create_ mailbox call, 50, 56

rq_create port call, 76, 89

rq_create region call, 68, 71

rq_create_segment call, 95, 97, 100, 106

rq_create_semaphore call, 59, 65, 354, 355

rq_create task call, 35, 47, 303, 355

rq_create user call, 260

rq_delete buffer_pool call, 106

rq_delete_composite call, 190, 195

rq_delete_extension cal, 190, 195

rq_delete_heap call, 106

rq_delete job call, 30, 31, 190

rq_delete_ mailbox call, 56

rq_delete port call, 76, 89

Index 401

rq_delete regioncal, 71
rq_delete_segment call, 98, 106
rq_delete_semaphore cal, 60, 65
rq_delete task cal, 35, 47
rq_delete_user call, 260
rq_detach_buffer_pool call, 103, 106
rq_detach_port call, 88, 89
rq_disablecal, 150, 156

rq_disable deletion call, 187, 188
rq_enablecall, 156

rq_enable deletion call, 187, 188
rq_encrypt call, 248

rq_end_init_task call, 31
rq_enter_interrupt call, 136, 138, 157
rg_error routine, 288

rq_ete buffer_pool call, 104
rg_exit_interrupt call, 156
rg_exit_io_job call, 265, 301, 303, 324, 360
rq_force deletecal, 187

rq_get addresscal, 106

rq_get buffer_sizecal, 107
ro_get_default_prefix call, 259

rq_get default_user call, 260
rq_get_exception_handler call, 127, 181
rq_get_heap_info call, 107
rq_get_interconnect call, 171

ro_get levd call, 155, 157
rq_get_logical_device statuscall, 262
rq_get_port_attributes call, 89
rq_get_priority call, 47, 200

rq_get sizecal, 97, 106

rq_get task_accounting, 128

rq_get task_accounting call, 129
rq_get task info, 128
rq_get_task_infocal, 129

rq_get task_state, 128, 129
rq_get task tokenscal, 31, 47,112, 113
rq_get typecal, 113

rq_get user_idscal, 250
rg_inspect_composite call, 195
rg_inspect_user call, 260
rq_load_io_job call, 301
rq_logical_attach devicecall, 229, 271, 284
rq_logical_detach device cal, 229, 273
rq_lookup_object call, 44,112, 113, 355
rq_physical filescall, 274

rq_receive cal, 79, 89

402 Index

rq_receive_control cal, 70, 71
rq_receive datacal, 55, 56
rq_receive fragment call, 85, 89
rq_receive_message call, 50, 53, 56, 302
rq_receive reply cal, 86, 90
rq_receive_unitscall, 65, 355
rq_release_buffer call, 101, 104, 106
rq_rename filecall, 263
rq_request_buffer call, 101, 103, 106
rq_reset_interrupt call, 35, 137, 156
rq_resume _task call, 47

limitations of, 38
rq_s attach filecall, 231, 272, 277, 279
rq_s catalog_connection call, 265, 276, 283
rq_s change accesscall, 238, 242, 243
rq_s closecal, 273, 277, 279
rq_s create filecal, 231, 272, 276
rq_s delete_connection call, 264, 273, 279, 359
rq_s delete filecall, 238, 243
rq_s get_directory_entry call, 266
rq_s get_path_component call, 266
rq s load io_jobcall, 299
rq_s logical_attach devicecall, 259
rq_s lookup_connection call, 265
rq_s opencal, 231, 272, 277, 279
rq_s overlay call, 301
rq_s read movecall, 261, 272, 279
rq s seek cal, 232,272
rq_s specid call, 266, 273
rg_s truncate filecall, 261
rq_s uncatalog_connection call, 265, 279
rq_s write_ movecal, 261, 272, 277
rq_send call, 89
rq_send_control cal, 71
rq_send datacall, 55, 56
rq_send_message call, 50, 53, 56
rq_send _reply cal, 85,90
rq_send rsvp cal, 85, 90
rq_send_unitscal, 65
ro_set_default_prefix call, 259
rq_set_default_user call, 260
rq_set_exception_handler call, 119, 127, 181,

183

rq_set_interconnect call, 171
rq_set_interrupt call, 136, 138, 156
rq_set pool_mincall, 31
rq_set_priority call, 39, 47

rq_signal_exception call, 179, 186, 288
rq_signal_interrupt call, 139, 156
rq seepcdl, 47
rq_start_io_job call, 265, 301
rq_suspend_task call, 47

limitations of, 38
rq_system_accounting, 127
rg_system_accounting call, 129
rq_uncatalog_object call, 113
rq verify_user call, 250
rq_wait_interrupt call, 147, 156
rq_wait_io call, 216, 261
rge_change_descriptor call, 160, 161
rge_change _object_accesscall, 97, 98
rge_create_descriptor call, 160
rge_create descriptor call, 160, 161
rge_create io_job cal, 227, 265
rge_create job cal, 28, 31, 94, 111
rge_delete descriptor call, 160, 161
rge_get_object_accesscall, 98, 106
rge_get_pool_attrib call, 96, 106
rge_inspect_directory call, 113
rge_load io_jobcall, 301
rge_offspring call, 30, 31
rge_release buffer call, 107
rge_request_buffer call, 107
rge_set_exception_handler call, 119
rge_set_max_priority call, 31
rge_set_os extension call, 185, 186
rge_timed_interrupt call, 147, 151, 156
RQERROR, 179

overriding, 183
rqglobal global job token, 284

S

s attach_filecdl, 231, 272, 277, 279

s _catalog_connection call, 265, 276, 283
s change_accesscall, 238, 242, 243

s closecall, 273, 277, 279

s create filecall, 231, 272, 276

S delete_connection call, 264, 273, 279, 359
s delete filecall, 238, 243

s get_directory_entry call, 266

s get_path_component call, 266

s load io_job call, 299

s logica_attach devicecall, 259

System Concepts

s lookup_connection call, 265
s opencal, 231, 272, 277, 279
s overlay cal, 301
s read_movecall, 261, 272, 279
s seek call, 232, 272
s specia call, 266, 273
s _truncate filecdl, 261
S _uncatalog_connection call, 265, 279
s write_movecdl, 261, 272, 277
scheduling
lock, 207
tasks, 39
search order, 265
object directory, 225
subpath, 235
seeking
file pointer, 272

segment, memory See memory segments:, 27

segments, memory, See memory segments
segsize control, 298
selectors
memory segments, 97
semaphores
advantages and disadvantages, 45
binary, 60
blocking, 60
bottleneck, 60
controlling access, 63
creating, 59
creating Kernel, 199
deleting, 60
deleting Kernel, 199
description, 59
example, multi-unit, 63
example, mutual exclusion, 60
Kernel, 199
multi-unit, 62
mutual exclusion, 60
receiving units, 64
sending units, 64
synchronizing tasks, 45
task queue, 59, 64
send call, 89
send_control call, 71
send_datacall, 55, 56
send_message call, 50, 53, 56
send_reply call, 85,90

Index

403

send_rsvp cal, 85,90
send_unitscall, 65
sending
command lines, 350
messages between tasks, 44
messages to mailbox, 49
messages to user, 344
reguest to port, 84
response from port, 85
units to semaphore, 64
sequential devices
for physicdl file, 269
servers
locating in system, 86, 90

service information, inside back cover

set_default_prefix cal, 259
set_default_user call, 260

set_exception_handler call, 119, 127, 181, 183

set_interconnect call, 171
set_interrupt call, 136, 138, 156
set_pool_mincall, 31
set_priority cal, 39, 47
setting

extension data, 245

interconnect register, 169
sharing

connection, 262
shutdown command, 246
signal_exception call, 179, 186, 288
signal_interrupt call, 139, 156
single-shot dlarms, 205
sink port, 88
dash (/) character, 234
deepcall, 47
socket

forwarding from remote, 88
Soft-Scope, 357
specia characters, 329
specifying

memory pools, 295

stack size, 298
sr.cfile, 214
stack requirements, 362, 364
stack size

specifying, 298
start_io_job call, 265, 301
static terminals, 309

404 Index

status
invoked commands, 351
port, 75
STL (Single Task Loadable), see STL
STL format, 295
stream files, 275
attaching, 275, 278
closing, 278
closing connections, 277
connections, 276, 279
creating, 275, 276
definition, 222
deleting connections, 277, 278
naming, 275
opening, 276, 278
path_ptr parameter, 279
prefix parameter, 278
reading, 278
synchronizing tasks, 277
system call order, 280
writing, 276
string, ASCII codesin, 234
subpath
definition, 234
examples, 234
1/0, 237
named files, 238
null, 234, 235
pathname, 326
search, 235
suspend_task call, 47
limitations of, 38
suspending
caution, tasks and regions, 72
suspension depth
of task, 34, 38
switching
parsing buffers, 338
synchronizing
tasks, 59
tasks, stream file, 277
sysload command, caution, 308, 324
system calls
invoking commands, 349
state transitions, 38
System calls
asynchronous, 215, 218, 291

command parsing, 313
Kernel scheduling, 208
processing commands, 313
program control, 313
synchronous, 214, 291
System Debugger
as exception handler, 116
system ID, 287
system jobs
definition, 26
system manager, 242
user ID, 239
system programming, definition, 214
system_accounting, 127
system_accounting call, 129

T

tasks
<Ctrl-C>, 355
adleep state, 36
adleep-suspended state, 36
attributes, 34
caution, deletion immunity, 68
deleting, 35
execution types, 33
groupinginjob, 33
handlers, Kernel, 209
initial, 30, 228
instruction pointer, 34
mailboxes with, 54
memory for, 93
messages, passing, 44
multiple, to single terminal, 345
mutual exclusion, 45
physical files, 269
priority, 39
queues, 46, 50, 68
ready state, 36
regions and deadlock, 70
running state, 36
scheduling, 39
semaphores with, 59
deep state, Kernel, 206
states and transitions, 36
stream files, 275
suspended state, 36

System Concepts

suspending, 34

switching, Kernel, 207

synchronizing, 45, 59

types of, 34
terminals

dynamic, 309

error messages, 341

input, 317, 344

messages, 346

multiple tasks, 345

static, 309
terminating

commands, 360
testing

sequential condition codes, 215

tokens
buffer pools, 99

caution, changing bits,

getting, 47
heaps, 99

98

mailboxes, passing, 49

memory segments, 97

object directory, 111

type codes, 113
transaction

ID, 81

pairs, definition, 81

request-response, 81
transferring

large amount of data, 75

traps, hardware, 115

truncating file, 230, 231, 287

type manager

deleting nested composites, 193

description, 189
writing, 194

U

ucerr.a38 file, 183
UDF (User Definition File)
definition, 250

UDI (Universal Development Interface), 285

uncatalog_object call, 113
unloading jobs
caution, 308, 324

up-arrow (1) character, 234

Index

405

user
console, 344
file access, 239
messages, 346
multiple, 311
recovery/resident, 312
system manager, 239
terminal, 344
validation, 309
World, 239
user configuration files, 309, 323
multiuser systems, 311
User Definition File, see UDF
user extension, 319
binding, 322
example, 321
user ID, 241, 311
access mask, 241
definition, 239
example, 244
user jobs, 310
user object
definition, 240
operations on, 260

\Y

validating

users, 309
value-list, 328

parsing, 334
verify_user call, 250
virtual root, definition, 248
volumes

corrupt, 246

definition, 221

406 Index

w

wait_interrupt call, 147, 156
wait_iocall, 216, 261
wait_iorscal, 216
watchdog timer
alarm task, 165
application failure recovery, 166
configuration, 168
failure handling, 165
failure recovery example, 167
internal recovery procedure, 166
overview, 163
WD_HOST_FAILURE message, 165
WD_HOST_RESET message, 166
wildcards
commands, 312
examples, 333
pathnames, 312
Windows NT host

cross-devel opment environment, 367

World user
user ID, 239

write error, 246

writing
<Ctrl-C> handler, 353
buffersto disk, 261
byte string, 269
commands, 349
error message, example, 347
files, 287
interrupt handler, 136
named files, 261
new file, 327
output, 327
physical files, 270, 272
stream files, 276
type manager, 194
user messages, 346

	iRMX® System Concepts
	Quick Contents
	Notational Conventions

	Contents
	Section I: NUCLEUS PROGRAMMING CONCEPTS
	Chapter 1: Jobs
	What is a Job?
	Job Hierarchy
	Job Types

	What Does a Job Contain?
	Creating a Job
	Resource Sharing
	Specifying Resources
	The Parameter Object
	The Initial Task

	Deleting a Job
	Job System Calls
	How to Use Job System Calls

	Chapter 2: Tasks
	What is a Task?
	Task Types
	Task Attributes

	Creating a Task
	Deleting a Task
	Task Execution States
	Task Execution State Transitions
	Suspending and Resuming Tasks

	Prioritizing Tasks
	Task Priority Level
	Round-robin Scheduling

	Communicating Between Tasks
	Using Mailboxes and Ports
	Using Semaphores and Regions
	Task and Message Queues

	Task System Calls
	How to Use Task System Calls

	Chapter 3: Mailboxes
	What is a Mailbox?
	Object Mailboxes
	Data Mailboxes

	Creating a Mailbox
	Mailbox Queues
	Reconfiguration Mailboxes

	Deleting a Mailbox
	Exchanges Between Tasks in the Same Job
	Using send_message
	Using receive_message

	Exchanging Data Between Tasks in Different Jobs
	Using send_data
	Using receive_data

	Mailbox System Calls
	How to Use Mailbox System Calls

	Chapter 4: Semaphores
	What is a Semaphore?
	Creating a Semaphore
	Task Queue

	Deleting a Semaphore
	Binary Semaphores and Mutual Exclusion
	Priority Bottlenecks and Blocking

	Multi-unit Semaphores
	Using send_units
	Using receive_units

	Semaphore System Calls
	How to Use Semaphore System Calls

	Chapter 5: Regions
	What is a Region?
	Deletion and Suspension Protection
	Priority Adjustment

	Creating a Region
	Task Queue

	Deleting a Region
	Misusing Regions
	Nesting Regions
	Prevention
	Using receive_control
	Using accept_control

	Region System Calls
	How to Use Region System Calls

	Chapter 6: Ports
	What is a Port?
	What is a Service?
	Ports in Multibus II Systems

	Why Use a Port?
	Using Heaps and Buffer Pools at Ports

	Creating a Port
	Fragments in Large Data Messages

	Deleting a Port
	Identifying a Port
	Sending Data Messages
	Using send
	Using receive

	Sending Request / Response Messages
	Control and Control / Data Format
	Transaction Pairs
	Basic Request / Response Transactions
	Fragmented Response Transactions
	Fragmented Request Transactions

	Setting Up Special Ports
	Forwarding Messages from Sink Ports

	Port System Calls
	How to Use Port System Calls

	Chapter 7: Memory Pools, Memory Segments, Heaps, and Buffer Pools
	Flat Memory Models
	What is a Memory Pool?
	Creating a Memory Pool
	Allocating Memory
	Borrowing Memory

	What is a Memory Segment?
	Creating a Segment
	Deleting a Segment
	Access Rights and Hardware Types

	Heap Management
	What is a Buffer Pool?
	Creating and Initializing a Buffer Pool
	Deleting a Buffer Pool

	Memory Management System Calls
	How to Use Memory Management System Calls

	Chapter 8: Object Directories
	What is an Object Directory?
	Creating a Job Object Directory
	Deleting a Job Object Directory
	Using an Object Directory
	Using catalog_object
	Using lookup_object
	Using rqe_inspect_directory
	Using uncatalog_object

	Object Directory System Calls
	How to Use Object Directory System Calls

	Chapter 9: Exception Handling and System Accounting
	Exception Handling
	Exception Handler Actions
	Exception Handler Modes
	Condition Code Values and Mnemonics
	Handling Exceptions Inline
	Assigning an Exception Handler
	OS-Assisted Handling of Hardware Exceptions
	Writing Your Own Exception Handler
	Exception Handler System Calls

	System Accounting
	Enabling and Disabling CPU Tracking
	Returning Information About a Task
	Returning Task Creation and Duration Statistics
	System Accounting System Calls

	Chapter 10: Interrupts
	How Do Interrupts Work?
	Interrupt Controllers and Interrupt Lines
	Interrupt Levels
	Interrupt Descriptor Table
	Assigning Interrupt Levels to External Sources

	Interrupt Handlers and Interrupt Tasks
	System Calls and Interrupt Handlers
	Writing an Interrupt Handler
	Using set_interrupt With a Handler Only
	Using an Interrupt Handler and an Interrupt Task
	Using iRMK Kernel Calls in iRMX Interrupt Handlers
	Interrupt Servicing Patterns

	Handling Spurious Interrupts
	Calling get_level
	Judicious Selection of Interrupt Levels
	Examining the In-service Register

	Interrupt System Calls
	How to Use Interrupt System Calls

	Chapter 11: Descriptors
	What is a Descriptor?
	Advanced Uses for Descriptors
	Descriptors for Undefined Memory
	Descriptors with Aliases
	Using rqe_create_descriptor
	Using rqe_delete_descriptor
	Using rqe_change_descriptor

	Descriptor System Calls

	Chapter 12: Other Nucleus Features
	Date and Time Subsystem
	Live Insertion Support
	Watchdog Timer
	Reconfiguration Mailboxes
	Failure Handling
	Configuring the Watchdog Timer

	What is Interconnect Space?
	How the OS Uses Interconnect Space
	How an Application Uses Interconnect Space
	Referencing Interconnect Space
	Reading and Writing Interconnect Space

	Interconnect Register System Calls

	Chapter 13: OS Extensions and Type Managers
	How Do You Add a System Call?
	Creating an OS Extension
	Exception Handling for Custom System Calls
	Linking the Procedures
	Including OS Extensions
	System Calls for OS Extensions

	Protecting Objects From Deletion
	System Calls for Deletion Immunity

	Type Managers and Custom Objects
	Creating New Objects
	Deleting Composite Objects and Extension Types
	Writing a Type Manager
	Type Manager System Calls

	Section II: iRMX KERNEL PROGRAMMING CONCEPTS
	Chapter 14: iRMX Kernel Programming Concepts
	What Does the Kernel Provide?
	Kernel Semaphores
	Mailboxes

	Kernel Time Management
	Using the Kernel Tick Ratio
	Using Alarms
	Using Sleep
	Time Management System Calls

	Kernel Task Management
	Controlling Task State Transitions
	Using Task Handlers
	Task Management System Calls

	iRMX Memory Management for Kernel System Calls
	Aligning Application or malloc Allocated Memory
	Using malloc

	Demo Files for the Kernel
	Include Files for the Kernel
	Kernel Memory Management
	Creating Memory Pools and Areas
	Deleting Memory Pools and Areas
	Pool and Area Overhead
	Performance Issues
	Getting Information about a Pool
	Allocating Memory in an Interrupt Handler
	Kernel Memory Management System Calls

	Section III: I/O SYSTEMS PROGRAMMING CONCEPTS
	Chapter 15: I/O System Basic Concepts
	System Programming (BIOS)
	Synchronous and Asynchronous Calls
	Asynchronous Call Order of Operations
	Using Asynchronous Calls
	Condition Codes for Asynchronous Calls
	Creating I/O Buffers

	Device Controllers and Device Units
	Setting Mass Storage Device Granularity
	File Granularity Example
	Volumes

	File Types
	Communication Between Tasks and Device Units
	Logical Names
	Path_ptr Parameters and Default Prefixes (EIOS)
	I/O Jobs (EIOS)

	Chapter 16: I/O Jobs and Connections
	Creating I/O Jobs
	Creating Device Connections
	Using BIOS System Calls
	Using EIOS System Calls
	Using a Logical Device with BIOS System Calls

	Creating File Connections
	Using BIOS System Calls
	Using EIOS System Calls
	Moving File Pointers

	Chapter 17: Named Files
	Using Prefixes, Subpaths and File Paths in System Calls
	Subpaths
	Prefixes
	Using the Default Prefix
	Specifying Paths in System Calls
	Using Connections

	Controlling File Access
	Users
	User Objects
	File Access List
	Computing Access for File Connections
	File Access Rights Example

	Getting and Setting Extension Data
	Maintaining Disk Integrity
	Attach Flags
	Fnode Checksum Field
	Getting and Setting the Bad Track/Block Information

	Accessing Remote Files
	Systems that Include iRMX-NET
	Dynamic Logon and iRMX˚NET

	Accessing NFS Files
	Volume Names
	File Names
	File Ownership
	User ID Translation
	File and Directory Creation
	File Access Rights

	Accessing EDOS Files
	Directories
	File Attributes
	File Names
	Time Stamps
	File Ownership

	Accessing DOS Files
	Directories
	File Attributes
	File Names
	Time Stamps
	File Ownership

	Accessing CDROM Files
	Directories
	File Attributes
	File Names
	File Ownership

	Using Nucleus System Calls for the Default User and Default Prefix
	System Calls for Named Files
	BIOS and EIOS System Calls for Named Files

	Call Sequence for Named Files

	Chapter 18: Physical Files
	Situations Requiring Physical Files
	Maintaining Physical File Independence
	BIOS Calls for Physical Files
	EIOS Calls for Physical Files

	Call Sequence for Physical Files

	Chapter 19: Stream Files
	Maintaining Stream File Independence
	Creating the File
	Writing the File
	Reading the File

	Call Sequences for Stream Files

	Chapter 20: Connections and Objects
	Cataloging Connections
	Cataloging Objects

	Chapter 21: UDI Basic Concepts and System Calls
	UDI System Calls
	UDI Memory Management System Calls
	Using Program Control Calls
	Using Utility and Command-parsing Calls
	Using Condition Codes and Exception-handling Calls

	Writing Portable Programs Using the UDI
	Call Sequence for File-Handling System Calls

	Section IV: APPLICATION LOADER PROGRAMMING CONCEPTS
	Chapter 22: Application Loader Basic Concepts
	Object Code
	Synchronous and Asynchronous System Calls
	Situations Requiring an I/O Job
	Overlays
	Device Independence and the AL
	Configuring the AL

	Chapter 23: Preparing Code for Loading
	Specifying Pool Sizes for I/O Jobs
	Producing an STL Object File
	Specifying Stack Requirements with SEGSIZE Control
	Specifying Dynamic Memory Allocation with DYNAMICMEM Option

	Chapter 24: Application Loader System Calls
	AL System Calls Requiring an I/O Job
	a_load Does Not Require an I/O Job
	Synchronous System Calls
	Using rqe_s_load_io_job and s_load_io_job
	Loading Overlays with s_overlay

	Asynchronous System Calls
	Asynchronous Call Order of Operations
	Response Mailbox Functions

	Section V: HUMAN INTERFACE PROGRAMMING CONCEPTS
	Chapter 25: Human Interface Basic Concepts
	Sample Code
	Resident HI Commands
	CLI: The Initial Program
	Loading Other Initial Programs
	Logon
	Validation
	Environments
	Network Access
	Logging Off

	Multiuser Support
	Recovery/Resident User
	Wildcards
	Human Interface System Calls
	Human Interface Operations

	Chapter 26: The Command Line Interpreter
	CLI Features
	Initializing the CLI
	Invoking and Executing Commands
	Adding User Extensions to the CLI
	Creating User Extensions
	Demonstration Program - User Extension
	Binding a User Extension

	Creating a Loadable Command Interface

	Chapter 27: Writing and Parsing Commands
	Standard Command-line Structure
	Command-line Structure Parameters
	Command-line Structure Parameter Formats
	Command-line Structure Special Characters

	Parsing the Command Line
	Parsing Input and Output Pathnames
	File Connection Demo Programs
	Wildcard Characters In Input/Output Pathnames

	Parsing Other Parameters
	Parsing Nonstandard Command Lines
	Variations on the Standard Command Line
	Other Nonstandard Command Lines

	Switching To Another Parsing Buffer
	Obtaining the Command Name

	Chapter 28: Communicating with the User
	Establishing Input and Output Connections
	Using c_get_input_connection
	Using c_get_output_connection

	Communicating With the User's Terminal
	c_send_co_response System Call
	c_send_eo_response System Call

	Formatting Messages Based on Condition Codes
	c_format_exception System Call

	Chapter 29: Invoking HI Commands Programmatically
	Creating a Command Connection
	Sending Command Lines to the Command Connection and Invoking the Command
	Priority Considerations
	Deleting the Command Connection
	Command Connection Calls Demo Programs

	Chapter 30: Writing a <Ctrl-C> Handler
	How the Default <Ctrl˚C> Works
	Providing Your Own <Ctrl˚C>
	Using Inline Processing
	Using a <Ctrl˚C> Task
	Returning to the Default Handler

	<Ctrl˚C> Task Demo Programs

	Chapter 31: Creating Human Interface Commands
	Elements of a Human Interface Command
	Parsing the Command Line
	System Calls and Objects to Avoid
	Terminating the Command
	Include Files

	Producing a 16-bit Executable Command
	Producing a 32-Bit Executable Command

	Chapter 32: INtime® 2.0 Compatibility and Interoperablilty
	Becoming a Remote INtime Node

	Chapter 33: Windows NT Host Cross Development Environment

	Section VI: OS EXTENSION EXAMPLE
	Appendix A: OS Extension Example
	Ring Buffer Manager
	Initialization
	The Interface Library
	The Create Ring Buffer Procedure
	The Delete Ring Buffer Procedure
	The Put Byte Procedure
	The Get Byte Procedure
	Epilogue

	Index

