
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

iRMX®

Command Reference

07-0574-01
December 1999

ii

EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
is a trademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright 1999 by RadiSys Corporation

All rights reserved.

Command Reference iii

Quick Contents

Chapter 1. Using Commands

Chapter 2. Command Descriptions

Appendix A. Using Disk Mirroring

Appendix B. Using Diskverify in Interactive Mode

Appendix C. Structure of a Named Volume

Appendix D. Real-time Graphics Interface

Appendix E. Supplied Device Drivers and Physical Device
Names

Appendix F. Partitioning PCI Hard Disk Drives

Index

iv

Notational Conventions
Most of the references to system calls in the text and graphics use C syntax instead of
PL/M (for example, the system call send_message instead of send$message). If you
are working in C, you must use the C header files, rmx_c.h, udi_c.h, and rmx_err.h.
If you are working in PL/M, you must use dollar signs ($) and use the rmxplm.ext and
error.lit header files.

This manual uses the following conventions:

• Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

• All numbers are decimal unless otherwise stated. Hexadecimal numbers include
the H radix character (for example, 0FFH). Binary numbers include the B radix
character (for example, 11011000B).

• Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

• Data structures and syntax strings appear in this font.

• System call names and command names appear in this font.

• PL/M data types such as BYTE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C data types are lower case except
those that represent data structures.

• The following OS layer abbreviations are used. The Nucleus layer is
unabbreviated.

AL Application Loader
BIOS Basic I/O System
EIOS Extended I/O System
HI Human Interface
UDI Universal Development Interface

• Whenever this manual describes I/O operations, it assumes that tasks use BIOS
calls (such as rq_a_read, rq_a_write, and rq_a_special). Although not
mentioned, tasks can also use the equivalent EIOS calls (such as rq_s_read,
rq_s_write, and rq_s_special) or UDI calls (dq_read or dq_write) to do the
same operations.

Command Reference Contents v

Contents

1 Using Commands
How to Use This Manual... 1
Commands Available on Your System.. 3

The Human Interface (HI) .. 4
The Command Line Interpreter (CLI) .. 5
Networking Software.. 5

Understanding the File Systems... 6
File Types... 7
Named File Tree... 8
File Access and User IDs ... 9
Using Pathnames .. 10
Using the Copy Command with Multiple Pathnames............................... 11
Using Wildcards in Filenames.. 11
Specifying Hidden Files ... 14

Entering Commands .. 14
Command Syntax ... 15
Using the To, Over, and After Parameters ... 17
Abbreviating Parameters .. 17
Abbreviating Command Names ... 18
Recalling and Editing Commands .. 18
Using Command Search Paths.. 19
Creating Command Aliases .. 20
Redirecting I/O... 21

Using Commands on Directories ... 22
Displaying Files with the DIR Command... 22
Creating a New Directory... 22
Referring to a Directory.. 22
Creating a Directory Within a Directory .. 24
Changing Your Working Directory .. 24
Renaming Directories... 25
Deleting a Directory ... 25

Using Commands on Volumes .. 26
Formatting a New Volume ... 27

vi Contents

Using TCP/IP and NFS Commands... 29
Executing TCP/IP Commands.. 29
Case Sensitivity in TCP/IP and NFS Command Syntax........................... 29
Executing OS Commands From a Posix Shell ... 30

Creating and Using Logical Names... 30
Creating Logical Names for Devices.. 31
Creating Logical Names for Files... 31
Where Logical Names are Stored... 32
Logical Names Created by the Operating System 33

Error Messages.. 35
General HI Error Messages .. 35
General iRMX-NET Error Messages ... 37

2 Command Descriptions
Command Descriptions ... 39

Command Summary... 39
! .. 45
accounting .. 47
addloc ... 50
aedit.. 54
alias .. 57
arp .. 63
attachdevice.. 66
attachfile... 72
background... 76
backup .. 79
bcl... 87
bootdos ... 90
bootrmx .. 91
case... 92
changeid ... 93
cli.. 94
connect ... 95
console ... 97
copy.. 98
copydir ... 101
createdir.. 105
date... 107
dealias... 110
debug.. 111
delete .. 114
deletedir.. 116

Command Reference Contents vii

deletename.. 118
detachdevice ... 119
detachfile .. 121
deviceinfo ... 123
dir ... 125
disconnect... 133
diskverify.. 134
domain.. 141
dump... 142
enetinfo... 143
esubmit ... 144
exit.. 169
find ... 170
findname... 171
format ... 174
ftp ... 193
getaddr.. 204
getname .. 205
grep... 207
help... 209
history... 211
ic .. 213
inamon.. 219
initstatus ... 220
jobdelete ... 222
jobs ... 224
keyb .. 225
kill .. 226
killjob ... 227
lanstatus.. 228
listname .. 229
load... 232
loadname .. 233
loadrmx .. 235
locdata .. 239
lock... 243
logicalnames... 245
logoff .. 248
make (mk) .. 249
memory .. 263
mirror ... 264
mkdep... 268
modcdf.. 270

viii Contents

modinfo .. 272
netinfo .. 273
netstat ... 274
offer.. 280
paginate .. 282
password... 284
path... 291
pause... 292
pci... 293
pcnet ... 295
permit ... 296
physname.. 305
ping... 308
publicdir ... 310
rdisk.. 311
remini ... 325
remove.. 326
rename.. 327
restore... 330
retension ... 337
rmextdbg .. 338
rmxtsr ... 339
set ... 341
setconfig ... 345
setname... 346
shutdown .. 349
skim.. 353
sleep ... 355
sort.. 355
submit... 357
super ... 361
sysinfo .. 363
sysload.. 366
telnet... 371
term .. 374
time .. 377
timer ... 380
touch... 381
translate .. 383
traverse ... 384
tree.. 385
uniq... 386
unloadname .. 387

Command Reference Contents ix

unlock... 389
unxlate .. 392
version .. 393
whoami... 395
xlate .. 396

A Using Disk Mirroring
Introduction ... 402
Disk Mirroring Concepts ... 402

Mirror Sets ... 403
Failure Detection .. 404
Rollover.. 404

Rollover on Different Hard Disk Controllers 405
On-line and Off-line Repair.. 406

System Device Repair ... 406
On-line Resynchronization ... 406
Automatically Enabling Disk Mirroring... 407
Event Notification .. 408

Disk Mirroring Configuration.. 409
Hardware Configuration... 409

Mirror Set on One PCI Server ... 409
Mirror Set Across SCSI Busses... 411
Mirror Set Across Two PCI Servers.. 412
Mirror Set on Multiple Multibus II Systems 413

Software Configuration .. 414
Setting the Maximum Outstanding Commands................................. 415

Using Disk Mirroring .. 415
Summary of Disk Mirroring Operations... 415
Tutorial: Using the Mirror Command.. 417
Handling Events ... 419
Handling Failures ... 420

Handling Secondary Hard Disk Failure... 420
Handling Primary Hard Disk Failure... 422

Protecting Hard Disks... 424
Using A_special for Disk Mirroring... 424
Mirror State Structure... 424

B Using Diskverify in Interactive Mode
Introduction ... 427
Invoking Diskverify... 429

Invocation Error Messages ... 430

x Contents

Using Diskverify Commands .. 431
Abbreviating Command Names ... 431
Using Parameters ... 432
Abbreviating Parameters .. 432
Specifying Input Radices.. 432
Aborting Diskverify Commands .. 433

Diskverify Error Messages .. 434
Tutorial: Backing Up and Restoring Fnodes... 435

Structure of the Volume Label and Fnode File... 435
Creating the Backup Volume Label and Fnode File................................. 436

Example .. 437
Maintaining the Backup Fnode File ... 438

Examples... 438
Restoring Fnodes.. 439

Examples... 439
Restoring the Volume Label... 440

Example .. 441
Displaying R?save Fnodes.. 441

Example .. 442
Diskverify Command Descriptions ... 443

Command Summary... 443
allocate ... 445
arithmetic commands ... 447
backupfnodes.. 449
conversion commands .. 451
disk... 456
displaybyte ... 459
displayword .. 461
displaydirectory.. 463
displayfnode ... 465
displaysavefnode .. 470
displaynextblock... 471
displaypreviousblock.. 472
editfnode... 473
editsavefnode.. 476
exit.. 477
fix ... 478
free ... 480
getbadtrackinfo... 482
help... 484
listbadblocks... 485
quit ... 486
read... 487

Command Reference Contents xi

restorefnode.. 488
restorevolumelabel ... 491
save... 493
substitutebyte.. 495
substituteword .. 497
verify .. 498

Named1 Output ... 499
Named2 Output ... 501
Physical Output ... 501
Named and All Output .. 501
Verify Command Error Messages ... 504
Named1 Error Messages ... 504
Named2 Error Messages ... 505
Physical Error Messages ... 507
Miscellaneous Error Messages .. 507

write ... 508

C Structure of a Named Volume
Introduction ... 511
Volume Structure... 512
Volume Labels... 512

ISO Volume Label.. 513
iRMX Volume Label and Partition Table... 515

Partition Table Structure ... 521
Bootloader Location Table ... 522

Initial Files... 525
Fnode File... 525
Fnode 0: Fnode File... 535
Fnode 1: Volume Free Space Map File ... 536
Fnode 2: Free Fnodes Map File ... 536
Fnode 3: Accounting File .. 536
Fnode 4: Bad Blocks Map File .. 537
Fnode 5: Volume Label File .. 537
Fnode 6: Root Directory .. 537
Fnodes 7 and 8: R?secondstage and R?save .. 538

R?secondstage ... 539
R?save ... 539

Other Fnodes .. 540
Short and Long Files.. 541

Short Files .. 541
Long Files... 542

Diskette Formats.. 546

xii Contents

D Real-Time Graphics Interface
Description .. 549
Using the Windows ... 549
Using the Mouse.. 551
Basic Menu.. 552
Expanded Menu... 556

E Supplied Device Drivers and Physical Device Names
Supplied Device Drivers.. 561

Preconfigured Drivers, DOSRMX and iRMX For PCs............................ 561
ROM BIOS-based Hard Disk Driver .. 561
ROM BIOS-based Diskette Driver.. 562
Byte Bucket Driver ... 563
COM1 and COM2 Driver ... 563

Loadable Device Drivers.. 564
Loadable Device Driver Support Files .. 564

ICU-configurable Drivers For iRMX III Systems.................................... 565
Physical Device Names ... 566
DOSRMX and iRMX for PCs Systems... 567
iRMX III Systems ... 569

iRMX III PC Systems .. 569
iRMX III Multibus I and Multibus II Systems ... 570

F Partitioning PCI Hard Disk Drives
The Partition Table.. 579
Specifying iRMX Partitions .. 580

Example DUIB Name .. 581
How to Use PCI Partitioning ... 581

Partitioning and Formatting Tools.. 581
Partitioning Example for the iRMX III OS ... 582
MSA Booting .. 583
Partition Support for Multibus I Systems or PCs... 584

Multibus I Systems... 584
PC Systems... 584

Index ... 585

Command Reference Contents xiii

Tables
Table 1-1. Directory Search Paths for Commands.. 19
Table 2-1. Command Summary .. 40
Table 2-2. System Aliases in the :config:alias.csd File .. 59
Table 2-3. Default Aliases in the :prog:alias.csd File .. 60
Table 2-4. Property Types Used in Name Server Entries ... 172
Table 2-5. How Access Rights Apply to Files and Directories 298
Table 2-6. TSAP IDs Used in Transport Addresses.. 347
Table B-1. Diskverify Command Summary ... 443
Table C-1. Characteristics of 5 1/4-Inch Non-SCSI Boot Diskettes 546
Table C-2. Characteristics of 5 1/4-Inch SCSI Boot and Data Diskettes 546
Table C-3. Characteristics of 3 1/2-Inch SCSI Boot and Data Diskettes 547
Table E-1. Hard Disk Partition Names ... 562
Table E-2. Diskette Driver Device Names.. 563
Table E-3. Supplied ICU-configurable Device Drivers .. 565
Table E-4. DOSRMX/PCs Default Device Names.. 567
Table E-5. PC Terminal Device Names.. 567
Table E-6. Device names for PC systems ... 569
Table E-7. Device Names for IDE Controllers ... 569
Table E-8. Device Names for SBC 214, 221, and 215G/217C/218A Controllers......... 570
Table E-9. Device Names for SBC 386/12S and 486/12S SCSI Controllers 572
Table E-10. Device Names for SBC 386/258(D) and 486/133SE Controllers 573
Table E-11. Multibus I Terminal Device Names .. 575
Table E-12. Multibus II Terminal Device Names... 576
Table E-13. Suggested Physical Device Names for Other Devices 577

xiv Contents

Figures
Figure 1-1. iRMX Operating System Layers that Provide Commands 3
Figure 1-2. Example File Tree Structure .. 9
Figure A-1. Mirror Set Operations.. 403
Figure A-2. Rollover, Repair, and Resynchronization .. 405
Figure A-3. Automatically Enabling Disk Mirroring.. 407
Figure A-4. Mirror Set on One PCI Server ... 410
Figure A-5. Mirror Set Across a SCSI Bus... 411
Figure A-6. Mirror Set Across Two PCI Servers.. 412
Figure A-7. Mirror Set on Multiple Multibus II Systems ... 413
Figure C-1. General Structure of Named Volumes... 512
Figure C-2. Short File Fnode .. 541
Figure C-3. Long File Fnode .. 544
Figure D-1. An Example of Windows Displayed on the System 520 550
Figure D-2. Basic Menu Selections .. 552
Figure D-3. Expanded Menu Selections ... 556
Figure F-1. Partition Table With iRMX and DOS Partitions .. 580

Command Reference Chapter 1 1

Using Commands 1
This manual describes the command interface to the iRMX Operating Systems
(OS): the iRMX III OS, iRMX for PCs, and iRMX for Windows. It describes how
to use the commands, and contains information about line-editing and terminal
control characters. In addition, this manual provides methods for verifying and
correcting the data structures of iRMX named or physical volumes.

The introductory sections of this manual assume you are familiar with the terminal
characteristics of your monitor and the keyboard from which you enter commands.
Later sections, such as those on using diskverify in interactive mode, require an
understanding of iRMX volume structure.

How to Use This Manual
The information in this manual applies to a variety of user levels, system types, and
configurations. You will need to choose the information appropriate to your system.
Some system types covered by this manual include:

• Installations running on PC bus, Multibus I, or Multibus II systems

• ICU-configurable iRMX systems, which may vary from the standard device
types and OS layers described in this manual

• iRMX for Windows and iRMX for PCs systems: descriptions of configuration
issues don't apply to preconfigured iRMX for Windows, but discussions of
loading device drivers and user jobs, and modifying :config: files do apply

• Single-user systems, which need little or no file protection and user password
protection

• Multiple-user systems, including systems operating on a network, which may
need to strictly enforce file and system access

2 Chapter 1 Using Commands

Use these guide to determine which parts of this manual you should read:

If you are: Refer to:

A new user Chapters 1 and 2 and Appendix E

An experienced user Chapter 2 and Appendices A-F

Responsible for managing the
system

Appendices A, B, and C, in addition to
other chapters

Using the SBX 279 Graphics
interface

Appendix D, in addition to other chapters

Command Reference Chapter 1 3

Commands Available on Your System
Figure 1-1 shows the layers of the iRMX OS that provide commands:

Command Line Interpreter (CLI)
DOS/Windows
iRMX-NET networking software
Human Interface (HI)

The figure also shows the layers of the OS necessary to support these command-level
layers:

Nucleus
Basic I/O System (BIOS)
Extended I/O System (EIOS)
Application Loader
VM86 Dispatcher
Remote File Driver (RFD)

Command Line Interpreter
(CLI)

DOS/Windows
Command Line

iRMX-Net
and

Remote File
Driver (RFD)

Application
Loader

(AL)

EIOS

BIOS VM86 Dispatcher

Nucleus

DOS/Windows

OM04425

Human Interface
(HI)

NFS

TCP/IP

iNA 960
Network Software

Figure 1-1. iRMX Operating System Layers that Provide Commands

4 Chapter 1 Using Commands

The commands in Chapter 2 are labeled according to their source or function: CLI,
HI, DOS, NET (iRMX-NET), TCP/IP, and NFS commands. The commands
available to you depend on your type of system:

• If you use iRMX for Windows or iRMX on a PC, all the OS layers are part of
the system. You may choose not to install the networking software; in this case
the NET and/or TCP/IP and NFS commands are not available, depending on
what network you install. Some of the HI and NET commands in Chapter 2 are
not provided in iRMX for Windows. These commands are noted in that chapter.

• If you use an ICU-configurable system, the command-providing layers must be
configured into the system to support the command-level layers. The iRMX-
NET and TCP/IP subsystems are also optional in these systems.

• In any system, it is possible to replace the CLI with a user-written command
interface program. In such a system, the CLI commands are not available.

• In any system you may selectively install individual HI and NET commands,
which are simply HI commands provided by the iRMX-NET software. Each
command is a separate executable file. You may also write new commands.

Except where noted, this manual assumes that all commands provided by your type
of installation are available.

The Human Interface (HI)
The HI provides single- or multi-user support for one or more terminals. When the
system is booted, the HI initializes each terminal and begins running an initial
program, which is an interactive HI job. The initial program can be your custom
command interface or the iRMX CLI.

The HI initializes terminals as either static or dynamic. A static terminal always has
a specific user associated with it. You do not log on or off such a terminal; you
simply begin entering commands. A dynamic terminal is one where you must log on
and provide a user password. Each logon session begins a new HI interactive job.

HI commands are executable files loaded and run by the CLI (or other command
interface). Each command is a separate file stored on disk.

Command Reference Chapter 1 5

You can use the dir command to display the names of the HI system commands,
utilities, or development tools available on your system. Enter the commands shown
below:

dir :system:

dir :utils:

dir :lang:

See also: Logging on, Installation and Startup
CLI initial program, System Concepts
static and dynamic terminals, System Configuration and

Administration
dir command, Chapter 2

The Command Line Interpreter (CLI)
The CLI is an application running under the HI. It enables operators to communicate
with the OS by entering commands. The CLI takes each HI command as it is
entered, divides it into a program name and parameters, runs the program indicated
by the command name, and passes the parameters to the program. CLI commands
are internal to the CLI, not separate files on disk.

The CLI provides such features as type-ahead, command-line editing, and I/O
redirection: taking input from or sending output to a file or device on the command
line.

Three HI commands, logon, super, and submit, are similar to CLI commands by the
same name. The duplicate HI commands are for use with a custom command
interface, but lack CLI features such as aliasing, line-editing, and background
processing.

Networking Software
The iRMX-NET networking software provides connections across a network to other
systems that use OpenNET software. OpenNET is Intel's implementation of an ISO-
TP4 network and is available for such diverse OSs as MS-DOS (through MS-Net),
iRMX, UNIX, and VAX/VMS.

The iRMX-NET software also provides a set of HI commands that allow you to
perform such operations as managing the network attributes of the system, locating a
system by name, restarting the network software on the network controller board, or
loading a boot file to the network controller on a remote system. The network
software can perform many of these functions automatically during initialization.

6 Chapter 1 Using Commands

In addition to, or instead of, iRMX-NET, you may install TCP/IP software, which
includes its own set of utilities. This manual includes the TCP/IP commands. If you
do install TCP/IP, you can also choose to install NFS software to get transparent file
access across the net.

See also: Network User's Guide and Reference
TCP/IP and NFS for the iRMX Operating System

Understanding the File Systems
You can use commands more effectively with an understanding of the basic file
systems. These terms are used in relation to file names, and are explained in more
detail in later sections:

Pathname The designation used by the OS to find or specify the location
of a file or directory in the file tree. The forward slash (/) is
the usual separator in iRMX pathnames.

Logical name A short identifier or symbolic name for a pathname, command
string, device, etc. Logical names are usually surrounded by
colons, and are used to simplify command entry.

Volume A physical device for storing files. The volume might be a
hard disk, a partition on a disk, a RAM disk, or a diskette or
tape. The diskette is associated with the name of the disk
drive, and the tape is associated with the name of the tape
drive.

Prefix The beginning reference in a pathname, usually a volume
name or a logical name.

Wildcards Characters (* and ?) used to replace some or all of the
characters in a filename. Wildcards are most often used to
specify several files in a single reference within a command.

Command Reference Chapter 1 7

File Types
The iRMX environment has five types of files: named, DOS, physical, stream, and
remote. If you use NFS software, there is also an NFS file driver.

Named files Divide the data on storage devices into individually accessible
units. Users and programs refer to these files by name when
they want to access information stored in them. When
operating from the command line, you access named files
more often than any other file type.

Physical files Enable the OS to deal with an entire I/O device as a single file.
The HI accesses backup volumes and devices such as line
printers and terminals in this manner. It also accesses
secondary storage devices (such as disk drives) as physical
devices when formatting them. When operators access
physical files, it is usually in a manner that is transparent to
them (such as copying a named file to the line printer or
formatting a disk).

Stream files Enables communication between programs. Two programs
can use a stream file for communication if one program writes
information to the stream file while another program reads the
information.

Remote files Are the same as named files. However, remote files reside on
a remote system connected to the network. No special
semantics are needed to access remote files, but file access
permissions may be different from local files. These are files
made available through the iRMX-NET Remote File Driver.

DOS files Are named files in the DOS file system format. They are
accessed through the EDOS file driver on iRMX for Windows
and the DOS file driver on all other iRMX platforms. All
iRMX users have access to all DOS files.

NFS Any file available on a remote system that is made available
through the NFS File Driver. In a generic sense, these are also
remote files.

8 Chapter 1 Using Commands

When you create files, use DOS conventions to name DOS and EDOS files: a prefix
of up to eight characters, followed by a dot (.) and a three-character suffix. On other
files, use the iRMX convention of up to 14 characters and no suffix. The characters
in file and directory names must meet the rules of both the DOS and iRMX OSs.
They can include letters (A through Z), numbers (0 through 9), and any of the these
characters:

. _ $ ~ ! # % & @ - { }

They cannot include spaces or any of these characters:

: / ^ * ? " ' | , = + < > () [] ;

There are two uses for the term named files. One is the generic sense, where any
files in a file hierarchy are established with individual names. In this sense, remote
and DOS files and directories are named files. However, there is also a named file
driver, which only operates on iRMX named files, not remote or DOS files (these use
their own file drivers). If a command parameter refers to files as named, as in the
format and attachdevice commands, the term refers to the named file driver.
Otherwise, the term named files in this manual can encompass any file that is not a
physical file.

See also: File types, System Concepts

The OS treats both data files and directories as files. It also treats devices as files,
after you use the attachdevice command to establish a logical name for the device.
Thus, when a command parameter gives you the option to write to a file, you can
write to a printer or terminal device by specifying the logical filename associated
with the device.

See also: Logical names, in this chapter

Named File Tree
Figure 1-2 shows a simple named file tree. In this figure, :vol: is a logical name for
the volume, which also represents the root directory of the tree. Within the root
directory are two directories named dept1 and dept2. Dept1 has two subdirectories,
user1 and user2. Dept2 contains a single file, myfile. The user1 directory contains
two files, fileA and fileB, while user2 contains fileC.

Command Reference Chapter 1 9

:vol:

dept1 dept2

user1
fileA
fileB

user2
fileC

myfile

W-2867

Figure 1-2. Example File Tree Structure

File Access and User IDs
All named files have an associated owner and list of users who have various
permissions to access the file. The file's owner and accessors are stored as user ID
numbers. If a file is owned by the World user, any user has complete access to the
file. If a file can be accessed by the World user, any user has the type of access
permissions granted, including the right to read, overwrite, append, and/or delete the
file. Directories have similar access rights, which apply not only to the directory
itself, but to files (and other directories) stored in it.

When you use a command to create a file (for instance, by copying a file or
specifying an output file in a command), your user ID is listed as the file's owner.
You can use the dir command with the long parameter to look at your access rights to
files, or with the extended parameter to display all the owners and accessors of a file,
along with the associated access rights. You use the permit command to establish
accessors and access rights.

See also: Creating files and copying files, Installation and Startup

All files managed by the DOS or EDOS file drivers are owned by the World user,
from the point of view of the iRMX OS. The DOS file system supports read-only or
read/write attributes for files. Directories cannot be made read-only.

If your system is configured to include the iRMX-NET networking software, any
user on the system who gains access to the HI through logon automatically becomes a
verified user. In the OpenNET network system, a verified user can access files on
remote systems through iRMX-NET. On a TCP/IP network, users can access files on
remote systems through NFS, which has its own verification process.

See also: Access rights, permit command, Chapter 2

10 Chapter 1 Using Commands

Using Pathnames
If the directory where you are currently working is on another volume, you must
specify the volume name to refer to a file. For example, to refer to myfile from
another volume, you would specify the file as:

:vol:dept2/myfile

The forward slash (/) is the standard iRMX filename separator. When you specify a
logical name at the beginning of the pathname, you cannot use a slash between the
logical name and the next component of the pathname.

However, if your current working directory is on :vol:, you do not need to specify
:vol: as the root directory part of the pathname. You could refer to myfile from
anywhere on the volume with the pathname:

/dept2/myfile

The slash at the beginning of the pathname specifies the root directory of the current
volume. Both :vol:dept2/myfile and /dept2/myfile are considered full pathnames to
the file, as long as the beginning logical name refers to the root directory of the
volume.

You can also specify a file with a pathname that is relative to your current working
directory. For example, if your current directory is user1, you can refer to fileA
simply as filea. In iRMX, to refer to fileC, you could use a circumflex (^) operator:

^user2/filec

In iRMX, each circumflex tells the OS that the next path component resides up one
level in the file tree. When you use a circumflex in the pathname, you do not use the
/ separator at that point in the pathname. For example, from the user1 directory, you
could refer to the myfile file with either of the these pathnames:

/dept2/myfile

^^dept2/myfile

The pathname does not need to end in the name of a data file. You use the same sort
of pathnames to specify directories as to specify files.

In the DOS and EDOS file drivers, the dot-dot (..) operator works in a similar
manner.

The :$: logical name, discussed later in this chapter, determines the location of your
current working directory.

See also: Logical names, in this chapter
specifying pathnames, in your DOS documentation

Command Reference Chapter 1 11

Using the Copy Command with Multiple Pathnames
When specifying pathnames in a command's input and output lists, remember these
rules:

• If you specify multiple input pathnames and a single output pathname for the
copy command, file concatenation takes place.

• If you specify multiple input pathnames and one output pathname that is a
directory rather than a file, the HI copies all the input files into the directory.
Each file keeps its original name in the new directory.

• If you specify multiple output pathnames, you must specify the same number of
input pathnames as output pathnames. Specifying more input pathnames than
output pathnames results in an error message. For example, these commands
return error messages:

-copy a,b,c to d,e <CR> (invalid)
-copy a,b to c,d,e <CR> (invalid)

When the sequence of data in a concatenated file is important, remember that all
operations are performed in the sequence you specify in the command line.

Using Wildcards in Filenames
Wildcards are characters used to specify several files in a single reference within a
command. Use wildcards in any position in a filename to replace some or all of the
characters in the name.

You cannot use wildcards in the directory path part of a pathname, but if the last
component of a pathname is a directory name you may use a wildcard in that
directory name. Thus the name system/app1/*file is valid, but system/app*/infile
is not.

12 Chapter 1 Using Commands

The wildcard characters are * and ?:

? The question mark matches any single character. The HI selects every file that
meets this requirement. For example, the name file? implies all of these files:

file1
file2
filea

* The asterisk matches any number of characters (including zero characters). The
HI selects every file that meets this requirement. For example, the name file*
implies all of these files:

file1
file.obj
file
filechange

You can use multiple wildcards in a single name. For example, the name *if?.*
matches every file containing the sequence if followed by any character and a period.
This could include all of these files:

rmxifc.lib
ifl.p28
lnkifc.

The * character matches as close to the end of the pathname as possible. For
example, suppose the directory contains the file abxcdefxgh, and you enter:

copy *x* to :prog:*2*

The first asterisk matches the characters abxcdef and the second asterisk matches the
characters gh. The command creates a new file in the :prog: directory named
abxcdef2gh.

Command Reference Chapter 1 13

Many commands use input and output pathnames as parameters. You can use
wildcards in both input and output pathnames. For example:

copy a* to b*

In this command, the a* represents the input pathname and b* represents the output
pathname. The HI searches the appropriate directory for all files that begin with A.
It copies each file to a file of the same name, but beginning with B, as shown below:

Original Files Copied Files
alpha blpha
a112 b112
a b

In some commands you can specify lists of input and output pathnames, separated by
commas. For example:

copy a,b,c to d,e,f

This command copies a to d, b to e, and c to f. If you use wildcards in any one of the
output pathnames, you must use the same wildcards in the same order in the
corresponding input pathname. This means that if you use both the * and the ?
characters, their ordering must be the same in both the input and output pathnames.
For example, this command is valid:

copy a*b?c*, x to *de?fgh*i, y

However, this command is invalid because the wildcards are out of order:

copy a*b?c* to *de*fgh?i

If you use wildcards in an input pathname, you can omit all wildcards from the
corresponding output pathname to concatenate files. For example, suppose a
directory contains files a1, b1, and c1. This command is valid:

copy *1 to x

It copies files in this manner:

a1 to x

b1 after x

c1 after x

However, if x is a directory, the HI does not concatenate files, but makes copies of
the files in the x directory.

See also: copy command, Chapter 2

14 Chapter 1 Using Commands

Specifying Hidden Files
An iRMX hidden file is any file whose name begins with r? or R?. Ordinarily, you
cannot specify a hidden file in a pathname because the HI interprets the question
mark as a wildcard. To specify a hidden file, surround the pathname or the question
mark with single or double quotes. For instance:

copy 'r?logon.csd' to :co: or
copy r'?'logon.csd to :co:

The dir command has an invisible parameter that lets you list the hidden files in a
directory.

See also: dir command, Chapter 2
specifying filenames, in your DOS documentation

Entering Commands
When you enter a command, line wraparound is not permitted. The maximum line
length is 76 characters, excluding the prompt, and no more than 79 characters
including the prompt. All characters exceeding the maximum line length are ignored.
To enter a line that exceeds 79 characters, create a continuation line by using an
ampersand (&) as the last character in the line. If you continue a line, do not break
the line in the middle of a command or a parameter. You may enter as many
continuation lines as necessary.

The CLI does not recognize continuation marks, comment characters, or quotation
marks within its own commands. These characters, however, are recognized by HI
commands. If the result of a CLI command causes execution of an HI command, the
HI command is governed by HI syntax. For example, background is a CLI
command but copy is an HI command. You may use a semicolon as shown below to
include a comment in the copy command. This command executes copy as a
background job:

background copy hi.txt to output.txt ;hi.txt contains tables

To execute a command, press <Esc> to execute the whole command line, or press
<CR> to execute only the beginning part of the command, up to the letter under the
cursor.

Command Reference Chapter 1 15

Command Syntax
The notation used for command syntax is shown below. Unless otherwise instructed,
you may enter any item in upper- or lower-case, or a combination of the two. A few
commands, for example grep, include a parameter that can be case-sensitive; these
are noted in the text. Include any punctuation shown except brackets ([]), ellipses
(...), and the vertical bar (|); these are described below. Commas are usually used to
separate items in lists, such as input and output paths. Parameters (such as query) are
usually separated with a space. However, when the syntax includes a comma (,) or
equals sign (=), using spaces to separate items is optional.

Syntax

command variable [optional] [choice= item1|item2]
[repeated [item] [, repeated [item]]...]

command Enter any item printed like this exactly as it is shown.

variable For items printed in italic, enter a substitute, such as the name of a file
or a control character from a list of possible choices.

[optional]
Items surrounded by brackets indicate an optional parameter. If you
enter this parameter do not include the brackets.

[choice= item1|item2]
For items separated with a vertical bar, enter only one of the items.
You may enter choice=item1 or choice=item2, but not both.

[repeated [item] [, repeated [item]]...]
Items followed by an ellipsis (...) indicate that the item may be repeated
more times than it is shown. For this example, any of these would be
valid entries:

repeated
repeated item
repeated, repeated, repeated
repeated item, repeated, repeated item

16 Chapter 1 Using Commands

A few commands with many parameters have an additional syntax diagram. The
parameters are listed along a track, as shown below. Enter the track at the top left
and follow it through to the exit. Mandatory parameters are shown in line with the
track. Optional parameters are shown below the track (you may follow the main
track or follow the path through the option and return to the main track). Where you
have a choice of parameters, the track branches through them.

W-2627

(start) command A

B

C
D

E

F

G

A vertical dotted line indicates that the following parameters may be entered in any
order as long as they obey the rest of the syntax. Parameters preceding the dotted
line must be entered in the order they appear. In this example:

• A is a required parameter and you must enter it immediately after the command.

• Either B or C is required. Whichever parameter you enter must follow A.

• D, E, and F are all optional but you may select only one. If you select one of
these parameters, you may enter it before or after G.

Command Reference Chapter 1 17

Using the To, Over, and After Parameters
Many commands include the option of writing output to one or more files. The
syntax is [to|over|after pathname], where you have a choice of writing to, over, or
after a specified file. If you don't specify this parameter at all, the output is displayed
onscreen (to the :co: device). You may use the parameter to direct the output to a
named file or to a device such as a printer (:lp:). When writing to a file, use this
parameter as follows:

to The command assumes the specified output file does not exist. If the
file already exists, the command displays a message similar to:

<pathname>, already exists, overwrite?

In response, enter Y to overwrite the existing file. Enter R to overwrite
not only this file but any remaining files in an output list, without
further prompting.

If you do not wish to overwrite the file, enter any other character or a
carriage return. If this is the only output file specified, the command
does not complete. If you are writing to a list of files, this particular file
is not overwritten, but other files in the list are written.

over If the output file exists, it is overwritten without a prompt; if not, it is
created.

after Output is appended to the end of an existing file; the current file
contents are preserved. If the file does not exist, it is created.

✏ Note
You cannot use to, over, and after with TCP/IP and NFS
commands. You cannot, for example, use these parameters with
the rcp command.

Abbreviating Parameters
Many of the command parameters have full names that may be abbreviated.
Generally, you can abbreviate these parameters by entering the first letter or enough
letters to distinguish one parameter from another. For example, when entering a
command that contains a query parameter you could simply type q. The abbreviation
is listed in the command syntax and the parameter description is shown as:

q(uery)

18 Chapter 1 Using Commands

Other parameter abbreviations may not be a simple truncation of the name. For
example, the format command has a setbadtracks parameter; one possible
abbreviation is sbt. The parameter description shows this as:

s(etbadtracks) (or sbt)

This indicates that you could enter s, setbadtracks, or sbt.

Abbreviating Command Names
Some command names have abbreviations or aliases already provided. These are
listed in the Command Summary Table (in parentheses after the command name),
and in the table of System Aliases. In addition, the syntax descriptions give the
abbreviations along with the full name, as options. For example:

ad|attachdevice means that ad may be entered for attachdevice

Aliases must always be followed by a space, not a tab.

Recalling and Editing Commands
The CLI allows you to continue typing commands as the current command is being
processed, and to edit commands on the command line. You may edit a command
you are currently typing or recall a previous command and edit it. You may also
recall a previous command and re-issue it without editing.

There are a several ways to recall a previous command. One method is to use the
<Up-Arrow> and <Down-Arrow> keys to scroll through the command list stored in a
history buffer. For each keystroke, the previous or next command is displayed on the
command line, with the cursor at the end of the line. You can also use the ! and
history commands.

See also: ! and history commands, Chapter 2

To edit a command, use <Left-Arrow> and <Right-Arrow> to move within the line.
As you type new characters the following characters are advanced, not overwritten.

When the cursor is in the command, there are two ways to invoke it. If you press the
enter key (<CR>), only the part of the command up to the cursor is invoked. If you
press <Esc>, the entire command line is invoked, regardless of the cursor position.

When you reinvoke a previous command, it becomes the current command at the end
of the history buffer, and you are no longer scrolled upward in the command list.

Command Reference Chapter 1 19

Using Command Search Paths
Each HI command is an executable file stored on disk. When you specify a
command, you are actually invoking the filename, and the HI must locate the file in
the directory structure. Typically, you don't invoke a command by its full pathname
(although you may), so the HI searches for the file in a set of directories called a
search path.

The number of directories searched and the order of search are set in the system
configuration for ICU-configurable iRMX III.

This table shows the default search paths in the standard definition files. The
directories shown are logical filenames, which are described later in this chapter.
These directories are searched in the order shown.

Table 1-1. Directory Search Paths for Commands

iRMX III iRMX for Windows

:prog: :prog:

:utils: :utils:

:util286: :util286:

:system: :system:

:lang: :lang:

:icu: :$:

:$: :rmx:

/etc /etc

If you write your own commands, you can take advantage of the order in which the
OS searches directories. For example, suppose you write your own copy command
that provides different functions than the HI copy command. If you want to invoke
your program whenever you use the copy command, place your program in a file
called copy in your :prog: directory. The OS searches the :prog: directory before
searching the :system: directory (which normally contains HI commands) and runs
your copy program instead of the default HI command.

If you have multiple versions of a command, you can specify the directory pathname
as part of the command name, to specify the particular version you want.

20 Chapter 1 Using Commands

Creating Command Aliases
You may use the alias command to retrieve a command from one of the directories,
as well as to create a shorter name for the command. For example, you might define
the attachfile command with an alias using this command:

alias af = :system:attachfile

In this case, every time you enter af, the OS replaces it with :system:attachfile and
invokes the attachfile command found in the :system: directory. The OS does not
search for the command in the search path. (This particular alias is already the
standard alias for attachfile.)

If you are a DOS user, you can use this facility to make commands similar to the
ones you use in DOS. For instance, you could use the command above, but define
:system:attachfile as cd, the DOS command to change the working directory.
However, keep in mind that the commands are not an exact match; attachfile also
performs other functions, such as assigning a logical name to a file.

See also: Logical names, in this chapter
Quick Reference to Commands for equivalent commands in DOS

and iRMX OS
table of system aliases and alias command, Chapter 2

Aliases are useful to reduce the work of entering commands and command sequences
that you use often. You can also use aliases in submit files, which are command files
used with the submit command, similar to DOS batch (.bat) files.

You can also use alias to assign parameters to commands. For instance, you can
define:

alias C = :util386:RUN86 :LANG:IC386

Then you can enter the alias C with a filename, such as myfile.C:

C myfile.C

The CLI executes:

:util386:RUN86 :LANG:IC386 myfile.C

You can nest aliases up to five levels. For instance, you can define:

alias C = :util386:RUN86 :LANG:IC386

alias CNL = C #0.PC nolist

Command Reference Chapter 1 21

Then you can enter:

CNL source

The CLI executes:

:util386:RUN86 :LANG:IC386 source.PC nolist

Redirecting I/O
You may use I/O redirection to replace the command's standard input and/or output
with a file. Specify I/O redirection is with angle brackets, < for input and > for
output, which are recognized by the CLI. Normally, input to a command is from the
keyboard and output is to the screen. These are designated as :ci: (console input) and
:co: (console output). I/O redirection replaces the command's :co: and :ci: with the
specified file. When you redirect output, error messages and program output are
written to the specified file. When you redirect input, command input is read from
the specified file. This option is particularly useful when you execute the
background command. By redirecting output messages to a file, you free the
terminal for other operations. To use I/O redirection, include either or both of these
parameters anywhere in the command line:

<infile
>outfile

Where:

infile The name of the input file that replaces the terminal as standard input.

outfile The name of the output file that replaces the terminal as standard
output. If the file already exists, it is overwritten.

The examples below illustrate the use of the I/O redirection feature.

1. This example uses I/O redirection with the background command to redirect
screen output created by the copy command to a file called copy.log:

background copy myfile to yourfile > copy.log

2. This example uses I/O redirection to change the source of input from the
keyboard to a file named in.dat and to redirect the output to a file named out.dat:

myprog < in.dat > out.dat

To use angle brackets for anything other than I/O redirection, surround them with
single or double quotes.

22 Chapter 1 Using Commands

Using Commands on Directories
A directory contains a list of all files assigned under its name. Display the contents
of a directory by using the dir command. Optional dir command parameters also
allow you to access and display other pertinent information about each file, such as
file size and other file attributes.

Displaying Files with the DIR Command
The iRMX dir command does not work exactly like the DOS dir command. In the
iRMX OS, if you just type dir, it displays all files in the current directory (:$:), as in
DOS. If, however, you include command line parameters, you must type $ to specify
the current directory.

For example, to display just the file myfile in the current directory, you cannot enter
dir myfile. You must enter dir $ myfile. The dir command always interprets
the first command line parameter as a directory, so when you type dir myfile, it
attempts to display the contents of a subdirectory named myfile under the current
directory. Similarly, if you want to display all invisible files in the current directory,
you cannot enter dir i (the “invisible” switch), you must enter dir $ i.

Creating a New Directory
You create new directories by using the createdir command. You must specify
names for the new directories. Directory names are limited to 14 characters.

To create two directories named mytest and NUTEST, enter:

-createdir mytest,NUTEST <CR>

The HI responds:

mytest, directory created

NUTEST, directory created

-

Once you create directories and data files, you can enter their pathnames in either
lower-case or upper-case characters in subsequent commands; the HI commands are
not case-sensitive.

Referring to a Directory
To access any file or directory within the parent directory, you must specifically
identify the path in your command, in the form of a pathname.

Command Reference Chapter 1 23

For example, assume your working directory has a directory named nutest under
which you have another directory named samp. Samp, in turn, has a data file named
test. Nutest is the parent directory for the samp directory and samp, in turn, is the
parent for the test data file. In a command, the pathname for the samp directory
would be nutest/samp, where the slash characters separate the individual hierarchical
components of the pathname. The pathname for the test data file would be:

nutest/samp/test

If the files are contained in your default directory, you can refer to them without
specifying a logical name as a prefix. When you enter this pathname, the HI
automatically appends the prefix :$: to the beginning:

nutest/samp/test

However, if the files are contained in a directory other than your working directory,
you must enter the complete pathname for the file. For example, if the files reside on
a device whose logical name is :AD3:, you must include this logical name as the
prefix portion of the pathname, as follows:

:AD3:nutest/samp/test

If you omit the :AD3: portion, the HI assumes the files reside in your working
directory.

Do not use the :S: logical name as a parameter for a command unless the command
description says it is allowed; most commands will not work properly.

Once you have added files to a specific directory, every subsequent operation
involving those files must specify a preceding directory name and the slash separator
unless you change your default directory.

See also: Logical names, in this chapter

24 Chapter 1 Using Commands

Creating a Directory Within a Directory
To create new directories in other directories, thereby expanding the file hierarchy,
use the createdir command. For instance, if you have a directory named mytest, and
you want to create the subdirectory urtest, enter:

-createdir mytest/urtest <CR>

The HI responds:

mytest/urtest, directory created

-

If the directory resides on a device (for example, :f6:) other than your default device,
you must also specify the logical device in the directory pathname.

Changing Your Working Directory
If there are many levels in your directory structure, the pathnames in your commands
can become inconveniently long. To avoid having to specify long pathnames, you
can use the attachfile command to change your working directory closer to the level
of the files you are using. For example, you could change your working directory to
the urtest directory, as follows:

-attachfile mytest/urtest <CR>

The HI responds:

mytest/urtest attached AS :$:

-

Now you can refer to files in the urtest directory without a preceding pathname. The
HI assumes the files reside in the urtest directory, because you have attached urtest as
your working directory.

You can use the attachfile command to change your working directory to any
directory. To return to your original default directory, called the home directory,
enter:

-attachfile <CR>

or

-af <CR>

The HI responds:

:HOME:, attached AS :$:

Command Reference Chapter 1 25

This command uses the default parameters and has the same effect as:

attachfile :HOME: as :$:

The :home: logical name represents your original default directory; therefore the
command returns :$: to its original value.

If you use several directories at one time, you can also use the attachfile command to
assign short logical names to these directories. By using the logical name in the
pathname, you shorten the length of the pathname you enter each time you specify a
directory.

See also: Logical names, in this chapter

Renaming Directories
A directory can be renamed to a new pathname on the same volume, but not to an
existing pathname. To rename a directory whose pathname is alpha/beta to the new
pathname alpha/bee, enter:

-rename alpha/beta to alpha/bee <CR>

The HI responds:

alpha/beta renamed to alpha/bee

Once you rename a directory, all files listed under that directory will also have their
pathnames changed. If your system has other programs that use data files listed
under the old directory name, those programs will never find the files. In such a case,
you must either rename the directory to its original name or modify the programs.

Deleting a Directory
You can delete unused directories from secondary storage with the delete command.
Enter:

-delete mytest <CR>

This command only works if there are no files or subdirectories in the mytest
directory. If you previously created the mytest/urtest directory, the HI responds with
an error message; the HI will not delete a directory that is not empty.

26 Chapter 1 Using Commands

However, there is a powerful command called deletedir that you can use to delete the
entire contents of a directory, including all subdirectories, files, and the directory
itself. Deletedir should be used with caution, since this single command can have
far-reaching consequences.

See also: delete and deletedir commands, Chapter 2

Using Commands on Volumes
You can use all HI file-handling commands except rename to manipulate files across
volume boundaries. You can copy files or directories from one diskette or hard disk
to another one mounted on a different drive.

You access a different volume by entering the logical name for the device (the drive
on which the volume is mounted) as the first item in the pathname. To list the root
directory of a volume mounted on a drive whose logical name is :f1:, enter:

-dir :f1: <CR>

The HI might respond with:

01 JAN 90 00:00:00

directory OF :f1: ON VOLUME disk2

able baker chuck

To copy the able file from the volume mounted on :f1: to the mytest directory (if it
resides in your working directory), enter:

-copy :f1:able to mytest <CR>

The HI responds:

:f1:able copied to mytest/able

To delete files able and baker from the :f1: volume, enter:

-delete :f1:able,:f1:baker <CR>

The HI responds:

:f1:able, deleted

:f1:baker, deleted

A volume prefix must be specified for each pathname in any command that crosses
volume boundaries.

Command Reference Chapter 1 27

Formatting a New Volume
To use a new diskette or hard disk volume, you must format the volume before you
can write any information in it. The volume must be attached with attachdevice,
using the physical parameter, and formatted. There are exceptions to this general
rule:

• You cannot format a remote volume (including volumes accessed through NFS).
It must be formatted locally on the remote system.

• Typically, you do not use the format command to format a tape, nor do you
access files on a tape with most commands. Use the backup and restore
commands to format, create files on, and retrieve files from a tape.

After a volume is formatted, you can attach it as a named, remote, or DOS volume
and create files and a directory structure on it.

See also: attachdevice, format, backup, and restore commands, Chapter 2

As an example of formatting, assume that you place a new diskette in a disk drive,
and attach the drive with the logical name :f:, as a named device:

-attachdevice ah as :f: named <CR>

Enter:

-format :f: <CR>

The HI responds:

volume () will be formatted as a NAMED volume

granularity = 512 map start =301

interleave = 5 sides = 2

files = 200 density = double

extensionsize = 3 disk size = mini

save area reserved = no

bad track/sector information written = no

MSA bootstrap information written = no

System 120 bootstrap loader chosen = no

volume size = 318K

volume formatted

This formatting example exercised all the default options. It did not specify a volume
name as a parameter of format. A volume name is not required; however, for
diskettes, a volume name gives you a method of identifying a volume in case the
diskette label gets lost or destroyed.

28 Chapter 1 Using Commands

The granularity, interleave, extensionsize, mapstart, and files parameters tell the
format command how you want the physical space on the volume allocated and
accessed for maximum efficiency. Using the default parameters caused the example
to be formatted with these attributes:

• Since the device is attached as a named device, the named parameter is the
default with format. It specifies that you will be using the volume only to
handle named files and directories. If you specified the physical parameter (in
either attachdevice or format), the entire volume would be treated as a single,
large physical file. Once you format the volume as named or physical, you can
only use it for that purpose. If you specified the DOS parameter, the entire
volume would be formatted with the DOS file system.

• The granularity parameter specifies the minimum number of bytes to be
allocated for each increment of file size on the volume. The default granularity
is the granularity of the physical device. Once the volume granularity is defined,
it is applied to every file you create on the volume.

See also:Uniform and standard granularity diskettes,
Installation and Startup

For example, assume the default volume granularity for your device is 1024
bytes. Each time you create a new file on the volume, the I/O System
automatically allocates 1024 bytes of primary storage to that file, whether or not
the file requires the full 1024 bytes. If the size of your file exceeds 1024 bytes,
the I/O System will increment your file size by still another block of 1024 bytes,
and so on, until the end-of-file is reached.

• The interleave parameter default specifies that you want an interleave factor of 5.
The interleave factor defines the number of physical sectors that occur between
sequential logical sectors. This value maximizes access speed for the files on a
given volume, depending upon the use for the volume and the device
configuration of your system.

The interleave parameter is the only optional parameter that is meaningful for
volumes formatted for physical files; the files, extensionsize, and granularity
options are ignored in format commands that specify a physical file format for
the volume.

• The files parameter default specifies that you wish to create a maximum of 200
user files on the volume. Although the actual number of files you can specify is
1 through 65,528, at a practical level one of your determining factors will be the
incremental file size you specify in the granularity parameter.

Command Reference Chapter 1 29

• The extensionsize parameter default specifies that you wish to create three bytes
of extension data for each file. The HI requires that at least three bytes of
extension data be available. Other system programs included in your system
may require larger values.

• The mapstart parameter gives the volume block number where the fnode and
map files start. If you do not specify a number, the HI places the fnode and map
files in the center of the volume.

Using TCP/IP and NFS Commands
The Posix, TCP/IP, and NFS commands do not necessarily have the same kind of
syntax as iRMX commands or as TCP/IP commands when used on other OSs.

Executing TCP/IP Commands
The syntax of TCP/IP commands in this manual assumes you have submitted the
/etc/tcpalias.csd file, which sets up aliases for the commands. For example, the ftp
command is an alias for psh ftp.

If you have not submitted this alias file, prefix each Posix-dependent command line
with psh and all other command lines with /etc/ when you invoke these commands.
For example::

psh uname -S intel1 -N intel1

/etc/hostname intel1

Case Sensitivity in TCP/IP and NFS Command Syntax
Unlike other iRMX commands, the syntax for TCP/IP and NFS commands is case-
sensitive. You can invoke the command names in upper- or lowercase since the
commands are utilities invoked by iRMX. However, you must enter the parameters
and internal commands in the case shown, except for items such as iRMX filenames.

30 Chapter 1 Using Commands

Executing OS Commands From a Posix Shell
You can execute iRMX commands from a Posix program, such as psh, from a shell
escape from ftp, or from your own Posix application. However, do not execute any
iRMX command that does

attachfile :$:

Entering this command does not work under Posix and creates unpredictable
behavior.

Creating and Using Logical Names
Although you can use pathnames to refer to files, you can also create symbolic names
that correspond to files or devices. These symbolic names are called logical names.
You use the attachdevice command to create logical names that represent devices.
You use the attachfile command to create logical names that represent data files or
directories. You may also create logical names when configuring the system. After
creating a logical name, you can refer to the entity it represents by specifying the
logical name. You can use the logicalnames command to view all the current logical
names. The rules for logical names are:

• Each logical name must contain between 1 and 12 ASCII characters, excluding
the colons surrounding the name.

• The characters must be ASCII printable characters (hexadecimal values 021H to
07EH, inclusive).

• The logical name cannot include a colon (:), slash (/), circumflex (^), asterisk
(*), question mark (?), or any of these characters:

" ' | , = () [] ;

• When you specify a logical name in a pathname, you must surround it with
colons. Some commands do not require that you specify the colons surrounding
logical names that represent devices.

See also: attachdevice, attachfile, and logicalnames commands, Chapter 2

Command Reference Chapter 1 31

Creating Logical Names for Devices
By using device logical names as the prefix portion of your pathname specifications,
you can refer to any file on any device. For example, suppose your system contains
two diskette drives and you use the attachdevice command to attach the devices as
:f0: and :f1:. If you have a diskette containing the file /dept2/myfile in drive :f0:, you
could access the file with this pathname, using :f0: as the prefix of the pathname:

:f0:dept2/myfile

If the diskette were in drive :f1:, you would access the file as:

:f1:dept2/myfile

You can use the dir command to list the root directory of the :f1: device as follows:

dir :f1: <CR>

See also: Using devices, Installation and Startup

Creating Logical Names for Files
The OS establishes a number of logical names for files during system initialization.
These are listed later in this chapter. You may create additional logical names for
files with the attachfile command.

A logical name for a file provides a shorthand way of accessing that file. For
example, suppose you have a file that resides several levels down in the file tree, such
as:

:f1:dept1/tom/test-data/batch-2

In this command, :f1: is the logical name for the device that contains the file. You
can establish a short logical name for this long pathname, such as :batch:, by
attaching the file with the name :batch:. Whenever you want to refer to the file in a
command, you can specify the logical name instead of the pathname.

If a logical name refers to a directory instead of a data file, you can use the logical
name as a prefix of a pathname. For example, consider the same pathname:

:f1:dept1/tom/test-data/batch-2

32 Chapter 1 Using Commands

Suppose you attach the pathname :f1:dept1/tom/test-data as logical name :test:, so it
is a logical name for the directory test-data. To refer to file batch-2, you could use
the pathname :

:test:batch-2

Where Logical Names are Stored
When the OS creates logical names at initialization time, or as a result of the
attachfile or attachdevice commands, it places the logical name into an object
directory, along with a token for a connection to the file or device.

See also: Connections, System Concepts

This process is referred to as cataloging the logical name. The object directory that
receives this information determines the scope of the logical name (that is, who can
use the logical name). Object directories fall into three categories:

Local
object
directory

Some logical names are cataloged in the object directory of a
command's job. When you invoke a command (such as dir), the OS
creates a job for that command and catalogs certain objects in its object
directory. A command that you create and invoke might also use
system calls to catalog logical names in its own object directory.
Logical names cataloged in a local job can only be used in the context
of that job. They remain valid only until the job exits or is deleted.

Global
object
directory

Each interactive job (each user session's job) is called the global job for
that user session. This is the initial job for each user session created by
the HI. When you use attachfile to create logical names for files, the
OS catalogs the logical names in your global job's object directory.
Likewise, if you invoke any commands that issue attachfile commands
(as in a file used by the submit command), the OS catalogs the logical
names in your global job's object directory. You and the commands you
invoke can use the logical names cataloged in your interactive job.
Other users have no access to these logical names. Logical names in
your interactive job remain valid for the life of your job or until they are
detached.

When you invoke the background command, the CLI creates a global
job for commands invoked within the background environment. All
logical names that were valid when the background command was
entered are also valid in the background environment.

Command Reference Chapter 1 33

Root object
directory

When you use attachdevice to create logical names for devices, the OS
catalogs the logical names in the root directory. Logical names
cataloged in the object directory of the root job can be accessed by
every user. Logical names in the root object directory remain valid until
they are detached or the system is reinitialized.

When you use the system option of the attachfile command, the
logical name is cataloged in the root directory and is available to all
users.

See also: Cataloging, jobs, object directories, System Concepts

Whenever you (or commands you invoke) use a logical name, the OS searches for the
logical name in the local object directory. If the logical name is not defined there, it
looks in the parent job's (global) object directory and finally, if necessary, in the root
object directory. It uses the first such logical name it finds.

Because of this order of search, you can override the system logical names (those
cataloged in the root object directory) by attaching the same logical name,
representing a different file or device, during your interactive job. For example,
suppose you use the attachfile command to attach a file with the logical name :utils:.
Whenever you specify :utils:, the OS refers to your file and not the one represented
by the same logical name in the root object directory.

Logical Names Created by the Operating System
The OS establishes logical names that you can use without first having to create
them. The HI catalogs system-wide logical names in the root object directory. These
logical names are available to all users, and they represent the same file or device for
all users. The number of logical names created and their identities depend on the
system configuration.

These logical names are available on iRMX systems that use the standard software
definition files:

:bb: A device treated as an infinite sink (byte bucket). Anything written to
:bb: disappears, and anything read from :bb: returns an end-of-file. The
:bb: device has the same effect as the DOS NUL device.

:config: A directory in which the HI expects to find user configuration files,
named :sd:rmx386/config.

:lang: A directory used to store language products, such as assemblers,
compilers, and linkers, named :sd:lang286.

:sd: The system device. You should never change the default logical name
for the system device.

34 Chapter 1 Using Commands

:stream: The stream file connection. To create a connection to a stream file, you
must use this logical name as the prefix portion of the pathname.

:system: The directory containing the HI commands, named :sd:sys386.

:utils: A directory used to store 32-bit utility programs , named :sd:util386.

:util286: A directory used only in iRMX III OS and iRMX for Windows to store
16-bit utility programs, named :sd:util286.

:work: A directory that Intel language translators and utilities use to store their
temporary and work files.

These logical names are available on iRMX III systems only:

:icu: The directory containing the Interactive Configuration Utility files (not
used in iRMX for Windows), named :sd:rmx386/icu.

:lp: A logical name for the line printer.

:rmx: The directory containing the iRMX libraries, plus the configuration files
for iRMX for Windows, named :sd:rmx386.

These logical names are cataloged in each user's global object directory, and are the
same for iRMX for Windows and iRMX III. These names represent different files or
devices for each user.

:$: This represents the path to your current working directory, and is also
called your default prefix. If you do not specify a logical name (a
prefix) or a / at the beginning of a pathname, the OS automatically uses
:$: as the prefix, assuming that the file resides in the directory
corresponding to :$:. You use the attachfile command to change the
directory corresponding to :$:, and hence, your working directory.

:home: This is your default home directory, which you enter when you log on
to the system. Initially, :home: and :$: represent the same directory.
You can re-enter your home directory by issuing the attachfile
command with no parameters; this sets :$: equal to :home:.

:prog: A directory in which to store your programs.

Command Reference Chapter 1 35

These logical names are cataloged in the local object directory of each user and each
command that a user invokes. These logical names can have different meanings for
each user and each command.

:ci: The terminal keyboard, or console input. Each user's :ci: refers to the
terminal associated with that user.

:co: The terminal screen, or console output. Each user's :co: refers to the
terminal associated with that user.

On initialization, the HI may create additional logical names, specified as
configuration parameters. Contact your system manager for more information about
the logical names initially available to you.

See also: logicalnames command, Chapter 2

Error Messages
Each command can generate a number of error messages. The messages that apply
to a specific command are listed with that command. This list includes general HI
and iRMX-NET error messages that may appear with many of the commands. In
addition to a displayed message, condition codes from system calls to parts of the OS
may be reported. Condition codes are typically displayed as a hexadecimal value and
a mnemonic (for example, 0085:E_LIST).

See also: Condition codes, System Call Reference

General HI Error Messages
command not found

There is no command file with the pathname you specified, and the HI cannot find
the file in any of the directories it automatically searches.

<pathname>, delete access required
You do not have delete access to the file. If this is a remote file, a user at the remote
system has removed delete access. You cannot change the delete access locally; a
user at the remote system must grant delete access before this command succeeds.

<logical name>, device does not belong to you
The specified device was originally attached by a user other than World or you.

<pathname>, file does not exist
The specified pathname does not represent an existing file.

<pathname>, invalid file type
A data file was specified for an operation that required a directory, or vice versa.

36 Chapter 1 Using Commands

<logical name>, invalid logical name
The specified logical name contains unmatched colons, is longer than 12 characters,
or contains invalid characters.

<pathname>, invalid pathname
The specified pathname contains invalid characters, or a path component of the
pathname does not exist or does not represent a directory.

*, invalid wildcard specification
A pathname contains an invalid wildcard specification. For example, the parameter
requires one pathname only, but more than one file meets the wildcard specification.
Wildcards cannot be used in the directory path part of the pathname.

<logical name>, is not a device connection
The specified logical name does not represent a connection to a physical device.

<logical name>, logical name does not exist
The specified logical name is not cataloged in a global object directory, either for
your interactive job or for the root job.

parameters required
The command cannot be entered without parameters.

program version incompatible with system
The command cannot run successfully because it is incompatible with this version of
the OS. The command expects to obtain information from internal tables that are not
present.

<parameter>, unrecognized control
The parameter you entered is not valid for the command.

<pathname>, update or add access required
Either you cannot overwrite the file because you do not have update access to it (for
remote files, update and append access is required), or you cannot create a new file
because you do not have add-entry access to the parent directory.

<condition code:mnemonic>, while loading command
The condition code and mnemonic indicate an error encountered when the OS
attempted to load the command into memory from secondary storage.

<parameter>, <condition code:mnemonic>
This condition code was encountered while processing the indicated parameter.

<condition code:mnemonic>
This condition code was encountered while executing the command.

Command Reference Chapter 1 37

004BH : E_PASSWORD_MISMATCH
Your current password and user ID are not valid for the remote access you are
attempting. For example, on the remote system the user ID associated with your user
name has a different password.

02D0H : E_UDF_IO
An error occurred while accessing a remote User Definition File. The UDF must
have World read access.

General iRMX-NET Error Messages
Cannot communicate with iRMX-NET File Server

The File Server does not respond. Either the server was not configured into the
system or the iNA 960 transport software was not loaded successfully.

Communication resources are busy
The iNA 960 transport software is out of resources.

Fatal Error
A fatal unrecoverable error has occurred in MIP. It may be because iNA transport
software is not responding or may be due to hardware failure.

Internal Software Error. Try command later.
All internal tables are currently full; the command may succeed if tried again later.

iRMX-NET does not respond
The iRMX-NET software is not yet running. This error indicates an initialization
problem occurred that prevented the iRMX-NET job from starting. Reboot the
system and look for error messages during initialization.

No user mailboxes are available
The limit for the number of external mailboxes has been reached. The Number of
External Mailboxes option is a configuration parameter in the MIP configuration.
The application could be changed to use fewer external mailboxes, or in configurable
systems the number of external mailboxes could be increased.

Unexpected iRMX error occurred
MIP encountered an unexpected iRMX error; verify the OS configuration.

■■ ■■ ■■

38 Chapter 1 Using Commands

Command Reference Chapter 2 39

Command Descriptions 2
Command Descriptions

This chapter provides a command summary table, in which the commands are
divided into functional groups. Then each command is described in detail, with the
commands arranged in alphabetical order.

Command Summary
Table 2-1 lists the commands described in this chapter. The table is divided into
these sections:

• CLI Commands

• HI Volume Management Commands

• HI File Management Commands

• HI General Utility Commands

• HI System Management Commands

• DOS Utility Commands

• iRMX-NET Commands

• TCP/IP and NFS Commands

See also: Equivalent DOS and iRMX Commands, Quick Reference to Commands

40 Chapter 2 Command Descriptions

Table 2-1. Command Summary

CLI Commands

! Recalls a specified command line
alias Assigns an alias abbreviation to a command

background Executes a command as a background job

changeid Changes the Super user to a different user ID

dealias Deletes an alias

exit Leaves the Super user mode

history Displays the last 40 command lines

jobs Displays a list of background jobs by their job ID number

kill Cancels a background job

logoff Ends a user session

set Alters CLI environment values (terminal name, memory sizes, prompt)

submit Executes commands listed in a file

super Changes the operator to Super, the system manager

HI File Management Commands

attachfile (af) Associates a logical name with a file (changes the working directory)

case Converts the name of a file from upper- to lower-case

copy Displays or copies one or more files

copydir Copies one or more directory trees

createdir (crdir) Creates one or more new directories

delete Deletes one or more files or empty directories

deletedir Deletes one or more directory trees

detachfile (df) Removes the association of a logical name with a file

dir Lists a directory's filenames and, optionally, file attributes

find Searches for files with names that match a given pattern

grep Searches files for strings matching a pattern, displaying matching lines

permit Grants or rescinds user access to a file

rename Changes the names of files or directories

skim Displays text files one screenfull at a time

sort Displays or copies a file with lines sorted alphanumerically

touch Changes file time stamps

translate Displays or copies a file, converting upper- or lower-case characters

tree Displays a directory hierarchy

uniq Displays or copies a file with repeated lines removed
continued

Command Reference Chapter 2 41

Table 2-1. Command Summary (continued)

HI General Utility Commands

addloc* Merges information from a located file with a bootloadable file

aedit Invokes the AEDIT text editor

console** Dynamically changes the SDM console device to redirect the I/O
streams

date Displays or sets the system date

debug Transfers control to the SDM monitor to debug an iRMX application

esubmit Executes commands from a file based on conditional statements

help Displays a help file for commands or user-added utilities

keyb Configures the console keyboard for a specific country

locdata* Produces a located file for use with the addloc command

logicalnames Displays the logical names available to the user

memory Displays the memory available to the user

make Automates the creation of large programs

mkdep Assists the make command in creating makefiles or appending
dependencies to a given makefile

modinfo Displays or changes memory pool values in an OMF86 or OMF286
module

path Displays the pathname for a file

pause Displays a message and waits for a carriage return

physname Displays system DUIB names and information

remini Translates an rmx.ini file into iNA 960 load file format

rmextdbg Improves binding efficiency by removing unneeded entries from object
modules and producing a smaller version of the file

sleep Suspends execution for a given number of seconds

submit Executes commands from a file (for non-CLI users)

sysinfo Displays information about the boot system currently running

time Displays or sets the system time

timer Times the execution of a command and displays elapsed time

traverse Executes a command repetitively in a directory tree

version Displays the version numbers of commands

whoami Displays the current user ID
*Either not available or not useful in DOSRMX and iRMX for PCs continued
**For DOSRMX systems only

42 Chapter 2 Command Descriptions

Table 2-1. Command Summary (continued)

HI Volume Management Commands

attachdevice
(ad)

Attaches a new physical device to the system under a logical name

backup Copies named or DOS files to a backup volume

detachdevice
(dd)

Removes a physical device from system use and deletes its logical
name

deviceinfo Displays size and space information about a volume

diskverify Verifies the data structures of named and physical volumes

format Writes format information on an iRMX or DOS volume

mirror Provides disk mirroring operations for managing hard disk mirror sets

pci Sets a threshold at which I/O requests to a PCI server are buffered

rdisk Partitions a PCI hard disk

restore Copies files from a backup volume to a named or DOS volume

retension Retensions a tape

HI System Management Commands

accounting Tracks logon activities at dynamic terminals

bootdos Activates the primary DOS partition and resets systems

cli Invokes a loadable version of the Command Line Interpreter

connect Binds a locked terminal device to a logical name, making it accessible

disconnect Deletes a logical name for a locked terminal, making it inaccessible

ic Reads and modifies interconnect space registers in a Multibus II system

initstatus Displays initialization status of HI terminals

jobdelete Deletes a running interactive job

lock Prevents the HI from automatically creating an interactive job at a
terminal

logoff Ends a user session (for non-CLI users)

password Changes user passwords or creates new users

pcnet A NetBIOS driver that provides the interface to iNA-based iRMX-NET

shutdown Shuts down the system in an orderly fashion

super Changes the operator to the Super user (for non-CLI users)

sysload Loads loadable device drivers or user jobs

term Displays or modifies terminal attributes

unlock Unlocks a terminal that was locked, and starts the HI logon sequence
continued

Command Reference Chapter 2 43

Table 2-1. Command Summary (continued)

DOS Utility Commands

bootrmx Activates the primary iRMX partition and resets systems

loadrmx Loads the iRMX OS
rdisk Partitions a DOS hard disk

rmxtsr Allows the iRMX OS to obtain DOS and AT ROM BIOS services

iRMX-NET Commands

bcl* Converts an ASCII file into a special binary file for remote booting

deletename Removes server names and addresses from the local Name Server
table

domain Sets the search domain of subnets the iRMX Name Server can access.

findname Finds the server name where a name or address object is cataloged

getaddr Returns the local system's Ethernet address

getname Returns the system name for a specified Ethernet address

inamon Reads and sets NMF objects, performs echo tests, or manages routing

lanstatus An alias for the netinfo command

listname Lists names and values of objects in the local Name Server table

load Downloads boot software and starts the network controller board

loadname Adds names and addresses from a file to the local Name Server table

modcdf Adds or deletes iRMX client systems in the Client Definition File

netinfo Displays the address, subnet ID, and iNA 960 information for network
controllers

offer Extends public directory access to remote users

pcnet A NetBIOS driver that provides the interface to iNA-based iRMX-NET

publicdir Displays pathnames of public directories on the server

remove Denies public directory access to remote users

setname Enters server names and addresses in the local Name Server table

unloadname Removes server names and addresses from the Name Server table

unxlate* Displays information about the format of a file translated with xlate

xlate* Produces a bootloadable image from an object module file
*Either not available or not useful in DOSRMX or iRMX for PCs continued

44 Chapter 2 Command Descriptions

Table 2-1. Command Summary (continued)

TCP/IP and NFS Commands

arp Displays or modifies address resolution tables

enetinfo Displays Ethernet information

ftp User interface to File Transfer Protocol

netstat Shows network status

ping Tests communication between two hosts

route Manipulates network routing tables

rpcinfo Reports Remote Call Procedure (RPC) information (NFS command)

share Enables mounting of local NFS resources by remote clients

showmount Reports NFS-shared and mounted devices

telnet User interface to TELNET protocol

unshare Restricts mounting of local NFS resources by remote clients

✏ Note
There is no mount command for NFS; use the attachdevice
command instead.

CLI command !

Command Reference Chapter 2 45

!
Recalls a previously-entered command line by either its number or the beginning
letter(s) of the command. The CLI searches backward in the history buffer from the
most recently entered command, and displays the first matching command on the
command line. You may edit the line; the command is not executed until you press
<CR> or <Esc>.

Syntax

!variable

Parameter
variable

The command line number (0-999) or the beginning letter(s) of the command to be
recalled. The variable must immediately follow the ! character without a separating
space, unless you are recalling a command line that began with a space.

Additional Information

To display the line numbers associated with previous commands, use the history
command before using !. To recall a command line by its number, for example line
29, enter:

!29 <CR>

When recalling a command by letter rather than by number, enter enough letters to
specify the line uniquely. The CLI recalls the most recent command line that begins
with the letters you specify. For example, if your previous commands were:

format :d:

ftn286 myfile.f28

and you enter:

!F <CR>

the CLI displays:

ftn286 myfile.f28.

If you want to recall the format command line, enter:

!fo <CR>

! CLI command

46 Chapter 2 Command Descriptions

Error Messages
<prefix>, history line not found

The command prefix you entered does not appear in the history buffer.

<number>, history number not found
The number you entered cannot be found in the history buffer.

<number>, history number out of range
The number you entered is greater than 999.

<number>, illegal history number
Your entry is not a legal number. It may include non-numeric characters.

HI command accounting

Command Reference Chapter 2 47

accounting
Displays, creates, or truncates the :config:account.log file, which contains the logon
and logoff history of dynamic terminals.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

accounting [create] [save = num]

Parameters

create Creates a new accounting file to store the logon and logoff history. You must be the
system manager to use this parameter.

save = num
Reduces the size of the accounting file by saving only the most recent num entries,
where num is a decimal number. All earlier entries are deleted from the file. You
must be the system manager.

Additional Information

For the accounting command to be effective, the system manager must first use the
create parameter to create an empty :config:account.log accounting file. The
create parameter places special information in the file that is used by the
accounting command. You must use this command, not a text editor, to create the
:config:account.log file. If you attempt to create the file and it already exists,
accounting displays this message:

:config:account.log, already exists, overwrite?

Enter Y or R to delete the existing file and create a new, empty file. Enter any other
character to leave the existing file intact.

accounting HI command

48 Chapter 2 Command Descriptions

Once the file exists, the HI records all logon and logoff activities in the file. Any
user may invoke the accounting command with no parameters to display the log,
which begins with the most recent activity.

If the :config:account.log file becomes too large or contains unnecessary information,
the system manager can use the save parameter to save only the most recent
information. When invoked with the save parameter, accounting displays this
message, indicating the decimal number of events saved and discarded. The
command then lists the events still recorded in the accounting file.

<n> events saved; <m> events deleted

To stop the OS from keeping track of logon and logoff activity, delete or rename the
:config:account.log file.

The example below illustrates the format of the accounting display:

user user terminal

ID name device name date time event

0 bob .t2. 13 AUG 86 16:22:50 logoff

world newuser .t1. 13 AUG 86 14:45:00 logoff

world newuser .t1. 13 AUG 86 13:01:10 logon

0 bob .t2. 13 AUG 86 11:05:45 logon

0 bob .t2. 13 AUG 86 11:05:15 logon error 004B

The columns in the example above contain this information:

user ID ID of the user who logged on or off at a dynamic terminal

user name Logon name used

terminal device name
Physical name of the terminal, as defined during configuration of the
BIOS and as attached by the HI. Periods surround each name.

date Date of the logon or logoff activity

time Time of the logon or logoff activity

HI command accounting

Command Reference Chapter 2 49

event One of these may be listed:

logon The user logged on the terminal.
logon error The user unsuccessfully attempted to log on;

the resulting condition code is also listed.
logoff The user logged off the terminal.
logoff job deleted The user was logged off as a result of the

jobdelete command terminating a job or the
shutdown command stopping the system.

logoff carrier lost A terminal connected to a modem lost the
carrier.

Error Messages
<condition code:mnemonic>, account.log is not available

The :config:account.log file exists but is not currently available for reading or
writing. The accounting command terminates when this occurs.

:config:account.log, file does not exist
The accounting file does not exist.

not a valid accounting log file
The :config:account.log file exists, but it is corrupted, doesn't contain accounting
information, or wasn't created with the create parameter. Use the accounting
command with the create parameter to create a new file.

only the system manager may change the accounting log file
Someone other than the system manager attempted to use the accounting command
with the create or save parameters. Use the super command to become the
system manager.

program version incompatible with accounting log file
The :config:account.log file contains accounting information that is incompatible
with this version of the accounting command.

<condition code:mnemonic>, while attaching accounting log file
The accounting command encountered this condition code while attempting to attach
the existing accounting file.

<condition code:mnemonic>, while creating accounting log file
The accounting command encountered this condition code while attempting to create
a new accounting file.

addloc HI command

50 Chapter 2 Command Descriptions

addloc
Integrates a data file created by the locdata command with an existing bootloadable
application file, to produce a new bootloadable file and a map file.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

addloc datafile, sysfile to|over outpath

Parameters
datafile

Pathname of the located data file produced by the locdata command. Multiple or
wildcard pathnames are not allowed.

sysfile
Pathname of a bootloadable application file in object module format (OMF286 or
OMF386). This must be a file created by the Builder utility (BLD286 or BLD386,
which is invoked by the iRMX ICU). Multiple or wildcard pathnames are not
allowed.

to|over
Specify to create a new file or over to overwrite an existing file.

outpath
The pathname of the file that is to receive the combined information from datafile
and sysfile. This is a new bootloadable file in object module format. Multiple or
wildcard pathnames are not allowed. The base filename (not including a filename
extension) is limited to ten characters because the addloc command creates a print
file of the same name with the extension .mpa.

HI command addloc

Command Reference Chapter 2 51

Additional Information

You can use the locdata and addloc commands together to create an application that
automatically loads part of itself into a RAM disk when the system boots.

Generally, to use a RAM disk you configure a system with an area of RAM dedicated
to the RAM disk. When the system boots, you attach the RAM disk memory to your
system, format it, and move data into and out of it just as you would with any other
secondary storage device.

If you want to use a RAM disk to store part of the application system (for instance,
the HI commands), the stored data must be available in the RAM disk area when the
system boots. This data cannot be copied into the RAM disk until you have
configured the application system into a bootable file, because the RAM disk area
doesn't exist until you define it through the configuration process. Therefore, you
must integrate a copy of a RAM disk data structure into an existing application
system bootfile.

Addloc and locdata can create this new bootloadable version of the application
system, which includes a copy of the RAM disk data structure. A map file is also
produced, giving information about the new bootloadable file and the process that
created it. When this new file is booted, the RAM disk data structure is loaded into
memory in the area defined for the RAM disk during configuration.

See also: locdata command, in this chapter

When you invoke addloc, if the first parameter is a file that has not been processed
by locdata, or if the second parameter is a file that has not been created by the
Builder utility, addloc issues this error message and exits without processing the
data:

usage: addloc <located data file>, <system file> to/over

<outpath>

When processing is complete, addloc displays one of these messages:

<located data file> added to <system file> to <outpath>

<located data file> added to <system file> over <outpath>

Addloc also creates a print file with the filename extension .mpa. Thus if the
bootloadable file produced by addloc is named newsys.386, the print file is named
newsys.mpa. The print file contains a header that includes the name of the input and
output files, the address space used by the system file and the located data file, and
the base address of the located data file. Following the header is a list of any error
messages addloc may have generated.

addloc HI command

52 Chapter 2 Command Descriptions

Error Messages
addloc, two input files only

Addloc requires two input files; you specified more or fewer.

addloc, one output file only
Addloc requires one output file and you specified more.

addloc, missing parameters
In the invocation line you omitted one or more required parameters.

after, is an illegal preposition for addloc
The after preposition in your invocation line, is not a legal addloc preposition.

<string>, illegal preposition
The preposition in the invocation line is not a legal addloc preposition.

<filename> file format is xxx

<filename> file format is yyy
If two input files are used, they must be of the same OMF type. The xxx and yyy

in the message give the OMF type.

<pathname>, output file same as input file
Addloc does not allow the input filename to be used as the output filename.

<pathname>, print file same as output file
The output filename you specified has the same name as the print file with the .mpa
extension.

<pathname>, output pathname too long
The name of the file you specified in the output pathname exceeded ten characters.

<pathname>, write error
A system error caused an incorrect number of bytes to be written to the output file.
Retry the command.

<pathname>, read error
A system error caused an incorrect number of bytes to be read from the input file.
Retry the command.

<pathname>, not a located data file
The file was not processed by locdata.

<pathname>, not a bootloadable file
The system file was not a system image file.

In addition to the error messages listed above, addloc produces the three warning
messages listed below. After each message, addloc lists the file that caused the
warning, the physical address, and the length of the section containing the faulty
parameter.

OVERLAPPING AREAS IN MEMORY
The section read from the system file overlaps memory that was assigned to the
located data stream. Although the process continues, the output is invalid.

HI command addloc

Command Reference Chapter 2 53

BAD SEQUENCE
The located data file contains a section that is not contiguous to the previous section.
Although the process continues, the output is invalid.

BAD CHECKSUM
One of the input files you specified has a bad checksum. Output is invalid.

aedit HI command

54 Chapter 2 Command Descriptions

aedit
Invokes the AEDIT text editor.

Syntax

aedit [first_input_file[,second_input_file]]

Parameters
first_input_file

The file you want to edit. If you do not specify a file, AEDIT creates a new file, and
prompts you for a name when you use the quit command.

,second_input_file
The name of the second input file to edit. You can switch between the files with the
other command.

Additional Information

AEDIT is an interactive, screen-oriented text editor. In addition to performing basic
word-processing operations such as cursor movement and inserting, deleting, or
overtyping text, you can use AEDIT to:

• Find any string of characters

• Substitute one string of characters for another string

• View and edit two files or two portions of the same file simultaneously

• Move or copy sections of text within a file or between files

• Create macros to execute several commands at once, thereby simplifying
repetitive editing tasks

• Perform arithmetic functions

• View lines over 80 characters long

AEDIT also provides a set of commands that you can use in the invocation line to
further control the editor's actions and output.

See also: AEDIT invocation and commands, Programming Techniques and
AEDIT Text Editor

HI command aedit

Command Reference Chapter 2 55

When you invoke AEDIT, the editor displays this prompt at the bottom of the screen:
-??- system-id AEDIT Vx.y Copyright yyyy Intel Corp.

Again Block Calc Delete Execute Find -find --more--

The question marks (-??-) at the beginning of the first line indicate that AEDIT is
waiting for input. Exclamation points (-!!-) in the same position indicate that AEDIT
is executing a command. A vertical bar (|) marks the end of the file; it is initially in
the upper left corner of the screen in a new file.

The --more-- at the end of the second line indicates that there are more commands
available. Use the <Tab> key to see additional commands.

These are the basic cursor movement keys:

Arrows The four keys labeled with directional arrows, <Left>, <Right>,
<Up>, and <Down>, are the cursor control keys .

<Home> The <Home> key provides faster cursor movement. Press an arrow
key followed by <Home> to page backward or forward through a
file, or to move rapidly to the beginning or end of a line. You can
also use <Home> to enter the re-edit mode for line-edit prompts.

<Return> The <Return> key moves the cursor to the beginning of the next
line in insert and xchange modes, and at the main command level.
It also terminates the line-edit prompt.

These are basic AEDIT commands:

I or i Enters insert mode. You must enter insert mode to type text onto
the screen. To exit insert mode and return to the main command
level, press <Esc>.

<Backspace> Deletes the character to the left of the cursor, if you are at the main
command level or in insert mode.

<Tab> Rotates the menu prompt line to display the next line of commands.
In insert or xchange modes, <Tab> inserts the <Tab> character (or
optionally, replaces it with an equivalent number of blank spaces).

<Esc> The <Esc> (escape) key exits modes, terminates commands, and
returns the editor to the main command level.

aedit HI command

56 Chapter 2 Command Descriptions

To exit from the editor, press Q for quit. This prompt appears at the bottom of the
screen:

-??- no input file

Abort Init Write

W saves the file, and if this is a new file AEDIT will prompt you for an output file
name. A aborts the session without saving.

See also: init command, Programming Techniques and Tools

Error messages

These are some of the more common error messages:

illegal invocation
You attempted to invoke AEDIT with an illegal invocation line, or used an illegal
invocation under quit init.

illegal command
You entered an illegal and/or unknown command, which AEDIT ignores.

insufficient memory
AEDIT does not have enough RAM memory.

See also: Error messages in AEDIT manual, Programming Techniques and
AEDIT Text Editor

▲▲! CAUTION
AEDIT converts filenames to uppercase. This may cause
confusion if you use AEDIT to edit and save a NFS file residing on
an OS that has case sensitive filenames.

CLI command alias

Command Reference Chapter 2 57

alias
Creates an alias for a command string, or displays the definition of an existing alias.

Syntax

alias [abbreviation] [= command [#parameters]]

Parameters
abbreviation

When defining an alias using the = command syntax, this is the short term that
becomes an alias for the specified command. When displaying alias definitions, the
abbreviation may contain a wildcard (*) as the final character.

= command

A command string that may contain command-line parameters as well as the
command.

#parameters
Up to ten formal parameters, specified as #0 to #9, that are replaced by actual
parameters when you invoke the alias.

Additional Information

You may create an alias for any command or command string, including the alias
command. Once the alias abbreviation has been assigned, the CLI recognizes the
abbreviation as if it were the entire command. The alias stays in effect until you
enter either a dealias or a logoff command.

You may define an alias that refers to another alias. Aliases can be nested in this
fashion up to five times. You may also change an existing alias. For example, if the
alias m=mer is defined, you can change it to m=merrr by entering:

alias M = MERRR <CR>

The CLI changes the alias and issues this message:

<abbreviation>, former alias removed

The default size for the table that stores aliases is 2K bytes. If you need more or less
space to store aliases, use the set command to modify the size of the table.

alias CLI command

58 Chapter 2 Command Descriptions

When you invoke an alias that contains formal parameters, each actual parameter on
the invocation line replaces a formal parameter, in order. You need not enter the
same number of actual parameters as there are formal parameters. For example, if
there are three formal parameters and you enter two actual parameters, a null string
replaces the third formal parameter. If you enter more actual parameters than there
are formal parameters, the extra parameters are considered another command
parameter.

To display all currently defined aliases, enter alias with no parameters. To display
the definition of a single alias, specify the abbreviation on the command line. For
example, to display the definition of the ad alias, enter:

alias ad

You may use the * wildcard character at the end of the abbreviation to display a
group of alias definitions. For example, to display all aliases that begin with the
letter M, enter:

alias m*

If the list of displayed aliases requires more than one screen, the CLI displays one
screen followed by this message:

display more ? ([y] or n)

To see more alias definitions, enter Y or simply <CR>. Otherwise enter N.

Certain aliases are automatically defined for you by the OS. These aliases are in
submit files (refer to the submit command) that run when you log on to the system.
System aliases are the same for all users and are required for all iRMX
configurations. These are defined in the :config:alias.csd file, and should not be
changed. Other aliases are defined in your :prog:alias.csd file. Any alias that you
enter on the command line is no longer defined the next time you log on. To
permanently store an alias, enter it in your :prog:alias.csd file. You may change any
of the default aliases in the :prog:alias.csd file.

Table 2-2 lists the system aliases in the :config:alias.csd file.

CLI command alias

Command Reference Chapter 2 59

Table 2-2. System Aliases in the :config:alias.csd File

Alias Command

ad attachdevice

af attachfile

cd attachfile

crdir createdir

dd detachdevice

del delete #0 q

df detachfile

install submit :config:cmd/instal(#0)

installrmx submit :config:cmd/rmxinstl(#0)

lf dir

tinstall submit :config:cmd/tinstall(#0)

md createdir

mkdir createdir

mksys submit :config:cmd/mksys(#0) (not for DOSRMX)

pwd path

Alias DOS-hosted tools iRMX-hosted tools

asm386 run86 /intel/bin/asm386.exe run86 :lang:asm386

bnd386 run86 /intel/bin/bnd386.exe run86 :lang:bnd386

bld386 run86 /intel/bin/bld386.exe run86 :lang:bld386

ic386 run86 /intel/bin/ic386.exe run86 :lang:ic386

lib386 run86 /intel/bin/lib386.exe run86 :lang:lib386

map386 run86 /intel/bin/map386.exe run86 :lang:map386

plm386 run86 -fixplm /intel/bin/plm386.exe run86 -fixplm :lang:plm386

alias CLI command

60 Chapter 2 Command Descriptions

Table 2-3 lists default aliases in the :prog:alias.csd file. To find the aliases for your
system, refer to the section in the table labeled "All Platforms" and the section for the
system bus type. The default aliases for DOSRMX are those in the "PC Bus" section,
even if you install DOSRMX on a Multibus I or II platform.

Table 2-3. Default Aliases in the :prog:alias.csd File

ALL PLATFORMS
Alias Command

MULTIBUS I - SPECIFIC
Alias Command

a alias adf attachdevice wmf0 as :f:
aed aedit adv attachdevice g279_0 as :vdi: physical
bk background ddv detachdevice :vdi: force
h history MULTIBUS II - SPECIFIC
logs logicalnames Alias Command
ls dir $ sort agents ic -c agents
lpr bk(100,100) copy #0 to :lp: agentreset ic -c reset #0 local
m skim adf attachdevice wqf0 as :f:
more skim adv attachdevice g279_0 as :vdi: physical
pmw permit #0 drau u=world coldreset ic -c reset 0 cold
s submit d dir $ i l
sh shutdown w=0 ddv detachdevice :vdi: force
trv traverse icread ic -c get #0 #1 #2
DOSRMX - SPECIFIC icwrite ic -c set #0 #1 #2
Alias Command monitor ic -c reset -p monitor #0 local
ada attachdevice a as :a: myslot ic -c myslot
adah attachdevice ah as :a: nmi ic -c nmi #0 software
adam attachdevice am as :a: nmiforce ic -c nmi -e #0 software
adamh attachdevice amh as :a: offline ic -c kill #0
adb attachdevice b as :b: p path
adbh attachdevice bh as :b: reboot ic -c reset -p bootstrap #0 local
adbm attachdevice bm as :b: sysreset coldreset
adbmh attachdevice bmh as :b: warmreset ic -c reset 0 warm
adf attachdevice a as :f:
dda detachdevice :a:
ddb detachdevice :b:

CLI command alias

Command Reference Chapter 2 61

Examples

1. To assign an alias called PLM, with a formal parameter, enter:

alias PLM = :lang:plm386 #0.p38 nolist <CR>

Then, to compile a file called mine.p38 in the current directory, enter:

plm mine <CR>

The CLI replaces the formal parameter #0 with mine and executes the command
as if you had entered :lang:mine.plm386 p38 nolist.

If you enter:

plm mine pagewidth(132) <CR>

The CLI executes this, adding pagewidth(132) as an additional command
parameter. The CLI does not echo this command on the screen:

:lang:plm386 mine.p38 nolist pagewidth(132)

2. To use the nested alias feature, define these aliases:

alias PLM=:lang:PLM386

alias PNL=PLM #0.P38 nolist

Now when you enter:

PNL source <CR>

The alias command replaces PNL with PLM #0.P38 nolist, assigns source
to #0, replaces PLM with :lang:PLM386, and executes:

:lang:source.plm386 p38 nolist

Error Messages
alias, wrong alias syntax

The command syntax is not correct.

<parameter>, alias not found
The alias you entered is not in the list of declared aliases.

<parameter>, wildcard is allowed only in the last character
You tried to list aliases with a wildcard character that was not the last character in the
string.

alias CLI command

62 Chapter 2 Command Descriptions

<parameter>, wildcard not allowed in alias abbreviation
You declared an alias with a wildcard. You can use wildcards only to display a list of
aliases, not to define them.

alias, no space in alias table
The alias table is full. No more aliases can be assigned unless you increase the size
of the alias table with the set command or delete some aliases.

TCP/IP command arp

Command Reference Chapter 2 63

arp
Displays and modifies the address resolution tables used by the Address Resolution
Protocol (ARP). These tables translate between the Ethernet addresses used at the
hardware level and the Internet addresses used by TCP/IP software.

Syntax

arp -a
arp –d inet-addr
arp –s inet-addr phys-addr

Parameters

-a Displays the entire contents of the ARP table.

-d Deletes an entry from the ARP table.

inet-addr A host name or Internet address.

-s Modifies or adds an entry in the ARP table.

phys-addr The physical address of the network interface. Specify an Ethernet
address in this hexadecimal form:

hh:hh:hh:hh:hh:hh

Additional Information

At network initialization, ARP places a complete and permanent entry in the ARP
table for every configured Ethernet interface. Because permanent entries cannot be
deleted, these entries remain in the table until the network is taken down. Once the
initialization is complete, arp dynamically adds and updates host entries based upon
information received from arp modules on other network hosts. As the table fills,
older entries are deleted and the space is reallocated for more recently used
addresses.

You typically use arp to display the current contents of the table. You should add
and delete entries only for hosts that do not implement the ARP protocol; modifying
the contents of dynamically maintained entries has unpredictable effects.

The first form of the arp command, using the -a option, displays the entire contents
of the ARP table. For example:

- arp -a

host2.intel.com inet 128.215.12.21: Ethernet 00.aa.00.02.1c.2a

host1.intel.com inet 128.215.12.20: Ethernet 00.aa.00.02.13.38

arp TCP/IP command

64 Chapter 2 Command Descriptions

- ayers.intel.com inet 128.215.18.242: Ethernet 00.aa.00.02.29.bb

-

For each entry, the command displays the official host name, the Internet address
(preceded by the word inet), the Ethernet address (preceded by the word
Ethernet) and the status of the ARP table entry. The Ethernet address is a six-digit
hexadecimal value. The status is a comma-separated list of codes, with these
meanings:

INCOMPLETE Incomplete: contains only an Internet address.

COM Complete: contains both Internet and Ethernet addresses.

PERM Permanent: cannot be deleted from table by arp.

PUBL Publishable: can be published in proxy for a non-ARP host; it
can be used to answer an ARP request from another host.

The second form of the arp command uses the –s option to create or modify an
ARP table entry. This example adds an entry for host name lee. The Internet
address 128.215.18.185 could be substituted for the host name in the command.
When you specify lee, arp gets the Internet address from the name lee in the
/etc/hosts file. The screen display in response to the command indicates that the
entry was successfully added to the table.

- arp –s lee 02:07:01:00:10:76

lee.intel.com inet 128.215.18.185: Ethernet 02.07.01.00.10.76 {COM,PERM,PUBL}

-

Entries added like this are always permanent.

If a host on the network does not implement ARP, choose one or more of the other
network hosts to act as proxy for the non-ARP host.

You can use arp at the command line any time after network initialization.
However, you typically add entries by placing the command in the network startup
script tcpstart.csd. When you add an ARP entry in this way, also add the official host
name and its Internet address to the :config:hosts file, so the correct name-to-address
translation can be made during network initialization. Because the entry is
permanent, it cannot be deleted by the ARP module when the table is full. The entry
remains in the ARP table until the network is taken down or until you explicitly
remove it with an arp -d command.

Diagnostics

Exit status is zero for normal termination or a positive number for error termination.

arp: cannot get arptab size: error message
The size of the ARP table could not be retrieved for the given reason.

TCP/IP command arp

Command Reference Chapter 2 65

arp: can't get memory for arptab
Could not allocate enough local memory to store the retrieved ARP table.

arp: error reading arptab: error message
The given error occurred while reading the ARP table.

arp: invalid arptab size (size)
The retrieved ARP table size was either less than 0 or greater than 1000.

arp: open failed for DEV_ARP: error message
An arp minor device could not be opened for the given reason.

cmd: error message
The given error occurred while trying to execute the command.

cmd: not in ARP table
The command failed because the specified entry was not in the ARP table.

cmd: must have SYSPRV
The command failed because it requires superuser privileges.

cmd: no interface for internet address
The command failed because the destination network was unreachable.

cmd: No room in ARP table, try later
The ARP table is full; the entry was not added.

Default flags set to ATF_COM and ATF_PERM
An invalid flag was supplied to the set command, the default was used.

Only ethernet/ieee types supported.
An invalid or unsupported type was supplied to the arp set command.

phys_addr: bad format
An invalid physical address was supplied to the arp set command.

inet_addr: bad value
An invalid Internet address was supplied to the arp set command.

attachdevice (ad) HI command

66 Chapter 2 Command Descriptions

attachdevice
Attaches a physical device to the OS and associates a logical name with the device.
Attachdevice catalogs the logical name in the root object directory, making the
logical name accessible to all users. This command dynamically builds a table of all
file drivers in the system. Devices may be attached to the resident file drivers that
are configured into the system, or loadable file drivers that have been loaded with the
sysload command.

Syntax

ad|attachdevice physical_name as logical_name
[file_driver|n|p|r|nfs|e|d] [d(elay)] [w]

Parameters
physical_name

Physical device name of the device to be attached to the system, up to 14 characters
long. For file drivers that do not require DUIBs (Device Unit Information Blocks)
such as NFS, this name may be up to 255 characters long. This name must be the
name defined at system configuration time. With NFS, this name includes the
hostname:/symbolic name as defined on the NFS server system.

as Preposition required for the command.

logical_name
A 1- to 12-character name (excluding colons) to be associated with the device.
Colons surrounding the logical name are optional, but if used must be in pairs
(:logical_name:).

file_driver
A 1- to 14-character name of the attached file driver. The file driver may be either
resident or loaded. File driver abbreviations are allowed for loadable file drivers.
The file_driver parameter will match to the first file driver name that it either
matches or is a substring of. The pre-defined abbreviations are:

n(amed)
The volume mounted on the device is already formatted for the iRMX named
file driver. Volumes that can contain named files are diskettes or hard disks. If
named, physical, remote, nfs, edos, or dos is not specified, named is the
default.

p(hysical)
The volume mounted on the logical device is considered to be a single, large file.
Examples include printers, terminals, and tape drives.

HI command attachdevice (ad)

Command Reference Chapter 2 67

r(emote)
The volume mounted on the logical device is an iRMX-NET remote file server.
If you specify remote with the physical name of a remote server, a logical name
is created for the virtual root directory of the server. The logical name is used to
transparently access files residing at the server. The server, rather than the
consumer, associates the appropriate device drivers with the devices residing at
the server system. As a result, client systems do not require DUIBs attached for
remote servers. The world switch is always supported for consumer-based
connections and is supported for server-based connections if the remote server
has defined a user named World with a carriage return password.

nfs
Specifies the NFS file driver job running on the client. Attaching devices
through this driver allows you to transparently access the remote logical device
as if it were local to the client. The device you are attaching to must be defined
as NFS-shared by the remote host.

e(dos)
For DOSRMX only, specifies the encapsulated DOS (EDOS) file driver,
enabling iRMX users to access shared DOS files. The edos parameter includes
the delay and world parameters. Physical device names used with this parameter
include a_dos through z_dos, which are equivalent to DOS drives A: through Z:.

d(os)
For all iRMX OS versions except DOSRMX, specifies the native DOS file
driver, enabling iRMX users to access DOS volumes. Physical device names
used with this parameter include c_dos through z_dos, which are equivalent to
DOS drives C: through Z:.

d(elay)
The device is attached logically, but not physically attached until the first access.

w(orld)
The World user (ID 65535) is the owner of the device. Any user can detach the
device. If you omit this parameter, your user ID is listed as the owner of the device.
In this case, only you and the system manager can detach the device. In DOSRMX,
access to all DOS volume is always done as World.

attachdevice (ad) HI command

68 Chapter 2 Command Descriptions

Additional Information

To use a device you must attach it, unless it is attached by the system during
initialization. For example, before you use the format, backup, or restore
commands, you must attach the appropriate device. Likewise, any time you put a
diskette in its drive, you must attach the drive device. For general access of a hard
disk or diskette, such as reading or writing files, you may attach the device under a
generic physical device name. However, to format a hard disk or diskette, you must
attach it under a specific physical (DUIB) name that specifies the device
characteristics.

When you invoke attachdevice with no parameters, it displays a usage message and
the available file drivers. If no file driver is specified on the command line, the
command will attempt to attach the device using in order the named, dos, and edos

file drivers (if available) until a successful attach occurs. It also prints the name of
the file driver it has attached to. If an unformatted device is encountered, the
command will default to the named file driver so that a named format command can
occur.

See also: physname command, in this chapter
supplied drivers and physical device names, Appendix E
format command, in this chapter

Devices must have their characteristics listed as a BIOS DUIB before they can be
attached with the attachdevice command. One frequent use of the attachdevice
command is to attach a new device, such as a disk drive or a printer that was
configured into the boot system but was not attached. DUIBs can be specified during
configuration or with a loadable device driver.

See also: sysload command, in this chapter
Appendix C, Using the ICU to Configure User-written Device Drivers,
ICU User's Guide and Quick Reference

Unless you are the World user (ID 65535) or specify the world parameter, once you
attach a device only you and the system manager can detach it. This prevents users
from detaching devices belonging to other users and prevents you from accidentally
detaching system volumes. However, if you are the World user or specify the world
parameter, any device that you attach can be detached by any other user.

To see what devices are currently attached, use the logicalnames command.

HI command attachdevice (ad)

Command Reference Chapter 2 69

The named parameter refers to the iRMX named file driver, which maintains the
directory hierarchy of named files on an iRMX-format volume. A remote, edos,
dos, or nfs volume also contains named files, but not maintained by the iRMX
named file driver on the local system. Volumes maintained by the named file driver
on remote systems must be attached as remote (if accessed through iRMX-NET) or
nfs (if accessed through NFS) from this system.

If you try to attach a device maintained by the named file driver that has not been
shut down properly, you receive this message:

<logical_name>, device was not shut down properly

The number of retries to attach a device is set in the configuration. The command
repeats the attempt to attach the device, and returns either when it has attached the
device or has failed the configured number of attempts.

See also: detachdevice and logicalnames commands, in this chapter

NFS Support

Specifying nfs as the attached file driver allows you to attach a NFS-shared device
on a remote host running NFS. The device will appear as local to your system. This
allows you to access remote files either from the command line or programmatically.
When the NFS client job initializes, many shared devices will be automatically
mounted (attached) through the startup files. To see which devices are already
mounted, use the showmount command.

See also: showmount command, in this chapter
Attaching NFS Devices, TCP/IP and NFS for the iRMX Operating
System

Attaching Diskette Devices

Each time you change a diskette in the drive, you must reattach the drive. Removing
a diskette from the drive destroys any connections that may have existed to files on
that device, and logical names that represent files on the volume are no longer valid.
Detach the files and detach the device before removing the diskette.

▲▲! CAUTION
On volumes managed by the DOS and iRMX named file drivers,
the file structure of the second diskette can be destroyed if you
change diskettes without detaching and reattaching the device.
Avoid attaching remote diskette volumes; a user at the remote
system might change diskettes without your knowledge.

See also: Switching diskettes, Installation and Startup

attachdevice (ad) HI command

70 Chapter 2 Command Descriptions

To transfer files between low-density and high-density 5.25" diskettes in Multibus I
or II systems, use the uniform granularity device name wdf0, rather than the standard
granularity device wmf0.

In DOSRMX, volumes attached with the named parameter are iRMX-format and
managed by the iRMX named file driver. DOS users cannot access the diskette drive
until it is detached.

Volumes attached with the edos parameter are DOS-format and managed by the
DOS file system. After initially attaching the device, you can access DOS-format
diskettes from either DOS or the iRMX OS. You need not detach and reattach the
device when you change diskettes. You should, however, detach any files on the
diskette that you have attached as logical names.

See also: attachfile and detachfile commands, in this chapter

Error Messages
<physical_name>, cannot attach device

There is a hardware problem.

<physical_name>, cannot be attached as <type> device
The specified device cannot support the specified type of files (named, physical,
remote, nfs, EDOS, or DOS). Attachdevice does not attach the device. For
example, the named option is not valid for a device such as a line printer.

<physical_name>, device already attached
The specified device has already been attached; attachdevice does not re-attach it.

<physical_name>, device is already attached as <logical name>
The specified device has already been attached by the EIOS; attachdevice does not
re-attach it.

<physical_name>, device does not exist
The physical device name you specified does not correspond to a name the BIOS
recognizes. The current configuration does not specify the indicated physical name
as the name of a device-unit. Attachdevice does not attach the device.

<logical_name>, logical name already exists
The specified logical name is already cataloged in the root job's object directory.
Attachdevice does not attach the device.

<logical_name>, logical name is already attached to physical device
<physical_name>
The specified logical name refers to an EIOS attached device that is already
cataloged in the root job’s object directory. Attachdevice does not attach the device.

0085 : E_LIST, too many device names
You tried to attach more than one physical device with a single attachdevice
command. Attachdevice cannot attach more than one device per invocation.

HI command attachdevice (ad)

Command Reference Chapter 2 71

<logical_name>, device was not shut down properly
The named volume device you attached was not previously shut down with a
shutdown or detachdevice command.

<logical_name>, volume is not a named volume
Attachdevice attempted to attach a device as a named device and discovered that a
physical volume (for example, an unformatted diskette) was mounted. However,
attachdevice does attach the device. You can use the device after formatting the
volume as a named volume or after inserting a named format diskette in the device.

<logical_name>, volume not formatted
<logical_name>, <condition code:mnemonic>
Attachdevice attempted to attach a device as a named device and encountered an I/O
error while searching for the volume's root directory. This usually indicates that the
volume is not formatted. However, attachdevice does attach the device.

<logical_name>, volume not mounted
The specified device does not contain a volume. However, attachdevice does attach
the device.

<condition code:mnemonic>, while collecting device name
Attachdevice encountered this condition code while parsing the device name from
the command line. Attachdevice does not attach the device.

<condition code:mnemonic>, while collecting logical name
Attachdevice encountered this condition code while parsing the logical name from
the command line.

attachfile (af) HI command

72 Chapter 2 Command Descriptions

attachfile
Associates a logical name with an existing file or directory; one use is to change your
current working directory. After making this association, you may use the logical
name to refer to the file, instead of the entire pathname.

Syntax

af|attachfile [pathname [as :logical_name: [system]]]

Parameters
pathname

The file or directory with which the HI associates a logical name.

logical_name
The 1- to 12-character name (excluding colons) to be associated with the file. Colons
surrounding the logical name are optional, but if used must be in pairs
(:logical_name:). If you omit this parameter, the default logical name is :$:.

s(ystem)
Creates the logical name and catalogs it in the root job as a system logical name.
System logical names can be used by all users; they are permanent until they are
detached with the detachfile command. If the system logical name already exists, it
is deleted and replaced by a connection to the new pathname. This option can only
be executed by the Super user and is only valid with a logical name. The system
option can be used in either the r?init or the loadinfo system initialization file to
attach system logical names. Without the system option, attachfile catalogs the
logical name in your global object directory.

Additional Information

The uses for this command are to:

• Change your working directory. Attachfile does this by associating the default
logical name :$: with the directory. The syntax is either of these:

af directory_path
af directory_path as $

• Restore your working directory to your home (logon) directory. Attachfile does
this by associating the logical name :$: with the logical name :home:. The
syntax is either of these:

af

af :home: as :$:

HI command attachfile (af)

Command Reference Chapter 2 73

• Create a short logical name that refers to a commonly-used directory or file. If
you use the system option, this logical name is available to all users and valid
until detached with the detachfile command.

• Change the :home: logical name. Each user has a :home: logical name that
points to the user’s home directory. This logical name can be changed with the
attachfile command as shown below:

attachfile /user/world as home

:HOME:, overwrite existing logical name?

If you answer yes, the current path for :home: will be overwritten with the new
one. This option can be used to restore your home directory for any reason; for
example, the home directory is accidentally deleted or the connection is deleted
as a result of a diskverify operation.

• Recover from using the Disk Verification Utility on the system device (:sd:).
The system option can be used to restore system logical names that were deleted
when using the Disk Verification Utility on :sd:. You can accomplish this by
creating a submit file that attaches all of the system logical names.

Example submit file, lognames.csd:

:sd:sys386/attachfile :sd:util286 as util286 system

:sd:sys386/attachfile :sd:intel/include as include system

:sd:sys386/attachfile :sd:lang286 as lang system

:sd:sys386/attachfile :sd:work as work system

:sd:sys386/attachfile :sd:util386 as utils system

:sd:sys386/attachfile :sd:sys386 as system system

:sd:sys386/attachfile :sd:rmx386 as rmx system

:sd:sys386/attachfile :rmx:config as config system

:sd:sys386/attachfile :rmx:icu as icu system

After running the Disk Verification Utility, submit the file using a full pathname
to the file:
submit :sd:user/super/lognames.csd

Normally (without the system option) attachfile associates a file with a logical name
by cataloging a connection to the file in your global object directory (this is usually
the object directory of your interactive job). It catalogs the connection under the
logical name. If another connection is cataloged in the object directory under the
same name, attachfile uncatalogs and deletes the previous connection before
cataloging the new one. If an object other than a connection is cataloged under the

attachfile (af) HI command

74 Chapter 2 Command Descriptions

logical name, attachfile leaves the previous object as is, does not catalog the new
connection, and displays an error message.

Because the file connection is cataloged in your object directory, the logical name has
effect only within your interactive job. Therefore, several users can specify the same
logical name without affecting the others. Background jobs can also attach files
without affecting tasks being run in the foreground, since the background and
foreground environments are independent.

See also: Logical names, Chapter 1

Logical names created with attachfile remain valid until one of these situations
occurs:

• A detachfile command removes the association between file and logical name.

• The interactive session that specified the attachfile command terminates
processing, either because you log off or as a result of the jobdelete command.

• A background job exits or is killed. In this case, only logical names attached in
the background environment are removed.

• A task deletes the file connection with a BIOS or EIOS system call. In this case,
the logical name remains cataloged in the global directory, but the connection to
which it refers does not exist.

• A user forcibly detaches the volume containing the file, using the detachdevice
command.

• A user removes the (diskette) volume from the drive. In this case, the logical
name remains cataloged in the global directory, but the connection to which it
refers does not exist.

Logical names created with attachfile using the system option remain valid until one
of these situations occurs:

• A detachfile command removes the association between file and logical name.

• A task deletes the file connection with a BIOS or EIOS system call. In this case,
the logical name remains cataloged in the global directory, but the connection to
which it refers does not exist.

• A user forcibly detaches the volume containing the file, using the detachdevice
command.

• A user removes the (diskette) volume from the drive. In this case, the logical
name remains cataloged in the global directory, but the connection to which it
refers does not exist.

You cannot use attachfile to change the meaning of :term:, :ci:, and :co: (default
console input and output).

HI command attachfile (af)

Command Reference Chapter 2 75

Error Messages
<logical_name>, list of logical names not allowed

You entered more than one logical name as input to attachfile.

<pathname>, list of pathnames not allowed
You entered more than one pathname as input to attachfile.

<logical_name>, logical name not allowed
You attempted to attach a file using one of the logical names :term:, :ci:, or :co:.
You cannot change the meaning of these logical names.

<logical_name>, not a file connection
The logical name you specified is already cataloged in the object directory of the
session and does not represent a connection object.

<pathname>, not allowed as default prefix
You attempted to attach a physical or stream file as your working directory (:$:).
Only named files (including DOS files) are valid.

<logical_name>, too many logical names
Your global object directory is full; therefore attachfile cannot catalog the logical
name. Delete some logical names you are no longer using.

Must be SUPER user to execute the SYSTEM option
Only the Super user can use the system option.

background CLI command

76 Chapter 2 Command Descriptions

background
Executes the specified command line as a background job, enabling you to continue
entering commands while the job executes.

Syntax

background [([pool_min], pool_max)] command_line [> pathname]

Parameters
pool_min

A decimal number of Kbytes specifying the minimum memory pool size to be
allocated for the background job. If specified, this value overrides the default
minimum value (either 6 Kbytes or as defined with the set command).

pool_max
A decimal number of Kbytes specifying the maximum memory pool size to be
allocated for the background job. This value overrides the default maximum value
(as defined with the set command or the smaller of 384 Kbytes and user_pool_max

- 200 Kbytes). If you specify pool_max less than 384 Kbytes, the CLI sets it to 0.

command_line
A user command to be executed in the background.

> pathname
A file where command output is written. If you do not specify this parameter, you
are prompted for the name of a file; output from a background job cannot be written
to the screen.

Additional Information

▲▲! CAUTION
Do not put a background command in the r?logon file.

Background jobs are executed as they are submitted and are not queued. Each
background job is assigned a four-digit hexadecimal job ID that you can display by
entering the jobs command. You can cancel background jobs by entering the kill
command.

CLI command background

Command Reference Chapter 2 77

When you invoke background, the active foreground environment is copied to the
background job and becomes its initial environment. This means that the same
logical names and aliases used in the foreground are also available to the background
job. However, after the background job begins, changes made to logical names and
aliases in the background environment do not affect the foreground, and vice-versa.

You can control the amount of memory allocated for the background job by entering
the pool-min and pool-max parameters. These modifiers are recommended for
large programs such as compilers, ensuring the minimum memory pool to get
acceptable performance for the application, but leaving enough memory for
foreground jobs to also perform at an acceptable level.

Before the background job begins, the CLI checks that the minimum memory pool
size is less than the maximum; if not, the CLI issues this warning:

WARNING: maxbackpool < minbackpool,

use set command to set background memory pools

If pool-max is less than 384 Kbytes, the CLI assigns a value of 0 and issues this
message:

maxbackpool attribute <384K, was set to 0

please set your maxbackpool attribute

Then the background job terminates.

If you don't specify the > pathname parameter, the background command prompts
for a log file to replace the terminal:

the log file is ?

If you enter :co: as the log file, the CLI displays the message:

:co:, not a valid log file

the log file is ?

A background job that tries to send a message to the :co: device causes this message
to appear on your screen:

***8085: E_ERROR_OUTPUT

However, if you have a system with multiple terminals, you can redirect :ci: and :co:
to another terminal that acts as a background terminal.

When the background job begins running, the CLI displays this message:

Background job <job_id> "command" has been started

background CLI command

78 Chapter 2 Command Descriptions

When the background job is complete, the CLI displays:

Background job <job_id> "command" completed

The command given in the above messages is always enclosed in quotation marks (").
Only the first 15 characters of the command are displayed.

Examples

1. This example illustrates using the background command and the I/O redirection
feature to create a background job and send the output to a file named out.

background copy X.ASM to Y >OUT <CR>

Background job <0168> "copy x.asm to y" has

been started

When the background job is complete, this message is displayed:

Background job <0168> "copy x.asm to y" completed

The out output file contains all the output messages, such as:

x.asm copied to y

2. This example shows how the CLI prompts for an output file if you do not
redirect the output:

background copy X.ASM to Y <CR>

the log file is ? OUT <CR>

Background job <0E78> "copy x.asm to y" has been started

3. This example changes the default pool sizes of a background job by entering the
pool-min and pool-max parameters:

background (300,500) submit PLM >OUT <CR>

***CLI : background job <0C68> "submit plm" has been

started

Error Messages

Background job <job_id> "<command>" failed

<error message>
The background command failed for the reason given in the error message.

background, parameter required
You entered the command without parameters.

HI command backup

Command Reference Chapter 2 79

backup
Archives named files by copying them to a physical volume serving as a backup
storage device. The source volume may be a named, remote, or DOS volume. In
addition to each file's name and contents, backup saves the file access list and owner,
extension data, and file granularity.

✏ Note
Do not use this command in an esubmit file or an
rq_c_send_command system call, because queries for user input
will not be received.

Syntax

backup [pathname] to|over|after :logical_device:
[date=mm/dd/yy] [time=hh:mm:ss] [name=name] [f] [q]

▲▲! CAUTION
While backup is executing, no other activity should be occurring
on the volume you are backing up. If other users access the volume
during a backup operation, the volume's data could become
corrupted, possibly requiring the volume to be reformatted.

backup HI command

80 Chapter 2 Command Descriptions

Parameters
pathname

Pathname of a file or directory on the source volume (either a local or remote
device). If you specify a file, only that file is saved. If you specify a directory,
backup saves all the files starting from that point on the file tree. If you don't specify
this parameter, backup saves all files in the current volume, beginning with the root
directory.

▲▲! CAUTION
Backup fails if you use it on a file named $ or a directory
containing a file named $; for a directory, remove the file before
using the backup command.

to Output is sent to a new volume. If possible, backup reads the volume label on each
newly mounted volume to determine the volume type. This ensures that the volume
is compatible with any previously mounted volumes in a backup set. If backup data
exists on the volume you are prompted to overwrite files of the same name as those
being backed up.

over Any previous files or directories on the backup volume are overwritten; backup
begins writing on each fresh volume without checking the label for compatibility.

after Backup searches the mounted volume for the end of a previous backup operation; the
current backup begins at that spot. There must be at least enough space left on this
volume to write header information. If more volumes are needed to complete the
backup operation, backup behaves as if the to preposition had been specified for
subsequent volumes. If you specify format, backup formats any new volumes
required to finish the backup operation.

:logical_device:
The logical name of the device to which backup copies the files. The device must be
local, not remote.

date= Saves only files created or modified on or after the specified date.

mm/dd/yy
Numeric designation for the month, day, and year. Specify only as many digits as
needed; for example, 1/1/91 indicates January 1, 1991. The year may be entered in
two or four digits, as follows:

Entry Specifies year
00 through 77 2000 through 2077
78 through 99 1978 through 1999
1978 through 2099 1978 through 2099

HI command backup

Command Reference Chapter 2 81

time= When used with the date parameter, saves only files created or modified on or after
the specified time and date. When used without the date parameter, the date is the
current system date. If time is omitted, the default is 00:00:00. If both date and
time are omitted, the date and time default to 1/1/78 and 00:00:00.

hh:mm:ss
Numeric designation for the hour, minute, and second. Specify only as many digits
as needed: hours in the range 0-23, and minutes and seconds in the range 0-59.

name=name
Specifies a 1- to 9-character name that backup applies to the backup set of data. If
you store multiple data sets on a single backup volume by specifying after, you
must specify a name to be able to restore an individual data set.

f(ormat)
Formats each volume before writing to it. The interleave is set to one on diskette
media. Use this parameter for new, unformatted media or to overwrite media
formatted for a different OS. On a tape device, format also retensions the tape,
ensuring the best conditions for archiving.

q(uery) Prompts for permission to save each file:

<pathname>, backup Data File? or
<pathname>, backup Directory?

Respond as follows:

Y Save the file
E Exit from backup
R Save remaining files without further query
N If a file, don't save it; if a directory, don't save the directory or any files

under it in the tree. Query for the next file.
other Error message and reprompt.

Additional Information

Files can be backed up from a remote device, but not to a remote device. For backup
to save files from either a local or remote named volume, you must have read access
to the files and to the directories that contain them.

Backup can save a large volume (a hard disk, for example) onto a number of
volumes such as diskettes or tape cartridges. You do not have to separately format
the backup volumes; use backup's format parameter.

Depending on the amount of data being backed up, a named data set may be a portion
of a single backup volume or may span multiple volumes. If you store multiple data
sets on a single backup volume, it is important to name each data set. Only by
naming the data sets can you restore them individually with the restore command.

backup HI command

82 Chapter 2 Command Descriptions

To restore a logical volume from a backup volume containing multiple data sets, you
must supply the name of the data sets in the restore command. There is no way to
get a listing of these names from the volume itself. Label the backup volume with
the names of data sets on the volume.

After using the backup command to archive files, you should immediately invoke the
restore command with the verify option to make sure the data has been recorded
correctly. When you use verify, restore only verifies that backup produced a
restorable backup volume; no files are actually restored. Enter:

restore backup-volume to :bb: verify

When you invoke backup, the command displays this sign-on message, where Vx.y
is the version number of the utility:

iRMX Backup Utility, Vx.y

Copyright <year> Intel Corporation

All Rights Reserved

Once the command line has been scanned, one of these messages is displayed,
depending on whether you specified the date and time:

All Files Modified After <date>, <time> Will Be Saved
or
All Files Will Be Saved

Backup then prompts you to mount the backup volume. Whenever backup requires
a new backup volume, the command displays this message:

<device>, Mount Backup Volume (name) #<nn>, Enter Y to

Continue:

Where:

<device> The logical name of the backup device

(name) The name of the physical volume set

<nn> The identifying number of the requested volume.

When you see this message, place a volume in the backup device and respond with Y

or R to continue the backup process or E to exit the backup command. If you
continue the backup process, backup displays this buffer summary message:

I/O Buffer Summary

Buffer Size <number>

Number of Buffers <number>

Backup continues prompting for a backup volume until you supply one that it can
access.

HI command backup

Command Reference Chapter 2 83

Backup displays an error message if you insert a volume with one of these problems:

• The volume cannot be read

• The volume is a named volume and data would be overwritten

• The volume is a backup volume and data would be overwritten

• The volume is a physical volume containing data

If the situation is appropriate, the command may prompt you with a request to format
or overwrite the mounted volume. Respond to this prompt as described for responses
to the query parameter:

<device>, Enter Y to Overwrite/Format:

When backup fills a backup volume, it prints this message and prompts for
additional volumes if it needs them:

Physical Volume (<name>), #<nn>, Complete

After backup finishes, it displays the number of data files and directories saved:

Summary For Logical Volume (<name>)

<nn> Data File[s] Saved

<nn> Director[y] [ies] Saved

Backup Complete

In some circumstances, when backed-up files are restored the original ownership
rights are not preserved, and restored files are owned by the user who performed the
restore.

See also: restore command, in this chapter

Error Messages

If you encounter an error message that requires a response, enter Y or R to continue
the backup process or E to exit the backup command.

<backup device>, backup not complete
You specified an E to exit backup. This message reminds you the backup operation
is not complete. The last file on the last backup volume may be incomplete.

backup HI command

84 Chapter 2 Command Descriptions

<backup device>, Backup Volume (<name>), #<nn>, <date>, <time>,

Mounted <backup device>, Enter Y to Overwrite:
The backup volume you supplied already contains backup information. Backup lists
the logical name of the backup device, the volume number, and the date on which the
original backup occurred. It overwrites this volume if you enter Y or R.

<backup device>, Cannot Attach Volume

<backup device>, <condition code:mnemonic>

<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:
Backup cannot access the backup volume. This could be because there is no volume
in the backup device or because of a hardware problem with the device. The second
line of the message indicates the condition code encountered. Backup continues to
issue this message until you supply a volume that can be accessed.

<pathname>, <condition code:mnemonic>, Cannot Back up File
Backup could not copy this file from the source volume, possibly because you do not
have read access to the file or because there is a faulty area on the volume. The
message lists the condition code encountered. Backup copies as much of the file as
possible and continues with the next file.

<backup device>, Device in Use

<backup device>, <condition code:mnemonic>
The device you specified for the backup device is being used by another job.
Continuing would result in damage to existing files on the output volume.

<backup device>, Error Writing Volume Label

<backup device>, <condition code:mnemonic>

<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:
When backup attempted to write a label on the backup volume, it encountered the
indicated error condition, possibly because of a faulty area on the volume, or because
the volume is write-protected. Backup reprompts for a different backup volume.

<backup device>, Input and Output are on Same Device
The device you specified for the backup device is the same device that contains your
input pathname. Continuing would result in damage to the files on the input volume.

<backup device>, Invalid Input Specification
The logical name you specified for the backup device was not a logical name for a
device. Example invalid names are :ci:, :co:, and :home:.

<condition code:mnemonic>, Invalid Date or Time
You entered a date or time parameter that is out of range (such as 31/02/86 or
26:03:62). The message lists the condition code encountered as a result of this entry.

HI command backup

Command Reference Chapter 2 85

Invalid Output Specification
You did not supply the logical name of the backup device when you entered the
backup command.

<backup device>, Named Volume <volume name>, Enter Y to Overwrite:
The backup volume you supplied is a named volume. Backup lists the logical device
name and the volume name; it overwrites this volume if you enter Y or R.

<backup device>, Not Correctly Formatted, Enter Y to Format:
The backup volume was not correctly formatted.

Requested Date/Time Later Than System Date/Time
Either the date and time you specified in the backup command are in error or you did
not set the system date and time.

<pathname>, invalid wildcard specification
You entered a list of pathnames or used a wildcard in the input pathname. You can
enter only one input pathname per invocation of backup.

<pathname>, invalid output specification
You entered a list of logical names for the backup device. You can enter only one
output logical name per invocation of backup.

<pathname>, Unable to Complete Directory
Backup encountered an error when accessing a file in the indicated directory. It
skips the rest of the files in the directory and goes on to the next directory. This error
could occur if you do not have list access to the directory.

<backup device>, Unrecognized Volume, Enter Y to Overwrite:
The backup volume you supplied is a formatted volume, but it has a label that is not
readable. Backup will overwrite this volume if you enter Y or R.

<backup device>, Volume Not Formatted

<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:
The backup volume you supplied was not formatted. Backup continues to issue this
message until you supply a formatted backup volume.

<backup device>, Write Error On Backup Volume

<backup device>, <condition code:mnemonic>
Backup encountered an error condition when writing information to the backup
volume. The second line of the message lists the condition code encountered. This
error is probably the result of a faulty area on the volume.

Name Required If After Is Selected
You must use the name parameter when using the after preposition.

cannot attach VOLUME
The destination device of the backup is a remote server.

backup HI command

86 Chapter 2 Command Descriptions

No Room for Append on Mounted Volume
You specified the after parameter, but there is not enough room left on this volume
to write the header information to begin appending this data set. Use a new volume.

NET command bcl

Command Reference Chapter 2 87

bcl
Converts an ASCII file into a special binary file understood by the Remote Boot
Server program.

Syntax

bcl input_file output_file

Parameters
input_file

The pathname of an ASCII file containing language input statements, as specified in
the Boot Definition Language section below.

output_file
The pathname of the resulting ccinfo file to be created.

Additional Information

The bcl command is the Boot Configuration Language utility, which produces a
special binary file called the Class Code Information File, or ccinfo file. The Remote
Boot Server uses the ccinfo file to determine which bootable file(s) to send over the
network during a remote boot request. The remote boot request sends a class code to
the Boot Server. Entries in the ccinfo file map the class codes to bootable files. A
bootable file is the kind of file produced by the xlate command.

See also: Remote Booting and ccinfo file, Network User's Guide and Reference
xlate command, in this chapter

The Boot Definition Language

Each statement in the language has this form:

cc[,cc...] is fn[,fn...] [for na[,na..]];

Where:

cc One or more hexadecimal values of class codes, in the range 0 to
0FFFFH.

fn One or more pathnames of files to be remotely loaded. The first
directory in the pathname must be a public directory on the Boot Server
system. The string is not case-sensitive.

bcl NET command

88 Chapter 2 Command Descriptions

na One or more Ethernet addresses of Boot Clients.

; Ends each statement.

Each bcl statement defines one or more mappings between class codes and an
ordered list of filenames. When more than one class code is given in a statement,
they act as synonyms to each other; any of the class codes result in exactly the same
image being sent.

The filenames within a single statement can be thought of as being concatenated in
the order given, to form the image that will be sent. Bcl itself makes no restrictions
on the characters used in the filenames, except that they cannot contain space
characters, commas, semicolons or end-of-line characters.

Statements that do not have an Ethernet address specified (no for clause) form the
default mapping for all Boot Consumers not specifically mentioned in any other
statement in the ccinfo file. The default mapping does not apply to Boot Consumers
whose Ethernet address appears in any statement. Ethernet addresses within a
statement qualify the statement as pertaining to only those Boot Consumers. When a
particular Ethernet address appears in a bcl statement, that Ethernet address must
appear with every class code that is to service that Boot Consumer.

The standard command prepositions to, over, and after are not allowed. If used,
incorrect results can be expected.

Examples

1. This command instructs the bcl utility to read the input statements in the file
ccinfo.bdf. If there are no errors, bcl creates the file ccinfo.

bcl ccinfo.bdf ccinfo

2. These statements are examples of lines that might be in the ccinfo.bdf file.
Together, these statements program the Remote Boot Server to send the
/net/ina961.rem file when class code 1 is received, and the
/rboot32/38612NET.386 file when class code 2 is received.

1 is /NET/INA961.32R;

2 is /RBOOT32/38612NET.386;

3. These lines state that class code 3BF maps to two files, but only for the two
Ethernet addresses given. Unless specified by other statements, all other
addresses are ignored. When more than one file is specified, as above, they are
sent in the order specified.

3BF is /RBOOT32/rem3rd,/RBOOT32/boot2 for 00aa00010203,

00aa00020304;

NET command bcl

Command Reference Chapter 2 89

4. These are examples of other statements that might occur in an input file:

1,7 is /rboot86/boot1 for 00aa00030405, 00aa00020608;

99 is /sd/net/exec.rem for 00aa00030405, 00aa00020608;

abcd is /sd/tx/default;

bootdos HI command

90 Chapter 2 Command Descriptions

bootdos
Activates the primary DOS partition and resets the systems.

Syntax

bootdos

Additional Information

The bootdos command is used primarily with the iRMX for PCs OS. It resets the
system to boot DOS from the primary DOS partition rather than the iRMX OS from
an iRMX partition.

See also: bootrmx command

DOS command bootrmx

Command Reference Chapter 2 91

bootrmx
Activates the primary iRMX partition and resets the systems.

Syntax

bootrmx

Additional Information

The bootrmx command is used primarily with the iRMX for PCs OS. It resets the
system to boot the iRMX OS from an iRMX partition rather than DOS from a DOS
partition.

See also: bootdos command

case HI command

92 Chapter 2 Command Descriptions

case
Converts the name of the specified file from upper- to lower-case.

Syntax

case pathname

Parameters
pathname

The pathname of a file or directory whose name is to be converted to lower-case.
The pathname may contain a wildcard (*) character.

Additional Information

This command is useful when working in a network environment, where some OSs
maintain case-sensitive filenames. The case command lets you convert the case of
iRMX filenames and access them from Unix or Xenix.

✏ Note
The case command works only on local files managed by the
iRMX named file driver. Do not use this command with DOS files
or remote files.

Examples

To convert the case of all files in a directory to lower-case, enter:

case directory_name/*

To convert a single filename to lower-case, enter either a full pathname or the
pathname relative to your current working directory. For example:

case :config:terminals

CLI command changeid

Command Reference Chapter 2 93

changeid
Changes the system manager's current user ID to any value from 0 to 65535. You
can only use this command after invoking the super command, regardless of whether
you logged on as the Super user.

Syntax

changeid [id|world]

Parameters

id A decimal value to which you want to change your user ID, in the range 0 to 65535.

world Changes you to the World user, with ID 65535.

Additional Information

If you omit an ID parameter, you are assigned ID 0, the system manager. If you
change your user ID to any value other than 0, the system prompt changes to this,
indicating the current ID value:

super(id)-

The new user ID is not a verified user; you cannot access files available on the
iRMX-NET network. You are not a verified user until you return to user ID 0.

Error Messages
0084; E_INVALID_NUMERIC

The user ID you specified contained invalid characters or was not in the range 0 to
65535.

changeid, allowed only in super mode
You invoked this command without previously invoking the super command.

<parameter>, unexpected parameter
You entered too many parameters.

<condition code:mnemonic>, while executing changeid
An internal system problem occurred which prevented the CLI from setting the
default user.

cli HI command

94 Chapter 2 Command Descriptions

cli
Invokes a loadable version of the Command Line Interpreter.

Syntax

cli

Additional Information

In a system that uses a different command interface than the CLI, you may invoke the
CLI to take advantage of its interface. The CLI may also be started from a submit
file.

HI command connect

Command Reference Chapter 2 95

connect
Associates a locked terminal device with a logical name. The terminal can then be
used as a physical device, in the same manner as any other terminal attached with the
attachdevice command. The logical name is cataloged in the root job's object
directory.

Syntax

connect physical_name as :logical_name:

Parameters
physical_name

Physical device name of the locked terminal device to be connected. This name must
be in the :config:terminals file, and must be defined as a BIOS DUIB, either in the
system configuration or through a loadable device driver. You can obtain the
terminal device names by invoking the initstatus command.

as Preposition required for the command.

logical_name
The 1- to 12-character name (excluding colons) to be associated with the device.
Colons surrounding the logical name are optional, but if used must be in pairs
(:logical_name:).

Additional Information

When you connect a locked terminal device, the associated serial port can be used as
a physical port, without an HI logon process. You may send data to or receive data
from any physical device that uses a serial stream of data. The connect command
cannot be used for virtual terminals.

After connecting the device and cataloging its logical name in the root job's object
directory, the connect command displays this message:

<physical_name> connected as <logical_name>

If you change the terminal attributes while the terminal is connected, the changes
remain in force after the terminal is disconnected. Note your terminal's attributes
before connecting; you must restore them before the HI can use the terminal.

connect HI command

96 Chapter 2 Command Descriptions

Error Messages
<logical_name>, logical name already in use

The logical name already exists in the root job's object directory.

<physical_name>, device name not found
The physical name is not a terminal device that was defined at system configuration
time.

<physical_name>, has not been locked
The specified terminal device must be locked using the lock command before it can
be connected.

not multi-access system
The connect command does not function if the HI is configured as a single-user
system.

<logical_name>, invalid logical name
The logical name is too long.

<physical_name>, not connected
The device could not be cataloged.

<condition code:mnemonic>, too many device names
The parameters contain too many device names.

<physical_name>, already connected
The specified device has already been connected.

*, invalid wildcard specification
Wildcards are not supported.

no logical name given
You did not specify a logical name.

HI command console

Command Reference Chapter 2 97

console
Dynamically changes the SDM (System Debug Monitor) console device to redirect
the I/O streams on DOSRMX systems.

Syntax

console device_name

Parameters
device_name

The name of the device (CON, COM1, or COM2) to which you want to redirect the SDM
I/O. CON is the normal screen and keyboard; COM1 and COM2 are the first two serial
ports. If this parameter is omitted, a usage message is displayed.

Additional Information

Use this command on DOSRMX systems, as a tool for debugging your OS and
software. SDM normally defaults to the console device (CON). The console
command redirects the SDM output stream, input stream, and error message stream
to the specified device. If used, console should be set prior to entering SDM. From
the user's perspective, the redirection does not take effect until SDM starts.

Examples

This command redirects the streams to the COM1 console controller device:

console COM1

Error Messages
<device_name>, device does not exist

The current configuration of the OS does not include the indicated device name.

copy HI command

98 Chapter 2 Command Descriptions

copy
Displays or makes a copy of the specified file(s) and synchronizes the time stamps.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

copy inpath_list [to|over|after outpath_list] [q] [ns]

Parameters
inpath_list

One or more pathnames of files to be copied. Multiple pathnames must be separated
by commas. Wildcards are permitted.

to|over|after outpath_list
If you omit this parameter, the input files are displayed on the screen (:co:). If you
specify this parameter, the input files are written to the specified output, such as a
printer (:lp:) or to new filenames. To copy files on a one-for-one basis, specify the
same number of output files as input files. If you specify multiple input files and a
single output file, copy appends the remaining input files to the end of the output file.
If you specify a single output directory, the input files are copied to that directory
under their current filenames.

q(uery)
Prompts for permission to copy each file. Respond to the prompt with:

Y Copy the file
E Exit the command
R Copy remaining files without further query
N or other Do not copy this file; go to the next file in the inpath-list

ns (nosynchronize)
Disables synchronization of the files' time stamps.

HI command copy

Command Reference Chapter 2 99

Additional Information

When copy copies files, it updates the new file's time stamp to match the original file
(if this is supported on the target file driver). Copy can be aliased so that
nosynchronize is automatically specified.

See also: alias command

When copy creates new files, it sets the access rights and list of accessors as follows:

• The file has all access (delete, read, append, and change).

• The owner is the only accessor to the file.

The user ID of the person who invokes the copy command is considered the owner of
new files created by copy. The user owns and has full access to remote files created
by copy. Only the owner or the system manager can change the access rights
associated with the file.

See also: permit command, in this chapter
file access, Chapter 1

If you specify multiple output files, and there are more or fewer input files than
output files, copy returns an error message.

If you specify a wildcard character in an output pathname, you must specify the same
wildcard character in the corresponding input pathname. Other combinations result
in error conditions.

See also: Using wildcards in file names, Chapter 1

A file listed under one directory can be copied to another directory. For example:

copy samp/test/A to :f1:alpha/beta

This would copy data file A to a different volume and directory. If beta is a filename,
that is the new name of the copied file. If beta is a directory name, the copied file
retains the name A in the beta directory.

You cannot successfully use copy to copy a directory to a data file or to another
directory. The directory attributes are lost and the copy can no longer be used as a
directory. Use the copydir command instead.

The copy command cannot be used with tape cartridges.

copy HI command

100 Chapter 2 Command Descriptions

To transfer files between low-density and high-density 5.25" diskettes in Multibus I
or II systems, attach the devices with the uniform granularity device name wdf0,
rather than the standard granularity device wmf0.

Error Messages
<pathname>, output file same as input file

You attempted to copy a file to itself.

HI command copydir

Command Reference Chapter 2 101

copydir
Copies all files and subdirectories from one or more directory trees.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

copydir inpath_list [to|over outpath_list] [q]
[accessors|noaccessors] [world|noworld] [nodelete]

Parameters
inpath_list

The pathnames of one or more directories to be copied. Use commas to separate
multiple directories.

to|over outpath_list
Either one directory where the input directories are all copied, or the same number of
directories as specified in inpath_list. If you specify to, copydir prompts for
permission to overwrite existing files; a Y response overwrites the file and any other
response skips that file. If you specify over, existing files are overwritten.

copydir HI command

102 Chapter 2 Command Descriptions

q(uery)
Prompts for permission to enter each directory and to copy each file in it. Respond to
the prompt with:

Y Enter the directory or copy the file.

E Exit from the copydir command.

R Continue copying without further query.

S Skip to the end of this (sub)directory and continue prompting for
directories at this level or higher.

A Copy all remaining files and subdirectories in the current
directory without further query, then begin querying before
entering the next (sub)directory.

N or other Do not enter this directory or copy this file.

accessors
Copies access information with the files; this is the default.

noaccessors
Does not copy access information.

world Assigns World read access to all files copied; this is the default.

noworld
Does not assign World read access.

nodelete
Do not overwrite existing files.

Additional Information

If you specify multiple input directories and a single output directory, the output
directory has the combined structure of the input directory trees. For example, this
command copies the directory structures of both dir1 and dir2 into dir3:

copydir dir1, dir2 to dir3

If you specify multiple input and output directories (the number must be same), each
input directory tree is copied to the corresponding output directory, in order. For
example, this command copies dir1 to dir3, and dir2 to dir4:

copydir dir1, dir2 to dir3, dir4

Copydir can also copy individual files. Copydir handles access rights better than
the copy command when copying remote files. From the local system, a remote file
appears to have its delete bit set to off, regardless of how the bit is set on the remote
system. When copying access rights from a remote file to a local file, copydir sets
the delete bit to on if the file has write access. The same is true of the change bit for
directories.

HI command copydir

Command Reference Chapter 2 103

Examples

These examples illustrate how copydir works when copying an entire directory tree.

1. The directory test1 that has this structure:

test1/dir1

test1/dir1/file1

test1/dir2

test1/dir2/file2

test1/file3

Test1 has this directory listing:

04 APR 89 20:14:52

directory OF $ ON VOLUME rmxll

test1

Enter:

copydir test1 to newdir

In response, this information is written to the screen:

test1/dir1/file1, copied

test1/dir1, directory copied

test1/dir2/file2, copied

test1/dir2, directory copied

test1/file3, copied

test1, directory copied

It creates an identical directory structure as test1 with the name newdir, as
follows:

newdir/dir1

newdir/dir1/file1

newdir/dir2

newdir/dir2/file2

newdir/file3

This is the new directory listing:

04 APR 89 20:14:52

directory OF $ ON VOLUME rmxll

test1 newdir

2. Given the same test1 directory structure as in example 1, enter:

copydir test1

It writes this information to the screen:

copydir HI command

104 Chapter 2 Command Descriptions

test1/dir1/file1, copied

test1/dir1, directory copied

test1/dir2/file2, copied

test1/dir2, directory copied

test1/file3, copied

test1, directory copied

It creates directories in your current directory with this structure:

dir1

dir1/file1

dir2

dir2/file2

The subdirectories and files of test1 are created and placed at the same directory
level as test1. This is the new directory listing:

04 APR 89 20:17:59

directory OF $ ON VOLUME rmxll

test1 dir1 dir2 file3

Error Messages
<pathname>, output file same as input file

You attempted to copy a file to itself.

HI command createdir (crdir)

Command Reference Chapter 2 105

createdir
Creates one or more directories with all access rights available to you as the owner.
You may delete, list, add, and change the contents of the new directory.

Syntax

crdir|createdir path_list [FILES=file_count]

Parameters
path_list

One or more pathnames of directories to be created. Multiple pathnames must be
separated by commas.

FILES=file_count
Reserves space for the specified number of files in the new directory. If this option is
not specified, the default is zero files. This parameter can be used to help control
fragmentation of large directories by allocating space when the directory is created.
Some file systems (e.g., DOS) may always allocate some directory space when a
directory is created.

✏ Note
On some file systems, reserving space for a large number of files
may take a long time.

Additional Information

You can create new directories that are subordinate to other directories. For example,
if the subdirectory ab/dc/ef exists in your current working directory, this command
creates the directory gh under it:

createdir ab/dc/ef/gh

You own and have full access to any new remote directories that you create (list and
add-entry access permissions constitute full access for remote directories). No other
users except the system manager have access to the directory unless you use the
permit command to change the access rights and list of accessors.

In a DOS file system, the directory is owned by the World user.

See also: permit command, in this chapter
creating a new directory, Chapter 1

createdir (crdir) HI command

106 Chapter 2 Command Descriptions

Error Messages
<directory_name>, file already exists

The specified directory already exists.

<file_name>, file does not exist
One of the directories specified in the pathname does not exist.

<directory_name>, invalid file type
One of the directories specified in the pathname is not a valid directory.

<pathname>, 26H: E_FACCESS
The pathname is a remote directory and you do not have add-entry access to the
parent directory of the directory to be created.

HI command date

Command Reference Chapter 2 107

date
Displays the current date and time, or sets the local (OS) or global (battery-backed)
time-of-day clock. Date optionally synchronizes the date of the local clock with the
global system clock.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax
date [date|q] [local|global]
date synchronize

Parameters

date You may specify the day (month and year remain unchanged), the day and month
(year remains unchanged), or the day, month, and year. Use one of these formats:

mm/dd/yyyy all numerals
dd month yyyy spell month using enough letters to distinguish it

Specify only the number of digits needed. For example, 12/1/91, 01 DE 91, and 1

December 1991 are equivalent. The year may be entered in two or four digits, as
follows:

Entry Specifies year
00 through 77 2000 through 2077
78 through 99 1978 through 1999
1978 through 2099 1978 through 2099

q(uery)
Displays the current date, time and clock type, and prompts for a new date. In
response, enter the date as shown above, or E to exit.

local Displays or sets the date portion of the local time-of-day clock maintained by the OS.
This is the default if local or global is not specified. Any user may set the date.

date HI command

108 Chapter 2 Command Descriptions

global Applies only to systems with hardware clock/calendar components, typically backed
up by battery power. Specifying global displays or sets the date portion of this
clock. Any user may display the date, but only the Super user can set it. If you set
the global clock, the local clock automatically takes on the same value.

synchronize
For systems with a global clock/calendar, this sets the date portion of the local clock
to the current date of the global clock. If you set the global clock, this parameter is
unnecessary.

Additional Information

The date command displays an error message if you specify global or
synchronize and your system does not have a global clock/calendar.

If you set only one or two date parameters, the omitted parameters are replaced by
their defaults. If you enter only one parameter, it is assumed to be the day. Two
parameters (in either format) represent the day and month. For example, assume the
current date in the system is 9 Sept 91. If you enter:

date 18 <CR>

date displays:

18 Sep 91, <current time>

If you omit the date parameters, date displays the current date and time as follows,
showing only the first three characters of the month and the last two digits of the
year:

dd month yyyy, hh:mm:ss <local or global clock type>

If you have a system without a global clock/calendar (such as a System 310),
whenever you start up or reset the OS, the date is automatically set to the date you
last accessed the :system: directory. You can reset the date to any acceptable value.

If your system has a global clock/calendar and the OS is configured to recognize it,
the local clock is automatically set to the date maintained in the global clock
whenever you turn on or reset your system.

Error Messages
<date>, invalid date

You entered an invalid date. This error could result from specifying a day that is
invalid for the month (such as 31 FEB 90), entering characters for the year that do not
fall into a legitimate range, entering a month parameter that does not uniquely
identify the month, or using an invalid format.

HI command date

Command Reference Chapter 2 109

<parameter>, invalid syntax
You specified an illegal combination of parameters. For example, you may have
entered a date and also specified the query option.

only the system manager may set the global clock
You specified the global parameter, but you are not the system manager.

<condition code:mnemonic>, getting system time
You specified the global or synchronize parameter, but there is no global clock
in the system.

E_SHARE, global clock busy
You attempted to access the global clock while another job was accessing it. Try the
command again.

E_INVALID_DATE, global date read was invalid
The date returned from the global clock was invalid. This condition usually occurs
when the global clock has never been initialized or when power to the clock has been
interrupted. The BIOS system call get_global_time sets the date to 1 Jan 1978,
which the date command then displays.

E_INVALID_TIME, global time read was invalid
The time returned from the global clock was invalid. This condition usually occurs
when the global clock has never been initialized or when power to the clock has been
interrupted. The BIOS system call get_global_time sets the time to a valid time,
which the date command then displays.

E_SUPPORT, attempted to access non-existent global clock
There is no global clock in the system.

dealias CLI command

110 Chapter 2 Command Descriptions

dealias
Deletes one or more aliases defined with the alias command.

Syntax

dealias abbreviation [q]

Parameters
abbreviation

The alias to be deleted. You may delete all aliases with the * wildcard, or delete a
group of aliases by using * as the last character of the abbreviation.

q(uery)
Prompts for permission before deleting an alias. Respond to the prompt with Y to
delete the alias, or any other character to keep it.

Additional Information

If you specify a wildcard in the aliases to be deleted, you may use the query option
to choose which aliases to delete. Assume you have defined the two aliases s =

submit and su = super, and want to delete only the su alias. Enter:

dealias S* Q <CR>

At these prompts, respond as shown:

s = submit delete ? (y or [n]) <CR>

su = super delete ? (y or [n]) Y <CR>

Error Messages
<parameter>, alias not found

You tried to delete an alias that was not defined in the alias table.

<parameter>, wildcard is allowed only in the last character
You tried to delete a number of aliases with a wildcard, but the wildcard was not the
last character.

HI command debug

Command Reference Chapter 2 111

debug
Loads an application program into memory, prints debug information to the screen or
to an output file, and transfers control to the System Debug Monitor (SDM). The
debug command cannot be used to debug CLI-level commands; only HI commands
and application programs.

Syntax

debug [to|over|after outpath] pathname [parameter_string]

Parameters
to|over|after outpath

A pathname for the output file where debug information is to be written, rather than
to the screen.

pathname
The file containing the application program to be debugged.

parameter_string
A string of required and/or optional parameters passed to the application program
being debugged.

Additional Information

When you invoke the debug command with no output file, it displays this message,
including the pathname of the application to be debugged:

debug file, <pathname>

Then it displays a segment map for the loaded program and breaks to the monitor.

If you specify an output file, debug loads the application job and writes the segment
map to the output file. Then it displays a prompt and waits until you indicate that
you're ready to enter SDM by pressing <CR>. This allows you to access the debug
file from a remote system (using iRMX-NET) to aid in the debug process. The
system breaks to SDM immediately after you press <CR>.

debug HI command

112 Chapter 2 Command Descriptions

Use SDM to single-step, display registers, and set breakpoints within the program.
When debug executes, SDM disables interrupts. This causes the time-keeping
function to stop when code is not executing. This slowing of the timing function has
two consequences:

• It affects the ability of the Nucleus to execute time-out tasks that have provided
time limits to system calls, such as receive_units and receive_message.

• It affects the ability of the BIOS to keep track of the time-of-day and write its
data structures to secondary storage.

This example shows the debug information that is displayed or written to a file. The
first line lists the token for the job that is created. The remaining lines list the
selector portions of all segments (under the heading BASE) assigned by the bind
application when the code was bound. The LDT(n) values are the same as those that
appear on the bind map. You can match the selector values shown in this display
with the offset values shown in the bind map to determine the exact location of a
symbol listed in the bind map.

SEGMENT MAP FOR job: 2250

NAME BASE NAME BASE NAME BASE NAME BASE

LDT(2) 2E40 LDT(3) 2E30 LDT(4) 2C08 LDT(5) 2CE0

LDT(7) 2220 LDT(8) 2158

Break at xxxx:yyyy

..

See also: Binder, map files, Intel386™ Family Utilities User's Guide

The debug command loads the application program into its own dynamic memory.
As a result, the application program obtains dynamic memory from the memory pool
of debug, not from the memory pool of the user session. Because debug uses a
different set of default values than the CLI, it is possible that the program may
behave differently than when it is run independently.

See also: System Debugger Reference for more details and for commands you
enter at the SDM prompt

If you use an SBX 279(A) graphics subsystem for a terminal, the monitor session
occurs on a different window than the HI window from which you invoke the debug
command. Using two windows allows you to see more debugging context than with
a single window. To return to the HI window, you may use either the mouse or a
previously mapped ALT/Function key.

The command to exit SDM and return to the CLI prompt is g <CR>.

HI command debug

Command Reference Chapter 2 113

Error Message
<condition code:mnemonic> command aborted by EH

This condition code was encountered and the debug command was aborted by the
exception handler.

delete HI command

114 Chapter 2 Command Descriptions

delete
Deletes one or more files and/or empty directories, or marks them for deletion if a
user is currently accessing them.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

delete pathname_list [q]

Parameters
pathname_list

One or more pathnames of files or empty directories to be deleted. Multiple
pathnames must be separated by commas. Wildcards are permitted.

q(uery)
Prompts for permission to delete each file in the list. Respond to the prompt with:

Y Delete the file

E Exit the command

R Delete remaining files without further query

N or other Do not delete this file; query for the next

Additional Information

You don't need to be the owner of a file to delete it, but you must have delete access.
If a user or program is accessing the file (has a connection to it) when you invoke
delete, the file is marked for deletion, and deleted when all connections to the file are
gone.

Directories must be empty to be deleted with this command.

See also: deletedir command, in this chapter

HI command delete

Command Reference Chapter 2 115

To delete a directory with delete, first delete all files and subdirectories contained in
it. For example, to delete a directory named alpha whose entire contents consist of a
directory beta containing a data file samp, you could enter:

delete alpha/beta/samp, alpha/beta, alpha

Delete displays this message as it deletes each file or marks the file for deletion:

<pathname>, deleted

▲▲! CAUTION
Use wildcards carefully with the delete command. For example,
entering delete *,a (with a comma) instead of delete *.a

erases all files in your current directory, instead of just those files
ending in .a.

The DOS file system does not support the delete access bit. DOS files are owned by
the World user and are either read-only (cannot be deleted) or read/write (can be
deleted by any user). DOS directories cannot be made read-only.

The delete access bit is not supported by iRMX-NET. Normally, append and update
access allow you to delete a remote file if you have add-entry access to the parent
directory; and add-entry access allows you to delete an empty remote directory.
However, if a user on the remote system has removed delete access to a file or
directory, you cannot delete it, regardless of other access permissions.

See also: permit command, in this chapter
deleting files, Installation and Startup
deleting directories, Chapter 1

Error Messages
<pathname>, delete access required

You do not have delete access to the file. If this is a remote file, a user at the remote
system has removed delete access. You cannot change the delete access locally; a
user at the remote system must grant delete access before this command succeeds.

<pathname>, 026H: add access required
The pathname to be deleted is a remote file and you do not have add-entry access to
the parent directory.

deletedir HI command

116 Chapter 2 Command Descriptions

deletedir
Deletes one or more directories, including subsidiary files and subdirectories.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

deletedir pathname_list [q]

Parameters
pathname_list

Names of directories or files to be deleted. Multiple pathnames must be separated by
commas. Wildcards are permitted.

q(uery)
Prompts for permission to enter each directory and to delete each file in it. Respond
to the prompt with:

Y Enter the directory or delete the file.

E Exit from the deletedir command.

R Delete remaining directories without further query.

S Skip to the end of this (sub)directory and continue prompting for
directories at this level or higher.

A Delete all remaining files and subdirectories in the current
directory without further query, then begin querying before
entering the next (sub)directory.

N or other Do not enter this directory or delete this file. If given in response
to the original directory prompt, deletedir exits.

HI command deletedir

Command Reference Chapter 2 117

Additional Information

The deletedir command deletes an entire directory tree or trees. These are examples
of commands:

deletedir dirA

deletedir dirB, dirC

If you specify the query parameter, deletedir displays one of these prompts:

<pathname>, enter directory?

<pathname>, delete?

Deletedir can only delete empty directories; all files and subdirectories must be
deleted first. Thus, if you enter S to skip a queried file or directory, deletedir cannot
delete that directory or those above it on the same branch. For each of these
directories, this prompt is displayed:

<pathname> delete directory?

Any response other than N causes an exception code to be returned.

Error Messages
<pathname>, delete access required

You do not have delete access to the file. If this is a remote file, a user at the remote
system has removed delete access. You cannot change the delete access locally; a
user at the remote system must grant delete access before this command succeeds.

<pathname>, 026H: add access required
The pathname is a remote file and you do not have add-entry access to the parent
directory.

deletename NET command

118 Chapter 2 Command Descriptions

deletename
Removes specified server names and addresses from the local network Name Server
object table.

Syntax

deletename object_name_list

Parameter
object_name_list

Specifies one or more server names (or other object names) to be deleted. Multiple
names must be separated with commas.

Additional Information

A typical Name Server object is the name and transport address of a server system on
the network. Delete the object by specifying the server name. The deletename
command deletes objects from the table on the local system, but not from remote
systems. If the object table contains more than one entry with the same name but
different property types, all entries of that name are deleted by this command.

See also: Format of names and addresses, setname and loadname commands, in
this chapter

Error Messages
<object_name>, name does not exist locally

The specified object name is not located in the local object table. However, the name
may exist on the network in the object table of another system.

illegal name
The specified object name is more than 16 characters long. Verify the name of the
object being deleted, and invoke the command again.

HI command detachdevice (dd)

Command Reference Chapter 2 119

detachdevice
Detaches the specified devices and deletes their logical names from the root job's
object directory.

Syntax

dd|detachdevice logical_name_list [f]

Parameters
logical_name_list

One or more logical names of physical devices to be detached. Colons surrounding
the logical names are optional, but if used must be in pairs (:logical_name:).
Multiple names must be separated by commas.

f(orce) The device is to be detached even if connections to files on the device currently exist;
the connections are deleted.

Additional Information

After a device is detached, no volume mounted on that device is accessible for
system use until the device is reattached.

The Super user may detach any device. Other users can detach only these devices:

• Devices configured with your user ID as the owner ID

• Devices you originally attached using the attachdevice command

• Devices originally attached using the world parameter of attachdevice

• Devices originally attached by the World user

Detachdevice returns an error message if you attempt to detach devices originally
attached by other users. This prevents non-Super users from detaching devices
belonging to other users and from accidentally detaching system volumes.

If other users are currently accessing a device, there are connections to it and you can
only detach it by specifying the force parameter.

▲▲! CAUTION
If you detach the device containing HI commands, you cannot use
the commands until the system is restarted.

detachdevice (dd) HI command

120 Chapter 2 Command Descriptions

Error Messages

<logical_name>, can't detach device

<logical_name>, <condition code:mnemonic>
The listed condition code shows an error condition that prevented detachdevice from
detaching the device.

<logical_name>, device does not belong to you
The device was originally attached by a user other than you or World; you cannot
detach the device.

<logical_name>, device has outstanding file connections
There are existing connections to files on the device. You did not specify the force
parameter and detachdevice does not detach the device.

<logical_name>, device is in use
Another user or program is accessing the device (has a connection to a file). You
must specify the force parameter in order to detach the device.

<logical_name>, outstanding connections to device have been deleted
There were outstanding connections to files on the volume. You specified the force
parameter and detachdevice deleted the connections. This is a warning message
only; it does not prevent the device from being detached.

device is not a device connection
You attempted to detach a remote server device. Remote devices attached by the
BIOS, such as the system containing the Master UDF, cannot be detached by the
EIOS through the detachdevice command.

HI command detachfile (df)

Command Reference Chapter 2 121

detachfile
Terminates the association between one or more files and their logical names
established with attachfile.

Syntax

df|detachfile logical_name_list [system]

Parameter
logical_name_list

One or more logical names that represent the files to be detached. Colons
surrounding the logical names are optional, but if used must be in pairs
(:logical_name:). Multiple names must be separated by commas.

s(ystem)
This option indicates that the logical names in the list are system logical names.
System logical names are cataloged in the root directory and are, therefore, available
to all users. The system option can only be executed by the Super user.

Additional Information

Detachfile also uncatalogs the detached files' logical names from your interactive
job's global object directory.

You cannot use detachfile to detach logical names that represent devices rather than
files. Detachfile returns an error message if you make such an attempt.

You cannot use detachfile to detach logical names originally created by other users.

If you do not specify the system option, detachfile searches for logical names only in
the global object directory of your interactive job. However, if you specify the
system option, it searches only in the root job's object directory.

Error Messages
<condition code:mnemonic> invalid global job

The HI encountered an internal system problem when it attempted to remove the
logical name from the global job's object directory. The message lists the resulting
condition code.

<logical_name>, logical name not allowed
You specified one of the logical names :$:, :term:, :ci:, or :co:. You cannot detach
the files associated with these logical names.

detachfile (df) HI command

122 Chapter 2 Command Descriptions

<logical_name>, not a file connection
The logical name you specified is cataloged in the global object directory of your
interactive job, but it is not the logical name of a file.

Must be SUPER user to execute the SYSTEM option
Only the Super user can use the system option.

HI command deviceinfo

Command Reference Chapter 2 123

deviceinfo
Displays information about the size and available space on the specified volume(s).

Syntax

deviceinfo [logical_name_list] [to|over|after outpath]

Parameters
logical_name_list

One or more logical names of volume devices for which information is displayed.
The names must be surrounded by colons (:logical_name:), and multiple names
must be separated by commas. If no logical name is specified, :$: is the default.

to|over|after outpath
Writes the output to the specified file rather than to the screen.

Additional Information

✏ Note
You cannot use this command with a device that you access
through NFS.

This command supports resident file drivers and dynamic loadable file drivers. This
example shows the type of information produced by deviceinfo for a named file
driver:

deviceinfo :A: <CR>

:A:, volume (RMX) on device (AMH), NAMED file driver

block size = 512 bytes

total blocks = 2,880 (1.406 Mbytes)

free blocks = 2,832 (1.382 Mbytes)

free files = 200

total files = 207

deviceinfo HI command

124 Chapter 2 Command Descriptions

This example shows the type of information produced by deviceinfo for an EDOS
file driver:

deviceinfo :sd: <CR>

:SD:, volume (MS-DOS) on device (C_DOS), EDOS file driver

block size = 2,048 bytes

total blocks = 40,877 (79.83 Mbytes)

free blocks = 18,967 (37.04 Mbytes)

free files = unlimited

The total files field includes the internal system files. The number listed may
be up to seven higher than the number of user files that can be created. If
information is not available, the command does not display any information.

HI command dir

Command Reference Chapter 2 125

dir
Lists the names (and optionally, attributes) of files and directories contained in a
given directory.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

dir [inpath_list] [to|over|after outpath_list]
[f[o]|s[o]|l|e] [fr]
[so] [i] [p] [q] [for path_list]

dir HI command

126 Chapter 2 Command Descriptions

Parameters
inpath_list

One or more pathnames of the directories to be listed. Multiple pathnames must be
separated by commas. If no parameters are specified, your current working directory
(:$:) is listed. Wildcards are not permitted.

to|over|after outpath_list
Writes the output to the specified file (or device) rather than to the screen. Multiple
pathnames must be separated by commas and match the number specified in
inpath_list.

f(ast) [one]

Lists only filenames and directory names. This is the default listing format. The
output is in five columns unless you specify one, for a single column.

s(hort) [one]

Lists names, file attributes, your access rights to the files, and sizes. The output is in
two columns unless you specify one.

l(ong) In addition to the information listed for short, lists the volume and file granularity, the
owner, and the date last modified.

e(xtended)
In addition to the information listed for long, lists the date and time of creation, last
access, and last modification; also lists the users who have access to the file and their
access rights.

HI command dir

Command Reference Chapter 2 127

fr(ee) Lists the amount of free space available on the volume containing the given directory,
including the number of free files, free volume blocks, and free bytes. This
information is automatically displayed for short, long, and extended listings.

so(rt) Sorts the list in alphanumeric order (except on DOS devices).

i(nvisible)
Additionally lists invisible files: those beginning with the characters R? or r?. If you
omit this parameter, invisible files are not listed.

p(arent)
Displays an entry for the directory specified in inpath_list, in addition to the files
contained in the directory. In a list of directories you may specify a file if you
include the parent parameter.

q(uery) Prompts for permission to list a directory. Respond with:

Y List the directory

E Exit the command

R List remaining directories without further query

N or other Do not list the directory; query for the next

for path_list
In the directories specified by inpath_list, lists only those files that match a name
in path_list. Wildcards are permitted.

Additional Information

You do not need to be the owner of a directory to list its contents with dir; however,
you must have list access to the directory. In DOSRMX and iRMX for PCs, you can
list any directory in the DOS file system.

See also: Accessors and access rights, permit command, in this chapter

To list your current working directory in fast format, enter dir without parameters.
However, to use a listing format other than fast, you must specify the directory
name explicitly. The short, long, and extended listings display the amount of space
used by the listed files and the amount of free space on the volume.

The iRMX dir command does not work exactly like the DOS dir command. In the
iRMX OS, if you just type dir, it displays all files in the current directory (:$:), as in
DOS. If, however, you include command line parameters, you must type $ to specify
the current directory.

dir HI command

128 Chapter 2 Command Descriptions

For example, to display just the file myfile in the current directory, you cannot enter
dir myfile. You must enter dir $ myfile. The dir command always interprets
the first command line parameter as a directory, so when you type dir myfile, it
attempts to display the contents of a subdirectory named myfile under the current
directory. Similarly, if you want to display all invisible files in the current directory,
you cannot enter dir i (the “invisible” switch), you must enter dir $ i.

Another use of the dir command is to display the names of the HI system commands,
utilities, or development tools available on your system, with the commands shown
below:

dir :system:

dir :utils:

dir :lang:

Examples

The examples are followed by explanations of the fields in the listings, and the field
differences for DOS and remote file listings.

This command displays a long listing for the current directory:

dir $ l

03 JAN 91 21:55:24
directory OF mydir1 ON VOLUME myvol

GRAN
NAME AT ACC BLKS LENGTH VOL FIL OWNER LAST

MOD
ed -R-- 11 1,057 1,024 1 # 47 02 MAR
90
programs DR DL-- 30 30,185 1,024 1 # 47 03 JAN
91
fmat DRAU 1 39 1,024 1 WORLD 08 NOV
90
OBJfile ---U 3 2,895 1,024 1 # 47 18 DEC
89
alpha1.P28 DLAC 2 1,304 1,024 1 # 50 22 OCT
90
alpha1.MP1 DLAC 6 5,397 1,024 1 # 50 22 OCT
90
manuals DR -L-- 1 304 1,024 1 # 47 02 JUL
90

7 files 54 BLKS 41,181 BYTES

33 files 3,000 BLKS 3,072,000 BYTES FREE

HI command dir

Command Reference Chapter 2 129

This command displays an extended listing for the current directory:

dir $ e

03 JAN 91 21:50:24
directory OF mydir ON VOLUME myvol

GRAN
NAME AT ACC BLKS LENGTH VOL FIL OWNER

LAST MOD
programs DR DL-- 30 30,185 1,024 1 # 47 03 JAN

91
CREATION: 01 JAN 91 04:05:44 ACCESSORS

ACC
LAST ACC: 03 JAN 91 05:52:33 # 47

DL--
LAST MOD: 03 JAN 91 05:52:33 # 50 -

LA-
82 -

L--
ed -R-- 11 1,057 1,024 1 # 47

02 MAR 90
CREATION: 11 NOV 85 12:24:05 ACCESSORS

ACC
LAST ACC: 02 MAR 90 14:22:16 # 47 -

R--
LAST MOD: 02 MAR 90 14:22:16

fmat DRAU 1 39 1,024 1 WORLD
08 NOV 90

CREATION: 01 NOV 87 08:54:39 ACCESSORS
ACC

LAST ACC: 03 JAN 91 14:56:59 WORLD
DRAU

LAST MOD: 08 NOV 90 20:44:01

3 files 42 BLKS 31,281 BYTES

33 files 3,000 BLKS 3,072,000 BYTES FREE

This is the meaning of fields shown in the listings.

Heading Meaning
NAME Up to 14-character filename (8.3 characters in DOS)

AT File attribute, where:

DR = Directory

MP = Bit map file

blank = Data file

ACC File access rights of the user who entered the dir command
For Directories: DLAC For Data Files: DRAU
D = Delete

D = Delete

dir HI command

130 Chapter 2 Command Descriptions

L = List
R = Read

A = Add
A = Append

C = Change
U = Update

BLKS 9-digit number (5 digits on short listing, unless the number is too
long) giving the volume-granularity units allocated to the file

LENGTH 10-digit number (7 digits on short listing, unless the number is too
long) giving the length of the file in bytes

VOL 5-digit number giving the volume granularity in bytes

FIL 3-digit number giving the granularity of the file in multiples of
volume granularity

OWNER User ID of the file owner

LAST MOD Date of last file modification

CREATION
LAST ACC
LAST MOD

Dates and times of file creation, last file access, and last file
modification

ACCESSORS User IDs of users who have access to the file, followed by the
access rights of the corresponding user. The format is identical to
ACC, above.

DOS Files

The size of DOS directories is listed as 0. All files are owned by the World user.
The CREATION, LAST ACC, and LAST MOD times are all equal to the DOS last

modified time.

NFS Files

Access rights and user IDs map differently between iRMX and other OSs when you
use NFS.

See also: permit command for information on NFS mapping

Remote iRMX-NET Files

You own and have full access to any new remote output files created by the dir
command. The listing format is identical to that for local directories. However,
some fields of iRMX-NET remote directory listings have different interpretations:

• The ACC field supports the R (read), A (append), and U (update) access controls
for data files, and the L (list) and A (add entry) access controls for directory files.
The D (delete) and C (change entry) values are omitted from the ACC field.

HI command dir

Command Reference Chapter 2 131

• Remote directory listings display the number of files, blocks, and bytes used by
the remote directory. The listings omit this information for the entire volume.

dir HI command

132 Chapter 2 Command Descriptions

• The user IDs in the OWNER and ACCESSORS fields may not be the same as a
listing on the remote system. Your (client) system receives a user name from the
server for these fields. Your system obtains the user ID that corresponds to that
user name from its own User Definition File (UDF). If your system and the
remote system are in different Administrative Units (subnetworks), and if both
systems contain a user by the same name, the user IDs are likely to be different.

• If the user name received from the server does not exist in the client UDF, the
user ID is displayed as 65534.

• The VOL granularity field is estimated by the Remote File Driver, using the value
returned by a BIOS rq_get_file_status call.

• The BLKS field is calculated by dividing the LENGTH field by the estimated value
of the VOL granularity field.

• The FIL granularity is assigned a value of 1.

Error Messages
no directory files found

None of the files you specified were directories.

<pathname>, READ access required
You do not have read (list) access to the directory.

HI command disconnect

Command Reference Chapter 2 133

disconnect
Removes a terminal connection established with the connect command; cannot be
used for virtual terminals.

Syntax

disconnect :logical_name:

Parameter

:logical_name:
The logical name for the physical terminal device that is to be disconnected.

Additional Information

The specified logical name is deleted from the root job's object directory and the
terminal returns to locked status, under HI control.

The Super user may disconnect any connected terminal. Other users can disconnect
only those terminals connected by themselves or by the World user. Disconnect
returns an error message if you attempt to disconnect a terminal originally connected
by another user.

If you change the terminal attributes while the terminal is connected, the changes
remain in force after the terminal is disconnected. Note your terminals attributes
before connecting; you must restore them before the HI can use the terminal.

Error Messages
<logical_name>, is not a terminal connection

The specified name does not represent a terminal connection.

<logical_name>, has not been connected
The specified name has not been connected using the connect command.

<logical_name>, not found
The terminal connected as <logical name> cannot be found in the terminal table.

<logical_name>, device does not belong to you
The device was originally connected by a user other than you or World; you cannot
disconnect the device.

*, invalid wildcard specification
Wildcards are not supported.

diskverify HI command

134 Chapter 2 Command Descriptions

diskverify
Invokes the Disk Verification Utility, which inspects, verifies, and corrects the data
structures of iRMX physical and named volumes. Operates as a single command
(described here) or in interactive mode.

See also: Using diskverify in interactive mode, Appendix B

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

diskverify :logical_name: [to|over|after outpath]
[disk|gb|v[options]|fix[options]]

The options for the verify and fix parameters are shown in the diagram on the
next page.

HI command diskverify

Command Reference Chapter 2 135

Parameters
logical_name

Logical name of the secondary storage device containing the volume to be verified.
The colons are not required.

to|over|after outpath
Pathname of the file to receive the output from diskverify. If you omit this
parameter, and/or no preposition is specified, the output goes to the console screen
(:co:). You cannot direct the output to a file on the volume being verified; if you do,
the utility returns an error message.

disk Displays attributes of the volume, such as the type of volume, device granularity,
block size, number of blocks, interleave factor, extension size, volume size, the root
fnode number, and number of fnodes.

gb (or getbadtrackinfo)
Reads and displays the bad track information from the volume. Output redirected to
a file may be used as input to the format command by removing the header
information.

v(erify)
Verifies the volume according to the specified option. If you omit the option, the
utility performs named verification.

diskverify HI command

136 Chapter 2 Command Descriptions

fix Verifies and fixes the volume according to the specified option. After performing the
verify functions, the utility tries to fix several types of inconsistencies on the
volume. Using the fix parameter may prove dangerous, since it changes data on the
disk. For example, during N1 verification, fix corrects the checksums on fnodes
with bad checksums. However, an fnode with a bad checksum may indicate another
fnode problem which needs attention.

It is best to use fix in this manner:

1. Use diskverify with the verify option.

2. Examine the output and the problems on the volume to determine the type of fix
needed.

3. If the problems can be fixed using diskverify, invoke diskverify with the fix
option to correct the problem.

n(amed) Performs both the N1 and N2 options described below. If you omit an option to
verify or fix, named is the default.

n1 (or named1)
For named volumes only, checks the fnodes of the volume to ensure that they match
the directories in terms of file type and file hierarchy. This option also checks the
information in each fnode to ensure that it is consistent and displays a list of files in
error, with information about each file. When used with fix, the N1 option corrects
bad checksums and attaches orphan fnodes to their parents.

See also: Fnodes, format command, in this chapter

all For named volumes, this option performs the N1, N2, and physical functions. For
physical volumes, only the physical option is done.

list A control you may use with any option that activates N1 verification (named, N1, or
all). When you use this control, the same file information generated by verify or
fix is displayed for every file on the volume, even if the file contains no errors.

n2 (or named2)
For named volumes only, checks the allocation of fnodes on the volume, checks the
allocation of space on the volume, and verifies that the fnodes point to the correct
locations on the volume. When used with fix, the N2 option saves on the volume the
correct bit maps constructed during verification. It also removes fnodes with
multiple references from illegal parent directories.

physical
Applies to both named and physical volumes. This option reads all blocks on the
volume and checks for I/O errors. It displays block numbers where errors are found.

HI command diskverify

Command Reference Chapter 2 137

Additional Information

Diskverify is most useful after such occurrences as power irregularities or accidental
reset. Diskverify can be used on only named and physical volumes; it cannot be used
on remote, NFS, EDOS, or DOS volumes. In DOSRMX and iRMX for PCs, use this
command only for an iRMX partition, not for a DOS drive or a partition containing
the DOS file system.

Diskverify can be used in two ways:

• As a single command that verifies the structures of a volume and returns control
to the Human Interface; this mode is covered here.

• In interactive mode, which you enter if you don't specify any parameters after
outpath; interactive mode is covered later in this manual. Using diskverify in
interactive mode requires a more thorough understanding of iRMX volume
structures to avoid damaging the volumes.

See also: diskverify in interactive mode, Appendix B
iRMX volume structures, Appendix C

When you invoke the diskverify command, the utility responds by displaying this
message, where Vx.y is the version number of the utility:

iRMX Disk Verify Utility, Vx.y

Copyright <year> Intel Corporation

All Rights Reserved

In single-command mode, the results of your diskverify command follow
immediately after the sign-on message. If you enter the interactive mode in error, the
sign-on message is followed by a prompt (*). To exit diskverify at the * prompt,
enter quit.

diskverify HI command

138 Chapter 2 Command Descriptions

Unless you are the Super user, you may only invoke diskverify for devices attached
by you or the World user. The diskverify utility reattaches the device as a physical
device before verifying it. When the utility finishes, it reattaches the device as it was
before you invoked the utility.

If you verify the system device (:sd:), the OS deletes all connections to the device;
thus you must reboot the system before entering more commands.

See also: Named and physical volumes, format command, in this chapter

Examples

1. This example uses the verify option:

-diskverify :f1: verify named2 <CR>

iRMX Disk Verify Utility, Vx.y

Copyright <year> Intel Corporation

All Rights Reserved

DEVICE NAME = F1 : DEVICE SIZE = 0003E900 : BLOCK SIZE= 0080

'NAMED2' VERIFICATION

BIT MAPS O.K.

The DEVICE SIZE is a hexadecimal number of bytes. The BLOCK SIZE is the
volume granularity in hexadecimal; this is the size of a block on this volume.

If there were errors found, they would be reported as shown below. This display also
applies to the n1 option and the fix parameter. If you use the list control, this
type of information is reported for all files, without an error message for files not in
error:

FILE=(<filename>, <fnodenum>): LEVEL=<lev>: PARENT=<parnt>: TYPE=<typ>
<error messages>

<fnodenum>
Hexadecimal number of the file's fnode.

<lev> Hexadecimal level of the file in the file hierarchy. The volume's root
directory is the only level 0 file. Files in the root directory are level 1
files. Files in level 1 directories are level 2 files, etc.

<parnt> Hexadecimal fnode number of the directory that contains this file.

<typ> File type, either DATA (data files), DIR (directory files), SMAP (volume
free space map), FMAP (free fnodes map), BMAP (bad blocks map), or
VLAB (volume label file). If diskverify cannot ascertain that the file is
a directory or data file, it displays the characters **** in this field.

HI command diskverify

Command Reference Chapter 2 139

2. This example uses the fix option to perform both named and physical

verification of a named volume and correct the problems on the volume. Notice
the prompt to save the bad block map from the physical verification.

-diskverify :f1: fix ALL <CR>

iRMX Disk Verify Utility, Vx.y

Copyright <year> Intel Corporation

All Rights Reserved

DEVICE NAME = F1 : DEVICE SIZE = 0003E900 : BLOCK SIZE= 0080

'NAMED1' VERIFICATION

'NAMED2' VERIFICATION

BIT MAPS O.K.

'PHYSICAL' VERIFICATION

NO ERRORS

free fnode map saved

free space map saved

save bad block map? <y>

bad block map saved

3. This example uses the disk option. This is for a named device; many of these
fields are not displayed for a physical device.

-diskverify :f2: disk <CR>

iRMX Disk Verify Utility, Vx.y

Copyright <year> Intel Corporation

All Rights Reserved

Device name = WF0

named disk, volume name = UTILS

device granularity = 0080

block size = 0080

number of blocks = 0000072D

number of free blocks = 00000408

volume size = 0003E900

interleave = 0005

extension size = 03

number of fnodes = 0038

number of free fnodes = 0022

root fnode = 0006

save area reserved = no

MSA second stage included = no

diskverify HI command

140 Chapter 2 Command Descriptions

4. This example uses the getbadtrackinfo option. This option may be useful on
a Multibus I system when migrating from a 215G controller to a 214 or 221
controller.

-diskverify :sd: to :f1:WORK/BT GB <CR>

This information is written to the :f1:work/bt file:

Bad track information

cyl head sector

0034 03 00

0043 02 00

0316 00 00

Error Messages

In addition to the errors listed below, the verify and fix options produce error
messages.

See also: diskverify error messages, Appendix B

argument error
The option you specified is not valid.

command syntax error
You made a syntax error when entering the command.

device size inconsistent size in volume label = <value1> : computed

size = <value2>
When diskverify computed the size of the volume based on the physical name used
for attachment, the size it computed did not match the information recorded in the
volume label. It is likely that the volume label contains invalid or corrupted
information. This is not a fatal error, but it indicates that further errors may occur
during verification. You may have to reformat the volume or use the diskverify
utility to modify or restore the volume label.

not a named disk
You tried to perform a named, named1, or named2 verification on a physical
volume.

Can't attach device
Diskverify's attachdevice system call failed or you specified the logical name of a
remote server.

HI command domain

Command Reference Chapter 2 141

domain
Sets the search domain of all subnets the iRMX-NET Name Server can access. Use
this command when you have set up a network with any subnet IDs except 1, using
routable iNA 960 jobs.

Syntax

domain [-a ID[-range]] [-d ID[-range]]

Parameters

-a Adds a single ID or a range of IDs to the search list.

-d Deletes a single ID or a range of IDs from the search list.

Additional Information

Without any parameters, domain displays the current search domain. With either
parameter, domain displays the current search domain after the addition or deletion.

When adding or deleting IDs, specify either a single subnet ID or a range of IDs
separated with a dash (-) and no spaces. The ID must be a four-digit hexadecimal
number followed by an H. For example, to add subnet 4 to the current search
domain, enter:

domain -a 0004H

To enable searching of all subnets from 1 to 1AH, enter:

domain -a 0001H-001AH

The maximum number of subnets to be searched is 80. You can specify subnet IDs
not currently in use. However, adding more subnet IDs to the search domain slows
down Name Server operations.

You can add the domain command to the loadinfo file following the sysload
command that loads the iRMX-NET job.

See also:Multibus II Subnet and Multiple Subnets, Network User’s Guide
and Reference

dump HI command

142 Chapter 2 Command Descriptions

dump
Displays one or more files in hexadecimal format.

Syntax

dump inpath_list [to|over|after outpath_list] [b|w] [q] [p=num]

Parameters
inpath_list

One or more filenames separated with commas. Wildcards are permitted.

to|over|after outpath_list
Writes the output to the specified file(s) rather than to the screen. If you specify
multiple input files and one output file, the output is appended.

b(yte) Displays the input files as 2-digit hexadecimal numbers, with the ASCII printable
characters on the right. This is the default format.

w(ord) Displays the input files as 4-digit hexadecimal numbers.

q(uery) Prompts for permission to process each file. Respond to the prompt with:

Y Display the file
R Display remaining files without further query
E Exit the command
N or other Don't display the file; query for the next

p(agewidth)=num
Specifies the width of the output display in number of characters. By default the
number is decimal, but you can specify octal or hexadecimal by appending an O or
H. If this parameter is not entered, the default width for byte displays is 80
characters, and for word displays is 55 characters.

Additional Information

All input files are considered one logical file. Therefore the offsets at the beginning
of each line are not reset to 0 between each file. The default output is in columns of
eight bytes for byte format and columns of four words for word format.

TCP/IP command enetinfo

Command Reference Chapter 2 143

enetinfo
Displays the Ethernet addresses of the local system.

Syntax

enetinfo

Additional Information

The output of the enetinfo command is similar to:

Subsystem ID Ethernet Hardware Address

0x20 00:aa:00:02:fd:3a

0x2f a2:a4:a6:a8:aa:00

The Subsystem ID indicates the subsystem being used by iNA 960 network software.
The Ethernet address is encoded on the network controller board. In a Multibus II
system you may have as many as three active network controller boards by using
MIX 560 boards. In this case the enetinfo command displays the subsystem ID and
Ethernet address for each board. iNA 960 assigns subsystem IDs according to the
Data Link subsystem on each board:

Subsystem ID Board
20H first MIX 560
21H SBX 586 board, EWENET module, or EtherExpress 16
22H second MIX 560
23H third MIX 560
24H 82595TX component, EtherExpress PRO/10, SBC P5090 and

P5120 PC-compatible boards, all versions
2FH Multibus II subnet

When configuring TCP/IP, you assign a particular stream to one of the boards in the
inetinit.cf file.

See also: /dev/edlina2x and inetinit.cf, TCP/IP and NFS for the iRMX Operating
System
Subsystem field in request blocks, Network User's Guide and Reference

esubmit HI command

144 Chapter 2 Command Descriptions

esubmit
Reads and executes a set of commands from a file called an esubmit file. The
esubmit command allows more replaceable parameters than submit, and the esubmit
file may contain programming statements and user-defined variables.

Syntax

esubmit pathname [(param_list)] [to|over|after outpath] [e]

[cc (char)] [mc (char)] [noexecute (ne,e)] [sc (char)]

[set (variable [=value][, variable [=value]...])]

[reset (variable_list)]

over

after

to

esubmit pathname

parameter-list

outpath

echo

set variable()

,

value

char char char

=

W-3469

variable-list

mc ()cc () sc ()

()

reset ()

ne

Parameters
pathname

Name of the file from which esubmit executes commands. This file may contain
nested esubmit commands. Typically the filename has the extension .csd, which you
do not include in the pathname. If no such file is found, the filename is assumed to
be exactly as entered here.

HI command esubmit

Command Reference Chapter 2 145

param_list
As many as 36 actual parameters, separated by commas, that are to replace formal
parameters in the esubmit file. You must surround this parameter list with
parentheses. To omit a parameter in the middle of the list, reserve its position by
entering a comma. If a parameter contains a comma, space, or parenthesis, enclose
the parameter in single or double quotes. The sum of all characters in the parameter
list must not exceed 1024 characters.

to|over|after outpath
Writes the output from each command in the esubmit file to the specified file rather
than to the screen. Commands in the esubmit file may redirect their own output; that
output is not written to this file.

e(cho) Data written to an output file is also echoed to the screen. Nested esubmit
commands do not have their contents echoed to the screen unless they are also
invoked with the echo parameter.

cc (or contchar or continuationchar)
Specifies a character in parentheses to be used as a line continuation character in
esubmit subcommands. By default, the continuation character is &.

mc (or metachar)
Specifies a character in parentheses to be used by esubmit as a metacharacter. By
default, the metacharacter is $. The metacharacter at the beginning of a line in the
esubmit file indicates the line contains an esubmit subcommand, rather than an OS
command.

ne (or noexecute)
Displays the commands without actually sending them to the iRMX Human
Interface.

sc (or subchar or substitutionchar)
Specifies a character in parentheses to be used by esubmit as a substitution character.
By default, the substitution character is %. The substitution character is used to
indicate substitution of formal parameters and esubmit variables.

set variable [=value]
Sets one or more user-defined variable names to the specified numeric value. If the
value is not specified, the default is one. The variable list must be within parentheses
and the variables must be separated with commas. The requirements for variable
names and values are described in a later section.

reset variable_list
Sets one or more user-defined variable names to zero. The variable list must be
within parentheses and the variables must be separated with commas.

See also: Example 6 for this command

esubmit HI command

146 Chapter 2 Command Descriptions

Additional Information

✏ Note
Do not include the following commands in an esubmit file:

backup restore
pause telnet

If you use a form of the following commands that requires user
input in an esubmit file, you must use the eoresponse and
coresponse subcommands with esubmit to access the user
repsonse. Without access to the required user input the commands
will fail.

accounting format
addloc ftp
copy help
copydir locdata
date permit
delete remini
deletedir rename
dir time
diskverify

The esubmit command has these characteristics in common with the submit
command:

• Any program that reads its commands from the console input (:ci:) can be
executed from within an esubmit file. With certain restrictions described at the
end of this section, a submit file may be used with the esubmit command.

• The esubmit command can be nested in an esubmit file to any level, within the
limits of memory.

• If esubmit is operating in the foreground, you may enter a <Ctrl-C> to abort
esubmit processing and return control to the command line.

• You own and have full access to any new files created by the esubmit command,
including files created by the to, over, or after parameters.

HI command esubmit

Command Reference Chapter 2 147

To use the esubmit command, you must first create a text file that defines the
command sequence. Esubmit supports aliases similar to the way in which the iRMX
CLI does for iRMX commands (note that this does not include alias support for
esubmit commands). The alias and dealias commands, and alias expansion are
supported. The difference between the alias support in esubmit and in the iRMX
CLI is that esubmit treats the "?" (question mark) character as a single character wild
card. The iRMX CLI treats the "?" character as a supported ASCII character for the
alias abbreviation and the alias expansion.

Other CLI commands, such as background, cannot be used in the file. Before
submitting commands in the file to the OS, esubmit processes these elements in the
file:

• formal parameters

• esubmit variables

• esubmit subcommands

In most cases, an error within an esubmit subcommand causes esubmit to terminate.
When all commands in the esubmit file have been executed, esubmit displays:

END esubmit <pathname>

Formal Parameters

Formal parameters in the esubmit file are specified by the characters %n, where % is
the substitution character and n ranges from 0 through 9 and A through Z, in that
order. Letters used as formal parameters are not case-sensitive. When esubmit
executes the file, it replaces the formal parameters with the actual parameter list in
the esubmit command. The first actual parameter replaces all instances of %0, the
second parameter replaces all instances of %1, and so forth. If the actual parameter
is surrounded by quotes (to avoid command-line interpretation of a comma, space, or
parenthesis in the parameter), esubmit removes the quotes before performing the
substitution. If there is no actual parameter that corresponds to a formal parameter,
esubmit replaces the formal parameter with a null string.

Within each line of the esubmit file, substitution of formal parameters occurs before
processing of esubmit subcommands. Therefore, the metacharacter, a subcommand,
or an expression within a subcommand may be passed as an input parameter.

See also: Example 1 for this command

Variables

Variables are names defined by the user and set to a numeric or string value on the
command line or in an esubmit file. Numerical and string variable names can be 1 to
32 characters and are not case-sensitive. String variables follow the same syntactic

esubmit HI command

148 Chapter 2 Command Descriptions

rules as numerical variables, except that all string variables start with an underscore
(_) followed by either A through Z or a through z. The maximum length of the value
of each string variable is 128 bytes.

There are five new read-only esubmit variables.

• date is a numeric variable that contains the value yymmdd in decimal where yy
is the last two digits of the year, mm is the month, and dd is the day of the current
date.

• time is a numeric variable that contains the value hhmmss in decimal where hh
is the hour, mm is the minute, and ss is the second of the current time.

• _date is a string variable that contains the value mm/dd/yy where yy is the last
two digits of the year, mm is the month, and dd is the day of the current date.

• _time is a string variable that contains the value hh:mm:ss where hh is the hour,
mm is the minute, and ss is the second of the current time.

• _hostid is a string variable that contains the interconnect board id for the
current board.

Two variable names are reserved:

• Commandexcep always contains the condition code of the last command
executed. This read-only variable cannot be changed with the set or reset
subcommands.

• Inputparameters is a read-only variable that contains the value of the number
of input parameters (within parentheses) that were passed by the CLI to the
command sequence definition file.

Variables can be set to any whole number value in the range 0-0FFFFFFFFH. When
you set a value, the default base is decimal, but you may specify the base by
appending one of these letters to the value: B for binary, O or Q for octal, D or T for
decimal, H or X for hexadecimal, or E for enumerated. Enumerated numbers range
from 0 through 9 and A through Z, with equivalent decimal values of 0 through 9 and
10 through 35. To distinguish between variable names and values, values must begin
with a numeral 0 through 9.

See also: Example 2 for this command

String variable values are assigned using the set and for subcommands. Set supports
concatenation using the plus (+) character. For supports sets inside braces ({ and })
delimited by commas. All values that are not other string variables must be enclosed
within quotation marks. Both single and double quotation marks are supported, but
they must match within a single assignment statement. An example of a set
command with a string variable is:

$SET _stringvar = "my string's value"

HI command esubmit

Command Reference Chapter 2 149

This assigns the value enclosed by the double quotes, including the single quote, to
the string variable _stringvar. An example of a set command with concatenation
is:

$SET _stringvar = _stringvar + ' delimiter ' + _stringvar

An example of a for command with sets is:

$FOR _stringvar = {"one",'two',_stringvar+"three's",'four'}

String variables are maintained in an internal table separate from the one for
numerical variables, and, therefore, do not count against the limit of numerical
variables. The default maximum number of string variables is 32. This is
configurable with the commands allocatestring, clearstring, and initstring, which
are equivalent to the allocate, clear, and init subcommands for numeric variables,
respectively. The maximum allowable number of string variables is 128. Each entry
in the table takes 162 bytes (1 byte for the variable name length, 32 bytes for the
variable name, 1 byte for the string value length, and 128 bytes for the string value).

Generally, a variable name within esubmit subcommands may be used to represent
the value to which it is set. However, when writing information to a file or issuing an
OS command, you need the actual value as an ASCII string rather than the variable
name that represents the value. To accomplish this, format the variable name in the
esubmit file as a variable substitution string. The esubmit command replaces the
substitution string with an ASCII string corresponding to the current numeric value.
This process is similar to replacing formal parameters.

The esubmit command substitutes the value string for variables preceded by the
substitution character and metacharacter, and followed by the metacharacter. You
may format the way the value string is displayed when substitution takes place by
embedding optional control characters before the variable name. The syntax for
variable substitution is shown below; the characters cannot be separated with spaces.
The closing metacharacter may be replaced with an end-of-line or end-of-file.

subchar metachar [base digits zerosupp] variable metachar

Base, digits, and zerosupp are format control characters that may occur in any
order, but each may only be specified once for a given variable. Each control
character is preceded with a backslash (\). Control characters are not case-sensitive.
If no variable name is provided, the value 0 is substituted in the specified format.

base By default, the value is substituted in decimal. You may specify the
base with a two-character code: \B for binary, \O or \Q for octal, \D or
\T for decimal, \H or \X for hexadecimal, or \E for enumerated.

digits This is a two-character code specifying the number of digits to use: \0
through \9. If the specified number is smaller than the number of
significant digits, this code is ignored (the string %$\2var$ with

esubmit HI command

150 Chapter 2 Command Descriptions

var=1234 becomes 1234). If the specified number is greater than the
number of significant digits, the display is padded with leading zeros
(the string %$\4var$ with var=3 becomes 0003).

zerosupp If the value is 0, it is substituted in the number of digits indicated (one
by default), unless you specify 0 suppression with a \S or \Z. Zero
suppression takes precedence over the number of digits (the string
%$\Z\2var$ with var=0 displays nothing). Zero suppression does not
suppress leading 0s in a non-zero value.

Examples of the string substituted for the variable myvar = 165 are shown below:

Variable String Substituted String
%$myvar$ 165
%\Hmyvar A5
%$\z\5myvar$ 00165

Part of a variable name may be formed by embedding a formal parameter or another
variable substitution string. The form is %$variableX$ where variable is at least
one character and X is a formal parameter (%0 through %Z) or a second variable
string. For example, assume the variable myvar2 has the value 7, the first input
parameter (%0) is 2, and the variable index2 has the value 2. During substitution,
the strings %$myvar%0$, %$myvar%$index2$$, and %$myvar%$index%0$$

become instances of %$myvar2$. Each is replaced with 7.

When an esubmit command is nested in an esubmit file, the nested esubmit shares
no variables with the parent esubmit. Each invocation of esubmit starts with a
buffer large enough for 80 variables. Refer to the allocate, clear, and init

subcommands for information about manipulating the buffer size.

Using Esubmit Subcommands

Esubmit subcommands are commands in the esubmit file to control processing. You
indicate a subcommand with a metacharacter ($ by default) at the beginning of the
line in the esubmit file. The metacharacter must be in the first column; if you indent
subcommands, do not indent the metacharacter. Subcommands are not case-
sensitive. A subcommand may be continued on subsequent lines with the
continuation character (& by default). Any text following the continuation character
on the same line is ignored. Subsequent continuation lines may optionally include a
metacharacter in the first column.

Within a subcommand, the semicolon (;) is a comment character. Any text following
a semicolon on a subcommand line is ignored. However, variable substitution and
input parameter substitution occur in a comment.

Some subcommands define programming expression blocks that conditionally
execute OS commands within the block. The subcommands to terminate a block

HI command esubmit

Command Reference Chapter 2 151

(endif, endwhile, enduntil, endcase, end, and next) are matched with the
most recent corresponding subcommand (if, ifexist, ifnotexist, dowhile,
dountil, case, do, and for). Programming expression blocks may be nested up to
14 deep, in any order. Subcommands may contain mathematical or logical
expressions as arguments. Elements in expressions are not case-sensitive.

Mathematical and Logical Expressions

Mathematical expressions are expressions evaluated to a whole number in the range
0-0FFFFFFFFH. Mathematical expressions have the form:

operand [operator operand]...

An operand may be a numeric constant (optionally followed by a character indicating
the base), a variable, or another mathematical expression enclosed in parentheses.

Operators are the characters % (modulus), * (multiplication), / (division), +
(addition), and - (subtraction). When the substitution character is %, a space or tab
must follow the % modulus operator on a subcommand line. Otherwise, the
substitution character takes precedence over the modulus operator. This is the order
of precedence for operators:

()

% Evaluated left to right
* and / Evaluated left to right
+ and - Evaluated left to right

esubmit HI command

152 Chapter 2 Command Descriptions

This is an example of a mathematical expression:

(36H / (17 + subtotal)) % 32

Logical expressions are expressions evaluated to TRUE or FALSE. TRUE is defined
as the least significant bit on (all other bits are ignored) and FALSE is defined as the
least significant bit off (all other bits are ignored). Logical expressions have the
form:

[not] variable [relation expression] [logical [not] variable ...]

Relation is one of <, <=, =, <>, >=, or >. Expression is a mathematical
expression enclosed in parentheses, a variable, or a numeric constant (optionally
followed by a character indicating the base). Logical is one of the logical operators
AND, OR, or XOR. This is the order of precedence for elements in a logical
expression:

()

NOT

AND, OR, and XOR Evaluated left to right. (The current order of evaluation
does not follow commonly accepted practice, which is
AND evaluated left to right, then OR and XOR evaluated
left to right.)

This is an example of a logical expression:

myvar = 32T OR NOT myvar = 10H

HI command esubmit

Command Reference Chapter 2 153

Subcommand Descriptions

allocate

clear

init

The allocate, clear, and init subcommands adjust the size of the
variable table buffer. This is a buffer that stores the variable names
and values; when esubmit is invoked the buffer has room for 80
variables. Init and clear are equivalent, and reinitialize the buffer
so no variables are currently stored in it. Allocate reinitializes the
buffer without losing the current contents, unless you specify a new
buffer size smaller than the existing number of variables. These
subcommands can be used to dynamically tune the esubmit memory
requirements and resource availability. It takes 37 bytes to store each
variable in the table: 1 byte for the variable name length, 32 bytes for
the name, and 4 bytes for the value. The form of the subcommand is

$keyword [mathematical expression]

where keyword is allocate, clear, or init, and mathematical

expression is the number of variables to be supported by the new
table. The maximum number of variables is 600H; if more than 600H
are requested, the number is reduced to 600H. If you specify 0, or if
no mathematical expression is provided, the default number is 80. If
you use allocate to make the buffer smaller than the current number
of variables, only the specified number of variables is preserved. The
most recently declared variables are lost.

See also: Example 3 for this command

If an error is encountered trying to change the buffer using one of
these subcommands, esubmit continues and the previous variable
buffer is maintained.

break The break subcommand executes an Interrupt 3 to break to the debug
monitor. When this subcommand is executed, all processing in the
system is halted. To allow pending I/O to complete before the INT 3,
it is prudent to execute a delay subcommand immediately before the
break. The subcommand has the form:

$BREAK

See also: Example 4 for this command

esubmit HI command

154 Chapter 2 Command Descriptions

case...

value...

default...

endcase

These subcommands conditionally execute lines of text between them,
where the text may be other subcommands and/or OS commands.
Case begins the conditional block and endcase terminates it. Value

and, optionally, default define blocks of text between the case and
endcase.

Only one block of text is executed: the block following the first
value expression equivalent to the value in the case subcommand.
If no value expression is equivalent to the case expression, the block
of text following the default subcommand is executed. (Including
value subcommands after the default subcommand is pointless,
since the default or a previous value expression will have already
forced execution of a text block.)

The case...endcase block has the form:

$CASE mathematical expression

$VALUE mathematical expression

text

[$VALUE mathematical expression]

[text]

[$DEFAULT mathematical expression]

[text]

$ENDCASE

This is an example of a case...endcase block:

$CASE 5 - 200 % (myvar * 3)

$VALUE newvar - 1

text

$VALUE (newvar * 2) - 3

text

$DEFAULT

text

$ENDCASE

clear See the allocate, clear, init description.

HI command esubmit

Command Reference Chapter 2 155

coresponse

eoresponse

These commands execute the c_send_co_response and
c_send_eo_response Human Interface calls. They use a
prompt_string as the message parameter, which is sent to :CO: (for
coresponse) or to the operator's terminal (for eoresponse).
Execution will be halted until input is received. An eoresponse

input must come from the operator's terminal. A coresponse input
will come from whatever is attached as :CO: (possibly another
esubmit file that is executing this one). The syntax is:

$CORESPONSE variable [prompt_string]

$EORESPONSE variable [prompt_string]

where variable is a numeric or string variable and the optional
parameter prompt_string is a string constant enclosed in quotes or a
string variable expression.

Examples:

$CORESPONSE _input_string "Enter a string value: "

$CORESPONSE _opt “Enter dir opt: “

dir $ %$_opt$

$EORESPONSE input_var "Please enter a numeric value:

"

$EORESPONSE _opt “Enter dir opt: “

dir $ %$_opt$

continuationchar

contchar

These subcommands are equivalent. Contchar changes the
continuation character from the point where this subcommand occurs.
The continuation character (& by default) specifies that a
subcommand continues on this line. For example, to make @ the
continuation character, use the subcommand:

$CONTCHAR @

esubmit HI command

156 Chapter 2 Command Descriptions

copydependency The copydependency subcommand copies one file over another
under certain conditions. It has this syntax:

$COPYDEPENDENCY target | dependency [access]

where target is a single filename, dependency is a single filename,
and access is an optional parameter listing the World access rights to
be granted to the target file if a copy is performed. (In the syntax
above, you must enter the pipe symbol (|) as part of the command. It
means that the dependency file follows, as in the make command. In
this case, the pipe symbol does not mean enter either target or
dependency as part of the command.) If the target file does not
exist, or if the dependency file has been modified later than the target
file, then the dependency file is copied over the target file. Choices
for access include any permutation of "DRAU" access. If you do not
specify access, the current user will have DRAU access, and all
other non-Super users will have ---- access.

createdirdependency

mkdirdependency

These subcommands are equivalent. They create a directory unless
the specified directory already exists. The syntax is:

$CREATEDIRDEPENDENCY target

$MKDIRDEPENDENCY target

where target is a single directory name. If the target directory does
not exist it is created, with World DLAC access rights.

delay

pause

sleep

wait

These subcommands are equivalent. They delay execution of the
esubmit file for a specified amount of time. The form of the
subcommand is

$keyword delaytime

where keyword is one of delay, pause, sleep, or wait, and
delaytime is a number, variable, or mathematical expression that
indicates the amount of time to delay, in hundredths of seconds. This
list shows the amount of delay time for various commands:

Subcommand Seconds Delayed
$DELAY 100 1
$PAUSE 200 2
$SLEEP 5 * 100 5
$WAIT myvar 10, when myvar = 1000

HI command esubmit

Command Reference Chapter 2 157

dependency...

enddependency

The dependency subcommand conditionally executes any
commands until the enddependency subcommand, depending on
certain conditions. It has this syntax:

$DEPENDENCY target | dependency_list

<esubmit and iRMX commands>

$ENDDEPENDENCY

where target is a single filename and dependency_list is a list of
filenames delimited by spaces or tabs. (In the syntax above, you must
enter the pipe symbol (|) as part of the command. It means that the
dependency file follows, as in the make command. In this case, the
pipe symbol does not mean enter either target or dependency as
part of the command.) If the target file does not exist, or if no
dependency files are specified, or if any of the dependency files have
been modified later than the target file, the commands inside the
dependency/enddependency loop are executed. Otherwise, they will
not be executed.

do...end See the for...next description.

dowhile...

endwhile,

dountil...

enduntil

These subcommands conditionally execute the intermediate block of
text in a loop, based on logical expressions involving variables.
Dowhile...endwhile executes the text as long as the conditional
expression evaluates to TRUE. Dountil...enduntil executes the
text as long as the conditional expression evaluates to FALSE. The
subcommands have the form:

$DOWHILE logical expression

text

$ENDWHILE

$DOUNTIL logical expression

text

$ENDUNTIL

These are examples of subcommands that cause infinite loops:

$DOWHILE 1

text

$ENDWHILE

$DOUNTIL 0

text

$ENDUNTIL

eoresponse See the coresponse, eoresponse description.

esubmit HI command

158 Chapter 2 Command Descriptions

exit

quit

The exit and quit subcommands end the current esubmit
processing. If the current esubmit file was invoked with an include

command from another esubmit file, then processing of that parent file
is also ended. If the current esubmit file was invoked from an
esubmit command in another esubmit file, then processing of that
parent file resumes. The subcommands are equivalent and have the
following syntax:

$EXIT exit_value

$QUIT exit_value

where exit_value is a mathematical expression whose value is
passed to the Human Interface as the command exception when
esubmit exits using the rq_exit_io_job system call.

HI command esubmit

Command Reference Chapter 2 159

for...next,

do...end

These subcommands execute a block of text a specified number of
iterations. Do...end is equivalent to for...next. The
subcommands typically have the form:

$FOR variable = startvalue TO stopvalue [STEP

stepvalue]

text

$NEXT

$DO variable = startvalue TO stopvalue [BY

stepvalue]

text

$END

Startvalue, stopvalue, and stepvalue may be numeric
constants, variables, or mathematical expressions enclosed in
parentheses. Startvalue must be less than or equal to stopvalue

to enter the loop. Stepvalue is always interpreted to be greater than
or equal to 0. Text following the next subcommand on the same line
is ignored. Therefore, next always ends the loop begun by the last
for subcommand. In nested loops, specifying $NEXT

variable_name does not necessarily end the loop begun with a $FOR
variable_name = subcommand.

See also: Example 5 for this command

If the value of the loop variable is modified within the loop (using the
set subcommand), the next iteration increments the modified value of
the variable instead of the previous iterative value. The same variable
should not be used as a loop counter within nested loops.

The for and next and the do and end subcommands must occur as
pairs. You can not have a for...end or a do...next block.
However, the step and by keywords are interchangeable.

An alternate form of these subcommands is to iteratively assign the
variable to a set of values in a list. The loop executes once for each
value in the list, independently of whether the variable is modified
within the loop. This form of the command is:

$FOR variable = {list}

text

$NEXT

esubmit HI command

160 Chapter 2 Command Descriptions

List is a series of numeric constants, variables, or mathematical
expressions enclosed in parentheses. Surround the list with braces
({ }) and separate each item in the list with commas.

This example would execute five times, once for each value in the list:

$DO loopvar = & {10,(4*9),myvar,(myvar*2),%$myvar$}

text

$END

gethostid Sets an environment variable to the value of the Multibus II slot ID of
the host CPU board. If an error is encountered, such as not having the
Nucleus Communication System configured, the environment variable
is set to 0FFH. This is the syntax:

$GETHOSTID variable

HI command esubmit

Command Reference Chapter 2 161

if/ifexist...

ifnexist...

ifnotexist...

else...

elseif...

elseifexist...

elseifnexist...

elseifnotexist...

endif

These subcommands conditionally execute blocks of text, based on
logical expressions. If, ifexist, ifnexist or ifnotexist begin
the conditional block and endif terminates it. Else, elseif,
elseifexist, elseifnexist and elseifnotexist may be used
between the if/ifexist and the endif; only one block of text
defined by the subcommands is executed. Ifexist, elseifexist,
ifnexist, ifnotexist, elseifnexist and elseifnotexist

are similar to if and elseif, except that the conditional expression is
a pathname. The positive conditionals evaluate to TRUE if the file
exists (even if it's an empty file) or FALSE if it doesn't exist. The
negative conditionals evaluate to TRUE if the specified file does not
exist, or FALSE if it does exist.

The subcommand block has the form:

$IF logical expression

text

[$ELSEIF logical expression]

[text]

[$ELSEIFEXIST filename]

[text]

[$ELSEIFNEXIST filename]

[text]

[$ELSEIF logical expression]

[text]

[$ELSE]

[text]

$ENDIF

The block shown above could begin with the statement $IFEXIST
filename. This is an example of using these subcommands:

$RESET EOK

$IF r_32 AND NOT (COMMANDEXCEP = EOK)

text to handle error condition

$ELSEIFEXIST a.inc

$INCLUDE a.inc

$ELSE

text to handle default case

$ENDIF

esubmit HI command

162 Chapter 2 Command Descriptions

include This subcommand executes the contents of another file as if the text
existed in the current esubmit file. The scope of variables and input
parameters for the included file is the same as for the including
esubmit file. The nesting limit for include is 6.

The subcommand has the form:

$INCLUDE filename

where filename is either the full pathname of the file or the
pathname relative to the current working directory. Include does not
append any extension to the specified filename. For example, to
include the file test.inc in the csd subdirectory under your current
working directory, the subcommand is:

$INCLUDE csd/test.inc.

init See the allocate, clear, init description.

HI command esubmit

Command Reference Chapter 2 163

log The log subcommand appends a log message to a file. The
subcommand has the form:

$LOG filename [list]

where filename is any valid pathname and list is an optional list of
arguments to be written to the file. Arguments in the list must be
separated with spaces. Arguments can include text strings (quotes are
not required) and variables in substitution format. If the Universal
Development Interface (UDI) is part of the current iRMX system, the
date and time are the first two arguments in the line written to the file.
The arguments in list are appended to the line in order, separated in
the log file by two spaces. Arguments longer than 12 characters are
truncated; arguments shorter than 12 characters are padded in the log
file with trailing spaces.

If the file exists, the line is appended to the end of the file. If the file
does not exist, it is created. If an error is encountered while trying to
attach or create the file, an error message is displayed and the log
subcommand is aborted, but esubmit continues executing. Examples
of the log subcommand are:

$LOG

$LOG file.log

$LOG file.log Command_%$\3myvar$ Error_=

%$commandexcep$

If no parameters are provided in the log subcommand, as in the first
line above, esubmit writes the date and time to :co:. For the $LOG
file.log command, esubmit writes the date and time to the log file.
For the third example above, esubmit writes the date, time, and
"command_002=00" to the log file.

metachar Use this subcommand to change the metacharacter from within the
esubmit file. For example, if the metacharacter has not been changed
on the command line, the subcommand to make # the metacharacter
is:

$METACHAR #

esubmit HI command

164 Chapter 2 Command Descriptions

min

max

The min and max subcommands assign to a variable the minimum or
maximum value from a list of values. The subcommand has the form:

$keyword variable {list}

where keyword is either min or max and list is a series of operands
separated by commas. The operands may be mathematical
expressions enclosed in parentheses. For example:

$MIN minvalue {10,30,99,%$myvar$,42}

$MAX maxvalue {10,30,99,(myvar% 20),42}

pause See the delay description.

random The random subcommand returns a pseudo-random value. It has this
syntax:

$RANDOM variable maximum_value

where variable is an esubmit numeric variable and
maximum_value is a mathematical expression as defined in the
"Mathematical and Logical Expressions" section under this command
description. Random executes a call to get_time and returns the value
(time MOD maximum_value). This is not a true random number
function because the variation of the value returned by consecutive
random functions is dependent on the time elapsed between the calls.

set,

reset

Set sets a variable to a specified value. If no value is specified, the
default is one. Reset sets a variable to 0. These subcommands have
the form:

$SET variable [= mathematical expression]

$RESET variable

Examples are:

$SET r_32

$SET iteration = iteration + 1

$SET execution_cnt = (iteration * loop) / 10H

$RESET a

sleep See the delay description.

substitutionchar

subchar

These subcommands are equivalent. Subchar changes the
substitution character (% by default) from the point in the esubmit file
where this subcommand occurs. For example, this is the subcommand
to make @ the substitution character:

$SUBCHAR @

HI command esubmit

Command Reference Chapter 2 165

wait See the delay description.

Compatibility with Submit Files

A file that works with the submit command may be used as an esubmit file, with
these restrictions:

• A line that begins with $ is assumed to be an esubmit subcommand. If this
occurs in the submit file, change the metacharacter on the command line to a
character that does not occur at the beginning of the line.

• If the two characters %$ occur in sequence, where % is the substitution character
and $ is the metacharacter, the text that follows until a closing metacharacter is
assumed to be an esubmit variable. If this occurs in the submit file, change the
substitution character and/or the metacharacter on the command line. If you
change the substitution character, you must also change the character used in the
submit file for substitution of formal parameters.

• If the two characters %X occur in sequence, where % is the substitution
character and X is any character from A to Z, upper- or lower-case, the
characters are assumed to be a formal parameter. If this occurs in the submit
file, change the substitution character on the command line. You must also
change the character used in the submit file for substitution of formal
parameters.

• The file must use full command names rather than CLI-supported aliases. For
example, use attachdevice instead of ad. CLI commands such as alias, dealias,
and background may not be used in an esubmit file.

Examples

1. This is an esubmit invocation that calls the file test.csd and uses the set
subcommand:

esubmit test (:sd:testdir/test1, :sd: testdir/test2) &

set (decision=1)

esubmit HI command

166 Chapter 2 Command Descriptions

This code is the file test.csd; it uses the if, else, and endif subcommands:

$if decision = 1

%0

$else

%1

$endif

The esubmit invocation will be interpreted as:

$if decision = 1

:sd:testdir/test1

$else

:sd:testdir/test2

$endif

2. This examples use the set subcommand:

$set num = 255

$set bin_num = 11111111b

$set oct_num = 377Q

$set hex_num = 0FFh

3. These examples use the allocate, clear, and init subcommands:

$clear ;clears variable buffer of all variables

$init ;same as clear

$allocate 100 ;creates variable buffer capable &

of having 99 variables

$allocate %0 ;creates a variable buffer the &

size of the first parameter-1

4. This command sets a delay of 2 seconds before the break:

$delay 200

$break

5. This example references all of your input parameters sequentially using the for
and next subcommands:

$for loopvar = 0 to (inputparameters-1)

%%\Eloopvar

$next

Loopvar would take on the values 0,1,...,9,A,...Z depending on how many
parameters you passed in. The substitution %%\Eloopvar would give you
%0, %1,...%9,%A... which in turn would give you your parameters.

HI command esubmit

Command Reference Chapter 2 167

6. These are esubmit invocations of the file test.csd:

esubmit :sd:testdir/test (:amh:,1)

esubmit test (:amh:,1) over log/test.log echo

esubmit test (:amh:,1) cc(\) mc(@) sc(#)&

set (dos_lvl=330,file_driver=1)

esubmit test (:amh:,1) reset (dos_lvl,file_driver)

Error Messages

The error messages listed under the submit command may be returned, as well as:

error creating variable buffer
An error was encountered creating the variable table buffer segment. If this error is
caused by invoking esubmit while trying to create the original variable table buffer,
it is fatal and causes esubmit to exit. If the error is returned because of an
allocate, clear, or init subcommand, it is not fatal. The original variable buffer
is maintained.

illegal ASCII base
The code used to indicate a numeric base is not a valid value.

illegal subcommand
The esubmit file contains a line with the metacharacter in the first column, but it is
not followed by a supported subcommand.

illegal invocation parameter
The esubmit invocation line contains an illegal parameter.

illegal operand
The subcommand did not find a valid operand (%, *, /, +, or -).

illegal relation
The subcommand did not find a valid relation (<, <=, =, <>, >=, or >)

illegal variable name
The esubmit file contains a reference to an illegal variable name.

insufficient input
The subcommand did not contain sufficient input to complete its function.

misplaced logical
The subcommand found a logical keyword (NOT, AND, OR, or XOR) where one is
not allowed.

misplaced parenthesis
The subcommand found a parenthesis where one is not allowed.

missing environment command
The esubmit file contains the metacharacter in the first column of a line, with either
nothing or only a comment character following (regardless of spaces and tabs).

esubmit HI command

168 Chapter 2 Command Descriptions

missing logical
The subcommand did not find a valid logical keyword (NOT, AND, OR, or XOR)
where one was expected.

missing operand
The subcommand did not find a valid operand (%, *, /, +, or -) where one was
expected.

nesting limit exceeded
The include nesting limit of six has been exceeded.

unmatched (
An unmatched open-parenthesis was encountered.

unmatched)
An unmatched close-parenthesis was encountered.

unmatched command
A subcommand was encountered that required a previous subcommand for it to be
valid. This could be caused by:

• An elseif, else, elseifexist, or endif without a preceding if or
ifexist

• A value, default, or endcase without a preceding case

• An endwhile or enduntil without a preceding dowhile or dountil,
respectively

• A next or end without a preceding for or do, respectively.

variable limit exceeded
More variables have been declared than can be supported in the current table. Refer
to the allocate, clear, and init subcommands.

CLI command exit

Command Reference Chapter 2 169

exit
Exits the system manager mode that was entered with a previous super command.

Syntax

exit

Additional Information

When you enter this command, the CLI changes your user ID back to the ID you had
before entering the last super command. It also changes the system prompt back to
the prompt in effect before the super command.

Error Messages
exit, allowed only in super mode

You invoked this command without previously invoking the super command.

<parameter>, unexpected parameter
You entered a parameter; the exit command does not take any parameters.

<condition code:mnemonic>, during exit execution
An internal system problem occurred which prevented the CLI from setting the
default user.

find HI command

170 Chapter 2 Command Descriptions

find
Searches a directory tree for files with names that match a given pattern. For each
matching filename, the full pathname is displayed.

Syntax

find pattern [directory [to|over|after outpath]]

Parameters
pattern

A pattern filename that may contain wildcards.

directory
The pathname of the directory to search for matching filenames. All subdirectories
are also searched.

to|over|after outpath
Writes the output to the specified file rather than to the screen.

Additional Information

The find command recursively descends a directory hierarchy comparing the pattern
with each data or directory file in the tree. If you do not specify a directory, find
searches the current working directory. However, you must specify a search
directory if you direct the output to a file using the to, over, or after parameter.

This command finds all files under the current directory that begin with term. It
writes their pathnames to the findlog file in this directory:

find term* $ over findlog

This command displays the pathnames of all files on this volume that end in doc:

find *doc /

NET command findname

Command Reference Chapter 2 171

findname
Finds the spokesman system on the network that has cataloged a specified object
name in its Name Server table.

Syntax

findname object_name [P=property] [R=retries] [L]

Parameters
object_name

The name of the object to locate. This may be the name of a file server or virtual
terminal server, or any other object in the Name Server object tables.

property
The property type of the object to be located; assumed to be a hexadecimal value.
You need not specify an H after the value unless it contains the letters A-F. Any
letters in the hexadecimal value must be entered in upper-case (but the H need not
be). If a property type is not specified, 5H is the default.

retries
A decimal number of times the Name Server should try to find the spokesman using a
different slot ID (necessary only for Multibus II spokesman systems). The maximum
is 21. The default is 8.

L Additionally display the Ethernet address of the spokesman system.

Additional Information

Table 2-4 shows some of the property types defined by Intel. Types with values
8000H and higher are available for user definition.

findname NET command

172 Chapter 2 Command Descriptions

Table 2-4. Property Types Used in Name Server Entries

Type Value Kind of Entry

0000H File server TSAP ID

0001H File client TSAP ID

0002H Name of client

0003H File server transport address

0004H Configuration objects

0005H Host unique ID

0000H-7FFFH Reserved by Intel

8000H-0FFFFH Available for user applications

The findname command provides information about the system whose Name Server
has cataloged the specified object. The findname command returns the name of the
system where the given object is entered. If an object by the same name is cataloged
on multiple systems, only the first system found is listed. You may specify an object
by its name or by name and property type.

The findname command tries up to eight times to find the name of the system where
the given object is entered. This is necessary because in Multibus II systems, the host
can be located in any one of the slots, and the slot ID is used as part of the unique ID
for the object. If the Multibus II system contains more than eight slots, specify the
retries option to increase the number of trials. Repeated trials are indicated by this
message, where n stands for the number of trials:

finding iRMX System name - Trial n

In Multibus I and PC systems, the findname command finds the name of the host in
the first trial.

See also: Format of names and addresses, setname and loadname commands, in
this chapter

Error Messages
<object_name>, illegal name

The name given in the command line is longer than 16 characters. Execute the
findname command again with a valid object name.

<object_name>, illegal property
The property type of the object specified in the command line is longer than four
characters. Execute the findname command again using a valid property type.

NET command findname

Command Reference Chapter 2 173

<object_name>, illegal option
The switch specified in the command line is not correct. Execute the command again
giving the correct switch.

Spokesman name for object not found
The name of the host with the property type 0005H is not entered in the object table
of the spokesman. The findname command could not find the name of the
spokesman; it displays the Ethernet address of the spokesman system.

<name>, name does not exist
The given object does not exist in the network.

format HI command

174 Chapter 2 Command Descriptions

format
Formats an iRMX or DOS volume on an attached device, such as a diskette or hard
disk. The format command cannot format a device across a network.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

format :logical_name:[volume_name] [named|DOS|physical
[options]]

format :logical_name: getbadtracks [> pathname]

format :logical_name: bootstrap [msaboot|pcboot]

Use one of the three forms of the command shown above. The main optional
parameters for formatting named, DOS, and physical devices are shown below.
The options for physical and DOS are a subset of the options for named.

HI command format

Command Reference Chapter 2 175

Options for Formatting Named Devices

Options for Formatting DOS Devices

format HI command

176 Chapter 2 Command Descriptions

Options for Formatting Physical Devices

Parameters

:logical_name:
Logical name of the physical device-unit to be formatted. You must surround the
name with colons.

volume_name
An optional alphanumeric ASCII name, of up to 6 characters without embedded
spaces, to be assigned to a named volume. You must not leave spaces between the
logical name and the volume name.

na(med) The volume can store only named files; that is, it can hold many files that can be
accessed by individual pathnames. Diskettes and hard disks are typically formatted
for named files.

DOS The volume can store only DOS files.

p(hysical) (or pi)
The volume can be used only as a single, physical file (the files, extensionsize,
granularity, mapstart, and reserve parameters are not meaningful). If neither
named nor physical is specified, the volume is formatted for the file type specified
when the device was attached.

quick
An option for named and DOS devices that bypasses the normal low-level format and
simply writes the file system to the device.

HI command format

Command Reference Chapter 2 177

fi(les) = num

A decimal number, 1-65528, defining the maximum number of user files that can be
created on a named volume. (The maximum may be limited by different
combinations of granularity and extensionsize.) The default number is 200.
The reserve and msaboot parameters each require one of the files allocated.

force Forcibly deletes any existing connections to files on the volume before formatting the
volume. If connections exist and you do not specify force, you cannot format the
volume.

e(xtensionsize) (or es) = num

A decimal number, 3-255, specifying the number of bytes in the extension data
portion of each file. If not specified, the default extension size is 3 bytes.

g(ranularity) (or gu) = num

A decimal number, 1-65535, specifying the volume granularity. This is the minimum
number of bytes to be allocated for each increment of file size on a named volume.
The value you specify is rounded up to the next multiple of the device granularity,
and becomes the default file granularity for every file created on the volume. If not
specified, the default granularity is the device granularity.

See also: Device tables, Appendix E

m(apstart) (or ms) = num

The block number on the volume where the fnodes file, bit map files, and root
directory should start. The size of the block is set by the granularity parameter.
If no number is given, the OS puts the fnodes file in the center of the volume. If the
number is too low, the OS places the map files at the lowest available space on the
volume.

i(nterleave) (or il) = num

A decimal number, 1-255, specifying the interleave factor for a named or physical
volume. If not specified, the default value is 5. Track 0 is not affected by this value.

bt (or btfile or badtrackfile)
Names a file containing bad track/sector information to be written to the volume.
Unless you specify overwrite, the information from the file is merged with any bad
track/sector information existing on the disk, and is written to the disk before the
volume is formatted.

btonly Identical to badtrackfile, except that the rest of the volume is not formatted after
the bad track/sector information is written.

s(etbadtracks) (or sbt)
Invokes a user interface that allows you to enter bad track/sector information from
the keyboard.

format HI command

178 Chapter 2 Command Descriptions

o(verwrite) (or ow)
Bad track/sector information existing on the disk is overwritten by information you
provide. This parameter is only meaningful when used with the badtrackfile,
btonly, or setbadtracks options. If you do not specify overwrite with one of
these options, the default is to merge the bad track/sector data you supply with the
bad track/sector information already on the device.

r(eserve)
Creates the special file r?save at the end of a volume after formatting. The volume
label file and the fnode file are copied to r?save. This file may be used in
conjunction with the diskverify utility to back up the fnodes file on the volume. The
r?save file is not updated when files are altered; you update the file by using
diskverify or by specifying backup in the shutdown command.

q(uery) Issues this prompt for permission to format the volume:
<volume name>, format?

Enter Y or R to format the volume. Any other response is considered to be a no.

world Makes the World user the owner of the formatted disk's root fnode, regardless of
what user issues the format command.

msa(boot)
Writes the Multibus II System Architecture (MSA) second stage bootloader in a file
named r?secondstage and initializes the Bootloader Location Table (BOLT) in the
volume label to point to it. When this parameter is used with bootstrap, the
r?secondstage file is written without formatting the rest of the volume.

pcboot
Writes the second stage bootloader for PC platforms to track 0 of the volume. When
this parameter is used with bootstrap, the second stage is written without
formatting the rest of the volume.

gbt (or getbadtracks)
Existing bad track/sector information is read from the disk and displayed. This
option may be used only on a hard disk that is not the system device (:sd:). If this
option is specified, all other options are ignored. However, you can redirect the
output to a file (> pathname), and use the file when reformatting the disk.

bs (or bootstrap)
Writes the second stage of the Bootstrap Loader onto track 0 without formatting the
volume. When this parameter is specified, the only options that apply are msaboot
or pcboot.

HI command format

Command Reference Chapter 2 179

Additional Information

✏ Note
You cannot use this command with a device that you access
through NFS or through iRMX-NET.

Hard disks, diskettes, and RAM disks must be formatted as named or DOS volumes
before you use them to store and access files. For example, you must format all
previously unused diskettes before storing files on them. Formatting a volume as
named or DOS also includes a physical format, or low-level format.

If you do not specify named, DOS, or physical, the volume is formatted as
appropriate for the file driver attached to the connection specified when the device
was attached. For example:

format :c_rmx3: /*formats a named disk*/

format :c_dos: /*formats a DOS disk*/

Although you could use the format command to format a tape, the proper header
information is not created on the tape for use with the backup and restore
commands. Instead, use the format option of the backup command.

Before formatting a volume, you must attach it with the attachdevice command.
When formatting a diskette, you must attach it by its physical name. The physical
name you specify determines the device characteristics used when you invoke
format.

See also: attachdevice, in this manual

Low-Level Format for Partitioning

A named or DOS format of a complete (non-partitioned) volume includes a low-level
format, unless you also specify the quick option. On a hard disk where you want to
create partitions, you must first do a low-level format, then partition the volume, and
finally format each partition. To do the low-level format, specify named or DOS,
without the quick option. (Do not specify a physical low-level format as
preparation for partitioning.) Then partition the disk with the rdisk command.

After partitioning, format each partition as a named or DOS volume. The format
command performs only a high-level (file system) format when you format a
partition. You can specify the quick option, but it is not necessary to prevent a low-
level format after partitioning.

Volume Name

Specifying a volume name makes a convenient volume reference (for example, it
identifies a diskette with a lost or destroyed label). The volume name is displayed

format HI command

180 Chapter 2 Command Descriptions

when you list any directory of the volume. Once the volume is formatted, you don't
need to specify the volume name in commands; you only specify the logical name for
the device.

DOS Format Option

This option forces a DOS file system to be installed on the device. It overrides the
file driver that is attached to the logical device. A DOS file system can also be
installed by attaching to the device using the DOS file driver.

These examples illustrate the DOS format option:

attachdevice d_dos as d_dos DOS

format :d_dos:

or

format :d_dos: DOS

This is the output message for DOS volumes:

volume (<volume name>) will be formatted as a DOS volume

device gran = 512 interleave = 5

root dir size = 512 volume size = 30,719 K

volume gran = 2,048 available bytes = 30,656 K

fat type = 16 number of clusters = 15,328

number of fats = 2 sectors/cluster = 4

sectors/fat = 60

Where:

device gran The low-level sector granularity of the device.

interleave The sector interleave factor.

root dir size The number of file slots available in the root directory.

volume size The total volume size.

volume gran The allocation granularity (size of a cluster).

available bytes The free space on the device (total space - file system
overhead).

fat type Either a 12-bit or 16-bit FAT (file allocation table).

number of clusters
Total number of allocation units in the file system.

number of fats Is always 2.

sectors/cluster The number of disk sectors per each allocation cluster.

HI command format

Command Reference Chapter 2 181

sectors/fat The size of each fat, in sectors.

Quick Format Option (Named and DOS Only)

This option causes the format command to bypass the low-level format and simply
write the file system to the device. It is useful for formatting devices that have been
previously formatted, either by the manufacturer, or by a previous use of either the
DOS or iRMX format command. A file system can be quickly changed from one
supported file system to another by using this option. All data on the device is lost,
just as in a full format. The quick option is ignored if you specify a physical
format.

This is an example quick format command:

format :a_dos: QUICK

When performing a quick format, format displays this message:

volume (xyz) will be quick-formatted as a [DOS|NAMED] volume

Files and Fnodes (Named Only)

The number of fnodes on a volume defines the number of files that can exist on the
volume. Each fnode is a data structure that contains information about a file. Each
time you create a file on the volume, the OS records information about the file in an
unused fnode. Later, it uses the fnode to determine the location of the file on the
volume. You can enter the mapstart option to locate fnodes anywhere on a volume.
If this option is not entered, the OS puts the fnodes in the center of the volume.

The number of fnodes created during formatting is the number you specify with the
files parameter, plus 7. Six of the additional fnodes are for internal system files
and one is for the root directory. If you specify the reserve or msaboot
parameters, one fnode is used for each parameter. For example, if you use the default
files value of 200, 207 fnodes are established and you may create 200 files on the
volume. If you specify reserve and msaboot, you may create 198 files.

Two of the internal system files created during formatting are not listed in a
directory. The other four files (five if you specify reserve) are listed in the root
directory as hidden files. The OS grants World read access to these files.

format HI command

182 Chapter 2 Command Descriptions

The files are listed below; the volume label file is a special file occupying the first
3328 bytes of the volume:

File Description
r?spacemap Volume free space map
r?fnodemap Free fnodes map
r?badblockmap Bad blocks map
r?volumelabel Volume label
r?save Save area for fnodes and volume label (created by the

reserve parameter)

See also: Disk Verification, Appendix B

Owner of the Root Directory (Named Only)

The fnode for the root directory lists the user who formats the volume as the owner,
giving that user all access rights. No other user has access to the root directory until
the owner explicitly grants access. The owner can grant other users access to the
volume with the permit command. However, because the owner has all access rights
to the root directory, the owner can obtain exclusive access to the volume, and can
obtain delete access to any file created on the volume, even files created by other
users.

Extension Data (Named Only)

Each fnode contains a field that stores extension data for its associated file. An OS
extension can access and modify this extension data by invoking the
a_get_extension_data and a_set_extension_data system calls. You can use the
extensionsize parameter to set the size of the extension data field in each fnode.
Although you may specify any size from 0 to 255 bytes, the HI requires all fnodes to
have at least 3 bytes of extension data.

See also: a_get_extension_data and a_set_extension_data system calls, System
Call Reference

Volume Granularity (Named Only)

The volume granularity is the minimum block assigned for files created on the
volume. For example, if the volume granularity is 128 bytes, the I/O System
automatically allocates permanent storage to each new file created on the volume in
multiples of 128 bytes, regardless of whether the file requires the full amount. The
default volume granularity is always the granularity of the physical device. When
you specify the granularity, the value is rounded to the next multiple of device
granularity. That number is written in the header of the volume, where it becomes
the default file granularity when a file is created on the volume.

HI command format

Command Reference Chapter 2 183

Using a volume granularity larger than 1024 might cause users to exceed their
memory limits when executing programs that reside on the volume. This error can
occur because the OS uses the volume granularity as a minimum buffer size when
reading and writing files.

Relationship Between Files, Extension Size, and Granularity (Named
Only)

Although the files, extensionsize, and granularity parameters have the
maximum values listed in the parameter descriptions, the combination of these
parameters must also satisfy this formula:

(87 + extensionsize) * (files + 7) / granularity < 65535

The format command displays an error message if the combination of values you
specify for these parameters exceeds this limit.

Map Files (Named Only)

If you have specified a map-files location (either implied or explicit) in an area which
has a bad track or for which an alternate track was assigned, format allocates these
files to the nearest available area, and then asks for permission to move the files in
one of these ways:

Map files located on a track assigned an alternate

Map files located on a bad track

A response of Y causes the files to be relocated and this message to be displayed:

map start relocated to <hex-location>

This means you do not have to compute the location of the maps.

Interleave Factor (Named and DOS Only)

The interleave factor applies to volumes formatted either for named or physical files.
The interleave factor specifies the logical sector sequence. If the consecutively-
accessed sectors of a disk are staggered (not physically consecutive), disk access time
can decrease considerably. The reason for this decrease is that although a controller
cannot read a sector and issue another read command in the time it takes for the next
sector to be positioned under the head, the controller can perform this operation in
less time than it takes for the disk to revolve once. Therefore, if consecutively-
accessed sectors are correctly interleaved, the next sector accessed will be positioned
under the read head just as the controller becomes ready to read it. An interleave
factor of two means that as the disk rotates, the controller consecutively accesses
every second sector. An interleave factor of five means that the controller
consecutively accesses every fifth sector.

format HI command

184 Chapter 2 Command Descriptions

The interleave factor also implies the number of disk rotations necessary to access all
the sectors on a given track in order. For example, with an interleave factor of two
the controller might access sectors 0, 2, and 4 on the first rotation and sectors 1, 3,
and 5 on the second.

How to Select an Interleave Factor (Named and DOS Only)

The interleave factor is important when large transfers of consecutive data take place
at speeds that approach the maximum transfer rate of the disk. For hard disks, the
revolution speed is high enough that the type of application does not affect the choice
of interleave factor. Format hard disks with an interleave factor optimized for the
turn-around speed of the disk controller. Recommended values for hard disks are
shown below.

System Controller Interleave Controller Interleave

DOSRMX SCSI 1 non-SCSI 2

Multibus II any 1

Multibus I SBC 221 1 SBC 215G, 5 1/4" 5

For diskettes with a slower revolution speed, the default value 5 is typically used.
The ideal interleave factor depends on the turn-around time of software that controls
I/O operations. The turn-around time is the time between reading a sector and
becoming ready to read the next sector.

In the cases listed below, the turn-around time between sector accesses is different,
indicating a different interleave factor:

• When you bootstrap load the OS, the Bootstrap Loader instructs the disk
controller to read one sector at a time. The turn-around time depends on the
execution overhead of the Bootstrap Loader and is comparatively long. A large
interleave factor is optimum for diskettes used with the Bootstrap Loader.

• When you load an application program, the Application Loader reads several
sectors at a time into its internal buffer, taking a relatively long time to process
the data. The ideal interleave factor for diskettes is somewhat smaller than for
the Bootstrap Loader.

• When you invoke programs that transfer large amounts of consecutive data (such
as the copy command), data transfers can involve many sequential sectors. The
controller accesses sectors on a given track as fast as possible. Optimize the
interleave factor for the turn-around speed of the disk controller.

If you do not know the optimum interleave factor, it is better to specify too large a
value rather than too small. An interleave factor slightly larger than optimum causes
the disk to move only an extra sector or two before reaching the correct sector.

HI command format

Command Reference Chapter 2 185

However, an interleave factor smaller than optimum causes the disk to make nearly a
complete revolution before reaching the sector.

Getting Bad Track Information (Named Only)

When you use the getbadtracks parameter, the bad track information is displayed
(or written to a file) in this form:

cyl head sector

xxx xxx xxx

If you use I/O redirection (> pathname) to write this information to a file, you may
edit the file to remove the header information and add your own data. Then re-
invoke format and specify this file with the badtrackfile or btonly parameter.

Writing Bad Track Information (Named Only)

The badtrackfile, btonly, and setbadtracks parameters allow you to enter
the manufacturer's bad track information before actually formatting the disk. With
the badtrackfile and btonly parameters, bad track information in the file must
be in this format, which constitutes a triplet:

cylinder_number head_number sector_number <CR><LF>

Where:

cylinder_number
The cylinder number of the bad track or sector

head_number
Head number of the bad track or sector

sector_number
The number of the bad sector on the track indicated by the cylinder and
head numbers. On devices that only support bad track information, this
value must be set to 0.

The triplets may be separated by spaces, commas, carriage returns, or line feeds.
Each triplet is terminated with a carriage return-line feed combination.

If you use the setbadtracks parameter to enter bad track information, this message
is displayed:

Enter bad track information in <cylinder_number>, <head_number>,

<sector_number> triplets, one triplet per line. Numbers can

be in decimal or hexadecimal form. Entry of <sector_number>

is optional. An empty line terminates the entry process.

<cylinder>, <head>, <sector> =

format HI command

186 Chapter 2 Command Descriptions

The last line is the prompt line for the utility. Enter the cylinder, head, and sector
number in that order on one line and then enter a <CR>. The prompt is again
displayed; enter either more bad track information or <CR>. A <CR> with no entries
indicates that all the bad track information has been entered. The system then
displays the entries you made, in this form:

n bad track triplets entered.

Entered bad track information:

entry cyl head sector

1 nnnn nnnn nnnn

2 nnnn nnnn nnnn and so on

If you want to change or add to your previous input, type the entry, cylinder, and
head numbers (sector number is optional) of the new or existing information and
press <CR>. Repeat this process until all changes have been made. When you finish
entering information, press <CR> on a line by itself. A summary of the bad track
information is again displayed. If the bad track information is correct, press <CR>
again to begin formatting the disk.

Bad track information you enter (in a file or interactively) is not checked for validity.
Only the first 255 triplets are used when writing bad track information to a non-ESDI
drive configuration.

When writing to an ESDI drive on an SBC 221 controller board, the first 202 bad
track entries per head are used. If you have greater than 2048 defect entries, you
must invoke the format command with the btonly parameter and either the
badtrackfile or setbadtracks parameter. Do this multiple times in 2048 defect
blocks, until all the bad track information is written to the disk. When writing
multiple defect blocks, use the overwrite parameter the first time you invoke the
format command. This overwrites any old bad track information. Omit this
parameter in subsequent executions of the format command.

Bootstrap Loader and the Format Command (Named Only)

The Bootstrap Loader operates in three stages on a Multibus I system, in two stages
on a Multibus II system, and in three stages on a PC system. On all three buses, the
first stage of the Bootstrap Loader resides in the system firmware and a real mode
second stage resides in a reserved area on Track 0 of the disk. On a Multibus II
system, an additional MSA second stage resides as a named file somewhere on the
hard disk. This MSA second stage is pointed to by an entry in the Bootloader
Location Table (BOLT) located in a reserved area on Track 0 of the disk. The third
stages on Multibus I and PC systems are named files located on the disk.

HI command format

Command Reference Chapter 2 187

To avoid forcing you to reformat entire disks when the second stage of the Bootstrap
Loader changes, you can specify the bootstrap parameter to write the second stage
of the Bootstrap Loader onto track 0 without reformatting the rest of the volume.

▲▲! CAUTION
If you fail to specify the bootstrap parameter, format will
format the entire volume.

You can also add the MSA second stage to an existing iRMX disk by using the
msaboot parameter with the bootstrap parameter. In this case, both second
stages, (real mode and MSA) are added to the disk. The real mode second stage
overwrites the existing one on track 0, and the MSA second stage replaces any
existing MSA second stage, in the /r?secondstage file.

You can replace the second stage for PC platforms on an existing iRMX disk by
using the pcboot parameter with the bootstrap parameter.

Any of these commands copy the second stage of the Bootstrap Loader onto track 0
of a device that was attached using :f: as the logical name:

-format :f: BS <CR>

-format :f: bootstrap <CR>

-format :f: files= 300 granularity=200 force bootstrap <CR>

-format :f: BS MSA

The remainder of the files on the volume are unaffected. (In the third example, the
file, granularity, and force switches are ignored because the bootstrap
parameter has precedence over any other format parameter.)

Output Display

The format command displays one of these messages while formatting. This is the
message for physical volumes:

volume (<volume name>) will be formatted as a physical volume

device gran = <number>

interleave = <number>

volume size = <k/m_number>

TTTTTTTTTTTTTTTTTTT...

volume formatted

format HI command

188 Chapter 2 Command Descriptions

This is the message for named volumes:

volume (<volume name>) will be formatted as a named volume

granularity = <number> map start = <block_number>

interleave = <number> sides = <sides>

files = <number> density = <density>

extensionsize = <number> disk size = <d-size>

save area reserved = <yes/no>

bad track/sector information written = <yes/no>

MSA bootstrap information written = <yes/no>

PC Bus bootstrap loader chosen = <yes/no>

volume size = <k/m_number> K (or M)

TTTTTTTTTTTTTTTTTTT...

volume formatted

See also: DOS format option for the DOS output message

Where:

<volume name>
Volume name specified in the format command

<number> Decimal number specified in the command (or the default)

<block_number>
Volume block number where the fnodes file, bit map files, and the root
directory start

<k/m_number>
Volume size in kilobytes (K) or megabytes (M) (the display is in K-
bytes unless the size is greater than 25 MB)

<sides> For diskettes: 1 or 2 indicates the side being formatted (if format can
recognize this characteristic)

<density> For diskettes: single or double indicates the diskette density (if
format can recognize this characteristic)

<d-size> For diskettes: 3.5 or 5.25 indicates the size (if format can recognize
this characteristic)

T One T is displayed for every 100 tracks formatted. These are not
displayed when formatting a SCSI device; SCSI controllers do not
allow individual tracks to be formatted.

HI command format

Command Reference Chapter 2 189

If you format a SCSI hard disk using the PCI driver, the volume size information is
automatically obtained by querying the SCSI device. If the capacity of the device
changes as a result of the format, one of these messages is displayed. The first
message is for a physical format; the second for a named format:

formatted capacity = <size>

formatted capacity = <size> mapstart = <block_number>

If you specify the bootstrap or btonly parameter, one of these messages is
displayed (instead of volume formatted):

Bootstrap Loader written

Bad Track/Sector Block written

If the error code E_IO_ALT_ASSIGNED is returned by a driver when formatting a
track, the track number is entered into a table and displayed when formatting is
complete. There should be an entry in this table for every BTI track specified, except
those that reside in the alternate track area. The cylinder and head numbers are in
hexadecimal.

The following tracks were assigned an alternate:

cyl hd cyl hd cyl hd cyl hd cyl hd

#

If the E_IO_NO_SPARES error code is returned by a driver when formatting a track,
the number of reserved alternate tracks is exhausted. The sectors of that track are
marked in the Bad Block Map File and entered in the Volume Space Map File as they
were assigned. The track is entered into a table and displayed as follows when
formatting is complete:

The following tracks were marked as bad:

cyl hd cyl hd cyl hd cyl hd cyl hd

#

Formatting Uniform Versus Standard Granularity Diskettes

Previously, iRMX OSs supported iNDX-based development. This required a special
diskette format to allow the various systems to read the same diskettes. Standard
granularity diskettes were attached using the wmf0 DUIB and formatted as follows:

format :f:disk extensionsize = 41 mapstart = 0

These switches provide an iNDX compatible, standard granularity format, which can
be read by SCSI controllers.

You should use uniform granularity format diskettes with newer Intel products such
as the System 520, and with newer boards. The SCSI interface in the newer Intel

format HI command

190 Chapter 2 Command Descriptions

boards reads uniform granularity diskettes using the wdf0 and wqf0 DUIBs. With
these DUIBs, track 0 of a standard granularity diskette is unreadable.

Although the PCI device driver can read standard format diskettes if they were
formatted with the iNDX-compatibility switches, these are not the default values for
the format command. If it is necessary to transfer files to the System 520 from a
system which does not have a high density drive, use the wdf0 DUIB to ensure
creating a uniform format diskette, readable on all iRMX systems.

Error Messages

<logical_name>, can't attach device

<logical_name>, <condition code:mnemonic>
Format cannot attach the device for formatting, or it cannot reattach the device (that
is, restore it to its original condition) after formatting takes place.

<logical_name>, can't detach device

<logical_name>, <condition code:mnemonic>
Format cannot detach the device for formatting, which means that the volume does
not exist, the volume is busy, or the device on which the volume is mounted is not
currently attached to the system.

<logical_name>, device is in use
You cannot format the volume because there are outstanding connections to files on
the volume and you did not specify the force parameter.

<vol_name>, fnode file size exceeds 65535 volume blocks
The combination of values specified for files, granularity, and
extensionsize is too great. See the formula described earlier.

<number>, invalid number
You specified an out-of-range number for any of the files, granularity,
extensionsize, or interleave parameters.

<logical_name>, map files do not fit
The volume is too small for the map files or the map start block is too high to allow
room for the map files.

map files do not fit with save area
Either the volume is too small for both the map files and the save area, or the map
start block is too high in disk storage memory to allow for the map files and the save
area.

<logical_name>, outstanding connections to device have been deleted
There were outstanding connections to files on the volume. However, because you
specified the force parameter, format deleted those connections. This is a warning
message that does not prevent formatting the volume.

HI command format

Command Reference Chapter 2 191

0023 : E_SUPPORT PCBOOT not supported for standard diskettes
An attempt was made to write the second stage of the bootstrap loader to a standard
format diskette.

0085 : E_LIST, too many values
You entered multiple logical_name/volume_name combinations separated by
commas; format can format only one volume per invocation.

<logical_name>: <condition code:mnemonic>

unit status <unit status code> while writing block number
An I/O error occurred while writing the label, map files, or save area to a named file.

<logical_name>: <condition code:mnemonic>

unit status <unit status code> while formatting track
An I/O error occurred while physically formatting the volume. If an
E_IO_ALT_ASSIGNED error code is returned, you can consider this message a
warning.

<volume_name>, volume name is too long
The volume name must not be longer than six characters.

Track zero bad, cannot write
The volume label track (track 0) is marked in the Bad Block Map.

cannot relocate
This is a warning message displayed when the map files are located on one or more
sectors which have been assigned an alternate, and a suitable location cannot be
found on the disk.

cannot relocate...aborting
The map files are located on a sector or sectors which have been marked in the Bad
Block Map and an alternate location cannot be found.

Save file located on a bad track, cannot write
The save area is located on a sector or sectors which have been marked in the Bad
Block Map.

<filename>, cannot open bad track/sector information file

<filename>, <condition code:mnemonic>
The file containing the bad track/sector information cannot be opened for reading.

too many bad track/sector information entries
The file containing the bad track/sector information has too many entries, or the
combination of file entries and information on the volume cannot be merged.

<filename>, illegal bad track/sector information
The file containing the bad track/sector information has the wrong format.

format HI command

192 Chapter 2 Command Descriptions

badtrackfile option missing, cannot replace Bad Track/Sector

Information Block
You entered the overwrite option without the badtrackfile parameter.

TCP/IP command ftp

Command Reference Chapter 2 193

ftp
The user interface to the File Transfer Protocol (FTP), which allows you to transfer
files to and from a remote network site.

✏ Note
You can use this command in an esubmit file if the form of the
command does not require user input. If the command requires
user input, you must use the esubmit eoresponse and
coresponse subcommands to get the user input. In either case,
errors from FTP will not percolate to the esubmit variable
commandexcep.

Do not use this command in an rq_c_send_command system call.

See also: esubmit command, in this chapter

Syntax

ftp [-d] [-g] [-i] [-n] [-t] [-v] [host [port]]

Parameters

-d Enables debugging (see debug).

-g Disables filename globbing (see glob).

-i Turns off interactive prompting during multiple file transfers (see prompt).

-n Disables autologin upon initial connection.

-t Enables packet tracing (see trace).

-v Enables verbose mode (see verbose).

host A host name or Internet address.

port A port number or a port name defined in the /etc/services file.

Most options correspond to an ftp command and are discussed in more detail in the
description of the referenced command.

Additional Information

The ftp client includes a command interpreter which interactively executes file
transfer commands. The command interpreter prompt is ftp>.

ftp TCP/IP command

194 Chapter 2 Command Descriptions

If no host is specified on the command line, ftp enters its command interpreter and
awaits further instructions from the user. If a host is specified, ftp immediately
attempts to establish a connection to an FTP server on that host. If the host is
followed by a port, ftp attempts to contact an FTP server at that port; otherwise it
uses the default FTP port number.

If autologin is enabled (the default), ftp checks the netrc file in the user's home
directory for an entry describing a login on the remote host. If such an entry exists,
ftp automatically logs in to that account. If no entry is found, ftp uses the local user
name as the login on the remote host and prompts for a password (and account, if
appropriate) to complete the login. If autologin is disabled, ftp establishes the initial
connection to the remote host and returns to the command interpreter. The user
command must then be invoked to log in to that host.

Filenames specified as arguments to ftp commands are processed according to these
rules.

1. If the filename is -, stdin is used for reading and stdout is used for writing.

2. If the first character of the filename is a pipe symbol (|), the remainder of the
argument is interpreted as a shell command. Ftp will fork a shell with the
supplied argument, and pipe the output of the ftp command to the shell. If the
shell command includes spaces, the entire argument must be enclosed in
quotation marks (for example, "|ls -lt"). There can be no space between the
pipe symbol and the shell command.

3. If globbing is enabled, local filenames are expanded according to shell
metacharacters (see the glob command).

4. The transformations defined by case, ntrans, and nmap are applied whenever a
destination filename is derived from a source filename. When you use mget or
get with an unspecified local filename, case, ntrans, and nmap are applied.
When you use mput or put with an unspecified remote filename, ntrans and
nmap are applied. These transformations are of particular interest when
connecting to a remote host with different file naming conventions or practices.

5. If runique or sunique is on, a unique local or remote destination filename is
created by appending a unique numeric extension to the filename.

An FTP command works only if the remote FTP server supports it. Use rhelp to see
which requests the remote server recognizes. Commands may be abbreviated, so
long as they remain unique. Ftp will prompt for required arguments omitted from a
command. Command arguments that have embedded spaces should be enclosed in
double quotation marks.

TCP/IP command ftp

Command Reference Chapter 2 195

▲▲! CAUTION
Use the mget and mdelete commands with caution. You may
overwrite or remove files you did not intend to.

Specifying a directory where a plain filename is expected could
produce unexpected results. For example, the ftp command
ls -l file will put a long directory listing of the current working
directory into file instead of returning a long listing of that file.

Commands

These commands are recognized by the ftp command interpreter.

account passed
Specify the supplemental password or account name required by some
systems for access to system resources. This command has no meaning
on the iRMX and Unix OSs; they do not implement account
information.

allbinary Toggle the use of binary type for non-file transfer operations.
Normally, these operations are done in ASCII mode regardless of the
file transfer type. If allbinary is on and the file transfer type is binary,
non-file transfer operations will also be done in binary mode.

append local-file [remote-file]
Append local-file to a file on the remote host. If remote-file is not
specified, the remote file will be named local-file. Ftp uses the current
settings for file type, format, transmission mode, and structure.

ascii Set the data representation type to ASCII. This is the default type.

bell Toggle sounding of a bell after each file transfer command is
completed. By default, the bell is turned off.

binary Set the data representation type to binary.

bye Terminate the FTP session with the remote server and exit the ftp
program.

case Toggle case-mapping of remote filenames during a get or mget
command. When case-mapping is enabled, uppercase letters in the
remote filename are changed to lowercase letters in the local filename.
By default, case-mapping is turned off.

cd remote-directory
Change the working directory on the remote host to remote-directory.

ftp TCP/IP command

196 Chapter 2 Command Descriptions

cdup Change the working directory on the remote host to the parent of the
current working directory.

chmod mode remote-file
Change the permission mode on the remote file or directory to mode
(interpreted by the remote server). An iRMX FTP server accepts only a
3-digit octal value; for example, 777 grants all permissions.

See also: chmod() function, C Library Reference

close Terminate the FTP session with the remote server and return to the
client FTP command interpreter.

cr Toggle stripping of carriage returns during ASCII file retrieval. When
enabled, the carriage return is stripped from each carriage
return/linefeed pair encountered in the file, leaving the linefeed record
delimiter recognized by Unix. By default, carriage return stripping is
off.

debug Toggle debug mode. When debug mode is on, each ftp protocol
command sent to the remote server is displayed, preceded by the string
-->. By default, debug mode is off.

delete remote-file
Delete the file remote-file on the remote host.

dir [remote-file [local-file]

dir [options [local-file]]
List the current remote directory or a specified file or directory on a
remote host. Specified options are supplied to the remote list command
(for example, Unix ls or VMS dir). If a local file is specified, the list is
written to that file. Note that if the first argument is options, the second
argument is assumed to be local-file.

disconnect A synonym for close.

form format Set the vertical format control for ASCII and EBCDIC file transfers to
format. Valid formats are carriage-control, non-print (the
default), and telnet. Only the non-print format is supported.

get remote-file [local-file]
Retrieve the specified remote-file and store it on the local host. If local-
file is not specified, the local file will be named remote-file. Ftp uses
the current settings for file type, format, transmission mode, and
structure.

glob Toggle local filename globbing. With globbing disabled, all local files
and pathnames are treated literally. With filename globbing enabled,

TCP/IP command ftp

Command Reference Chapter 2 197

each local file or pathname is processed for the shell metacharacters * ?
[] and ~. An additional pair of metacharacters,
{ and }, may enclose several comma-separated strings, for each of
which a match is sought. Globbing is always on with reference to
remote files; it is on by default with reference to local files.

hash Toggle hash mark (#) printing for each data block transferred. The size
of a data block is 4096 bytes. By default, hash mark printing is off.

help [command]
Display a list of the ftp commands (no argument) or information about
the specified command.

idle [seconds]
Display the current inactivity timer on the remote host or set it to
seconds.

image Same as binary.

lcd [directory]
Change the working directory on the local host to the user's home
directory (no arguments) or to the specified directory.

ls [remote-file [local-file]]

ls [options [local-file]]
Same as dir. Note that if the first argument is options, the second
argument is assumed to be local-file.

macdef mname
Define a macro that will be invoked by using the name mname.
Subsequent lines will be stored as the macro definition. A null line
(consecutive newlines or carriage returns) ends the macro definition.
Within the macro definition, a dollar sign specifies substitution of
arguments from the macro invocation line. The sequence $n, where n is
a number, will be replaced by the n argument (for example, $1 is the
first argument). The sequence $i will cause the macro to loop
automatically, executing once with each argument. Escape the dollar
sign with a backslash (\$) to prevent this special treatment. The
maximum number of macros is 16. The maximum definition length is
4096 characters. A macro definition is valid only for the duration of a
connection to a remote host; all macros are automatically deleted when
the connection is closed.

macdel mname
Delete the macro mname.

ftp TCP/IP command

198 Chapter 2 Command Descriptions

macls [mname]
List the names of defined macros or list the definition of the macro
mname.

mdelete remote-file ...
Delete the specified files on the remote host. If globbing is enabled,
each filename is first expanded.

mdir remote-file ... local-file
Obtain an extended directory listing of multiple files on the remote host
and place the result in local-file. Globbing must be turned off when
using this command. Note that the specification of local-file is
mandatory.

mget remote-file ...
Retrieve the specified files from the remote host and place them in the
current local directory. If globbing is enabled, the specification of each
remote file will first be expanded.

mkdir directory-name
Make a directory on the remote host.

mls remote-file ... local-file
Obtain an abbreviated listing of multiple files on the remote host and
place the result in local-file. Globbing must be turned off when using
this command. You must specify a local file.

mode [mode-name]
Set the file transmission mode to mode-name. Valid modes are block,
compressed, and stream (the default). Only the stream mode is
supported.

modtime remote-file
Display the last modification time of the remote file.

mput local-file ...
Transfer multiple files from the current local working directory to the
current working directory on the remote host.

newer remote-file
Get the specified remote file if a local file of that name does not exist or
if the remote file has a later modification date than the local file of the
same name.

nlist [remote-file [local-file]]

nlist [options [local-file]]
List name(s) of the current directory or a specified file or directory on a
remote host. Specified options are supplied to the remote list command

TCP/IP command ftp

Command Reference Chapter 2 199

(for example, Unix ls or VMS dir). If a local file is specified, the list is
written to that file. Note that if the first argument is options, the second
argument is assumed to be local-file.

nmap [inpattern outpattern]
Remove (no arguments) or set the filename mapping mechanism.
Filename mapping automatically derives a destination filename from
the source filename during get, mget, put, and mput commands. This
is of particular interest when connecting to a non-Unix remote host with
different file naming conventions or practices.

The input pattern consists of the variables $1 through $9 and literals.
This pattern is matched against a source filename to extract the portions
of interest. The input pattern cannot contain spaces.

The output pattern specifies the manner in which the variables derived
by the input pattern are used to create the destination filename. The
variables $1 through $9 are replaced by their derived values. The
variable $0 is replaced by the original source filename. The pattern
[str1,str2] is replaced by str1 if str1 is not a null string or by str2 if str1
is a null string. All other spaces and characters are treated as literals.

For example, the command nmap $1;$2 $1.$2 can be used to create a
Unix equivalent of the VMS version number extension by replacing the
semicolon with a period.

ntrans [inchars [outchars]]
Remove (no arguments) or set the filename character translation
mechanism. Character translation automatically derives a destination
filename from the source filename during get, mget, put, and mput
commands. This is of particular interest when connecting to a remote
host with different file naming conventions or practices.

If a character in the source filename matches the n character in inchars,
it is replaced by the corresponding character from outchars to create the
destination filename. If the inchars string is longer than the outchars
string, the characters without a corresponding output character are
ignored in the source filename.

For example, the command ntrans ;$-% . will translate semicolons to
periods wherever they appear and ignore all dollar signs, hyphens, and
percent signs.

open host [port]
Establish a connection to the FTP server on the specified remote host.
Port is used to specify an alternate FTP server; it can be the actual port

ftp TCP/IP command

200 Chapter 2 Command Descriptions

number or the service name. If autologin is enabled (the default), ftp
will also attempt to automatically log the user in.

prompt Toggle interactive prompting, which is turned on by default. Interactive
prompts occur during multiple file transfers, to allow the user to
selectively retrieve or store files. If prompting is turned off, mget and
mput transfer all specified files.

proxy ftp-cmd
Execute an FTP command on a secondary control connection. This
command enables you to open simultaneous connections to two FTP
servers and transfer files between them instead of between the local
client and a server. The original FTP connection is called the primary
control connection; the connection made through the proxy command is
called the secondary control connection. The server on the secondary
connection must support the FTP protocol command PASV.

The first proxy command should be open, to establish the secondary
connection. The proxy command ? displays the list of commands that
can be used on the secondary connection. These FTP commands
behave differently when executed as proxy commands:

Command Difference
open will not define new macros during autologin
close will not erase existing macro definitions
get, mget transfer files from the primary server to the secondary

server instead of to the local host
put, mput,
append

transfer files to the primary server from the secondary
server instead of from the local host

put local-file [remote-file]
Copy the local file to the remote host. If remote-file is not specified, the
remote file will be named local-file. Ftp uses the current settings for
file type, format, transmission mode, and structure.

pwd Display the pathname of the current remote working directory.

quit A synonym for bye.

TCP/IP command ftp

Command Reference Chapter 2 201

quote arg ... The specified arguments are sent, verbatim, to the remote FTP server.
A single FTP reply code is expected in return. This command is used to
avoid processing of a command by the local FTP client, and facilitates
the sending of an explicit FTP protocol command to the remote server
when the client does not implement the related command.

recv remote-file [local-file]
A synonym for get.

reget remote-file [local-file]
Similar to get, but if local-file already exists and is smaller than remote-
file, it is assumed to be a partially transferred copy of the file. The
transfer is resumed from an offset into the remote file equal to the byte
count of the local file.

rename remote-file new-name
Rename the remote file to new-name.

reset Clear the reply queue to resynchronize the command/reply mechanism
between the FTP client and server.

restart marker
Restart the file transfer immediately following get or put at the
indicated marker, which is a byte offset into the file.

rhelp [command]
Request a list of the FTP protocol commands implemented by the
remote server (no arguments) or an explanation of the specified
protocol command.

rmdir directory-name
Delete a directory on the remote host.

rstatus [file] Show the status of the remote host or of the specified file on the remote
host.

runique (receive unique) Toggle the creation of unique local filenames when
using get and mget; receive unique is turned off by default. If runique
is on and the destination filename already exists, a numeric extension is
added to the name, incrementing the number sequentially until a unique
name is created. For example, if the target local filename is fortune and
that file already exists, the target name becomes fortune.1. If fortune.1
already exists, the target name becomes fortune.2, and so on with
extensions 1 through 99. If all versions of the file already exist, the
transfer fails. If the transfer succeeds, the unique filename will be
displayed.

ftp TCP/IP command

202 Chapter 2 Command Descriptions

send local-file [remote-file]
A synonym for put.

sendport Toggle the use of the FTP protocol PORT command when establishing
a data connection. When enabled (the default), ftp sends a PORT
command to inform the server which local port the client uses to listen
for the data connection. The server will then connect to that port.
When disabled, ftp listens for all data connections on the default port.
This command is particularly useful when connecting to FTP
implementations that do not support the PORT command.

site arg ... Send the arguments, verbatim, to the remote server as a SITE
command. These SITE commands are supported by the iRMX FTP
server; the CHMOD, ULIMIT, and UMASK commands operate like
the corresponding Unix commands:

CHMOD mode file Change the permission mode on the remote file.

HELP List the SITE commands supported by the server.

IDLE [secs] Display (no arguments) or set the current idle
time limit.

ULIMIT [blocks] Display (no arguments) or set the current file size
limit.

UMASK [mask] Display (no arguments) or set the current file-
creation mode mask.

size remote-file
Display the size of the remote file.

status Show the current status of ftp.

struct [struct-name]
Set the structure of the file to be transferred to struct-name. Valid
formats are file (the default), page, and record. Only the file
structure is supported.

sunique (send unique) Toggle the creation of unique remote filenames when
using put and mput; send unique is turned off by default. This operates
the same as runique.

system Display the type of OS running on the remote host.

tenex Set the data representation type to tenex, which corresponds to the
local logical byte size. The only byte size supported is 8 bits, making
this data type virtually the same as binary.

trace Toggle packet tracing. Packet tracing is turned off by default.

TCP/IP command ftp

Command Reference Chapter 2 203

type [type-name]
Display the data representation type of the file to be transferred (no
arguments), or set it to type-name. Valid types are ASCII (default),
binary, EBCDIC, image, and tenex (local byte size). The binary and
image types are identical. The EBCDIC type is not supported. The
tenex type, in which the logical byte size is 8, is virtually the same as
binary.

umask [mask]
Display (no arguments) or set the user file-creation mode mask on the
remote host.

user login [password [account]]
Log in to the remote FTP server as user login. Ftp will prompt for the
password and account if they are required and not specified.

verbose Toggle verbose mode. When enabled, all responses from the FTP
server are displayed along with statistics regarding the efficiency of
each file transfer. By default, verbose mode is enabled for an
interactive session and disabled for a background or batch session.

? [command]
A synonym for help.

$ mname [arg ...]
Invoke the macro mname with the specified arguments.

! [command] Invoke a shell on the local host. To return to ftp, exit from the shell
with an EOF (in the iRMX OS, a <Ctrl-Z>). If an argument is
specified, that command is executed and the shell exits automatically.
Do not execute any iRMX command that does an attachfile :$:.

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.

getaddr NET command

204 Chapter 2 Command Descriptions

getaddr
Returns the local system's Ethernet address.

Syntax

getaddr

Additional Information

The getaddr command displays the Ethernet address of the local system. The
command looks up the value for the local object named myhostid and returns it.
iRMX-NET enters the myhostid object with the Name Server during initialization.
The address is reported as shown below:

Ethernet address : 00 AA 00 02 5A 70

NET command getname

Command Reference Chapter 2 205

getname
Returns the network name of the local system or of any iRMX-NET system specified
by its Ethernet address.

Syntax

getname [A=net_addr] [R=retries]

Parameters
A=net_addr

A 12-digit ASCII string representing the hexadecimal Ethernet address of a system.
Spaces are not allowed. If this parameter is omitted, the name of the local system is
returned. This is an example address:

00AA00025A70

R=retries
A decimal number of times the Name Server tries to find the system, using a different
Multibus II slot ID. The maximum is 21. The default is 8.

Additional Information

The getname command displays the name of the specified host, if the name is
cataloged under property type 5H in any Name Server object table. If no object with
the specified Ethernet address is found cataloged under property type 5H, getname
displays an error message.

If an input parameter is not specified, the local host name is returned. This is the type
of name cataloged with the loadname command from the :sd:net/data file (assuming
it is entered as property type 5H in that file). The name could also be cataloged with
a setname command.

In Multibus I and PC systems, the getname command finds the name in the first trial.

In Multibus II systems, a host can be in any one of the Multibus II slots. To identify
different hosts in the system, the Name Server appends the slot ID with the Ethernet
address for the host-unique ID (property type 5H). For example, if a host CPU is in
slot 4 of a Multibus II system, the host-unique ID might be as follows, where 04 is
appended to the Ethernet address:

Name Type Value
SLOT4SYS 0005H 00AA00025A7004

getname NET command

206 Chapter 2 Command Descriptions

To obtain the names of Multibus II hosts with getname, you may specify the slot ID
as part of the address, as follows:

getname A=00AA00025A7004

If the slot ID is not known, it need not be specified. In this case, getname attempts to
find the host name up to 21 times (depending on the number of retries specified),
each time with a different slot ID. For example, this command contains no slot ID:

getname A=00AA00025A70

The getname command tries five times with different appended slot numbers before
it finds the name, as shown below:

Getting iRMX System name ... Trial 01 (slot0)
Getting iRMX System name ... Trial 02 (slot1)
Getting iRMX System name ... Trial 03 (slot2)
Getting iRMX System name ... Trial 04 (slot3)
Getting iRMX System name ... Trial 05 (slot4)

Host name is: SLOT4SYS

See also: findname command, in this chapter

Error Messages
<net_addr>, illegal Ethernet address

The Ethernet address specified in the command line is invalid. Execute the getname
command again using the correct Ethernet address.

<net_addr>, name does not exist
An object with the property type 0005H matching the given Ethernet address is not
found in the entire network.

<net_addr>, maximum responses received
More than one name is found to match the given Ethernet address. This happens if
the setname command is executed more than once and different names are used. In
this case, the number of such duplicate names found by the Name Server can be too
large to handle. The maximum number of responses that can be handled by the
Name Server is a configurable option.

HI command grep

Command Reference Chapter 2 207

grep
Searches the specified file(s) for a string matching the given pattern. For each
matching string, grep displays the lines and/or filenames.

Syntax

grep pattern pathname [to|over|after outpath] [nofile]
[line] [exact] [unique] [plm]

Parameters
pattern

The pattern for which a match is desired.

pathname
The file to search. Wildcards are permitted.

to|over|after outpath
Writes the output to the specified file instead of to the screen.

nofile Don't display the filename when a match is found. The default is to always display
the filename.

line Display the line number when a match is found.

exact Searches for the pattern as entered with regard to upper- and lower-case. The default
is to search without case-sensitivity.

unique When a match is found, displays only the filename, and only once for each file.

plm Ignores $ characters in the file when searching for a match.

Additional Information

Unless you specify the exact parameter, the search is caseless; all occurrences of the
matching string, in any combination of case, are reported.

grep HI command

208 Chapter 2 Command Descriptions

Examples

To find all occurrences of rq$send$message in all files ending with p38, regardless
of PLM coding style, enter:

grep rqsendmessage *p38 plm

To find all occurrences of a distinctly spelled variable in the same files, enter:

grep SillyVar *p38 exact

HI command help

Command Reference Chapter 2 209

help
Displays information about one or more commands. If no parameters are given,
information about the help command is displayed.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

help command_list [to|over|after outpath_list] [q] [p = num]

Parameters
command_list

One or more command names for which you want help. Separate multiple names
with commas. Wildcards are permitted. Only utilities added to the OS have help
screens available.

to|over|after outpath_list
Writes the output to the specified file(s) rather than to the screen. If you specify
multiple input files and one output file, the output is appended.

q(uery) Prompts for permission to display each help file. Respond to the prompt with:

Y Display the file
R Display remaining files without further query
E Exit the command
N or other Don't display the file; query for the next

p(agelength)=num
The maximum number of lines in the output page; the default is 66. A formfeed
(0CH) is inserted in the output every n lines, where n = pagelength-3. If the
output is not directed to a file, this parameter is ignored. The default value is
decimal, but you can specify octal or hexadecimal by appending an O or H.

help HI command

210 Chapter 2 Command Descriptions

Additional Information

If no output pathnames are given, the output is sent to the screen using the skim
command. For help on commands used by skim, type H or ? at the more? prompt.

See also: skim command, in this chapter

The help command displays the contents of a help file with the same name as a
command. Each help file has the extension .hlp. If the filename becomes too long
the excess part of the .hlp extension is truncated.

Not all commands have help files. The help command is used primarily to give
information about utilities added by users; many of these utilities are now shipped
with the OS and described in this manual.

The help command determines the location of the help files by entries in a help.mac
file, which is in the same directory as the help command. The help.mac file contains
the names of directories to search for help files. The directories should be on
separate lines or separated by commas. If you add directories, use these types of
entries; note the trailing slashes on the directory pathnames:

:prog:

:sd:helps/system/

:sd:helps/utils/

:sd:helps/uprocs/

:sd:util286/

:$:

If no help file for a command is found in any of the directories listed in help.mac, an
error message to that effect is displayed.

Indirect help files may be created by using an at sign (@) as the first character in the
help file, followed by the indirect command name. To use this capability, there must
be an actual help file referenced by the indirect command name. For example, if
there is an actual skim.hlp file, and you want to provide help for an alias m=skim,
create a file named m.hlp that contains only this line:

@skim

CLI command history

Command Reference Chapter 2 211

history
Displays the last 40 command lines in chronological order. You can use the
associated number with the ! command to recall one of the displayed command lines.

Syntax

history

Additional Information

The command lines are displayed a screenful at a time, including the history
command, and are numbered from 1 to 999. After 999, the numbers start over at 1.
When displaying the command lines, the CLI lists the first page (20 lines) of
commands followed by the query:

display more ? ([y] or n)

The default is Y. If you enter anything other than N, the CLI displays the next page of
command lines (assuming there are more command lines in the history buffer).

You can use the history command with the ! command to recall a specific line
number or command line. For example, you might enter the history command to see
the last 20 command lines. To recall line 10 so you can modify and execute it, you
would enter:

!10 <CR>

This would display line 10 as the current line. You can then edit the line; however,
the original line 10 remains unchanged in the history buffer. The edited line becomes
the last (newest) line in the history record.

If you have entered a command line that includes continuation lines, history displays
it as shown for command 2 below:

1 copy x to y

2 copy z &

** to &

** t.asm

3 dir

4 history

history CLI command

212 Chapter 2 Command Descriptions

Examples

Assume that you enter these commands:

- copy X to Y.PLM <CR>

- dir <CR>

- AEDIT Y.PLM <CR>

- history <CR>

The response to the history command would be:

1 copy X to Y.PLM

2 dir

3 AEDIT Y.PLM

4 history

To edit line 1, use the ! command. Line 1 is displayed with the cursor at the end:

- !1 <CR>

- copy X to Y.PLM

If you edit the line to read copy NEW.PLM to Y.PLM and execute the command,
the line is entered into the history buffer as line 5. Now if you enter the history
command you see:

1 copy X to Y.PLM

2 dir

3 AEDIT Y.PLM

4 history

5 copy NEW.PLM to Y.PLM

6 history

Error Messages
<parameter>, unexpected parameter

You entered a parameter; history does not accept parameters. If you want to recall a
specific line, enter the ! command.

<condition code:mnemonic>, while history displayed
An error occurred when the CLI tried to write the history buffer to the screen.

HI command ic

Command Reference Chapter 2 213

ic
Reads or writes interconnect space to perform one of several functions on a
Multibus II system. The ic command must be invoked separately for each
subcommand function.

Syntax
ic -c agents [-s]
ic -c fpi [-s] arm|disarm
ic -c get [-s] slot register count
ic -c help
ic -c kill [-s] slot
ic -c myslot [-s]
ic -c nmi [-s] [-e] slot nmitype
ic -c record [-s] [-o occurrence] slot record
ic -c reset [-s] [-p monitor|bootstrap|index] slot type
ic -c set [-s] slot register value

Parameters

The parameters after -c are in alphabetical order, with hyphens ignored.

-c Specifies that one of the ic subcommands follows.

a(gents)
Displays the slot ID and product code for each board (agent) in the system, including
add-on (extension) boards. With the -s switch, the slot ID is repeated for extensions.

count A decimal number specifying the number of registers to display.

-e Enables the NMI source specified by nmitype. The -e is unnecessary if the NMI
source is already enabled.

f(pi) arm|disarm
Arms or disarms notification from the Front Panel Interrupt (FPI) server. This server
notifies when you turn the front panel keyswitch to Interrupt. By default, all boards
are disarmed when the system starts, and the interrupt switch has no effect. If you
arm the server, the board where you issue the command is given a non-maskable
interrupt (NMI) when you turn the keyswitch.

g(et) Displays the contents of one or more interconnect registers on the board in the
specified slot.

h(elp) Displays ic syntax.

ic HI command

214 Chapter 2 Command Descriptions

k(ill) Disables the board in the specified slot by applying a local reset. To re-enable the
board it must be reset with the ic command or the reset switch.

m(yslot)
Displays the slot ID of the board where ic is executing.

n(mi) Issues an NMI on the board in the specified slot.

nmitype
The following; to specify the whole string, use underscores (_) not spaces:

diagnostics(_request)
debugger(_entry)
software(_nmi_source)

-o occurrence
A decimal number specifying which occurrence of the record to display, where there
are multiple occurrences. The default is 1, the first record.

-p monitor|bootstrap|index
For a local or warm reset, specifies a program to run after the reset:

monitor invokes the firmware debug monitor

bootstrap invokes the firmware bootstrap loader

index is a number in the range 0-7, invoking a program in the Program Table
Index Register (PTIR)

rec(ord)
Displays the contents of an interconnect space function record on the board in the
specified slot, or displays information about extension boards on it.

record A decimal number specifying the interconnect space record, or, to indicate extension
boards, the literal 20 or HW.

register
A decimal number specifying the (beginning) interconnect register.

res(et) Resets the board in the specified slot.

-s Shortens output to the value requested, not a message, except for error messages.

s(et) Writes a value into an interconnect register on the board in the specified slot. The
value written is verified and displayed.

type The type of reset: cold, recovery, warm, or local. Local causes a processor
reset if the specified slot is where ic is executing.

slot A decimal slot number specifying which board to act upon.

value A one-byte hexadecimal value to write (don't specify the H).

HI command ic

Command Reference Chapter 2 215

Additional Information

Interconnect registers and the logical records that comprise a group of registers are
defined differently for different boards. Refer to the hardware reference manuals for
the boards you use.

See also: Records, reset, program table index register, NMI, Multibus II
Interconnect Interface Specification

The table below shows default aliases defined for the ic command in Multibus II
systems. These are not defined for DOSRMX installed in a Multibus II system.

Subcommand Aliases
agents agents = ic -c agents

myslot myslot = ic -c myslot

reset agentreset = ic -c reset #0 local

coldreset = ic -c reset 0 cold
sysreset = coldreset
monitor = ic -c reset -p monitor #0 local
reboot = ic -c reset -p bootstrap
warmreset = ic -c reset 0 warm

nmi nmi = ic -c nmi #0 software
nmiforce = ic -c nmi -e #0 software

get icread = ic -c get #0 #1 #2

set icwrite = ic -c set #0 #1 #2

kill offline = ic -c kill #0

Values written to a register with the set subcommand are hexadecimal. All other
numeric values you specify in the ic command are decimal. Values displayed by ic
follow the same convention. If you enter an invalid command, ic displays the syntax
of ic commands.

ic HI command

216 Chapter 2 Command Descriptions

Examples

agents In this example the commands are for a system that includes an SBC 386/258 board
in slot 1, with a CSM/002 module attached.

ic -c agents <CR> or agents <CR>

AGENTS COMMAND -

SLOT:00 386/258

- CSM/002

SLOT:02 186/410

SLOT:03 386/116

SLOT:07 186/530

ic -c agents -s <CR> or agents -s <CR>

00

00

02

03

07

myslot In this example the command is issued from the board in slot 1.

ic -c myslot <CR> or myslot <CR>

MYSLOT COMMAND - SLOT:01

ic -c myslot -s <CR> or myslot -s <CR>

01

get This example returns the value from the board in slot 1, interconnect register 100,
with the contents of two registers returned.

ic -c get 1 100 2 <CR> or icread 1 100 2 <CR>

GET COMMAND - SLOT:01

100 - 03H 101 - 00H

ic -c get -s 1 100 2 <CR> or icread -s 1 100 2 <CR>

03

00

set This example writes to the board in slot 2, interconnect register 0, value 1.

ic -c set 2 0 1 <CR> or icwrite 2 0 1 <CR>

SET COMMAND - SLOT:02, REGISTER: 0, VALUE:01H

ic -c set -s 2 0 1 <CR> or icwrite -s 2 0 1 <CR>

01

HI command ic

Command Reference Chapter 2 217

record
This example returns information from the board in slot 1, record 1. The
corresponding interconnect register numbers are shown in parentheses.

ic -c record 1 1 <CR>

RECORD COMMAND - SLOT:01, NAME:MEMORY, TYPE:001, LENGTH:05

2(038)-3fH 3(039)-00H 4(040)01H 5(041)-a1H

6(042)-f1H

ic -c record -s 1 1 <CR>

01

05

3f

00

01

a1

f1

record
This example returns information about the hardware extension board attached to the
board in slot 0. The literals 20 or HW, used as a record number, specify hardware
extensions. Notice the prompts to display more information between each record.

-ic -c rec 0 20 <CR>

RECORD COMMAND - SLOT:00, NAME:HW_EXTENSION, LENGTH:20

02(103) - 00H 03(104) - 00H 04(105) - 01H 05(106) - 00H
06(107) - 43H 07(108) - 53H 08(109) - 4dH 09(110) - 2fH
10(111) - 30H 11(112) - 30H 12(113) - 32H 13(114) - 00H
14(115) - 00H 15(116) - 00H 16(117) - 01H 17(118) - 00H
18(119) - 00H 19(120) - 00H 20(121) - 00H

-MORE ([Y]/N) ? <CR>
RECORD COMMAND - SLOT:00, NAME:CSM, TYPE:008, LENGTH:02

02(124) - 00H 03(125) - 23H

-MORE ([Y]/N) ? <CR>
RECORD COMMAND - SLOT:00, NAME:TIME_DATE, TYPE:009, LENGTH:10

02(128) - 40H 03(129) - 10H 04(130) - 27H 05(131) - 16H
06(132) - 15H 07(133) - 31H 08(134) - 01H 09(135) - 90H
10(136) - 00H 11(137) - 03H

-MORE ([Y]/N) ? <CR>
RECORD COMMAND - SLOT:00, NAME:ALARM, TYPE:032, LENGTH:07

02(140) - 00H 03(141) - 00H 04(142) - 00H 05(143) - 00H
06(144) - 00H 07(145) - 00H 08(146) - 00H

ic HI command

218 Chapter 2 Command Descriptions

-MORE ([Y]/N) ? <CR>

RECORD COMMAND - SLOT:00, NAME:NVRAM, TYPE:033, LENGTH:28

02(149) - 00H 03(150) - 00H 04(151) - 00H 05(152) - 00H
06(153) - 00H 07(154) - 00H 08(155) - 00H 09(156) - 00H
10(157) - 00H 11(158) - 00H 12(159) - 00H 13(160) - 00H
14(161) - 00H 15(162) - 00H 16(163) - 00H 17(164) - 00H
18(165) - 00H 19(166) - 00H 20(167) - 00H 21(168) - 00H
22(169) - 00H 23(170) - 00H 24(171) - 00H 25(172) - 00H
26(173) - 00H 27(174) - 00H 28(175) - 00H 29(176) - 00H

-MORE ([Y]/N) ? <CR>
RECORD COMMAND - SLOT:00, NAME:CHASSIS_ID, TYPE:034, LENGTH:02

02(179) - 00H 03(180) - 00H

Error Messages
GET COMMAND - Invalid count argument

The count value entered is invalid.

GET COMMAND - Invalid register argument
The register offset is invalid.

SET COMMAND - Interconnect write error
The value written to interconnect space could not be read back to validate it.

RECORD COMMAND - Invalid record type
The record value entered is invalid.

<slot>: Invalid slot ID argument
The slot value is not a valid Multibus II slot.

<slot>: Interconnect not initialized
The specified Multibus II host had not initialized its interconnect space.

<slot>: Invalid command argument
The major option entered was not a valid ic subcommand.

E_NOT_CONFIGURED
The system on which the ic command was invoked is not a Multibus II system.

NET command inamon

Command Reference Chapter 2 219

inamon
Performs several network functions chosen from a menu, including reading and
setting Network Management Facility (NMF) objects, performing echo tests, and
managing network routing.

Syntax

inamon

Additional Information
Inamon is a menu-driven utility that provides these functions:

• Determines and changes the iNA 960 configuration through NMF objects and
monitors Remote Boot Server activity. If the NMF is configured for remote
object support, you can use inamon to monitor NMF objects on a remote system.
Except for the ina961.31L download file, the default NMF configuration for iNA
960 files shipped with iRMX-NET allows remote object manipulation.

• Performs echo tests of the Data Link Layer to determine if the physical link
between two systems is in place and if the iNA Data Link Layers are
functioning. A remote system's Ethernet address and a Data Link Layer LSAP
ID of 08 are used to reach the remote Data Link Layer.

• Attaches to iNA 960 on a remote system to determine whether the iNA
Transport software is functional on the two systems. You must provide the
transport address for the remote system.

• Notifies the user of a local event.

• Provides routing management for both static IP and ES-IS dynamic routing.

See also: NMF objects, Network User's Guide and Reference

When you invoke inamon, this menu is displayed:

TYPE 0 FOR : READ/SET/CLEAR OBJECTS

TYPE 1 FOR : ECHO TESTING

TYPE 2 FOR : EVENT NOTIFICATION

TYPE 3 FOR : ROUTER MANAGEMENT

TYPE 4 FOR : ATTACH REMOTE AGENT

TYPE 5 FOR : DETACH REMOTE AGENT

Enter Option (TYPE H FOR HELP, E FOR EXIT) -->

At this menu, enter H for help information about the command. Once you enter the
help screens, you must page through (using <CR>) to the end.

initstatus HI command

220 Chapter 2 Command Descriptions

initstatus
Displays the initialization status of all HI-managed terminals.

Syntax

initstatus

Additional Information

This is the format of the initstatus display:

terminal config device init term job user user user

device name excep excep excep state ID ID POOL name

.T0. 0000 0000 0000 D-E 1 0 1,400K rmx

.T1. 0000 0000 0000 SLE 2 65535 1,400K rmx

.T3. 0000 0002 D--

.T4. 0021 D--

Where

terminal

device

name

The physical name of the terminal, as defined during the configuration
of the Basic I/O System and as attached by the HI. Periods surround
each name.

config

excep

Hexadecimal condition code that the HI received when it attempted to
interpret the terminal definition and user definition files. A 0 value
indicates a normal condition. Nonzero values indicate exceptional
conditions.

device

excep

Hexadecimal condition code that the HI received when it originally
attached the terminal as a physical device.

init

excep

Hexadecimal condition code that the HI received when it created a job
for the interactive session.

HI command initstatus

Command Reference Chapter 2 221

term

state

Three characters that indicate the current state of the terminal. The
first character can be either:

D a dynamic logon terminal
S a static logon terminal

The second character can be either:
L the terminal is locked
- the terminal is unlocked

See also:lock and unlock commands, in this chapter
dynamic and static terminals, System
Configuration and Administration

The third character can be either:
E the HI interactive job associated with this terminal

exists
- the interactive job does not exist

job

ID

A sequential number that the HI assigns to the interactive job during
initialization. You specify this number as the parameter in the
jobdelete command to delete the corresponding interactive job.

user

ID

The user ID that the HI associates with the interactive job when the
user begins a HI session.

user

POOL

The maximum size of the memory pool associated with the interactive
job.

user

name

The logon name of the user who is accessing this terminal.

See also: Logon names and terminals, System Configuration and Administration

Error Message
not a multi-user system

The HI cannot return information about terminals because it is not configured as a
multi-user system.

jobdelete HI command

222 Chapter 2 Command Descriptions

jobdelete
Deletes one or more running interactive jobs, which are the HI jobs that manage user
sessions. The Super user can delete any interactive job. Other users can delete only
those jobs with the same user ID as their own.

Syntax

jobdelete job_id_list

Parameter
job_id_list

One or more job ID numbers separated by commas, specifying the interactive jobs to
be deleted. Use the initstatus command to display the current job IDs.

Additional Information

Deleting an interactive job causes the HI to terminate the corresponding user session.
The jobdelete command cannot be used to delete background jobs; for those, use the
kill command.

When you invoke jobdelete, it first attempts to delete the interactive job's offspring
jobs (for example, a submit file or a program invoked as a result of an
rqe_create_io_job system call). It deletes multiple levels of offspring jobs.
However, jobdelete cannot delete any interactive or offspring job that contains
extension objects.

See also: Deleting offspring jobs, System Concepts

Normally, when a user's interactive job is deleted, the HI logs the user off the system
and issues a new logon prompt. If the job is on a static terminal, the HI automatically
re-creates the interactive job, with no logon prompt. However, if the lock command
has been invoked for the terminal, the HI does not reissue a prompt or re-create
interactive jobs after a jobdelete command. The system manager can use the
combination of lock and jobdelete to remove users from the system before a system
shutdown.

Unless you delete your own interactive job, jobdelete displays this message as it
deletes each job:

<job_ID>, deleted

If you delete your own interactive job, the logon prompt is displayed (for dynamic
terminals) or your interactive job is restarted (for static terminals).

HI command jobdelete

Command Reference Chapter 2 223

Error Messages
<job_ID>, does not exist

The interactive job associated with this job ID does not exist. It has already been
deleted or never existed.

<job_ID>, invalid job id
The specified job ID is not associated with any terminal managed by the HI.

<job_ID>, job does not belong to you
You do not have the same user ID as the interactive job, or you are not the system
manager.

<job_ID>, not deleted

<job_ID>, <condition code:mnemonic>
The indicated condition code was encountered, preventing jobdelete from deleting
the job.

jobs CLI command

224 Chapter 2 Command Descriptions

jobs
Displays the current background jobs and their job ID numbers, in last-in first-out
order.

Syntax

jobs

Additional Information

The job IDs are displayed in a list of four-digit hexadecimal ID numbers. These are
the job IDs assigned when the background command was invoked. To cancel a
background job, use the kill command.

This is the type of display produced by the jobs command, where <job> is a
truncated copy of the command line running in the background:

Background Jobs:

9B08 "<job>"

1FF0 "<job>"

10A8 "<job>"

Error Message
<parameter>, unexpected parameter

You entered a parameter; jobs does not accept any parameters.

HI command keyb

Command Reference Chapter 2 225

keyb
Configures the console keyboard for a specific country, in iRMX for PCs and
DOSRMX. The default keyboard setting is US.

Syntax

keyb [country-abbreviation]

Parameters
country-abbreviation

Two-character abbreviation of the country indicating which keyboard is being used,
as follows:

Abbreviation Country
FR France
GR Germany
IT Italy
LA Latin America
SV Sweden/Finland
UK United Kingdom
US United States

Additional Information

Without a country abbreviation, keyb displays the syntax and list of countries
supported.

For keyboards with keys that support three characters, you can type the third
character only by pressing the <Ctrl+Alt+key> combination.

Currently, <Alt+Shift+key> and the <Alt Gr> key are not supported by the keyboard
command.

Error Messages
Invalid Language Abbreviation

You did not enter a correct country abbreviation as listed above.

Invalid Command Tail
You entered a single letter instead of a two-letter country abbreviation.

kill CLI command

226 Chapter 2 Command Descriptions

kill
Cancels the specified background job or all background jobs.

Syntax

kill [job_id|*]

Parameters

job_id The hexadecimal job ID number established when the background job was invoked.

* Cancels all background jobs.

Additional Information

The Super user can cancel any job. Other users can cancel only background jobs
started by themselves or by the World user.

If you cancel several background jobs at once and then immediately issue the jobs
command, some of the canceled jobs may be listed. Even though these jobs are
displayed, they have been canceled. Verify this with another jobs command.

When a job has been canceled, this message is displayed:

Background job <job_id> canceled

If you use the asterisk (*) parameter with the kill command, all background jobs are
canceled and this message is displayed:

All background jobs were canceled

Error Messages
kill, the job parameter is not a valid background job of the caller

You tried to kill a background job that is not in your list of background jobs.

kill, a job parameter is required
The command you entered has a syntax error.

HI command killjob

Command Reference Chapter 2 227

killjob
Displays current system job tree information and allows the user to specify a job to
be deleted.

Syntax

killjob

Additional Information

The killjob command displays the following job tree information:

Used Avail Job IDs Name
------- ------- ------------ --------
1394K 29156K 0258 Root Job
9K 0K 11d0 Human Interface Job
39K 34K 7178 /rmx386/jobs/any.job
166K 345K 3d78 CLI Job
39K 34K c118 :UTILS:killjob
41K 1K 2a40 /rmx386/jobs/keybd.job
5K 0K 1118 EIOS Job
0K 23K 10d8 RTE Job
21K 2K 1028 Dispatcher Job
31K 0K 0f98 BIOS Job
0K 10K 0f58 Shared C Library Job
144K 15K 0ef0 Nucleus Comm Service
Which job to delete (RETURN to exit) ?

To delete a job, simply specify the ID of the job you wish to delete.. In this example,
assume you want to delete /rmx386/jobs/any.job. Simply specify 7178 followed by
<Enter>. If the job does not have a deletion mailbox catalogged in its object
directory, or doesn’t respond to the message sent to its deletion mailbox, you will
receive the following query:

See also: sysload command, in this chapter, for information on the format of the
deletion message.

Job cannot unload itself. Attempt to delete it?

If you specify “y” followed by <Enter>, the job will be deleted with the following
message:

Deleting job 7178

The resulting job tree will then be displayed.

lanstatus NET command

228 Chapter 2 Command Descriptions

lanstatus
An alias for the netinfo command. The features of the former lanstatus command
are included in the netinfo command.

See also: netinfo command, in this chapter

NET command listname

Command Reference Chapter 2 229

listname
Lists the names and values of objects in the local network Name Server object table.

Syntax

listname [to|over|after outpath]

Parameters
to|over|after outpath

Writes the output to the specified file rather than to the screen.

Additional Information

This command lists only objects cataloged on the local system, not on remote
systems. The output can be directed to a terminal, a file, or a printer. The output has
the form:

Name Property Unique PV_Type Value

FSTSAP 00000H NO SIMPLE 10 00H

FCTSAP 00001H NO SIMPLE 11 00H

INARELNUM 00004H NO SIMPLE 03H

INANLNUM 00004H NO SIMPLE 01H

NSCOMMENGINE 00004H NO SIMPLE FFH

TLCOMMENGINE 00004H NO SIMPLE 00H

The following entries depend on the number of subnets in the iNA 960 job. For
example, there can be up to 4 MYHOSTID entries, 1 for each subnet, where xx
varies from 01 to 03.

MYHOSTID 00004H NO SIMPLE 00 AA 00 02 57 86H

MYHOSTIDxx 00004H NO SIMPLE 00 AA 00 02 57 86H

INASUBNET 00004H NO SIMPLE 00 01H

INASUBNETxx 00004H NO SIMPLE 00 01H

The following entries are added by file servers from the /net/data file. The BSMB2
entry is for the server in slot 0 and the BSSLOT2 entry is needed by the client in slot
2 (note that the last two digits of addresses in the Value column are the slot number
for these entries).

listname NET command

230 Chapter 2 Command Descriptions

RNETSRV 00004H NO SIMPLE 52 4E 45 54 53 52 56 00 AA 00H

02 57 86H

BSMB2 00003H YES SIMPLE 0B 49 00 00 00 AA 00 02 57 86 FEH

00 02 10 00H

BSMB2 00005H YES SIMPLE 00 AA 00 02 57 86 00H

BSMB2 00006H YES SIMPLE 0B 49 00 00 00 AA 00 02 57 86 FEH

00 02 30 00H

BSSLOT2 00005H YES SIMPLE 00 01 00 AA 00 02 57 86 02H

NSDONE 00004H NO SIMPLE 52 4D 58 00 AA 00 02 57 86H

The following entry is for the client (file consumer), taken from the /net/data file.

MYNAME00 00002H NO SIMPLE 72 6D 78H

In the object table, Name means the name of the object, such as the server name
BSMB2 in this example.

The Property column lists the property type, a numeric code that tells what kind of
information is represented by the property value in the last column.

See also: Name Server property types, Network User’s and Reference Guide

Unique indicates whether this combination of object name and property type are
unique on the network. The fixed entries are not unique; the object table on every
node in the network includes these objects. Other non-unique objects can be added to
the object table through the programmatic interface. Non-unique objects are, in
effect, local objects. Each computer can read the value of the object in its own object
table, but it cannot access the object with that name on a remote node. The Name
Server guarantees the uniqueness of any object entered through the Human Interface.
Before it accepts a new object, it checks all the other object tables on the network for
objects with the same name and property type.

SIMPLE in the PV_Type column means that the property value in the last column is
a simple string, rather than a complex structure in which each element is an object,
such as a mail list made up of network users. Structured property types are not
supported in iNA 960/iRMX-NET.

The Value column is the property value, a field containing specific information
about this object, usually based on the network address. For objects of property types
3, 6 and 8, the Value column contains the server's transport address. For objects of
property type 5, that column contains the host-unique ID, combining the Ethernet
address and a slot ID.

See also: findname and setname commands, in this chapter

NET command listname

Command Reference Chapter 2 231

Error Messages
illegal option

The option specified in the command must be to, over, or after.

<pathname>, illegal path
The pathname specified in the command line is longer than 255 characters.

load NET command

232 Chapter 2 Command Descriptions

load
Loads iNA 960 network software into memory on the network controller board and
starts the controller running.

Syntax

load pathname

Parameter
pathname

The name of the file containing iNA bootable network software.

Additional Information

The iRMX-NET software loads the iNA boot software onto the network controller
board during initialization, so the load utility is generally not needed on iRMX III
systems. However, if iRMX-NET is unable to find the iNA file and cannot load the
software, iRMX-NET initialization stops. iRMX continues to initialize, and you may
then invoke the load command to load iNA and resume iRMX-NET operation.

The iNA file being loaded must be in a format as processed by the xlate utility. In
previous releases of iNA 960, the load utility had the capability that xlate has; it
could be used for translating an OMF86 file to the iNA boot file format. However,
the xlate utility should now be used to perform the translating function, and the load
utility should be used to load the LAN controller. Attempting to use the load utility
to perform the translation function produces unpredictable results.

See also: Remote Booting and ccinfo file, Network User's Guide and Reference

NET command loadname

Command Reference Chapter 2 233

loadname
Adds the names and addresses of network servers listed in a specified file to the local
Name Server object table.

Syntax

loadname [pathname]

Parameter
pathname

The name of the file containing the list of network servers. The default file is
:sd:net/data. If you specify another file, it must use the format defined for the
/net/data file.

Additional Information

The loadname command reads the names and addresses of objects from a file and
enters them into the Name Server object table. A template file, /net/data.ex, is
provided with the iRMX-NET software. Copy the template file to :sd:net/data and
edit it. You may instead copy the /net/data file from a Unix or Xenix system that has
an edited file containing required servers. To do this, use the setname command to
specify the network address for the Unix system, then establish a connection to the
system and copy the file.

See also: Chapter 11, Network User’s Guide and Reference, for the format and
syntax of the /net/data file

When you invoke loadname, a message is displayed indicating the success or failure
of loading each object. If a failure occurs, the message indicates the name of the
object and the cause of the failure. After failing to enter an object, loadname
continues entering other objects from the file. File lines that are invalid are ignored.

A server object only needs to be entered in the object table of one iRMX system to be
accessible to the entire subnetwork. The system that contains the names and
addresses of other systems is called the spokesman for those systems. If the system
that executed the loadname command is shut down, the command must be
reinvoked. The number of objects that can be loaded into a single system’s Name
Server object table is configurable; the default is 50.

loadname NET command

234 Chapter 2 Command Descriptions

Changes to the /net/data file are not reflected on the network until the file is reloaded
using the loadname command. If you intend to change a file loaded with loadname,
you should first invoke the unloadname command to remove the objects from the
name table. Then edit the file and reinvoke loadname. This ensures that only the
current entries in the file are cataloged with the Name Server.

To display the entries loaded after invoking loadname, use the listname command.

See also: setname command, in this chapter

Error Messages
<pathname>, illegal input file format

The input format of the file is not correct. Check the contents of the input file and
correct the format.

<object_name>, syntax error. TYPE not found
The entry in the input file for this object does not contain the keyword TYPE=. The
entry is ignored and loadname processes the next entry.

<object_name>, property type too long
The property type or the system type field for this object is not in the correct format.

<object_name>, not valid property type
The system type field for this object does not contain a valid value for the property or
system type.

<object_name>, syntax error. ADDRESS not found
The entry for this object does not contain the keyword ADDRESS.

<object_name>, value too long
The transport address specified for this object is too long.

<object_name>, illegal property value
The transport address specified for this object contains invalid characters.

<object_name>, name already exists
The object name in the input file is already present on the network.

<object_name>, illegal name
The object name specified in the input file is more than 16 characters long.

<object_name>, name table full
The local object table is full. Each server specified in the input file occupies one
entry in the object table. You can delete some objects from the object table or
reconfigure the Name Server to increase the size of the table.

DOS command loadrmx

Command Reference Chapter 2 235

loadrmx
Loads the iRMX OS after DOS has booted. Use only with the DOSRMX OS.
Invoke rmxtsr before loadrmx.

Syntax

loadrmx -n bootfile_name -s system_device [-f d|n|r]
[-i init_file_name] [-w]

Parameters
-n Specifies the bootfile name; insert a space between -n and the name.

bootfile_name
Name of the iRMX bootfile.

-s Specifies the iRMX system device; insert a space between -s and the name.

system_device
Name of the iRMX system device. The system device may be a DOS-formatted
drive (C_DOS, E_DOS, etc.), an iRMX-formatted drive (C_RMX or D_RMX), or a
remote iRMX-NET file server. The device must have been set up correctly at
installation time, with the correct iRMX OS directories and system files; otherwise
the iRMX OS will not initialize properly.

See also: Device names, Appendix E

-f Specifies the file system type. Values and corresponding file system types are:

d DOS partitions such as C_DOS
n named iRMX partitions such as C_RMX
r remote file systems using iRMX-NET

The r option invokes network remote load operations and requires the
EtherExpress 16 or EWENET module. The bootfile name parameter then
specifies the remote load class code (hexadecimal class code nnnn encoded as
CC_nnnn). See examples.

Insert a space between -f and the value. If you do not specify a file system, EDOS is
the default.

-i Specifies the iRMX initialization file name; insert a space between -i and the name.
If you do not specify -i, the default is \rmx386\config\rmx.ini.

init_file_name
Name of the iRMX initialization file. If not specified, the default is :config:r?init.

-w Wait for iRMX initialization to complete.

loadrmx DOS command

236 Chapter 2 Command Descriptions

Additional Information
During the iRMX installation process, iRMX files are copied from the installation
diskettes to the hard disk. That hard disk is known to the iRMX OS as the System
Device and has the logical name :sd:. To load the iRMX OS, specify the physical
device name of the system device.

Loadrmx delays DOS execution until RMX is fully initialized.

Any DOS application that requires resetting the system (such as fdisk) or
reconfiguring CMOS RAM must be run prior to loading DOSRMX. Even if you
have shut down DOSRMX, reset the system before running such software.

Load the iRMX OS before starting large applications, such as word processors, so
that memory allocation, which is done by the iRMX OS, is adequate for the
application. If you load the iRMX OS from within an application, the encapsulated
DOS task will have only that amount of memory available at load time, even if you
quit the DOS application.

Examples
1. To load the iRMX bootfile located in the DOS subdirectory c:\dosrmx, and to

use the first iRMX partition on the first hard drive as the iRMX system device,
enter:

loadrmx -n C:\DOSRMX\bootfile_name -s C_RMX -f n <CR>

2. To load the iRMX bootfile located in the DOS subdirectory c:\dosrmx, and to
use the primary DOS partition on the first hard drive as the iRMX system device,
enter:

loadrmx -n C:\DOSRMX\bootfile_name -s C_DOS -f DOS <CR>

The two batch files in the \dosrmx directory, rmx.bat and rmxnet.bat, use the
mechanism in this example. You can modify these batch files if you need to.

3. If you are in the \dosrmx directory, this command will default to loading the file
dosrmx with the current DOS drive as the system device, and using the EDOS
file driver:

loadrmx <CR>

4. This command provides an example of a remote load invocation, where the
name of the remote file system is filesrv and the remote load class code is
4003H:

loadrmx -n CC_4003 -s FILESRV -f r <CR>

DOS command loadrmx

Command Reference Chapter 2 237

Error Messages
ERROR -->Boot file is not OMF-386 type, loading aborted.

The Object Module Format (OMF) of the specified bootfile is not valid. The file's
OMF header is not present or not correct. You specified the wrong file or the file has
become corrupted.

ERROR -->Exception interrupt error, loading aborted!
BIOS error.

ERROR -->file -n is empty
The specified bootfile is empty (0 bytes). Use the DOS command chkdsk to scan
your disk, then reinstall your iRMX bootfile.

ERROR -->file -n is too short!!
The specified bootfile must be greater than 75 bytes to be a valid OMF bootfile. You
specified the wrong file or the file has become corrupted.

ERROR -->Gate Address A20 Failed, cannot run iRMX.
Cannot access memory above 1 Megabyte, or BIOS error.

ERROR -->iRMX Interface TSR is not present.
Invoke rmxtsr before using loadrmx.

ERROR -->iRMX Operating System is present in memory, cannot overload.
The iRMX OS is already loaded. You cannot load more than one bootfile at any one
time. Reboot the system, then invoke rmxtsr before using loadrmx.

ERROR -->Memory configuration error; cannot load iRMX.
The reported memory size was either less than 0 or greater than 640K.

ERROR -->No extended memory present; cannot load iRMX.
Loadrmx loads the specified bootfile into extended memory and requires at least 1.5
Megabytes. If insufficient extended memory is present, the iRMX OS cannot load.

ERROR -->Can't allow iRMX to load below 1MB, loading aborted
The specified bootfile does not contain code to load the iRMX OS in extended
memory. The bootfile is probably a regular iRMX III bootfile without the DOSRMX
enhancement.

ERROR -->Protected mode software already loaded.
Loadrmx has detected that the microprocessor is running in Protected mode.
Products that use Protected mode services cannot be used with DOSRMX.

Determine what DOS application program or utility is using Protected mode services,
remove it from config.sys (or wherever it is being invoked), reboot the system, then
invoke loadrmx.

ERROR -->RAM parity error, loading aborted!
BIOS reported a parity error.

ERROR -->Target file read error.
The file may have been corrupted.

loadrmx DOS command

238 Chapter 2 Command Descriptions

ERROR -->Unable to open file: <filename>
The specified bootfile is not in the specified directory. Invoke loadrmx again and
specify the correct drive, directory, filename, and extension of the bootfile.

ERROR -->Unknown error from BIOS, loading aborted!
Run the system tests for your system.

WARNINGAvailable Extended memory is less than 2 megabytes.
There is less than 2 Mbytes of extended memory in your system. The requested
bootfile will load and the iRMX OS may run, depending upon how much memory is
available. Some tools, application programs, compilers, etc. may not execute
because insufficient memory is available.

WARNINGPC junior Not supported.
The platform is a PC Junior. Loadrmx will attempt to load the bootfile but will
return an error and abort.

WARNINGPC Not supported.
The platform is not a supported PC. Loadrmx will not attempt to load the bootfile.

WARNINGPC/XT 8088 base Not supported.
The platform is an 8088-based PC. Loadrmx will not attempt to load the bootfile.

WARNINGPS/2 Model 30 Not supported.
The platform is a PS/2 Model 30. Loadrmx will not attempt to load the bootfile.

WARNINGUnknown PC Not supported.
The platform is not an Intel386, Intel486™, or Pentium microprocessor-based PC.
Loadrmx will not attempt to load the bootfile.

WARNINGUnknown system type, loading aborted.
The platform is not compatible. Loadrmx will not attempt to load the bootfile.

HI command locdata

Command Reference Chapter 2 239

locdata
Transforms a data stream, such as a physically attached RAM disk, into a located
data file (a file that identifies the absolute memory address where the Bootstrap
Loader loads the file). You then use the addloc command to integrate the located
data into an existing application system.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

locdata inpath to|over outpath address=value

Parameters
inpath

The logical name of the physically attached RAM disk. Multiple or wildcard
pathnames are not allowed.

to|over outpath
Pathname of the file to receive the output of locdata. Multiple or wildcard
pathnames are not allowed. Specifying to guards against overwriting an existing
file. If you receive a message that the file exists, enter Y or R to overwrite the file, or
N or E (exit) to exit the locdata command and preserve the existing file.

address=value
The address at which the Bootstrap Loader is to load the data stream (for example,
the address of a RAM disk). The address must specify a WORD boundary. Be
careful not to assign an address that overlays any part of the system or the third stage
of the Bootstrap Loader. By default, the value is decimal, but you may specify octal
or hexadecimal by appending an O or H.

locdata HI command

240 Chapter 2 Command Descriptions

Additional Information

The locdata and addloc commands can be used together to create an application that
automatically loads part of itself into a RAM disk when the system boots. Generally,
to use a RAM disk you configure a system with an area of RAM dedicated to the
RAM disk. When the system boots, you attach the RAM disk memory to your
system, format it, and move data into and out of it just as you would with any other
secondary storage device.

If you want to use a RAM disk to store part of the application system (for instance,
the HI commands), the stored data must be available in the RAM disk area when the
system boots. This data cannot be copied into the RAM disk until you have
configured the application system into a bootable file, because the RAM disk area
doesn't exist until you define it through the configuration process. Therefore, you
must integrate a copy of a RAM disk data structure into an existing application
system boot file.

Using the address assigned to the RAM disk during the configuration process,
locdata creates a located data file containing the image of the RAM disk. (A located
file is a file that specifies the starting address at which it is to be loaded by the
Bootstrap Loader.) Addloc integrates the located data file with an existing
application boot file, creating a file that contains a new bootloadable version of the
application system. When this new file is booted, the RAM disk data structure is
loaded into memory in the area defined for the RAM disk during configuration.

You own and have full access to any remote files created by the locdata command.
(Read, append, and update access permissions constitute full access for remote files.)

Example

To create an application system with a RAM disk that is initialized by the Bootstrap
Loader, perform these steps:

1. Configure a version of the OS that includes a RAM disk. Make a special note of
the starting address you specify for the device.

See also: ICU User's Guide

2. Bootstrap load this new version of the OS.

3. Attach the RAM disk as a named device. For example:

attachdevice RAM AS :r: <CR>

4. Format the RAM disk as a named file. For example:

format :r: <CR>

HI command locdata

Command Reference Chapter 2 241

5. Create a directory structure on the RAM disk and copy the files that you need,
such as the HI commands, to the appropriate directory. An error message is
displayed if you run out of room on the RAM disk.

6. Detach the RAM disk. For example:

detachdevice :r: <CR>

7. Attach the RAM disk as a physical device. This allows you to access all the data
in the device, including the formatting information. For example:

attachdevice RAM AS :r: physical <CR>

8. Use the locdata command to process the information from the RAM disk and
place the output in a file on the hard disk. Use the RAM disk starting address
(specified during configuration) as the value for the address parameter. If you
configured the RAM disk to have a base address of 0100000H, this example
applies:

locdata :r: to commands address = 0100000H <CR>

9. Use the addloc command to add the processed output (the commands file) to the
file that contains the bootstrap loadable version of the OS. For example:

addloc commands, RMX86.286 to /boot/RAMdisk.286 <CR>

The processed output file of the locdata command (the commands file) is
combined with a bootloadable file (RMX86.286) to produce a new bootloadable
file (RAMdisk.286). The addloc process generates a print file (RAMdisk.mpa).

10. Create a Bootstrap Loader third stage for the new bootable file. For example:

copy /system/RMX86 to /boot/RAMdisk <CR>

When you bootstrap load this new version of the OS, the RAM disk contains the
commands and files copied to it during Step 5.

locdata HI command

242 Chapter 2 Command Descriptions

Error Messages
<pathname>, is a keyword not a file name

One of the pathnames you specified was a command keyword, not a file.

locdata, one input file only
Locdata requires one input file; you specified more than one.

locdata, one output file only
Locdata requires one output file; you specified more than one.

after, is an illegal preposition for locdata
The after preposition is not a legal locdata parameter.

<string>, illegal preposition
The preposition you entered is not a legal locdata parameter.

locdata, address parameter is missing
You omitted the address parameter in the invocation line.

locdata address value is missing
You omitted the address value in the invocation line.

locdata, no more than one address value
You entered more than one address value in the invocation line.

locdata, illegal address value
The address value you specified is not within the range of 0 to 0FFFFFFH.

<pathname>, output file same as input file
Locdata does not allow the same name for both the input and output files.

<pathname>, write error
A system error caused an incorrect number of bytes to be written to the output file.
Retry the command.

<pathname>, physical address exceeded 16M bytes
The base address added to the size of the input file you specified exceeds 16 Mbytes
(this is for iRMX II systems only).

<pathname>, read error
A system error caused an incorrect number of bytes to be read from the input file.
Retry the command.

HI command lock

Command Reference Chapter 2 243

lock
Locks the terminal(s) after the current interactive job is deleted; cannot be used for
virtual terminals.

Syntax

lock [terminal_name_list|*]

Parameters
terminal_name_list

One or more physical device names of the terminals to be locked. Multiple names
must be separated with commas. To display the terminal device names, invoke the
initstatus command.

* Specifies that all configured terminals should be locked.

Additional Information

The lock takes effect as soon as there is no interactive job on the terminal. Lock
prevents the HI from re-creating an interactive job or issuing a logon prompt once the
current interactive job is deleted. As a result, users cannot access the HI through that
terminal.

One use of the lock command (in conjunction with connect) is to take the terminal
off-line for use with a modem. Note your terminal's attributes before changing them
for modem use; you must restore them before the HI can use the terminal.

The Super user can lock any terminal; other users can lock only those terminals
whose interactive jobs have the same user ID as their own.

The system manager can use the lock command followed by a jobdelete command
either to selectively delete users from the system or to shut down the entire system.
Interactive jobs are deleted with the jobdelete or the logoff command.

This message is displayed on each locked terminal as the lock takes effect:

Terminal is now locked and unavailable for use

As each terminal is locked, this message is displayed at the terminal where lock was
invoked:

locked

<terminal_name>, locked

See also: Terminals, System Configuration and Administration

lock HI command

244 Chapter 2 Command Descriptions

Error Messages
lock not allowed

You attempted to lock your own terminal, which can only be done by the Super user.

<terminal_name>, not found
No terminal with the indicated name is configured into your application system.

<terminal_name>, already locked
The indicated terminal is already locked.

not a multi-user system
The lock command does not function if the HI is configured as a single-user system.

HI command logicalnames

Command Reference Chapter 2 245

logicalnames
Lists all the current logical names available to the user, including local and remote
names.

Syntax

logicalnames [to|over|after outpath] [f|s|l[r]] [u|sy]

Parameters
to|over|after outpath

Writes the output to the specified file rather than to the screen.

f(ast) Lists the logical names without any additional information. This is the default.

s(hort) Lists logical names along with their type, the physical device name, the current
connections, and the owner.

l(ong) In addition to the information displayed by short, lists the complete pathname
associated with each logical name.

r(oot) If specified with long, displays the pathname beginning at the root device.

u(ser) Lists only the logical names associated with the current user.

sy(stem)
Lists only the logical names of system-defined files and devices.

Additional Information

You own and have full access to output files created by the logicalnames command,
including any remote files.

When invoked with the long or short parameter, logicalnames displays these
abbreviations for the standard file driver names:

Named file driver: NAM
DOS file driver DOS
EDOS file driver EDOS
Physical file driver PHYS
Stream file driver STR
iRMX-NET Remote file driver REM
NFS file driver NFS

Logicalnames also displays the loadable file driver names.

logicalnames HI command

246 Chapter 2 Command Descriptions

Without any parameters, logicalnames displays the logical names defined by the user
and by the system. In this (fast) type of display, asterisks are shown beside logical
names that refer to a device. Logical names without an asterisk refer to files.

Example

This example shows the output listing when you use the long parameter. Items in
the example are described below it. This listing is the same as a short listing, with
the addition of the pathname column.

User Logical Names:
name type fdvr con dev name owner pathname

PROG dir EDOS 2 C_DOS WORLD :$:PROG
TERM file PHYS 5 T1 :TERM:
$ dir NAM 3 scw_0p2 WORLD :$:
CI file PHYS 5 T1 :CI:
CO file PHYS 5 T1 :CO:
HOME dir EDOS 3 C_DOS WORLD :SD:user/world
REMOTE1 file REM 0 server1 WORLD :REMSYS:SD/remote1

System Logical Names:
name type fdvr con dev name owner pathname

SYSTEM dir EDOS 1 C_DOS #0 :SD:sys386
WORK dir EDOS 1 C_DOS WORLD :SD:work
SD ldev EDOS 1 C_DOS #0 :SD:
BB ldev PHYS BB #0 :BB:
STREAM ldev STR 1 STREAM #0 :STREAM:
REMSYS ldev REM 0 server1 WORLD :REMSYS:
W ldev NAM 1 scw_0p2 #0 :w:

Where:

type Specifies the kind of logical name: file, dir (directory), map (system
file), or ldev (logical device).

fdvr File driver: Specifies the abbreviation for the named, physical, stream,
remote, EDOS, DOS, NFS, or loaded file driver.

con The number of connections a file or device has. For remote files the
con field always contains a 0.

dev name The physical device name associated with the logical name. In the case
of a directory or file, the name shows on what device the file or
directory exists.

owner The originator of the connection to the logical name.

pathname The pathname of the logical name.

HI command logicalnames

Command Reference Chapter 2 247

When you specify the root parameter with the long parameter, the pathname is
displayed beginning from the root device. If the displayed pathname has ellipses
before it (.../user/dir1/dir2/dir3/filename), logicalnames truncates the pathname
because it is too long to fit in its column; only the last elements are shown.

logoff CLI or HI command

248 Chapter 2 Command Descriptions

logoff
Logs the user off of a dynamic terminal and frees the terminal for use by other
operators.

Syntax

logoff

Additional Information

Logoff also deletes the user's interactive job, executes the :prog:r?logoff file, and
issues a new logon prompt (if the terminal has not been locked). If there are any
active background jobs when you invoke logoff, you receive the message:

background jobs are running, do you want to exit ?

([n] or y)

If you respond with Y, your background jobs are canceled and you are logged off.

If you use the CLI, this is an internal CLI command. It is also supplied as an HI
command for systems that use a custom interface. Regardless of whether you use the
CLI, invoking :system:logoff invokes the HI command. The HI version of the
command does not check for the existence of background jobs.

On static terminals, logoff simply terminates the session and restarts a new session
for the same user, unless the terminal has been locked.

See also: Dynamic and Static Terminals, System Configuration and
Administration

Error Messages
:prog:r?logoff, file does not exist

The CLI could not find the logoff file. This message is only a warning, not an error;
logoff completes successfully.

<parameter>, unexpected parameter
You entered a parameter; logoff does not accept any parameters.

HI command make (mk)

Command Reference Chapter 2 249

make (mk)
Automates the creation of large programs.

Syntax

make [option] [macdef] [target]

Parameters
option

One or more switches that modify program operation.

✏ Note
Many of these switches produce status codes, warnings, or errors:
• Status codes provide useful information.
• Warnings provide vital information that may affect

programming decisions. However, warnings will not stop the
creation of object files.

• Errors are fatal to the compilation process and stop the creation
of object files.

-i Ignores iRMX errors.

-w System exits when it receives a warning from iRMX tools.

-n Displays commands but does not execute them.

-p Prints the complete set of macro definitions and dependency lines in a
makefile.

-q Returns an iRMX status code based on the updated file.

-r Ignores the built-in rules.

-e Specifies that environment variables override makefile assignments.

-f filename
Specifies the name of the makefile. For filenames, you must supply a
full path name if the file is not in the current directory.

-s Executes makefile commands without displaying them.

-t Changes the modification date of each target file without recreating the
files. This is similar to the touch command, where the date is made
current so that the object files are not unnecessarily created again.

-u Forces an update.

make (mk) HI command

250 Chapter 2 Command Descriptions

-? Requests help messages for various switches and version information
for this command.

-d[dd] DEBUG makefile. Each d (up to three) provides more information.

See also: Additional Information section of this command for information on
macros, dependencies, built-in rules, environment variables, and
commands

macdef
A macro definition that provides value or meaning to a macro.

See also: Using Macros section of this command

target
Name of a file to be updated. Must correspond to one of the target names in the
makefile. Make processes target names from the command line from left to right.

Additional Information

The make command helps you to quickly create makefiles and object files without
leaving the iRMX OS. Make reads commands from a user-defined makefile that
lists the files to be created, the commands that create the files, and the files from
which they are created. This command is similar to the Unix make command.

When you use the make command to create a program, it ensures that each file on
which the program depends is up-to-date. If necessary, it then creates the program by
executing the given commands in the makefile. If a file is not up-to-date, make
updates it before creating the program by executing explicitly given commands or
one of the many built-in commands.

See also: Using Built-in Rules section of this command

Creating a Makefile

A makefile contains dependency lines, command lines, and comments. A
dependency line shows how a given file depends on other files and what commands
are required to bring a file up-to-date. You can add comments as notes for the
programmer or anyone reading the makefile.

Keep the makefile in the same directory as the given source files. The filename
makefile is provided as the default filename if you do not give an explicit name at
invocation.

Dependencies

A dependency line lists the filename, its dependencies, and commands using this
form:

HI command make (mk)

Command Reference Chapter 2 251

target ... :[dependent ...]

[command ...]

where target is the name of a file to be updated, dependent is the name of a file
on which the target depends, and command is the iRMX command needed to create
the target file. The command line(s) should be on a newline, and should begin at the
first tab stop. If a dependency line is too long, you can continue it by typing a
backslash (\) immediately followed by a newline.

You can give more than one target name or dependent name if desired. Separate
each name from the next by at least one space. Separate the target names from the
dependent names by a colon (:). Filenames must follow iRMX naming conventions.

See also: iRMX file-naming conventions, in Chapter 1

✏ Note
Names are case-sensitive within a makefile.

Commands

You can give a sequence of commands on lines following the target by beginning
each line with a tab character. Specify commands exactly as they would appear on
an iRMX command line. Use the ampersand character (&) in front of a command to
prevent make from displaying the command before executing it.

Comments

You can add a comment to a makefile by starting the comment with a pound sign (#)
and ending it with a newline. All characters after the pound sign are ignored.

Example

A program named test is made by linking three object files, x.obj, y.obj and z.obj.
These object files are created by compiling the C language source files x.c, y.c, and
z.c. Furthermore, the files x.c and y.c contain the line:

#include <defs>

This means test depends on the three object files, the object files depend on the C
source files, and two of the source files depend on the include file defs.

make (mk) HI command

252 Chapter 2 Command Descriptions

Here is a makefile representing these relationships:

test: x.obj y.obj z.obj

$(BND) $(CSTART), &

x.obj, y.obj, z.obj, &

$(SD)intel/lib/cifc32.lib, &

$(SD)RMX386/lib/rmxifc32.lib &

renameseg(code32 to code) &

segsize(stack(+8192)) rc(dm(10000,5000000)) &

object($@) $(DEBUG) $(TYPE)

x.obj: x.c defs

$(CC) $*.C $(CFLAGS)

y.obj: y.c defs

$(CC) $*.C $(CFLAGS)

z.obj: z.c

$(CC) $*.C $(CFLAGS)

In the first dependency line, test is the target file and x.obj, y.obj, and z.obj are its
dependents. This is the command sequence:

$(BND) $(CSTART), &

x.obj, y.obj, z.obj, &

$(SD)intel/lib/cifcf32.lib, &

$(SD)RMX386/lib/rmxifc32.lib &

renameseg(code32 to code) &

segsize(stack(+8192)) rc(dm(10000,5000000)) &

object($@) $(DEBUG) $(TYPE)

The next line tells how to create test if it is out-of-date. The program is out-of-date if
any one of its dependents has been modified since test was last created.

The second, third, and fourth dependency lines have the same form, with the x.obj,
y.obj, and z.obj files as targets and x.c, y.c, z.c, and defs files as dependents. Each
dependency line has one command sequence that defines how to update the given
target file.

Specifying a Makefile

This example make command reads the dependency lines of the makefile named
maketest found in the current directory:

mk -f maketest

You can direct make to read dependency lines from the standard input by giving a
hyphen (-) as the filename. Make will read the stdin until an end-of-file is
encountered (Ctrl-Z if stdin is the console).

HI command make (mk)

Command Reference Chapter 2 253

If you specify only a target on the command line and no makefile is present, make
will attempt to create the target using only built-in rules. This is especially useful for
small, single-module programs.

Updating Makefiles

When you invoke make, you can update and modify one or more target files in the
directory. You can also direct make to update the first target file in the makefile by
typing just the command make. In this case, make searches for the makefile in the
current directory.

For example, assume that the current makefile contains the dependency lines given in
the last section. This command compares the modification dates of the test program
and each of the object files x.obj, y.obj, and z.obj and recreates test if any changes
have been made to any object files since test was last created:

mk

It also compares the modified dates of the object files with those of the four source
files, x.c, y.c, z.c, and defs, and recreates the object files if the source files have
changed. It does this before recreating test so that the recreated object files can be
used to recreate test. If none of the source or object files has been altered since the
last time test was made, make stops and all files are unchanged.

You can direct make to update a given target file by giving the filename of the
target. For example, this command causes make to recompile, creating the x.obj
files if the x.c or defs files have changed since the object file was last created:

mk x.obj

Similarly, this command causes make to recompile, creating x.obj and z.obj if the
corresponding dependents have been modified:

mk x.obj z.obj

make (mk) HI command

254 Chapter 2 Command Descriptions

Using Pseudo-target Names

You can include dependency lines that have pseudo-target names, i.e., names for
which no files actually exist or are produced. Pseudo-target names allow make to
perform tasks and execute iRMX commands not directly connected with the creation
of a program, such as deleting old files or printing copies of source files. For
example, this dependency line removes old copies of the given object files when the
pseudo-target name cleanup is given in the invocation of make.

cleanup:

delete x.obj

delete y.obj

delete z.obj

Since no file exists for a given pseudo-target name, the target is always assumed to be
out-of-date. Thus the associated series of commands are always executed.

This command causes the creation of makefile.new which will have a dynamically
created dependency section formed by the mkdep command:

depend:

copy makefile over makefile.new

mkdep -p -f makefile.new -i $(CDIR) \

mkdep.c $(SRC)

See also: mkdep command

Make also has built-in pseudo-target names that modify its operation.

The pseudo-target name .IGNORE causes make to ignore errors during execution of
commands, allowing make to continue after an error. This is the same as the -i
option. Make also ignores errors for a given command if the command string begins
with a hyphen (-). To cause make to stop on warnings, the pseudo-target name
.WARNING has the same effect as the -w option.

The pseudo-target name .PRECIOUS prevents dependents of the current target from
being deleted when make is terminated by an error condition or user-input <Ctrl-C>.

The pseudo-target name .SILENT has the same effect as the -s option.

Using Macros

A makefile can contain macros. A macro is a short name that represents a filename
or command option. The macros can be defined when you invoke make or in the
makefile itself.

HI command make (mk)

Command Reference Chapter 2 255

In a macro, the name (a string of letters and digits) to the left of the equal sign is
assigned the string of characters following the equal sign. Except where noted under
concatenated macro definitions, leading blanks and tabs on both sides of the operator
are ignored (on both sides of the equal sign, leading blanks and tabs are stripped).

The macro definition templates shown differ only in the operator they contain (=,+=
or :=). The operator distinguishes these three types of make macros:

NAME = [value] #standard macro definition
Defines a standard macro, where the value of the macro is the value string,
which can contain other macros.

NAME += [value] #concatenated macro definition
Defines a concatenated macro, where the value of the macro is the concatenation
of its current value and value. If you omit whitespace after the operator in the
definition, make pastes the concatenated value immediately after the current
value; otherwise make converts any whitespace to a single space between
current and concatenated values.

NAME := [value] #immediate macro definition
Defines an immediate macro, where all macros in value are expanded and the
expanded line is the value of the macro.

These examples are valid macro definitions:

CFLAGS = optimize(3) debug

LIBS =

The last definition assigns LIBS the null string. A macro that is never explicitly
defined has the null string as its value.

Invoking Macros

Invoke a macro by preceding the name with a dollar sign $; place macro names
longer than one character in parentheses () or braces {}. The name of the macro is
either the single character after the dollar sign or a name inside parentheses or braces.
These are valid macro invocations:

$(CFLAGS) $(xy) $Z ${Z}

The invocations $Z and ${Z} are identical.

make (mk) HI command

256 Chapter 2 Command Descriptions

Including a Standard Macro Definition in a Command Line

A macro definition argument has the same form as a macro definition in a makefile.
Macros in a command line override corresponding definitions found in the makefile.
For example, this command assigns the value internal to RELEASE:

mk RELEASE=internal

All environment variables are preloaded as macros before reading the makefile. If
the -e switch is set, the environment variables override the makefile.

Using Built-in Macros

Make has built-in macros that you can use when writing dependency lines:

$@ Contains the full pathname of the current target. It may be used in
dependency lines with user-defined target names.

$* Contains the name of the current target with the suffix removed. Thus
if the current target is test.obj, $* contains test. It may be used in
dependency lines that redefine the built-in rules.

$? The value is the list of prerequisites newer than the target.

$- Contains the filename of the dependent that is more recent than the
given target.

$(@D), $(@F), $(<D), $(<F), $(*D), $(*F), $(-D), $(-F)
These macros get directory and file portions of the respective macros
above.

$(MAKE) By default, the value of this macro is the name with which make was
invoked, but you can change it. Using this macro on any operation line
overrides the /n no execute control. This is useful in debugging
makefiles that invoke make recursively.

$(MAKEVERSION)
This macro is the version of make.

$(MFLAGS) $(MAKEFLAGS)
This macro specifies the options that make starts with. Make fills this
macro with all options supplied, so you can use them to pass along
options when invoking make recursively.

$(STATUS) Make fills this macro with the return code of operation lines that
contain the ignore prefix (-).

Make supports a macro substitution feature:

$(macro:old_suffix=new_suffix)

This is used as follows:

HI command make (mk)

Command Reference Chapter 2 257

SRC = x.c y.c z.c
OBJS = $(SRC:.c=.obj) OBJS is now x.obj y.obj z.obj

OBJLIST = $(SRC:.c=.obj,) OBJLIST is now x.obj,y.obj,z.obj

vpath: Search Path for All Dependencies

The value of the make variable vpath specifies a list of directories that make should
search. Dependency files are usually in the current directory, but if a file that is listed
as a dependency does not exist in the current directory, make searches the directories
listed in vpath for a file with that name. The first occurrence of that file is then used
as the dependency.

The vpath variable is a list of directory paths separated by colons. Because the
paths are colon-separated, iRMX logical names cannot be used.

For example, this command specifies two directory paths that make sequentially
searches if it cannot find dependency files in the current directory:

vpath = intel/ic386/inc:/rmx386/demo/c/intro

Using Environment Variables

Make provides access to current values of the environment variables. Make
automatically assigns the value of each environment variable to a macro of the same
name. You can access a variable's value in the same way that you access the value of
explicitly defined macros. For example, in this dependency line, $(SOURCE) will
have the same value as the user's SOURCE variable (assuming the user has defined
the variable SOURCE):

test:

$(CC) $(SOURCE)/x.c

Make assigns the environment variable before it assigns values to the user-specified
macros. Thus, you can override the value of an environment variable by explicitly
assigning a value to the corresponding macro. For example, this macro definition
causes make to ignore the current value of the SOURCE variable and use /usr/pub
instead:

SOURCE=/usr/pub

For another example of changing environment variables, if you add this line to the
:config:r?env file, make will break to an AEDIT window if an error occurs during
compilation:

EDITOR = AEDIT

The precedence of make macros is determined by where they are defined. You can
redefine an existing macro (i.e., change its value) if the redefinition has precedence at

make (mk) HI command

258 Chapter 2 Command Descriptions

least as high as the existing definition. This is the default precedence of macro
definitions:

• Invocation command definition (highest)

• Description file definition

• Macros predefined by make

• Environment definition (lowest)

The -e environment control causes environment definitions to have higher
precedence than makefile definitions (but lower precedence than make invocation
command definitions) for a particular invocation of make.

✏ Note
Some systems upper-case the name of an environment variable
while the value of the variable retains its case as specified in the
variable's definition. It is therefore recommended that all macro
names be in uppercase.

Using the Built-in Rules

Make provides a set of built-in dependency lines, called built-in rules, that
automatically check the targets and dependents given in a makefile and create up-to-
date versions of these files if necessary. The built-in rules are identical to user-
defined dependency lines except that they use the suffix of the filename as the target
or dependent instead of the filename itself. For example, make can automatically
assume that all files with the suffix .obj have dependent files with the suffix .c.

When no explicit dependency line is given in a makefile for a given file, make
automatically checks the default dependents of the file, forming the name of the
dependents by removing the suffix of the given file and appending the pre-defined
dependent suffixes. If the given file is out-of-date with respect to these default
dependents, make searches for a built-in rule that defines how to create an up-to-date
version of the file and executes it.

HI command make (mk)

Command Reference Chapter 2 259

There are built-in rules for these files:

.obj Object file

.c C source file

.p38 PLM386 source file

.plm PLM386 source file

.a38 ASM386 source file

.asm ASM386 source file

For example, if the file x.obj is needed and there is an x.c in the description or
directory, x.c is compiled.

The built-in rules are designed to reduce the size of your makefile. They provide the
rules for creating common files from typical dependents.

Reconsider the example given in Creating a Makefile. In this example, the program
test depended on three object files, x.obj, y.obj, and z.obj. The files x.c and y.c also
depended on the include file defs. In the original example, each dependency and
corresponding command sequence was explicitly given. Many of these dependency
and command lines were unnecessary, since the built-in rules could have been used
instead.

This is all that is needed to show the relationships between these files:

test: x.obj y.obj z.obj

$(BND) $(CSTART), $(@).obj, &

$(SD)intel/lib/cifc32.lib, &

$(SD)RMX386/lib/rmxifc32.lib &

renameseg(code32 to code) $(TYPE) &

segsize(stack(+8192))

rc(dm(10000,500000)) object($@) $(DEBUG)

x.obj y.obj: defs

In this makefile, test depends on three object files, and an explicit command is given
showing how to update test. However, the second line merely shows that two object
files depend on the include file defs. No explicit command sequence is given on how
to update these files if necessary. Instead, make uses the built-in rules to locate the
desired C source files, compile these files, and create the necessary object files.

Changing the Built-in Rules

You can change the built-in rules by redefining the macros used in these lines. You
can display a complete list of the built-in rules and the macros used in the rules by
typing:

make (mk) HI command

260 Chapter 2 Command Descriptions

mk -p

The macros of the built-in dependency lines define the names and options of the
compilers, assemblers, and other programs invoked by the built-in commands. Make
automatically assigns a default value to these macros when you start the program.
You can change the values by redefining the macro in your makefile. For example,
this built-in rule contains two macros, CC and CFLAGS.

.c.obj:

$(CC) $*.C $(CFLAGS)

You can redefine any of these macros by placing the appropriate macro definition at
the beginning of the makefile. You may create your own built-in rule in your
makefile. A built-in rule has the form:

suffix-rule :

command

where suffix-rule is a combination of suffixes showing the relationships of the
implied target and dependent, and command is the iRMX command required to carry
our the rule. If more than one command is needed, they are given on separate lines.

For a complete list of built-in rules, check:

:lang:builtins.mk

A pair of suffixes indicates a rule that makes one file from the other. For example,
.c.obj is the rule that creates an object file (.obj) from a corresponding C source file
(.c).

If necessary, you can create new suffix-rules by adding a list of new suffixes to a
makefile with .SUFFIXES: this pseudo-target name defines the suffixes that may be
used to make suffix-rules for the built-in rules. The line has the form:

.SUFFIXES: suffix ...

where suffix is usually a lower-case letter preceded by a dot (.). If more than one
suffix is given, you must use spaces to separate them.

HI command make (mk)

Command Reference Chapter 2 261

The order of the suffixes is significant. Each suffix is a dependent of the suffixes
preceding it. For example, this suffix list causes test.c to be a dependent of test.obj,
and test.plm to be a dependent of test.c:

.SUFFIXES: .obj .c .p38 .plm .a38 .asm

You can create new suffix-rules by combining dependent suffixes with the suffix
of the intended target. The dependent suffix must appear first. If a SUFFIXES list
appears more than once in a makefile, the suffixes are combined into a single list. If
SUFFIXES is given but has no list, all suffixes are ignored.

Troubleshooting

Most difficulties in using make arise from its specific meaning of dependency. If the
file x.c has the line:

#include <defs>

then the object file x.obj depends on defs; the source file x.c does not. If defs is
changed, it is not necessary to do anything to the file x.c, while it is necessary to
recreate x.obj. To determine which commands make will execute, without actually
executing them, use the -n option. For example, this command prints out the
commands make would normally execute without actually executing them:

mk -n

If a change to a file is absolutely certain to be benign (e.g., adding a new definition to
an include file), the -t touch option can save a lot of time. Instead of issuing a large
number of superfluous recompilations, make updates the modification times on the
affected file. Thus, this command, which stands for touch silently, causes the
relevant files to appear up-to-date:

mk -ts

make (mk) HI command

262 Chapter 2 Command Descriptions

here Documents

Make understands Unix-style here documents. This enables you to include data in
the makefile that would normally need to be placed in a separate file, and makes the
data available as the standard input of the command. <<- (strip leading tabs) and
<<\word (quoting) modes are both supported. If quoting is not specified, then the
data is subject to macro expansion, at the time of command execution.

date

EOF

/sys286/submit heredoc.000 to :bb: <<-\EOF

ed today.h

v/local/d

s/ local//

s/.*/static char xxxtime[] = "@(\#) Compiled: &";/

w

q

EOF

Error Messages

Make does not generate error messages. However, it does pass through any error
messages generated by the iRMX tools it invokes.

HI command memory

Command Reference Chapter 2 263

memory
Displays the amount of memory currently allocated to the user, and the total system
memory available to the user.

Syntax

memory [e]

Parameters

e Also displays the total amount of initial and currently available system memory.

Additional Information

This is an example of the listing produced when you use the e parameter:

-memory e <CR>

User Private Memory (pool minimum) : 300 k Bytes

Available Memory (Private + Shared): 1.545 M Bytes

Initial Available Shared System Memory: 13.99 M Bytes

Current Available Shared System Memory: 7.650 M Bytes

Where:

User Private Memory
The amount of memory currently allocated to the user

Available Memory
The amount of memory available for the user; that is, the private
memory and the amount of memory the user job can borrow from
parent jobs. For example, if the private memory is 300 Kbytes and the
total memory is 1.545 Mbytes, as shown above, your interactive job can
still borrow 1.245 Mbytes.

Initial Available Shared System Memory
The amount of memory initially assigned to the Free Space Manager
after the root job allocates its memory.

Current Available Shared System Memory
The amount of memory currently available in the root job from the Free
Space Manager.

mirror HI command

264 Chapter 2 Command Descriptions

mirror
Manages disk mirroring on a pair of matched hard disks. The mirror command
provides several distinct functions and must be invoked once for each function
desired. This command is supported in:

• iRMX III systems using Multibus I and II
• DOSRMX and iRMX for PCs systems using Multibus II
• DOSRMX and iRMX for PCs systems using a PC bus with an

Adaptec 1542/1742 host adapter

Syntax
mirror create primary secondary
mirror setopt primary read alt|prim|sec
mirror resync primary p2s|s2p
mirror waitevent primary
mirror getstat primary
mirror attstat primary
mirror disable primary

Parameters
create

Creates a mirror set with a primary and secondary hard disk.

primary
Primary hard disk's logical name (for example, :w:).

secondary
Secondary hard disk's DUIB name (for example, M4380_3)

See also: physname command, in this chapter
device names, Appendix E

setopt Sets special options for the mirror set.

read Sets the read policy for the mirror set to one of the following:

alt Reads are performed alternately from the primary and secondary hard
disks. If setopt is not specified, this is the default.

prim Reads are performed only from the primary hard disk.

sec Reads are performed only from the secondary hard disk.

HI command mirror

Command Reference Chapter 2 265

resync Enables disk mirroring on a mirror set and resynchronizes the set's hard disks while
on-line. The direction of resynchronization is one of these:

p2s Primary to secondary.

s2p Secondary to primary.

waitevent
Waits for a disk mirroring event and returns when an event occurs.

getstat
Reports the mirroring status of a mirror set.

attstat
Reports the attachment status of a hard disk.

disable
Disables disk mirroring on a mirror set.

Additional Information

✏ Note
You cannot use this command with a device that you access
through NFS.

Disk mirroring is a hard disk configuration that maintains identical copies (mirrors)
of data on two disks for increased reliability. Disk mirroring requires you to create a
mirror set: a pair of hard disks configured to write the same data to both disks, read
data from alternate disks (by default), and perform error checking for read and write
operations on the set.

A mirror set has a primary and secondary hard disk. The mirror set takes its name
from the primary hard disk, and disk mirroring operations are directed at that disk.
The primary hard disk must be already attached and is identified by a logical name,
for example, :sd: or :m:. The secondary hard disk works together with the primary
hard disk to do disk mirroring operations. The secondary hard disk is identified by its
physical (DUIB) name. The secondary hard disk should be formatted, but detached.

To create a mirror set, use the mirror command with the create parameter. This
creates a mirror set and specifies the primary and secondary hard disks in the set.

✏ Note
The two hard disks must have the same formatted capacity, device
granularity and should be the same model type to ensure the same
formatted disk capacity.

mirror HI command

266 Chapter 2 Command Descriptions

To set the read policy for a mirror set, use the mirror command with the setopt and
read parameters. This determines whether data is read from one or both disks. By
default, data is read alternately from the primary and secondary disk; this gives the
best performance for multiple I/O requests.

To enable disk mirroring on a mirror set, use the mirror command with the resync
parameter. This enables disk mirroring and causes on-line resynchronization to
occur. The primary parameter specifies the mirror set name. Resynchronizing a
mirror set involves copying data from one hard disk of the set to the other. The
resynchronization direction is specified in the command. This command must be
used only after a mirror set is created or after a rollover event (described later).
During execution, the command ensures that the destination hard disk is a good hard
disk. The resynchronization operation runs in the background and is done one track
at a time. I/O system read and write operations are allowed on the mirror set while
resynchronization is in progress. If an I/O system write is directed at the same disk
address where the resynchronization is being performed, the driver delays the write
operation. The write operation is resumed when the disk address no longer conflicts
with the resynchronization address.

The mirror resync command returns with either a completion or abort status. Use
the mirror command with the waitevent parameter to get the resynchronization
status. Issue this command as a background job.

To get mirroring status for a mirror set, use the mirror command with the getstat
parameter. The status information includes the state of the mirror set, the names of
disks in the set, the name of the good hard disk after a rollover event, the error status,
the error's address, whether resynchronization is in progress, and the percentage of
resynchronization completed. This example shows a display of disk mirroring status:

State = Mirroring Enabled

Primary Unit = M4380_2

Secondary Unit = M4380_3

Read Policy = Alternate Read

For a mirror set to be operational, the I/O system must successfully have attached the
hard disk. To get the attachment status for a disk, use the mirror command with the
attstat parameter. The status report contains such information as the name of the
mirror set and the state of the disk when it was last detached. The incarnation
number is a unique 9-digit number assigned at shutdown. This example shows a
display during a shutdown when you request attachment status:

Mirror Attach Status = Mirror Set Valid

Other Unit Name = M4380_3

Incarnation Number = XXXXXXXXX

Disk Status = Marked Good

HI command mirror

Command Reference Chapter 2 267

These events can occur for a mirror set: rollover, resynchronization complete, and
resynchronization abort.

A rollover is an operation done by the device driver when a failure occurs on one disk
in the set. All I/O is automatically directed to the surviving disk. After fixing the
problem that caused the rollover, you must resynchronize the disks.

To get notification of an event, invoke the mirror command with the waitevent
parameter, as a background job. The command returns only when an event occurs.
After the command returns, you must reissue the command to continue event
notification. An example of the message returned by waitevent is:

Mirror Event Status = rollover

When the command returns, use the mirror command with the getstat parameter
to get more information about the mirror event.

To disable a mirror set, use the mirror command with the disable parameter. If
resynchronization is in progress on the set, the resynchronization is aborted. All
pending I/O operations on the mirror set are completed before mirroring is disabled.

See also: Disk mirroring, Appendix A, for more detailed information and a
tutorial

mkdep DOS command

268 Chapter 2 Command Descriptions

mkdep
Assists the make command in creating makefiles or appending dependencies to a
given makefile.

Syntax

mkdep -?

mkdep [-s] [-i include_path] [-f filename] file ...

Parameters

-? Displays the correct format of the command.

-s Short form. Lists the dependencies from files in the current directory.

-i include_path
The path to the include files.

-f filename
Name of the output file (default is makefile).

file ... Files that contain dependencies.

Additional Information

This mkdep example:

mkdep -f mkfile x.c y.c

will either create a makefile named mkfile or it will append to a current filename
mkfile these dependencies:

#DO NOT DELETE THIS LINE

#These dependencies came from mkdep

#If you place information here, it will go away

x.obj: x.c

y.obj: y.c

If the name mkfile is used in another mkdep call, the dependencies below the three
comment lines will be deleted and replaced with the new dependency lines. To avoid
this condition and append further dependency lines, either delete the comment lines
or move the dependencies above the comment lines.

DOS command mkdep

Command Reference Chapter 2 269

To use mkdep with a makefile, set up this structure in your makefile. If you call
your makefile anything other than the default name makefile, be sure to include the -
f filename in the mkdep line.

depend:

mkdep -i $(INC)\

$(SRCDIR)check.c &

$(SRCDIR)error.c

Then, running make depend will append this to the makefile:

#DO NOT DELETE THIS LINE

#These dependencies came from mkdep

#If you place information here, it will go away

src/check.obj:\

src/check.c\

:INCLUDE:stdio.h\

:INCLUDE:reent.h\

:INCLUDE:locale.h\

:INCLUDE:stdlib.h\

h.h

src/error.obj:\

src/error.c\

:INCLUDE:stdio.h\

:INCLUDE:reent.h\

:INCLUDE:locale.h\

:INCLUDE:stdlib.h\

:INCLUDE:stdlib.h\

:INCLUDE:rmxerr.h\

modcdf NET command

270 Chapter 2 Command Descriptions

modcdf
A menu-driven utility that displays, adds, or deletes information about network client
systems in the Client Definition File (CDF). Only the Super user can use modcdf.

Syntax

modcdf

Additional Information

The modcdf utility allows the system manager of an Administrative Unit (AU, or
subnetwork) to add and delete iRMX client systems from the Client Definition File
(CDF) of a server. The name and password of an iRMX client are defined in the
User Administration configuration source file or the CDF screen of ICU. The client
name is limited to eight characters.

When you invoke modcdf, this message is displayed:

The following commands are available

A - Add a client

D - Delete a client

L - List the CDF

Q - Quit

E - Exit

Enter the command:

To add a client system, enter A. The utility prompts for the client's name and
password. The name and password are both case-sensitive. The name of the client
must be unique within the CDF; a client with the same name must not be already
defined. The password you enter is not echoed to the screen.

To delete a client system, enter D. The modcdf utility prompts for the name of the
client to be deleted from the CDF. The name is case-sensitive.

Enter L to display the contents of the CDF.

Enter Q to quit without updating the CDF. Any changes made during the current
session are lost.

Enter E to exit the utility and save changes made during the current session.

Error Messages
invalid command

The command is not recognized.

NET command modcdf

Command Reference Chapter 2 271

cannot add a client name to the CDF which exceeds 8 characters

in length.
The specified client name exceeds the maximum length of eight characters.

invalid password
The second password entered while adding a client does not match the first.

client <name> is not defined in the CDF
The name specified for deletion does not exist in the CDF.

CDF is not in the proper format. Delete the CDF and start again.
Improper format for the CDF file was used. This might be a line terminated by a
carriage-return/line-feed rather than just with a line-feed.

The CDF is too big to add a new client.
The CDF has a 5000-byte buffer maximum. Adding the specified new client would
exceed the buffer maximum.

client <name> is already defined in the CDF
The client being added already exists in the CDF.

CDF is too big to handle
The CDF already contains 5000 bytes of information. The CDF buffer is full.

cannot attach :config:CDF
An error was encountered while attempting to access the CDF.

Only the System Manager can access the CDF.
Access is only permitted to user ID 0. Enter the super command, then invoke
modcdf again.

modinfo HI command

272 Chapter 2 Command Descriptions

modinfo
Displays or changes the sizes of memory pool values in OMF86 or OMF286 object
modules.

Syntax

modinfo inpath_list [to|over|after outpath_list]
[mempool = min,max] [a] [q]

Parameters
inpath_list

Pathname(s) of one or more OMF86 or OMF286 object modules, separated by
commas. Wildcards are permitted.

to|over|after outpath_list
Writes the modifications in the output file(s) rather than in the original file(s). If
multiple pathnames with separating commas are specified in the inpath_list, use
the same number of pathnames in the outpath_list. If you do not specify this
parameter, but do specify changed values, the input files are modified.

mempool
New minimum and maximum values to be established for the dynamic memory pool
parameters in the object module. By default the values are decimal, but you may
specify octal or hexadecimal by appending an O or H.

a(sk) After displaying current pool values, prompts for new values.

q(uery) Prompts for permission to process each file. Enter Y or R to process the file, E to exit
the command, or any other letter to indicate a no.

Additional Information

If ask or mempool is not specified, the current static and dynamic segment sizes of
the given object module are displayed, rather than modified. If an output pathname is
specified, the values are changed in the output file, not in the input file. If no output
pathname is specified, the input file is changed.

▲▲! CAUTION
Avoid using wildcards to specify input files, especially if you don't
specify corresponding output files. You might modify files you did
not intend to change.

NET command netinfo

Command Reference Chapter 2 273

netinfo
Displays the Ethernet address, subnet ID, and iNA 960 information for each network
controller in a system.

Syntax

netinfo

Additional Information

Netinfo does not indicate if iNA 960 software is running properly. Use the inamon
command to get the status of iNA960. Netinfo displays a message similar to this for
each network controller board in the system:

iRMX II/III NIA Board NETINFO Utility Version x.x

Copyright Intel Corporation 1995

INA 960 OSI-Transport COMMputer Configuration

INA 960 OSI-Network Layer : NULL2

INA 960 Running On : Local Board - 486/166SE

Subnet (1)

ID : 0001

Name: SBx586

Address: 00 AA 00 06 A4 9E

iNA 960 OSI-Transport
Lists the type of hardware environment iNA 960 is running in. This
entry is either COMMputer Configuration or COMMengine
Configuration.

iNA 960 OSI-Network Layer
The network layer addressing scheme. This entry is either NULL2 or
ES-IS.

See also: ES-IS and Null2 addressing, Network User’s Guide and
Reference
i*.job, ES-IS and Null2 jobs, System Configuration and Administration

iNA Running ON
The type of board iNA 960 is running on.

Subnet Lists the subnet ID and Ethernet address of each subnet. In the case the
ES-IS network layer, the subnet name also is listed.

netstat TCP/IP command

274 Chapter 2 Command Descriptions

netstat
Symbolically displays the contents of TCP/IP network-related data structures. The
command can show the status of active connections (the default), configured
interfaces, routing tables, network statistics, Streams buffer allocation failures, and
packet traffic.

Syntax

netstat [-A] [-a] [-n] [-p protocol]
netstat -i [-n]
netstat -r [-n]
netstat -s [-r|-p protocol]
netstat -S netstat interval

Parameters

-A Adds the associated protocol control block (PCB) to the connection display.

-a Includes the inactive connections (listening servers).

-n Disables the symbolic translation of local and remote addresses, causing both to be
displayed in their Internet dot notation.

-p protocol
Limits the display to the specified protocol.

-i Shows the status of configured network interfaces. The display includes the interface
name, the maximum transfer unit (MTU) in bytes, the network and interface
addresses, the number of packets received and sent, and the number of send and
receive errors.

-r Shows the status of the configured routes.

-s Displays network statistics for the ip, icmp, tcp, and udp protocols.

-S Shows the Streams display.

interval
Displays packet traffic at given intervals, in units of seconds. Interrupt the display
with a <Ctrl-C>.

TCP/IP command netstat

Command Reference Chapter 2 275

Additional Information

The netstat command symbolically displays the contents of a number of
TCP/IP-related data structures. Although netstat is an administrative command, it
can be used by anyone to check on the status of the network. If several options are
used, they can be concatenated with one leading hyphen; for example, netstat -an.

Where local and remote addresses are part of the display, they are shown as host.port
or network.port. The latter format is used if a transport endpoint's address specifies a
network but no specific host address. The port designates a network service, either
well-known or local, as defined in the /etc/services file.

The symbolic names of host, network, and port are displayed where they are
available from the network databases (hosts, networks, and services). The domain
names are stripped from the host and network names. If the symbolic name for an
address cannot be determined, the address is displayed in the Internet dot notation.
Where applicable, the -n option to netstat disables the symbolic translation of the
address fields. Unspecified or wildcard addresses and ports are identified by an
asterisk (*).

The Connection Display

The connection display shows the status of active Internet connections. For this
display, invoke netstat with no parameters or with any combination of the -A, -a, -

n, or -p parameters. With no parameters, the display is similar to:

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 0 napalm.telnet flamex1.1817 ESTABLISHED

tcp 0 0 *.telnet *.* LISTEN

tcp 0 0 *.ftp *.* LISTEN

udp 0 0 *.tftp *.*

udp 0 0 *.bootps *.*

The first column identifies the protocol through which the connection was made. The
second and third columns show the number of bytes of data currently in the local
receive and send queues, respectively. The fourth and fifth columns identify the local
and remote transport endpoints of the connection, showing the host and port
addresses. An asterisk (*) in either part of the endpoint address is a wild-card
character. The sixth column shows the state of the connection.

The effect of the parameters is described above. The -A option displays a PCB,
which is an address in kernel space not generally useful except for debugging
purposes. When listening servers are displayed with the -a option, the local transport
endpoint has a wildcard address and the port assigned to the server. Both parts of the
remote transport endpoint are wildcards.

netstat TCP/IP command

276 Chapter 2 Command Descriptions

The Interface Display

Specify the interface display with the -i parameter. The display is similar to:

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs

en0 1500 129.84.25 129.84.25.13 179843 0 122361 0

lo0 4096 127 127 12 0 10 0

One line is displayed for each interface configured in the inetinit.cf file. The first
column is the interface name as specified in that file. The second column is the
maximum transfer unit (MTU) for the interface. The MTU is the largest number of
bytes that can be delivered to the device driver from the ip module. It should be
equal to or evenly divisible by the maximum size of the actual physical transmission
unit to minimize the amount of packet fragmentation in the driver and maximize the
throughput. This number is generally 4096 for the loopback interface and 1500 for
an Ethernet interface.

The third and fourth columns show the network and interface Internet addresses. The
fifth and sixth columns show the number of packets received through the interface
and the input errors, while the seventh and eighth columns show packets sent and
output errors.

The Routing Table Display

When the network is brought up, a direct route for each configured interface is
automatically added to the routing table. Routes can also be added with the route
command. You display the routing table with a netstat -r command. The display is
similar to:

Routing tables

Destination Gateway Flags Refcnt Use Interface

default 129.84.25.4 UG 0 1964 en0

129.84.25 129.84.25.13 U 0 120422 en0

127 127 UH 0 10 lo0

One line is displayed for each route in the routing table. The first column contains
the address of the destination host or network, or the word default. The second
column is the address of the gateway through which packets for that destination are
routed. The third column shows flags that indicate the status and type of the route.
The flags have this meaning:

Flag Description
U Route is up and usable
G Route is a gateway to another network
H Destination of the route is a host

TCP/IP command netstat

Command Reference Chapter 2 277

The fourth and fifth columns are the number of active connections using the route
(Refcnt) and the number of packets that have been sent (Use). The Refcnt value is
always shown as 0. The sixth column shows the name of the local interface through
which the packets are sent, as assigned in the inetinit.cf file.

See also: route command, in this chapter, for information about the default route

The Statistics Display

The network statistics display shows the current values of the statistics maintained by
the kernel for each protocol. Specify this display with the -s parameter. The default
display includes statistics for the ip, icmp, tcp, and udp protocols. The full display
scrolls off a typical monitor screen; redirect it to a file that you can view with the
skim command. Use the -p protocol parameter to limit the display to statistics
for a specified protocol.

This command displays statistics about the ip protocol:

- netstat -sp ip

ip:

0 bad header checksums

0 with size smaller than minimum

0 with data size < data length

0 with header length < data size

0 with data length < header length

The Streams Display

The Streams display shows the number of failed requests for Streams buffers. There
is one line for each TCP/IP kernel Streams module or driver. Modules and drivers
that are not configured into the TCP/IP kernel, such as the SLIP driver in the
example, are identified by messages like can't open /dev/slip. Such a
message does not necessarily indicate an error; it means that the indicated driver or
module could not be accessed by netstat to retrieve the statistics.

The columns in the display represent the size in bytes of the requested buffers,
rounded to the next higher power of two. A counter is incremented each time a
buffer of a defined size is requested and cannot be obtained. For example, if the ip
module requests a Streams buffer of 1500 bytes and that request is refused, the ip
module counter for buffers of 2048 bytes is incremented.

The counters are reset only when the system is shut down and rebooted. They are not
reset when you stop and restart the network jobs without rebooting.

netstat TCP/IP command

278 Chapter 2 Command Descriptions

Specify the Streams display with a -S parameter. The output is similar to:

Module 0 2 4 8 16 32 64 ... 1024 2048 Other

arp 0 0 0 0 0 0 0 ... 0 0 0

ip 0 0 0 0 0 0 0 ... 0 0 0

loop 0 0 0 0 0 0 0 ... 0 0 0

raw 0 0 0 0 0 0 0 ... 0 0 0

can't open /dev/slip

somod 0 0 0 0 0 0 0 ... 0 0 0

tcp 0 0 0 0 0 0 0 ... 0 0 0

telnet 0 0 0 0 0 0 0 ... 0 0 0

udp 0 0 0 0 0 0 0 ... 0 0 0

If any entry in the Streams display contains a number other than 0, adjust the
allocation of Streams buffers in the kernel to prevent future failures. The failure of
even one or two buffer requests can have a very noticeable effect on the overall
performance of the network. You can change the available number of buffers of each
size with tunable parameters in the stune.ini file.

See also: Streams tunable parameters, TCP/IP and NFS for the iRMX Operating
System

The Packet Traffic Display

The packet traffic display is a running summary of packet transmission statistics.
Specify this display by invoking netstat with a single numeric argument
(interval), indicating the number of seconds between updates to the display. No
options can be used with this command. The display is similar to:

input (en0) output input (Total) output

packets errs packets errs packets errs packets errs

180212 0 122496 0 180224 0 122506 0

1 0 2 0 1 0 2 0

1 0 1 0 1 0 1 0

The first line of each screen of information is a summary of activity since the
network was last started. Subsequent lines show values accumulated over the
preceding interval. The first four columns show the input and output statistics for
the primary interface (in this example, the first Ethernet interface, en0). The columns
show the number of packets sent and received and the number of input and output
errors. The second set of four columns shows the total statistics for all configured
interfaces.

TCP/IP command netstat

Command Reference Chapter 2 279

The heading for the packet traffic display is repeated approximately every 24 lines of
output, as the monitor screen scrolls. The first line under the heading always contains
cumulative totals since the network was last initialized. The display continues until
you interrupt the command with a <Ctrl-C>.

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.

The message can't open device in the Streams display indicates that netstat
cannot open the device to obtain the requested statistics, either because the module or
device has not been configured into the kernel or because all of the allocated minor
devices are already in use.

offer NET command

280 Chapter 2 Command Descriptions

offer
Gives remote iRMX-NET users public network access to a local directory.

Syntax

offer pathname as public_name

Parameters
pathname

The actual pathname of the local directory.

public_name
The pathname assigned for use by remote users.

Additional Information

The number of public directories that may be offered at any one time is configurable,
in the Public Directory Screen (PDIR) of the ICU.

See also: publicdir and remove commands, in this chapter

Example

These commands make available the :sd:utils directory, your :bb: device, and a
diskette installed in your machine. Remote users can access these as files named
utilities, byte_bkt, and floppy.

offer :sd:utils as utilities

offer :bb: as byte_bkt

attachdevice a as :f:

offer :f: as floppy

Error Messages
missing parameter

The actual-name or public-name parameter was omitted.

<name>, unrecognized control
The keyword as in the command was omitted, or extra information was supplied
after public-name.

illegal public name
Colons are not permitted in the syntax when specifying the public name.

NET command offer

Command Reference Chapter 2 281

<name>, invalid pathname
The specified pathname does not exist as given in the actual-name parameter.

<name>, cannot look up prefix
The prefix (logical name) part of the pathname is invalid.

cannot offer <actual_name> as <public_name>
Select another public name.

cannot offer <actual_name> as <public_name> <condition code:mnemonic>
A typical example of the condition code is E_LIMIT, which means the limit for
public directories has been reached.

paginate HI command

282 Chapter 2 Command Descriptions

paginate
Displays or copies the input file(s) in page-sized parts, optionally putting a title, date
and time, and page number on each page.

Syntax

paginate inpath_list [to|over|after outpath_list] [q]
[n] [ti=text] [pw=num] [pl=num] [ta=num]

Parameters
inpath_list

One or more pathnames of text files, separated with commas. Wildcards are
permitted.

to|over|after outpath_list
Writes the output to the specified file(s) rather than to the screen. If you specify
multiple input files and one output file, the output is appended.

q(uery) Prompts for permission to process each file. Respond to the prompt with:

Y Display the file
R Display remaining files without further query
E Exit the command
N or other Don't display the file; query for the next

n(otitle)
Do not display the title, date or page number.

ti(tle)=text
Specifies text to be used as the page heading. The default title is the filename.

pw (or pagewidth)=num
Maximum number of characters in the output line, 132 by default.

pl (or pagelength)=num
Maximum number of lines on the output page, 66 by default.

ta(bwidth) (or lg)=num
Number of spaces to print for a tab character, 4 by default.

HI command paginate

Command Reference Chapter 2 283

Additional Information

The command inserts formfeeds (0CH) into the output so it can be printed in pages.
Several lines are added to each page as header information; adjust the pagelength
parameter accordingly. If the input file contains a formfeed, a new page is started.
The values you specify for page width, page length, and tab width are decimal by
default. You can specify an octal or hexadecimal number by appending an O or H.

password HI command

284 Chapter 2 Command Descriptions

password
A menu-driven utility that only the Super user can invoke to add or delete users or to
change a logon password. Other users invoke password to change their own
passwords, assuming the User Definition File (UDF) has World read access.

Syntax

password

Additional Information

If you are not the Super user, you can invoke the password command to change the
password you enter when logging onto the HI from a dynamic terminal. However, if
your system's UDF resides on a remote system, the Super user must change your
password for you, or allow you to do it while logged on as Super. When you invoke
the command, these messages are displayed:

Enter your user name -

Enter the old password -

In response, enter your logon name and your current password. The password is
case-sensitive. For security reasons, the password you enter is not echoed on the
screen. The command then prompts you for the new password and asks you to repeat
it:

Enter the new password -

Repeat the new password -

Enter your new password at each prompt. The password must be no longer than eight
characters (more will be ignored). After confirming that both entries of the new
password are identical, the command associates the new password with your logon
name and displays the messages:

Password change successful

Updating the master UDF Done

The next time you log on to the system, you must use the new password. Continue
using it until you change your password again with the password command.

If you are the Super user, the password command performs a variety of functions,
including maintaining the User Definition File (UDF). The UDF contains the logon
name, user ID, and password of all users who can access the HI using a dynamic
terminal. Because this file is also used to validate user access to the network, the file
is a nonstandard format; do not use an ordinary text editor to maintain the file. The
passwords listed in the UDF are encrypted to prevent unauthorized access. The

HI command password

Command Reference Chapter 2 285

password command is the sole mechanism for maintaining the UDF, and only the
Super user can access it. The password command maintains the format of the file
and automatically encrypts the passwords.

When you invoke the password command as Super, this menu is displayed. Enter
the letter corresponding to the operation you want to perform:

The following commands are available:

A - Add a user

D - Delete a user

L - List the UDF

C - Change password

Q - Quit

E - Exit

Enter the command:

Adding a User to the UDF

Choose the A option to add a new user; password prompts you to enter information
about the new user. The prompts and valid answers are as follows:

Enter the user name -

Enter the logon name of the new user. This name must be three to eight characters
long, and is not case-sensitive. If you respond with more than eight characters, the
command ignores the extra characters.

Enter the new password -

Enter the password for the new user. The password must be eight characters or less
(additional characters are ignored), and it is case-sensitive. The password is not
displayed. If you enter <CR> at the prompt, the new user's password is a carriage
return. You may enter, in upper or lower case:

NO LOGIN

This entry prevents the user from logging onto the system using a dynamic terminal.
This can be useful for restricting a user to a static logon terminal.

Repeat the new password -

Enter the password again. This validates the password and ensures that you spelled it
correctly. Password returns an error message if the two passwords don't match and
re-prompts for the new password. This continues until you enter the new password
the same way twice.

Enter the user ID -

password HI command

286 Chapter 2 Command Descriptions

Enter a decimal number in the range 0 to 65535 as an ID to associate with this user.
If you enter <CR>, password assigns the next higher unassigned user ID and
responds with:

Assigned user ID of <ID>

Assigning a user ID that is not unique can cause problems in a network environment.
If there are no unique user IDs available or the ID you enter is not unique, password
displays:

Warning - Not a unique user ID

Entering any other value causes the command to display an error message and repeat
the prompt. This continues until you enter a valid user ID, <CR>, or a Q (to abort
this session of adding a user).

Enter the group ID -

If your system is part of the OpenNET network and includes Unix workstations,
assign a group ID consistent with the group access you want for this user (refer to the
Unix documentation for more information). Otherwise, enter a second user ID which
will be added to this user's iRMX user object. If neither user ID is 65535 (World),
the HI automatically adds a third ID of 65535 to the user object when this user logs
on, providing World access.

Enter the comment -

Respond with <CR> unless your system is an OpenNET workstation. The iRMX OS
does not use this field. It is typically used for a name or other information; refer to
the Unix documentation.

Enter the default UNIX directory -

For OpenNET workstations, enter the complete pathname of the user's home
directory on Unix systems. Otherwise, respond with <CR>.

Enter the default UNIX shell -

For OpenNET workstations, supply the new user's default Unix shell (for example,
/bin/sh; refer to the Unix documentation). Otherwise, respond with <CR>.

Once you have responded to all the prompts, password summarizes and displays
your answers. At the bottom of the summary is this prompt:

Do you want to add this user to UDF?

If the summary is correct, respond with a Y to add the user. If you respond with any
character other than Y, password disregards your previous input and returns to the
initial menu.

HI command password

Command Reference Chapter 2 287

If you enter Y, password updates the copy of the UDF it maintains in memory (the
permanent copy will be updated when you invoke the Exit command), and displays
this message:

Do you want to create the user directories?

A No response means you must manually create the user's home directories. In this
case, password only creates the user configuration file :config:user/<username>
(unless it already exists).

If you enter Y, password creates user directories, copies the alias.csd and r?logon
files from the :config:default directory, and creates an empty r?logoff file in the new
user's prog directory. (You can modify the default files so that each time you create a
new user, the user gets the initial configuration you want.) After the files are created,
you are prompted for the pathname of the initial program:

Initial-program pathname =

Enter <CR> to give the new user the standard CLI interface. If you do not use the
standard CLI, enter the full pathname of the command interface you use. After
adding the new user, password displays:

Default Initial Program is RMX HI CLI

Added user <user name>

Then the main menu is displayed. You may add another user or start another
operation, but the UDF is not updated until you enter the Exit (E) option.

Deleting a User from the UDF

Choose the D option to delete a user from the UDF. Password displays:

Enter the user name -

Enter the logon name of the user to be deleted. If the name you enter is currently
listed in the UDF, password deletes the entry from the copy of the UDF it maintains
in memory and responds with this message:

Deleted user <logon name>

The permanent copy of the UDF will be updated when you invoke the Exit option.
You must manually delete the user's logon directory and :config:user/<username>
file.

password HI command

288 Chapter 2 Command Descriptions

Listing the Contents of the UDF

Choose the L option to list the contents of the UDF. Password displays a table of
entries containing this information:

<logon name>:<password>:<user id>:<group

id>:<comment>:<dir>:<shell>

Where:

<logon name>
The name that the user enters to log on to the system.

<password>
The encrypted password. No entry indicates that the user does not
require a password to log onto the system. The characters NO LOGIN

indicate that the user is prohibited from logging on.

<user id> A decimal number representing the user ID. Value 0 is Super, the
system manager, and value 65535 is the World user.

<group id>
A second ID that can be implemented as a group convention, and
corresponds to Unix group file access in OpenNET systems.

<comment> The comment field, used only in OpenNET systems.

<dir> The Unix home directory, used only in OpenNET systems.

<shell> The Unix shell, used only in OpenNET systems.

Changing Passwords

Choose the C option to change the logon password for yourself or for another user.
The instructions for changing the password are the same as shown at the beginning of
this description. However, as Super you have the option of entering:

NO LOGIN

as the new password for another user. This prevents the user from logging onto the
system.

Quitting the Password Command

To abort the password command without saving any of the changes you made during
this session, choose the Q option. If you have made changes that will be lost,
password displays:

Do you really want to quit without saving your changes?

If you want to abort the session and lose the changes you made, enter Y. Entering any
other character returns you to the main menu without discarding your changes. If you

HI command password

Command Reference Chapter 2 289

quit a session where you have added a user, you must manually delete the logon
directory and the :config:user <username> file (the logon directory is created if you
answer Yes to the create user directories? prompt).

Exiting the Password Command

To leave the password command and save all of the changes you made during this
session, choose the E option. Password writes the changes to the UDF.

Error Messages
Cannot attach to the UDF

The OS encountered an error, either when attempting to read the password you
entered or when attempting to access the UDF.

Illegal name
The logon name you specified is invalid. The name must be between three and eight
characters long, contain no embedded spaces, and contain no unprintable characters.

Invalid command
You entered an invalid command at the password menu. The valid commands are A,
D, L, C, Q, and E.

Invalid Password
Either the password you entered was longer than eight characters, or you made a
typing error when you confirmed the password by entering it again.

Invalid response
Your response to a prompt was invalid. For example, you might have entered
alphabetic characters when a numeric value was expected.

Maximum size of UDF reached
The UDF can grow to a maximum of 32 Kbytes. It has reached this limit, and no
more new users can be added.

<Master/Local> UDF is not available
An error occurred while password was attempting to attach the UDF. If your system
is part of an iRMX-NET environment, the error occurred while attaching the remote
master UDF. Otherwise, the error occurred while attaching the local UDF. In either
case, password does not change the UDF.

Old Password is incorrect
The password you entered did not match the password listed in the UDF.

UDF does not exist.
Your system is not configured to support nonresident users; therefore, the UDF does
not exist.

password HI command

290 Chapter 2 Command Descriptions

UDF does not exist. Creating new UDF.
The UDF did not exist on your system before, because your system is not configured
to support nonresident users. As the system manager, you can add a UDF. The
password command creates a UDF to contain your additions.

UDF is corrupted
The UDF has an invalid format that must be fixed. This might have been caused by
editing the file with a text editor. To correct this problem, the system manager might
need to delete the UDF (with the delete command) and use the password command
to rebuild it. A copy of the original UDF is in the :config:default/udf file.

UDF is not available
The UDF can be written by only one user at a time. Someone else is using the
password command now and has exclusive write access to the UDF. Try again in a
few seconds.

User <logon name> is already defined in the UDF
The user you attempted to add is already listed in the UDF.

User <logon name> is not defined in the UDF
The user you attempted to delete is not listed in the UDF.

HI command path

Command Reference Chapter 2 291

path
Lists the full pathname of a data file or directory on local or remote systems.

Syntax

path [inpath_list] [to|over|after outpath_list] [r]

Parameters
inpath_list

One or more filenames, separated by commas, whose pathnames you want to list.
Wildcards are permitted.

to|over|after outpath_list
Writes the output to the specified files rather than to the screen. If you specify
multiple input files and a single output file, path appends the remaining input file
pathnames to the end of the output file.

r(oot) Specifies that the pathname should start from the root directory of whatever device
holds the file or directory.

Additional Information

This command is useful for finding where you are located within the file structure.
The output is similar to this when invoked with no input file list:

-path <CR>

:sd:user/world

pause HI command

292 Chapter 2 Command Descriptions

pause
Displays an optional message and waits for you to enter a <CR>.

Syntax

pause [message]

Parameter
message

The text that appears on the console when the pause command is executed.

Additional Information

This command works ideally when executed from within a submit or esubmit file.
You cannot use pause as part of a background job. Invoking pause without a
message causes the console to display a blank line before waiting for the carriage
return.

The message is restricted to the length of the command line, but you may enter
command continuation lines, using the & character.

HI command pci

Command Reference Chapter 2 293

pci
Displays or sets a threshold size for disk I/O read and write requests to be made
without Peripheral Controller Interface (PCI) server buffering, when the PCI client
and server are on the same host board.

Syntax

pci direct :logical_name: [threshold]

Parameters
direct

Specifies that this board will make direct I/O requests to the PCI server.

:logical_name:
The logical name of the PCI device, surrounded by colons; for example, :sd:.

threshold
A number specifying the size in bytes of I/O read or write requests to be made as
direct requests. The value is decimal by default, but you may specify hexadecimal
with a 0x prefix or by appending an H. If threshold is not specified, the current
threshold value is displayed. The default value is the maximum, 0FFFFFFFFH,
which causes all read and write requests to use PCI buffering. A value of 0 causes all
read and write requests to be direct.

Additional Information

A PCI client and server may be on the same host board or on separate hosts. The
default communication method between the client and server assumes they are on
separate hosts. This method uses a buffer on the server host to hold the read and
write data associated with I/O requests. When a PCI client and server are on the
same host, it can be more efficient for the client to bypass the I/O request buffer and
make direct requests to the PCI server. Direct requests copy data directly between
the peripheral device and the user's buffer, and avoid buffering on the PCI server.

An I/O request for an equal or greater number of bytes than the threshold value is
made as a direct request. A request for fewer bytes than the threshold value is
buffered by the PCI server.

Direct requests can only be made to hard disk devices. The device cannot be part of a
mirrored disk drive set. If you specify direct I/O requests for a hard disk that
becomes part of a mirrored set, the PCI server uses the default method for I/O
requests while the disk is part of the mirrored set.

pci HI command

294 Chapter 2 Command Descriptions

Generally, you should not do direct requests for all I/O requests. Bypassing the
buffers can be detrimental to performance for small I/O operations. It is better to set
the threshold value close to the size of a cache line in the PCI server; 16 Kbytes or
18 Kbytes are reasonable threshold values.

See also: How to Use the Peripheral Controller Interface (PCI) Server

DOS command pcnet

Command Reference Chapter 2 295

pcnet
A NetBIOS driver that provides the interface to iNA960-based iRMX-NET.

Syntax

pcnet [/s sessions][/c commands]

Parameters
/s sessions

The number of NetBIOS sessions supported. The default is 6, and the maximum
is 32.

/c commands
The number of NetBIOS commands that can be queued to the NetBIOS driver
simultaneously. The default is 12, and the maximum is 32.

Additional Information

When you set up network access from DOS, this command is used in the process of
redirecting the MS-NET server and client through iRMX-NET, usually as part of a
batch file.

The option indicators, s and c, are not case-sensitive. If you enter invalid options, a
usage message is displayed.

See also: pcnet command, Network User's Guide and Reference

permit HI command

296 Chapter 2 Command Descriptions

permit
Grants or revokes user access to files that you own or files in directories for which
you have change access.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

permit pathname_list access[value][, ...] [u= id_list|world|*]
[data] [dir] [map] [q]

Parameters
pathname_list

One or more pathnames, separated by commas, of files to have their access rights or
list of accessors changed. Wildcards are permitted.

access One or more access characters that grant or cancel the corresponding access to the
file(s), depending on a following value parameter. If specified with no value, each
access character grants the specified access. (The interpretation for DOS, NFS, and
remote file access is somewhat different; these are described later.) From the list
below, you may use L or R for data files and directories; likewise C and U.

Access Meaning
D Delete

L or R List (for directories); Read (for data files)

A Add entry (for directories); Append (for data files)

C or U Change (for directories); Update (for data files)

N With no other characters, cancels all access. With other characters,
cancels access not explicitly granted.

HI command permit

Command Reference Chapter 2 297

value A value that specifies whether to grant or revoke the associated access right.

Value Meaning
0 Cancel the access right

1 (default) Grant the access right. Specifying an access character without a
value grants the corresponding access.

u(ser) = id_list
A list of decimal or hexadecimal user IDs for which the access rights apply, separated
with commas. Each file is limited to three user IDs in the access list. If you omit the
user parameter, the default is your user ID (the ID associated with your interactive
job).

= world
Specifies user ID 65535, giving all users access to the file.

= * The access rights apply to all users currently in the file's access list.

data The access information applies to data files in the pathname list. If you omit both the
data and directory parameters, permit assumes both.

dir(ectory)
The access information applies to directories in the list.

map The access information also applies to map files and volume label files in the
pathname list. If you use the map parameter, you must specify the full pathname of
map or volume label files in the list.

q(uery) Prompts for permission to modify the access rights associated with each file.
Respond to the prompt with:

Y Change the access

R Change access for remaining files without further query

E Exit the command

N or other Don't change access; query for the next

permit HI command

298 Chapter 2 Command Descriptions

Additional Information

Table 2-5 shows the possible access rights for files and directories, and describes how
they relate to each other.

Table 2-5. How Access Rights Apply to Files and Directories

File Access Directory Access

Delete Delete or rename the file Delete Delete or rename the directory

Read Read the file (if the parent
directory has list access)

List List the contents of the directory
and read files in it (if they have
read access)

Append Add information at the end of the
file, but no permission to overwrite
existing data

Add Add files or subdirectories to the
directory, but no permission to
change existing files in it

Update Overwrite information in the file or
truncate it, but no permission to
append data to the file

Change Change the access rights or
accessors of files and
subdirectories in the directory, but
not of the directory itself; no
permission to add or delete files
in the directory

You can use permit to perform one or both of these functions:

• Add or subtract users from a file's list of accessors. This list determines which
users have access to the file. Only three user IDs may be listed as accessors, but
one of these can be the World ID, which grants access to all users.

• Set which access rights are granted or revoked for the users in the accessor list.

When you change the list of accessors for a file, specify the appropriate access for an
added user or N access for a user to be deleted. To change the access rights but not
the list of accessors, specify user=*.

The Super user can change accessors and access rights for any file. Other users can
only change access information for files owned by themselves or World, or for files
in directories where the user or World has change access. You can display the access
rights for files and directories with the dir command.

HI command permit

Command Reference Chapter 2 299

Specifying Access Rights

If specified without an accompanying value, each access character grants the
specified access. You can concatenate access characters and values together or you
can use commas to separate individual access/value specifications. For example, if
you want to grant delete access and cancel add and update access, you could enter
any of these combinations; the order in which you specify access characters is not
important:

A0DU0

A0,D,U0

A0D1U0

A0,D1,U0

If there are multiple occurrences of an access character, permit uses the last such
character to determine the access. For example, these specifications are equivalent;
in the first list, D1 overrides D0:

D0,A1,R1,D1

A1,R1,D1

Specifying N by itself revokes all access for the specified users and removes the users
from the file's access list. However, the N character can also be useful when
changing access rights, if you don't remember the user's current access rights. In this
case, specify the N character first, to clear all access rights, and follow it with other
characters to grant the desired access. For example, if you want to grant list access
only, you could specify NL instead of D0A0C0L.

When changing access information for volume map files and volume label files,
always specify the full pathnames. For example, this command changes the access
rights for all map files and volume label files on the volume, except for r?save, which
is unaffected by the map parameter. In this instance the HI does not interpret the ? as
a wildcard character:

permit :f0:r?* DLAU map

See also: Map files and volume label files, format command, in this chapter

permit HI command

300 Chapter 2 Command Descriptions

Access to Remote iRMX-NET Files

File access rights for remote iRMX-NET files are treated somewhat differently than
for local files. You may grant or revoke access by other users to remote files you or
World own, but change access for directories does not apply. This list shows how
access characters apply when you invoke permit for remote files.

Value For Directories For Files

D Delete: The value of the delete bit
is always 0. Attempts to change
the value to 1 are ignored. Add-
entry access is required to delete a
directory.

The value of the delete bit is always 0.
Attempts to change the bit to 1 are ignored.
Users must have both append and update
access to delete a file.

L or R List directories Read files (if the directory has list access)

A Add entry: if set to 1, the user
may add entries to the directory or
delete the directory

Append: must be set the same as Update

C or U Change: the value of the change
bit is always 0. Attempts to
change the bit to 1 are ignored.

Update: when both Append and Update
bits are 1, the user can append, update, or
delete a file. If you attempt to set different
values for the append and update bits, an
error is returned.

N Cancels access not explicitly
granted by a value.

Cancels access not explicitly granted by a
value.

Accessor Fields in Remote iRMX-NET Files

When you access files on a remote system with iRMX-NET, your system obtains
from the remote system the user name associated with the accessor IDs for the files.
Your system gets the user ID that matches the name it receives from its own User
Definition File (UDF).

In one Administrative Unit (subnetwork), all the user names match the same user
IDs. However, different subnetworks may associate different user IDs with the same
user name. Therefore, the user ID displayed in the accessor fields of a remote
permit display may be different from the user ID that the server would display
locally for the same file. If the user name that is received from the remote server
does not exist in the client UDF, the user ID is displayed as 65534.

HI command permit

Command Reference Chapter 2 301

The rules governing the N access character, multiple occurrences of the same access
character, access value defaults, and the interchangeability of access characters apply
to remote files in the same manner as local files.

See also: Remote files, Network User's Guide and Reference

Access to NFS Files

File access rights are mapped between different operating systems when accessing
remote files through NFS. When you change access from an iRMX client, access
rights map as follows:

Setting any of these bits
on an iRMX client

Results in all of these bits being set on
iRMX, Unix, and DOS servers

iRMX iRMX Unix DOS

Files D-AU

-R--

D-AU

-R--

-w-

r-x

read/write
read-only

Directories D-AC

-L--

D-AC

-L--

-w-

r-x

read/write
read-only

For example, setting just the D access from an iRMX client results in D-AU access on
the iRMX server.

When you change access rights from another OS through NFS, the access
permissions on an iRMX server are set as follows:

Setting any of these bits on Unix and
DOS clients

Results in all of these
bits being set on an
iRMX server

Unix DOS iRMX

Files -w-

r-x

read/write
read-only

D-AU

-R--

Directories -w-

r-x

read/write
read-only

D-AC

-L--

If, for example, you set the read (r) or the execute (x) bit from Unix, it results in a
file with -R-- access on the iRMX server.

permit HI command

302 Chapter 2 Command Descriptions

File Ownership with NFS

File ownership mapping occurs between iRMX, DOS, and Unix files when using
NFS. The following list describes the mapping:

• When you use NFS between two iRMX systems, file owners are maintained on a
one-to-one basis.

• When you use NFS between an iRMX system and a Unix system the following
mapping occurs regardless of which OS is the NFS client:

iRMX Unix

First owner in access list “owner”
Second owner in access list “group”
Third owner in access list (ignored)
World owner is user ID 60000 and

group is user ID 1 (other)
Super owner and group user IDs are 0 (root)

✏ Note
You can modify iRMX to Unix file ownership mapping values for
the World user by setting parameters in the /etc/stune.ini file.

See also: Tunable Parameters, TCP/IP and NFS for the iRMX Operating
System

• When you use NFS between an iRMX system and a DOS system file ownership
mapping does not apply. This is because DOS has no concept of file owners.
The NFS package you use on a DOS system may make certain assumptions. For
example, a DOS-based NFS product might translate a file owned by user ID 0
(Super) as read-only from the DOS side. See the documentation for your non-
iRMX NFS product for such details.

User ID Translation with NFS

User IDs map one-to-one across NFS except as noted for the Super and World users
between iRMX and Unix systems described in the previous section.

When you use NFS between two machines that happen to have different user login
names with the same user ID number, the file’s ownership is determined by the
client’s account. For example, assume that a file on an NFS server is owned by Sam
with the login sam and user ID of 33. User Sarah on an NFS client also has a user ID
of 33 but her login is sarah. If Sarah accesses the file on the NFS server through
NFS, the user IDs map one-to-one. However, Sarah’s access rights to the file will be

HI command permit

Command Reference Chapter 2 303

whatever rights Sam has for the file on the server machine. Also, if Sarah lists the
directory that contains the file, the owner will appear as Sarah, not Sam.

This user ID mechanism works similarly between iRMX systems or between iRMX
and Unix systems.

See also: Accessing NFS Files, File Ownership, and User ID Translation,
System Concepts

DOSRMX Systems

The DOS file system does not support users other than World, and supports limited
access rights. For preconfigured DOSRMX systems, iRMX users and tasks can
change their DOS file access to correspond to the DOS read-only and read/write
attributes. DOS directories cannot be made read-only. Use these values with the
permit command (read and list access are not used):

Access Character Value Access Granted

D, A, or U (any) NOT 0 Read and Write (including permission to delete)

D, A, and U (all) 0 Read only

For example, these commands make a file read-only:

permit file1 d0a0c0

permit file2 nr

iRMX for PCs Systems

If you are using the DOS file driver, you can use DOS access rights only. If you are
using the iRMX named file driver, you can use all iRMX access rights.

Output

After changing the access information for a file, permit displays a list of changed
files, containing this information:

<pathname>, accessor = <accessor ID>, <access>

Where:

<pathname>
The name of the file.

<accessor ID>
The user ID of one of the file's accessors.

permit HI command

304 Chapter 2 Command Descriptions

<access> That user's access rights, displayed as DLAC for directories and DRAU
for data files. If a particular access right is not allowed, the display
replaces the corresponding character with a dash (-). For example, the
display -L-C indicates that the corresponding user has list and change
access, but not delete and add-entry access.

Error Messages
<pathname>, accessor limit reached

The OS permits only three user IDs in the accessor list of a file. Before you can add
another accessor, you must remove one of the current accessors by setting its access
rights to N.

<pathname>, directory CHANGE access required
Either you are not the owner of the specified file or you do not have change access to
the file's parent directory. You must satisfy one of these two conditions in order to
use the permit command.

<user ID>, duplicate user control
You must specify the keyword and parameter combination user=user-list only
once during the permit command. However, you can specify multiple user IDs by
separating them with commas in the user list. Permit exits without updating the
access rights.

<character>, invalid access switch
The character you entered to indicate the access rights for the file was not a valid
access character; permit exits without updating the access rights.

<invalid id>, invalid user id
The user IDs you supply with the user parameter must consist of decimal or
hexadecimal characters, the characters world, or the * character. Permit exits if you
supply other characters.

missing access switches
You must specify one or more access characters with the permit command; permit
exits without updating the access rights.

no files found
There were no files of the type you specified (data, directory, or both) in the
pathname list.

pathname, E_NAME_NEXIST
The pathname is a remote file. The accessor whose access is to be changed is not
defined either at the Administrative Unit containing the local client or at the AU
containing the file server where the remote file resides.

HI command physname

Command Reference Chapter 2 305

physname
Displays system DUIB names and information.

Syntax

physname *|target_device_name [-e]

Parameters

* Lists all of the DUIBs in the system.

target_device_name
Displays DUIBs associated with the physical device name specified.

-e Displays extended information.

Additional Information

Use physname to obtain information about your system's available DUIBs.

If you specify a target_device_name that has more than one match in the system
physname lists the DUIBs that include the specified name. Do not use a * within a
target_device_name parameter.

See also: Physical Device Names, Appendix E

physname HI command

306 Chapter 2 Command Descriptions

Examples

1. To view a list of the DUIBs in the system, enter:

physname *

The DUIBs are displayed as shown below. The names of loadable devices are
listed first, followed by the names of standard devices:

Dynamic DUIB Cluster 1

D_CONS

Intel's Standard DUIB Cluster

BB STREAM COM1 COM2 B

BH BM BMH A AH

AM AMH C_RMX C_RMX0 C_RMX1

C_RMX2 C_RMX3 C_RMX4 D_RMX D_RMX0

D_RMX1 D_RMX2 D_RMX3 D_RMX4 A_DOS

B_DOS C_DOS D_DOS E_DOS F_DOS

G_DOS H_DOS I_DOS J_DOS K_DOS

L_DOS M_DOS N_DOS O_DOS P_DOS

Q_DOS R_DOS S_DOS T_DOS U_DOS

V_DOS W_DOS X_DOS Y_DOS Z_DOS

2. If more than one DUIB name matches the name you specify, physname displays
a list of fully or partially matching DUIB names. For example:

physname c_rmx

This command displays:

Searching Dynamic DUIB Cluster 1

Searching Intel's Standard DUIB Cluster

C_RMX C_RMX0 C_RMX1 C_RMX2 C_RMX3 C_RMX4

HI command physname

Command Reference Chapter 2 307

3. This command returns extended information about the specified device:

physname c_rmx3 -e

This information is displayed:

Searching Dynamic DUIB Cluster 1

Searching Intel's Standard DUIB Cluster

Device Name: C_RMX3

Functions: ff DUIB address: 09b8:000133af

Device Granularity: 0200 Max Buffers: ff

Device Size: 00000200 Device: 04

Unit: 03 Device Unit: 000a

Device$Info$P: 09c8:000000bd Unit$Info$P: 09c8:000000e8

Update Timeout: 0064 Num Buffers: 0008

Priority: 82 Fixed Update: ff

Flags: 31

Init$IO: 09c8:000031b4 Finish$IO: 09c8:00003564

Queue$IO: 09c8:00002c0f Cancel$IO: 09c8:000030b4

File Drivers: 0009

Physical TRUE Named TRUE

EDOS FALSE Stream FALSE

See also: DUIB structure and fields, Driver Programming Concepts

ping TCP/IP command

308 Chapter 2 Command Descriptions

ping
Tests communication between two hosts, at the lowest level of TCP/IP
communications, to determine whether a connection can be made and to assess its
reliability. Used primarily to manually isolate faults.

Syntax

ping [-r] [-v] host [packetsize [count]]

Parameters

-r Bypass the normal routing tables and send datagrams directly to a host. An error is
returned if the host is not on a directly attached network. Use this option to ping a
local host through an interface that has no route.

-v Display a message any time an ICMP packet other than an ECHO_RESPONSE is
received.

host Name or Internet address of a host or gateway.

packetsize
The size in bytes of data for the packet; the default is 56 (for a 64-byte packet).

count Send the specified number of ECHO_REQUESTS and exit when all responses have
been either received or assumed lost. If count is not specified, the command sends
datagrams until it is interrupted. The value 0 is the same as no parameter.

Additional Information

The Internet is a large and complex group of network hardware connected by
gateways. Tracking a single-point hardware or software failure can often be difficult.
Ping uses the Internet Control Message Protocol (ICMP) mandatory
ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE from a host or
gateway. The command sends datagrams at one-second intervals until it is
interrupted or until it has sent and received count datagrams.

As each ECHO_RESPONSE is received from the target host, the packet number
(icmp_seq) and round trip time is displayed. If ping cannot reach the target host,
nothing is displayed. Similarly, a gap in the sequence numbers of the packet display
indicates the ECHO_REQUEST failed to reach the target or the ECHO_RESPONSE
failed to make it back to this host. When ping ends or is interrupted, it summarizes
the packet loss and round trip timing statistics for the session.

TCP/IP command ping

Command Reference Chapter 2 309

The only mandatory parameter in the command is the host. However, if you don't
specify a count parameter, ping continues until interrupted. This can significantly
increase the load on the network and prevent automated scripts from functioning as
intended. It is safer to supply ping with a packet size and iteration count. If you
don't specify count, interrupt the command with a <Ctrl-C>. This command
specifies 1024 bytes of data and 3 iterations.

- ping sophocles 1024 3

PING sophocles.intel.com: 1024 data bytes

1032 bytes from 128.215.12.22: icmp_seq=0. time=2 100th of sec

1032 bytes from 128.215.12.22: icmp_seq=1. time=2 100th of sec

1032 bytes from 128.215.12.22: icmp_seq=2. time=2 100th of sec

----sophocles.intel.com PING Statistics----

3 packets transmitted, 3 packets received, 0% packet loss

round-trip (100th of sec) min/avg/max = 2/2/2

-

When using ping for fault isolation, first ping the local host to verify that the local
network interface is up and running. Then ping hosts and gateways farther and
farther away to determine where a fault occurs.

ECHO_REQUEST datagrams (pings) consist of IP and ICMP headers followed by a
struct timeval and an arbitrary number of bytes to fill out the packet. Determine
the maximum packetsize by subtracting 48 bytes (for the UDP and IP headers
with options) from the value of the tunable parameter SOMOD_MSGSZ.

See also: netstat and ifconfig commands, in this chapter
Tunable parameters, TCP/IP and NFS for the iRMX Operating System

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.

publicdir NET command

310 Chapter 2 Command Descriptions

publicdir
Displays pathnames of public iRMX-NET network directories on this system.

Syntax

publicdir [l]

Parameter

l(ong) Lists the directory including the full pathname and the device name where the
directories reside.

Additional Information

Invoking publicdir without parameters lists the server's public directories, but does
not list the pathnames and the device names. If you specify the long parameter, the
display is similar to:

PUBLIC DIRECTORIES OF THE SERVER

Offered Name Dev Name Pathname

WORK QMA0 /WORK

LANG QMA0 /LANG286

SYSTEM QMA0 /SYS386

WORLD QMA0 /USER/WORLD

SD QMA0 /

BB BB

F A /

See also: offer and remove commands, in this chapter

Error Messages
cannot show public Directories

An I/O error occurred while executing the command.

not enough user memory
The system does not have enough user memory to satisfy the request.

DOS or HI command rdisk

Command Reference Chapter 2 311

rdisk
Configures partitions on a DOS hard disk or an iRMX SCSI hard disk managed by
PCI. The DOS version of rdisk uses ROM BIOS functions to access hard disks to
retrieve disk configuration information and for reading and writing the partition table.

The DOS rdisk command runs on DOS Version 3.3 or later. In addition to standard
ROM BIOS-supported drives, you can set logical partition information for Logical
Block Address (LBA) drives that use Enhanced IDE. The DOS rdisk command is
used with the DOSRMX and iRMX for PCs OSs.

The iRMX rdisk command runs on iRMX Version 2.2 or later and can be used with
the iRMX III OS. Rdisk supports both primary and extended iRMX partitions. You
must include the physical name (DUIB) of the hard disk drive being partitioned on
the command line with the iRMX rdisk command.

▲▲! CAUTION
If a hard disk drive is partitioned with the DOS version of rdisk,
use only the DOS version of rdisk to view or modify the partition
table. The different OS versions of rdisk get the CHS (cylinder,
head, sector) information in two different ways. The two ways are
not consistent and trying to use the two different versions of rdisk
interchangeably will corrupt the hard disk drive.

See also: Appendix F, Partitioning PCI Hard Disk Drives, in this manual

Syntax

rdisk (at the DOS prompt)

rdisk physical_name (at the iRMX prompt)

Parameter
physical_name

The DUIB name for the disk to be partitioned. The DUIB must be for the entire disk,
not a partition. The DUIB name is required for the iRMX version of rdisk.

rdisk DOS or HI command

312 Chapter 2 Command Descriptions

Options

This is the main rdisk menu:

RDISK Version Vx.y

(1) Display partition table

(2) Modify partition table

(3) Set active partition

(4) Check partition table

(5) Reinitialize partition table

(6) Select next fixed disk

(7) LBA physical configuration

Enter Selection: 1

Option 1: Display Partition Table

This option displays the main partition table and any extended partitions. For
example, in the display of Extended Partition 4 below, there are three logical drives
defined. In other words, there are four master partitions, and in the fourth one, there
are three extended partitions defined. Note that the “Usage” column in the Extended
partition lists the percentage of the main partition used by each extended partition,
not the percentage of the total hard disk used.

Disk 1 LOGICAL Configuration: 518 cylinders 128 heads 63 sec/track

-- Partition Table For Fixed Disk 1 --

System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head

Sect

1 DOS No 394 19% 0 1 1 99 127

63

2 DOS EXT No 394 19% 100 0 1 199 127

63

3 iRMX Yes 394 19% 200 0 1 299 127

63

4 iRMX EXT No 854 42% 300 0 1 516 127

63

-- Partition Table For Extended Partition 2 --

System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head

Sect

-->Note: No logical drives defined...

-- Partition Table For Extended Partition 4 --

DOS or HI command rdisk

Command Reference Chapter 2 313

System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head

Sect

1 DOS No 197 23% 300 1 1 349 127

63

2 iRMX No 197 23% 350 1 1 399 127

63

3 iRMX No 394 46% 400 1 1 499 127

63

Option 2: Modify Partition Table

▲▲! CAUTION
Creating or deleting a partition or logical drive will make existing
files on the entire hard disk inaccessible.

When you choose option 2 from the main menu, you are presented with the menu
below. The “Display” choice is the same as Option 1 above.

Enter selection: 2

(1) Display partition table

(2) Create a partition

(3) Delete a partition

(4) Create or delete logical drives

<CR> Return to previous menu

Enter selection: 2

If you choose item 2 or 3 to create or delete a partition or logical drive, the current
partition table is displayed and you choose the partition number to create or delete:

Disk 1 LOGICAL Configuration: 518 cylinders 128 heads 63

sec/track

-- Partition Table For Fixed Disk 1 --

System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head

Sect

1 DOS No 394 19% 0 1 1 99 127

63

2 DOS EXT No 394 19% 100 0 1 199 127

63

3 None No 0 0% 0 0 0 0 0

0

rdisk DOS or HI command

314 Chapter 2 Command Descriptions

4 None No 0 0% 0 0 0 0 0

0

Enter partition (<CR> for previous menu): 3

Then, if you are creating a partition, you choose which type of partition to create, as
shown below. Choices 1 and 3 are primary partitions; choices 2 and 4 let you create
Extended partitions, which can hold one or more logical drives.

(1) DOS partition

(2) DOS EXT partition

(3) iRMX partition

(4) iRMX EXT partition

<CR> previous menu

Enter selection: 3

▲▲! CAUTION
Do not create more than one DOS primary partition or more than
one DOS Extended partition.

You can create DOS or iRMX Extended partitions on partition
numbers 2 - 4 of the partition table, but not on partition number 1.

You can use the “Create” option to change the OS on the partition or to change the
starting and the last cylinder number for the partition. Any new partition tables or
logical drives that you create are not written to disk until you exit rdisk.

At the prompt, enter the starting and the last cylinder number for the partition you are
creating. DOS Version 3.3 has a 32-Mbyte size restriction; DOS Versions 4.01 and
later have no size restriction.

If the starting cylinder is 0, and the last cylinder is non-zero, the starting head will be
head one to avoid overwriting the master boot record. The last cylinder must be
greater than or equal to the starting cylinder and less than the total cylinders
configured for this disk. The ending head and sector will always be the maximum
values supported by this disk's configuration. The last cylinder is reserved by rdisk.

Selected partition type: iRMX EXT

Enter starting cylinder: 300

Enter ending cylinder: 516

DOS or HI command rdisk

Command Reference Chapter 2 315

✏ Note
If you define partitions with overlapping cylinder numbers, you
will be notified at either of these points:

• When you check the partition table (option 4 on the main
menu)

• When you try to exit rdisk, before the partition information is
written

rdisk DOS or HI command

316 Chapter 2 Command Descriptions

If you choose item 4 to create or delete a logical drive, the main partition table must
already hold at least one Extended partition. Specify which Extended partition on
which you want to create or delete the logical drive, as shown in the next set of
menus. You are prompted whether to create or delete a logical drive.

(1) Display partition table

(2) Create a partition

(3) Delete a partition

(4) Create or delete logical drives

<CR> Return to previous menu

Enter selection: 4

Disk 1 LOGICAL Configuration: 518 cylinders 128 heads 63 sec/track

-- Partition Table For Fixed Disk 1 --

System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head

Sect

1 DOS No 394 19% 0 1 1 99 127

63

2 DOS EXT No 394 19% 100 0 1 199 127

63

3 iRMX No 394 19% 200 0 1 299 127

63

4 iRMX EXT No 854 42% 300 0 1 516 127

63

-- Partition Table For Extended Partition 2 --

System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head

Sect

-->Note: No logical drives defined...

-- Partition Table For Extended Partition 4 --

System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head

Sect

-->Note: No logical drives defined...

Enter partition (<CR> for previous menu): 4

(1) Create logical drive

(2) Delete logical drive

<CR> Return to previous menu

Enter selection: 1

You then have the choice of creating a DOS or iRMX logical drive.

Disk 1 LOGICAL Configuration: 518 cylinders 128 heads 63 sec/track

-- Partition Table For Extended Partition 4 --

DOS or HI command rdisk

Command Reference Chapter 2 317

System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head

Sect

Extended Partition Table Empty

(1) DOS logical drive

<CR> RMX logical drive

Enter selection: 1

✏ Note
On an iRMX Extended partition you can create either or both DOS
and iRMX logical drives. However, on a DOS Extended partition,
you can create only DOS logical drives.

A logical drive is simply another partition within an Extended partition. As when
creating a main partition, specify the starting and ending cylinders to define the
extent of the logical drive:

Enter starting cylinder: 300

Enter ending cylinder: 349

Option 3: Set Active Partition

Select this option from the main menu to specify which partition number is activated
for booting. Since only one partition can be active at a time, activating a new
partition automatically deactivates the last one. For DOSRMX, always make the
DOS primary partition active. After you activate a partition, the partition table is
displayed, similar to the display above for Option 1.

You can make a primary partition active. You cannot make an Extended partition
active.

Option 4: Check Partition Table

Select this option to verify that the partition table is valid, including checks for:

• Overwriting the master boot record

• Partitions that have an ending address less than the starting address

• Overlapping partitions

• Partition addresses greater than disk size

rdisk DOS or HI command

318 Chapter 2 Command Descriptions

Option 5: Reinitialize Partition Table

Select this option to read the partition table contents from the selected hard disk. If
the current contents of the partition table have been modified, a query asks if the
modifications should be saved.

DOS or HI command rdisk

Command Reference Chapter 2 319

Option 6: Select Next Fixed Disk

✏ Note
The Select Next Fixed Disk option is not implemented for the
iRMX version of rdisk. To change disks from the iRMX OS,
invoke rdisk with the appropriate DUIB name for the disk drive.

Select this option in the DOS version of rdisk to switch between the two hard disks.
The rdisk utility defaults to hard disk one.

If the current partition table has been modified, a query asks if the modifications
should be saved. If the current disk is disk one and no second disk is configured, the
warning message shown below appears and the partition table for hard disk one is
reestablished as it was before the option was selected.

Enter Selection: 6

Fixed disk 2 not configured in ROM BIOS data area

Press any key to continue

Option 7: LBA Physical Configuration

✏ Note
The LBA Physical Configuration option is not implemented for the
iRMX version of rdisk.

Rdisk shows the logical configuration of the drive, which is the data maintained in
the partition table. If you use an LBA (Logical Block Address) drive, the Enhanced
IDE management sets up logical parameters appropriate for DOS, and hides the
actual physical drive parameters from DOS. However, the PC’s setup program for
CMOS memory displays physical parameters for an LBA drive. To display the
physical parameters within rdisk, enter option 7.

✏ Note
When configuring the partition table, you must enter logical
parameters, not physical parameters.

rdisk DOS or HI command

320 Chapter 2 Command Descriptions

If the drive is an LBA drive, the display is similar to the following:

Enter Selection: 7

Disk 1 PHYSICAL Configuration: 1024 cylinders 32 heads 63 sec/track

NOTE: PARTITION TABLE ACCEPTS ONLY THE LOGICAL DRIVE CONFIGURATION

Press any key to continue

If the drive is not an LBA drive, this message is displayed:

Enter Selection: 7

Sorry, but disk 1 is NOT an LBA (Enhanced IDE) drive

Press any key to continue

Exit

Press <CR> at the main menu to exit rdisk. At this point, if you have made
partitioning changes, rdisk writes the partition table to the hard disk. The partition
table is first validated. If any errors occur, a warning message appears, and the
write/exit is aborted. If no errors occur, the partition table is written to the master
boot record on the hard disk and rdisk exits.

DOS or HI command rdisk

Command Reference Chapter 2 321

Additional Information

✏ Note
You cannot use this command with a device that you access
through NFS.

DOS-based rdisk provides the full functionality of DOS-based fdisk for examining
and modifying a PC-based hard drive partition table.

See also: fdisk, in your DOS documentation

Rdisk uses the ROM BIOS is used to acquire the hard disk parameters. Since ROM
BIOS supports only two hard disks, hard disk one and hard disk two are the only
disks supported. These disks must be configured in the CMOS RAM data storage
area of the ROM BIOS prior to invoking rdisk. Use the ROM BIOS setup utility.

Use the fdisk utility to assign DOS logical drives.

If your version of DOS is older than Version 3.0, rdisk exits with a warning message
before executing any other functions.

Since the Version 3.3 or older DOS utility fdisk allows only two partitions, fdisk
displays partition numbers 3 and 4 as partition number 2.

Setting up a Partition

DOS and the iRMX for PCs OS each require their own partitions.

Set up the partition table using the rdisk utility. Each OS to be installed requires a
partition; no partition can share disk cylinders with another partition or overlap any
other partition. If you intend to install DOS, you must leave disk space for a DOS
partition when installing iRMX for PCs. See your DOS manual for information on
the size for this partition.

✏ Note
Systems with versions earlier than 2.2 of the iRMX OS contain an
incompatible bootstrap loader. To install disks on these systems,
you must invoke the rdisk utility and update the partition table,
even if you do not make changes.

If you are installing your own hard disk drive, you must perform a low-level format
before partitioning.

To start the partitioning, invoke rdisk. When the rdisk screen appears, write down
the number of cylinders shown at the top of the screen; this number is the maximum
number of cylinders in your system. For example, if rdisk displays 518 cylinders,

rdisk DOS or HI command

322 Chapter 2 Command Descriptions

they are numbered 0 through 517. Rdisk always reserves the last cylinder, so the
highest number you can specify during partitioning would be number 516.

Four partitions are available; their locations cannot overlap. Enter the next unused
number for your partition number at the prompt. For example, if DOS is in partition
1, partition 2 is the next available partition. Multiple iRMX partitions can exist on a
single hard disk.

The first track of cylinder 0 is reserved for the partition table and the master boot
record. Rdisk reserves the last cylinder. To decide how many cylinders to give to
each OS partition, you can use an approximation:

Total Number of Cylinders/3 = one third of the disk for a given

partition

Or you can make a more exact determination using:

cylinders * heads * sectors * 512 = bytes in a given partition

If bad sectors are encountered at the start of a partition, rdisk decreases the size of
that partition by mapping out the bad sectors. This may result in a partition that is
smaller than you anticipated.

After you select the partition number, the system asks you to select the OS: enter 82
to indicate that this new partition will run the iRMX OS. The system prompts you
for the starting cylinder. This prompt and the next prompt define the size of the new
partition. If your system runs only the iRMX OS, the starting cylinder is 0 and the
ending cylinder is (maximum cylinders - 1).

If you also have a partition for DOS, the Starting Cylinder Number for the iRMX
partition depends on the location of the DOS partition. Be certain that the cylinder
numbers do not overlap.

✏ Note
If your system contains both an iRMX partition and a DOS
partition, you should leave one track between the ending of one
partition and the beginning of the next.

At the Enter Last Cylinder prompt, enter the last cylinder in the iRMX partition. If
the iRMX partition fills the rest of the disk, this number is the number of cylinders
displayed on the first line of the rdisk main menu screen.

This description assumes only one iRMX partition; to create more you must repeat
the process.

DOS or HI command rdisk

Command Reference Chapter 2 323

The main screen is displayed again and now contains the information that you just
entered for the iRMX partition. You must now activate the iRMX partition. Select 3
from the main menu to activate one of the partitions. This causes the system to
bootstrap load the OS resident in that partition upon system reset.

Enter the number of your iRMX partition at the prompt. This marks the iRMX
partition as active. The main screen is displayed again. To complete the process, at
the main menu press <CR> to exit and write the information back to the table.

If any errors are displayed on the screen, the partition table information you entered
may not be valid. Rdisk does not exit; reenter your information, making certain that
partitions do not overlap.

Once the partition table has been successfully written, you are ready to format the
iRMX partition.

See also: format, in this chapter

Error Messages
Disk X is NOT an LBA

This disk drive is not controlled by the LBA mechanism.

Duplicate DOS EXT partition;
You can define only one DOS Extended partition.

Error during ROM BIOS function execution
The ROM BIOS returned the indicated error.

Extended Partition #X, Bad Partition Signature Detected
Invalid information was detected.

Extended partition X address greater than extended partition cylinders
The specified cylinder number for a logical drive is greater than the highest defined
cylinder for the extended partition in which you are creating the logical drive.

Extended partition X contains logical device address greater than the
maximum number of free disk cylinders

Partition x address greater than maximum number of disk cylinders
The starting and/or ending address for partition x is greater than the maximum
address supported by this disk.

I/O error while reading disk drive parameters
The disk could not be read.

Illegal partition table read from fixed disk
The invalid table is displayed and you can choose to modify it to correct the partition
table.

Illegal Partition: x
The starting address in partition x is greater than the ending address, or the ending
address is greater than the disk size.

rdisk DOS or HI command

324 Chapter 2 Command Descriptions

Initialization Failed
The iRMX version of rdisk could not get the partition table from the device specified
by this DUIB.

Invalid partition table, table not saved
Rdisk found an error in the changes you attempted to make and has not written the
partition table.

No logical drives to delete.
You attempted to delete a logical drive, but there are none defined in this extended
partition.

Not a bootable partition
You attempted to make an extended partition active; you can only make a primary
partition active.

Not allowed to start at cylinder=0, head=0, sector=1 in extended
partition x

Not allowed to start at cylinder=0, head=0, sector=1 in partition x
The specified partition address would overwrite the master boot record.

Not allowed to start at cylinder=0, head=0, sector=1 in partition
The specified partition address would overwrite the master boot record.

Not an extended partition.
You attempted to create a logical drive on a primary partition, not an extended
partition.

Overlapping extended partitions
Overlapping partitions --> x : y

Partition number x overlaps with partition number y.

Partition exists
You attempted to create a partition that already exists. You must first delete the
existing partition.

Specified start_cylinder less than extended partition start cylinder.
The specified start address for a logical drive is lower than the specified starting
address for the extended partition.

HI command remini

Command Reference Chapter 2 325

remini
Translates the rmx.ini file into the iNA 960 load file format (also known as remote
file format).

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

remini rmxinifile to|over remfile

Parameters
rmxinifile

Name of the file to translate.

to|over
Specify to create a new file or over to overwrite an existing file.

remfile
Name for the file produced.

Additional Information

You can use this command to create an rmx.ini remote load file for use in the remote
booting of iRMX for PCs.

Example:

remini rmx.ini to rmxini.rem

remove NET command

326 Chapter 2 Command Descriptions

remove
Revokes iRMX-NET public network access to one or more local directories.

Syntax

remove public_name_list

Parameter
public_name_list

One or more public names, separated by commas, which were previously assigned to
local directories for access by remote users.

Additional Information

The remove command revokes public access to a directory that was previously
defined as public, either by configuration of the File Server or with the offer
command. Specify the public name, not the local directory name, if they are
different.

Error Messages
missing parameters

The public name of the directory must be entered as part of the command syntax.

cannot remove <name>
The first public directory configured in the File Server is used for a work file, and
cannot be removed. The default for the first public directory is :sd:work.

HI command rename

Command Reference Chapter 2 327

rename
Changes the pathname of one or more data files or directories. The rename
command may be used to move a file to a different directory on the same volume.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax

rename inpath_list to|over outpath_list [q]

Parameters
inpath_list

One or more pathnames, separated by commas, of files or directories that are to be
renamed.

to|over outpath_list
A list of new pathnames for the files, separated by commas. The number of
pathnames must be the same as in the inpath_list. If you specify to, you are
prompted to overwrite existing files of the same name. If you specify over, existing
files by these names are replaced by the input files. You cannot use over to rename
a directory over an existing directory unless it is empty.

q(uery) Prompts for permission to rename each file in the list. Respond to the prompt with:

Y Rename the file
R Rename remaining files without further query
E Exit the command
N or other Don't rename this file; query for the next

rename HI command

328 Chapter 2 Command Descriptions

Additional Information

To use rename, you must have delete access to the current file and add-entry access
to the destination directory. If you rename a file over an existing file, you must also
have delete access to the second file.

The rename command cannot be used across volume boundaries; that is, you cannot
rename a file to move data from a volume located on one secondary storage device to
a volume located on another device (for example, from one diskette to another).
Attempting to do so causes an E_NOT_SAME_DEVICE error message. Use the copy
command or a combination of copy and delete commands to rename files or move
data across volume boundaries.

You can rename an existing directory pathname to a new, nonexistent pathname
anywhere in the directory tree. You cannot rename an existing directory over another
existing directory unless the destination directory is empty (an E_DIR_NOT_EMPTY

condition code is returned).

✏ Note
Changing the name of a directory also changes the pathnames of all
files listed in that directory. All subsequent access to those files
must specify the new pathnames for the files.

With the EDOS file driver, you can use rename to assign a different name to a
directory, but you cannot rename the directory to a different spot in the directory
hierarchy. If there is a directory structure /dir1/dir2/file_a, you cannot rename dir2
as /dir3 to place it under the root directory.

You cannot rename a server's virtual root directory or public directories. Also, you
cannot rename a file into a server's virtual root directory.

Error Messages
<old pathname>, delete access required

You cannot rename a file unless you have delete access to that file.

<new pathname>, directory add ENTRY access required
You cannot rename a file unless you have add-entry access to the destination
directory.

<new pathname>, new pathname same as old pathname
You specified the same name for the input pathname as you did for the output
pathname.

to or over preposition expected
Either you used the after preposition with the rename command or the number of
files in the inpath_list did not match the number in the outpath_list.

HI command rename

Command Reference Chapter 2 329

pathname, invalid access to remote file or directory
The pathname is either a remote file to be renamed or a remote output filename. One
of three conditions caused this error:

• You do not have add-entry access to the file's parent directory.

• You do not have append and update access to the file.

• A user at the server system has removed delete access to a file; you cannot
change delete access on a remote file. A user at the server system must grant
delete access before this command will succeed.

<pathname>, 0023:E_SUPPORT
You attempted to rename a DOS directory to a different spot in the directory tree,
which is not supported by the EDOS file driver.

restore HI command

330 Chapter 2 Command Descriptions

restore
Transfers files from a backup volume to a named, remote, NFS, or DOS volume.

✏ Note
Do not use this command in an esubmit file or an
rq_c_send_command system call, because queries for user input
will not be received.

Syntax

restore :backup_device: to|over pathname [name=name] [verify]
[q] [select= (pathname_list)]

▲▲! CAUTION
While the restore command is executing, no other activity should
be occurring on the volume you are restoring. If other users access
the volume during a restore operation, the volume's data could
become corrupted, possibly requiring the volume to be reformatted.

HI command restore

Command Reference Chapter 2 331

Parameters

:backup_device:
Logical name of the backup device from which restore retrieves files. The backup
device must always be a local device; it cannot be a remote device.

to|over pathname
Pathname of a file to receive a single restored file, or of a directory to receive
multiple files. If you specify a logical name for a device, restore places the files
under the root directory for that device. To restore files to the directory in which they
originated, specify the same pathname as you used with the backup command.
Specify over to overwrite existing files on the volume. If you specify to, and files
being restored already exist on the volume, restore prompts:

<pathname>, already exists, overwrite?

Enter one of these in response:

Y or R Delete the file and replace it from the backup volume.
E Exit from the restore command.
N or other Do not restore the file; continue with the next file.

name=name
Specifies a particular named data set from the backup device. If no name is given,
only the first logical volume encountered is restored.

verify
No files are restored; use this parameter to verify that backup has produced a
restorable set of volumes. When you specify this parameter, use :bb: (byte bucket) as
the output pathname. The data on the volume is validated and restore displays:

<pathname>, Verified or
<pathname>, Directory Verified

q(uery) Prompts for permission to restore each file or directory. Respond to the prompt with:

Y Restore the file

R Restore remaining files without further query

E Exit the command

N or other If a data file, do not restore the file; if a directory, do not
restore the directory or any file in that portion of the directory
tree. Query for the next file, if any.

restore HI command

332 Chapter 2 Command Descriptions

select = (pathname_list)
A list of pathnames, separated by commas, designating specific files or directories to
be restored. The complete list must be enclosed in parentheses. The pathnames
cannot include the logical volume name and must be the exact pathnames used in the
backup command. If you don't know the pathnames, use restore with the verify
parameter to display them.

Additional Information

The restore utility copies files from backup volumes to target volumes in either local
or remote directories. Restore copies the files to any directory you specify,
maintaining the hierarchical relationships of the backed-up files. Restore allows the
transfer operation to begin at any named data set or at any physical volume in a
backup volume set. By using the select parameter you can specify individual files
or directories to be restored.

Each backup volume used as input to the restore command must contain files placed
there by the backup command. If the backup operation required multiple backup
volumes, you must restore these volumes in the same order as they were backed up.

You must have sufficient access rights in the target volume to allow restore to
operate. To create new files, you must have add-entry access to the parent
directories. To restore files over existing files, you must have add-entry and change
access to directories; and delete, append, and update access to data files. Normally,
when restore copies files, it copies only those files to which you have access. It
establishes your user ID as the owner ID, regardless of the file's previous owner ID.
However, if you are the Super user, all files from the backup volume are restored
with the owner ID and access rights intact.

When copying files, restore reconstructs the filename, access list, extension data, file
granularity, and the contents of the file. However, when the destination is a remote
or a DOS volume, the extension data is not copied and file ownership is not
preserved. Restored files will be owned by the user who performed the restore.

When you invoke the restore command, it displays this sign-on message, where Vx.y
is the version number of the utility:

iRMX Restore Utility Vx.y

Copyright <years> Intel Corporation

All Rights Reserved

HI command restore

Command Reference Chapter 2 333

Then the command prompts you for a backup volume. Whenever restore requires a
new backup volume, it issues this message:

<backup device>, Mount Backup Volume #<nn>, Enter Y to

Continue:

Where <nn> is the number of the requested volume. (In some cases restore displays
additional information to indicate problems with the current volume.) In response to
this message, place the indicated backup volume in the backup device and enter one
of these:

Y or R Continue the restore process.
E Exit from the restore command.
N Reprompt for a new volume.
any other Invalid entry; reprompt for entry.

If you supply the requested volume, restore starts restoring files from that volume
and, if necessary, requests additional backup volumes. Once you supply the first
backup volume, you must supply all the other backup volumes in the data set, in
numerical order, when restore requests them.

However, when restore requests the first backup volume, you can supply a higher-
numbered backup volume, if you know that all the files you want to restore reside on
higher-numbered volumes. Restore starts copying files from the higher-numbered
volume and maintains the proper directory structure for the files it restores. Once
you supply the first volume, you must supply all the remaining backup volumes in
numerical order when restore requests them.

As it restores each file, restore displays one of these messages:

<pathname>, Restored/Verified

<pathname>, Directory Restored/Verified

If a not restored message is displayed, a more detailed error message is
displayed.

restore HI command

334 Chapter 2 Command Descriptions

Error Messages
<pathname>, access to directory or file denied

Restore could not restore a file; either you do not have add-entry access to the parent
directory or you do not have update access to the file. Restore continues with the
next file.

<backup device>, Backup Volume #<nn>, <date>, Mounted

<backup device>, Backup Volume #<nn>, <date>, Required

<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:
Restore cannot continue because the backup volume you supplied is not the one that
restore expected. Either you supplied a volume out of order or you supplied a
volume from a different backup session. Restore reprompts for the correct volume.

<backup device>, Cannot Attach Volume

<backup device>, <condition code:mnemonic>

<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:
Restore cannot access the backup volume. This could be because there is no volume
in the backup device or because of a hardware problem with the device. The second
line of the message indicates the condition code encountered. Restore continues to
issue this message until you supply a volume that restore can access.

<pathname>, <condition code:mnemonic>, error during backup, file not
restored
The backup utility encountered this condition code while attempting to save this file.
Restore is unable to restore this file.

<pathname>, <condition code:mnemonic>, error during backup, restore
incomplete
The backup utility encountered this condition code while attempting to save this file.
Restore restores as much of the file as possible to the target volume.

<backup device>, error reading backup volume

<backup device>, <condition code:mnemonic>
Restore tried to read the backup volume but encountered an error condition, possibly
because of a faulty area on the volume. The second line of the message indicates the
condition code encountered.

<pathname>, <condition code:mnemonic>, error writing output file,
restore incomplete
Restore encountered this condition code while writing a file to the named volume.
Restore writes as much of the file as possible to the named volume.

HI command restore

Command Reference Chapter 2 335

<pathname>, extension data not restored, <nn> bytes required
The amount of space available on the named volume for extension data is not
sufficient to contain all the extension data associated with the specified file. The
value <nn> indicates the number of bytes required to contain all the extension data.
This message indicates that the target volume to which files are being restored is
formatted differently than the source volume which originally contained the files. To
ensure that you restore all the extension data from the backup volume, you should
restore the files to a volume formatted with an extension size set equal to the largest
value reported in any message of this kind.

See also: Setting the extension size, format command, in this chapter

<backup device>, Invalid Input Specification
The logical name you specified for the backup device was not a logical name for a
device. Example invalid names are :ci:, :co:, and :home:.

<backup device>, logical name does not exist
The logical name specified for the backup device does not exist.

<backup device>, Not a Backup Volume

<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:
The volume you supplied on the backup device was not a backup volume. Restore
continues to issue this message until you supply a backup volume.

<pathname>, E_IFDR Not Restored
For some reason, restore was unable to restore a file from the backup volume; it
continues with the next file. Another message usually precedes this message to
indicate the reason for not restoring the file.

output specification missing
You did not specify a pathname to indicate the destination of the restored files.

<pathname>, READ access required
You do not have read access to a file on the backup volume; restore cannot restore
the file.

<pathname>, too many input pathnames
You entered a list of logical names for backup devices. You can enter only one input
logical name per invocation of restore.

Select List Too Long
The pathname list you supplied with the select parameter exceeded 255 bytes.
Invoke restore again with a shorter list of pathnames.

Invalid Select : select = (filename [, filelist])
The pathname supplied with the select parameter was not enclosed in parentheses.

select, unrecognized control
You supplied a list of pathnames with the select parameter and the list was not
enclosed in parentheses.

restore HI command

336 Chapter 2 Command Descriptions

cannot attach VOLUME
The backup device is a remote device.

HI command retension

Command Reference Chapter 2 337

retension
Retensions a tape, which winds the tape evenly on the spool. This can eliminate
potential problems when reading or writing the tape.

Syntax

retension :logical_name:

Parameter

:logical_name:
Logical name of a tape device.

Additional Information

✏ Note
You cannot use this command with a remote devices such as those
that you access through iRMX-NET or NFS.

Invoking this command does a fast-forward to the end of the tape, then rewinds the
tape back to the load point. This winds the tape evenly. The command displays this
message:

Starting retension operation

Error Messages
Invalid logical name

The logical name does not exist.

Device does not support retension
The specified logical name refers to a file (condition code E_IFDR) or to a device
other than a tape drive (condition code E_IDDR).

rmextdbg HI command

338 Chapter 2 Command Descriptions

rmextdbg
Improves binding (linking) efficiency by removing SRCLINES entries
from OMF-386 linkable modules and producing a smaller version of the
file.

Syntax

rmextdbg filename.obj [filename.obj] [filename.obj]

Parameters
filename.obj

Object files to be processed.

Additional Information

SRCLINES are debug information segments in linkable modules (.obj files). They
contain the full pathname to the source code file that the object code came from.
Normally, there is one SRCLINES entry for every line of code, which uses a lot of
disk space and is not needed by iRMX debugging tools.

Removing this unneeded information improves binding speed while leaving in all
other debug information. Use this command on output from the PL/M compiler.

Rmextdbg processes the object files you enter on the command line, one at a time.
Memory is reserved to load the entire file. If there isn't enough memory for the entire
object file to be loaded, the program exits with an error. Otherwise, rmextdbg scans
for SRCLINES debug segments, removes them, and thus shrinks the file.

When rmextdbg is finished, it writes the object file back out to disk.

See also: Example of a modified submit file using rmextdbg, in the PL/M
directory under /rmx386/demo
For C programs, use the nosourcelines compiler switch

DOS command rmxtsr

Command Reference Chapter 2 339

rmxtsr
Provides the interface between DOS, ROM BIOS services, and the iRMX OS.

Syntax

rmxtsr

Additional Information
Invoke rmxtsr before using loadrmx. This utility performs all DOS and ROM BIOS
calls on behalf of the iRMX OS.

✏ Note
Rmxtsr runs at INT 85H; do not install other TSRs that chain
themselves to this interrupt level.

Rmxtsr is a DOS terminate and stay resident (TSR) program which runs in the
background, allowing other DOS programs to run. When the iRMX OS invokes
rmxtsr, the current DOS application program is halted and rmxtsr services the
iRMX request.

Rmxtsr must load in conventional DOS memory, the first 640 Kbytes, so your
system must not use DOS extended memory managers. These memory managers put
the microprocessor into Protected Mode, which interferes with DOSRMX.

The rmxtsr program is divided into two parts:

Transient part
Executes when invoked. It reserves a portion of DOS conventional
memory for the resident part of the utility, sets up software interrupt
vectors to allow the iRMX OS to invoke the resident part of the utility,
and then terminates and removes itself from memory.

Resident part
Provides the DOS and ROM BIOS extension to the iRMX OS by
interpreting iRMX requests, issuing DOS or ROM BIOS calls and
sending the results back to the iRMX OS.

rmxtsr DOS command

340 Chapter 2 Command Descriptions

Rmxtsr handles requests as follows:

1. An application program makes an rqe_dos_request system call.

2. Rqe_dos_request sends the request to the TSR.

3. The TSR performs the appropriate DOS/ROM BIOS function and returns the
results to rqe_dos_request.

When rmxtsr runs, and no errors occurred, this message is generated:

iRMX Interface TSR Version x.x Installed

Error Messages
iRMX Interface TSR requires DOS V3.0 or later

Unknown DOS version
You are running the wrong version of DOS: rmxtsr will not work on systems
running DOS earlier than Version 3.3. Use ver at the DOS prompt to determine the
DOS version.

To reinstall a later version of DOS, first back up the DOS partition, and then reformat
the primary DOS partition. If you use the earlier version DOS backup utility to do
this, use the earlier version DOS restore utility; the later version of restore will not
work.

Alternatively, you can boot from a DOS System diskette and then run rmxtsr. You
may have problems invoking some DOS utilities on your hard disk, as these utilities
are an earlier version than the DOS utilities provided with the DOS version you
booted.

iRMX Interface TSR is already installed
Rmxtsr has already been invoked and cannot be invoked again. To reload the utility,
reboot the system.

TCP/IP command route

Command Reference Chapter 2 341

set
Displays or changes CLI environment values. Only one value may be set at a time.

Syntax

set [terminal|minbackpool|maxbackpool|aliastable|prompt
[= value|myslot]]

Parameters
terminal

The terminal type for which CLI line-editing features are set.

minbackpool
The minimum memory pool size for background jobs.

maxbackpool
The maximum memory pool size for background jobs.

aliastable
The size of the table used to store aliases.

prompt The prompt displayed by the CLI.

= value
The corresponding string or numeric value for each keyword. Values for
minbackpool, maxbackpool, and aliastable are a decimal number of Kbytes.
The prompt string can be up to 14 characters. If you omit the value parameter,
values are displayed rather than set.

myslot An option only for the prompt that sets the prompt to the slot number of the board in
a Multibus II system.

Additional Information

If you enter this command with no parameters, the CLI displays the current values,
similar to:

CLI PARAMETERS are:

terminal = ANY

prompt = -

minbackpool = 6K

maxbackpool = 384K

alias table size = 2K

If you enter the command with a parameter name but no value, the current value for
that parameter is displayed.

set CLI command

342 Chapter 2 Command Descriptions

Options

Set terminal

Your initial terminal name is defined in the :config:terminals file. The set terminal
command changes how the CLI supports line-editing by specifying a new terminal
type. The terminal command has the format:

set terminal=<terminal name>

In the command above, <terminal name> is the name of a terminal defined in the
:config:termcap file. This file contains several default terminal definitions. If the
name is not defined in this file, the CLI displays this error message and sets the
terminal name to the default ANSI standard:

<terminal name> is not found in :config:termcap

default ANSI standard assumed

You can add terminal definitions to the :config:termcap file. This file also contains
additional configuration commands for AEDIT Version 2.2, Inamon Version 1.8, and
the Virtual Terminal Consumer V3.1 or later versions.

See also: termcap file, System Configuration and Administration

Assignments made with the set command are only valid for the current logon session.
To change the terminal definition permanently, change the terminal name in the
:config:terminals file.

See also: Terminal configuration files, System Configuration and Administration

Set minbackpool and set maxbackpool

The minbackpool and maxbackpool parameters establish new default values for
the minimum and maximum memory pool sizes used in background jobs. (The
default values can be overridden for a specific background job with an entry in the
background command.) The initial minimum default is 6 Kbytes. The initial
maximum default is 384 Kbytes, unless you have a maximum memory partition less
than 384 Kbytes; then the default is 0. The default values provide enough memory
for most ordinary jobs. The commands have the format:

set minbackpool=<size>

set maxbackpool=<size>

CLI command set

Command Reference Chapter 2 343

Enter a decimal number of Kbytes (do not enter the K). Use a minimum value large
enough to accommodate the background stack and a maximum value less than
(user_pool_max - 200 Kbytes). If the maximum value is greater than
(user_pool_max - 200 Kbytes), you may not have enough memory to execute
foreground jobs. The values are set as you entered them, but you may want to set
different values. If this occurs, the CLI displays this warning:

WARNING: maxbackpool attribute can avoid foreground

execution due to memory limits

If the maximum value you enter is less than the minimum value, this message is
displayed:

WARNING: maxbackpool < minbackpool, value was assigned use

set command to set background memory pools

Set aliastable

The default size of the memory table used to store aliases is 2 Kbytes. The
aliastable parameter establishes a new size, either smaller or larger. The format
of the command is as follows, where <size> is a decimal number of Kbytes (do not
enter the K).

set aliastable = <size>

Set prompt

The default CLI prompt is - (a hyphen). In DOSRMX it is RMX>. The prompt
parameter sets a new prompt string. The format of the command is as follows, where
<string> is a string of up to 14 characters:

set prompt = <string>

On a Multibus II system or on a Multibus I system using the Multibus II Nucleus
communication system, you may set the prompt to the string myslot. This causes
the CLI to include the Multibus II host ID in the prompt. If the Multibus II board is
in slot 2, the new prompt would be:

[2]-

Multibus I and PC bus boards are considered to be in slot 0.

set CLI command

344 Chapter 2 Command Descriptions

Error Messages

terminal name is not found in :config:termcap:

default ANSI standard assumed
The terminal name you entered is not defined in the terminal definition file. The
default ANSI standard is assumed to be the terminal name until you redefine it using
the set command.

<alias size>, new alias table is not enough to hold user aliases
The new value you entered is too small to contain all the aliases you have assigned.
The actual table size is not changed. This message does not appear if you reduce the
size of the alias table and the new size is still large enough for the current aliases you
have assigned.

set, wrong syntax
You entered the command incorrectly.

set illegal parameter, parameters are:
terminal prompt aliastable
minbackpool maxbackpool
You entered the command with an illegal parameter.

HI command setconfig

Command Reference Chapter 2 345

setconfig
Places the contents of the specified configuration file into a system memory segment
so that it is available to subsequently loaded applications .

Syntax

setconfig file_name

Parameters
file_name Full pathname of a file containing configuration

information

Additional Information

The configuration information in the file passed to the setconfig command must be in
the same format as that of the RMX.INI file described in the System Configuration
and Administration on-line manual.

✏ Note
In DOSRMX and iRMX for PCs systems, the contents of the file
passed to the setconfig command overwrite the contents of the
system configuration segment that initially was filled with the
contents of the RMX.INI file by the boot process. The setconfig
command allows MSA booted Multibus II systems and standard
Multibus I systems to have dynamic configuration capabilities
similar to those provided by the RMX.INI file in PC-booted
systems.

setname NET command

346 Chapter 2 Command Descriptions

setname
Enters iRMX-NET server names and addresses in the local Name Server object table.

Syntax

setname server_name [SNIDx|network_address] [nfs|hid|rls] [r1]

Parameters
server_name

The name of a local or remote server system. The maximum length is 16 characters
and the name must be unique within the network. If the network address is omitted,
the name is assigned to the local server.

SNIDx The configured subnet in the iNA 960 job. The number x can be in the range 1-4.
The transport address is built using the xth subnet configured in the iNA 960 job.

network_address
A transport address that includes the Ethernet address of the system specified by
server_name. This is the same format as the 34-character transport address entries
in the :sd:net/data file.

See also: /net/data.ex file, Chapter 11, Network User’s Guide and Reference, for
the other addresses you can set

nfs The entry is to be made only under property type 3H, which specifies that this name
and address represent a file server. (This parameter has no relationship to the
TCP/IP-based NFS.)

hid The entry is to be made only under property type 5H, which specifies that the address
is the host-unique ID. When you use this parameter, the Name Server catalogs the
address for use by the getname command. Specify this parameter for systems acting
only as clients.

rls The entry is to be made only under property type 6H, which specifies that the address
is the iRMX load server.

If neither nfs, rls, nor hid is specified, the network_address is cataloged in
different forms under property types 3H (file server), 6H (iRMX load server), and 5H
(host-unique ID).

r1 The address is to be entered in iNA Release 1.0 format rather than the current format.
This option is not available if a subnet ID is specified.

NET command setname

Command Reference Chapter 2 347

Additional Information

If a system is configured as an iRMX-NET server only, or as both a server and client,
it must be given a server name before it can respond to client requests. If the name is
not set during system initialization, the system manager must invoke the setname
command at least once to catalog the local server name with the network Name
Server.

The first command shown below catalogs the local system under the property type
file server; the second catalogs the host-unique ID, making the local system name
available to users who invoke the getname command. The third command catalogs
both entries.

setname server_name nfs

setname server_name hid

setname server_name

If the local name and address exists in the :sd:net/data file, the name is automatically
cataloged when the system initializes, or if network initialization fails you can
catalog the file's contents with the loadname command. In this case, you do not need
to use setname to catalog the local name. However, you may want to catalog the
name and address of a system that is not in the :sd:net/data file. To do this, specify
the remote system address in the setname command.

The format of the transport address is shown above, where you insert a TSAP ID and
an Ethernet address. If you invoke setname from a Multibus II system and catalog
the address under property type 5H (using the hid parameter or using neither nfs
nor hid), setname catalogs the Ethernet address and appends the slot number of the
board where it is invoked.

An example Ethernet address has the form 00AA00025A70. A TSAP ID indicates
the type of system and its purpose. Table 2-6 shows TSAP IDs for various types of
systems.

Table 2-6. TSAP IDs Used in Transport Addresses

TSAP ID Type of System

0001 Any MS-DOS system

1000 iRMX-NET file server

1100 iRMX-NET file consumer

8000 Unix (and other OS) file server

8100 Unix (and other OS) file consumer

setname NET command

348 Chapter 2 Command Descriptions

✏ Note
In Multibus II systems, use the slot number of the host board in the
last two digits of the TSAP ID. This allows multiple hosts in one
system to share a single network controller board.

You can invoke the setname command multiple times, giving different names for
local and remote servers. Use the same name to catalog a server with the nfs and
hid parameters. Use unique names to catalog different systems. The names are
cataloged with the Name Server only as long as the local system is running; if you
reboot the system, invoke setname to catalog them again.

See also: deletename, getname, and listname commands, in this chapter

The format of the transport address shown here is for iNA 960 Release 3.0 or later.
The format is different if you specify the R1 parameter. This switch is used for
compatibility with systems running iNA Release 1.0 software.

See also: Network User's Guide and Reference

Error Messages
illegal option

The option specified for the command is not correct. Choose nfs, hid, or r1 as the
command option.

<server>, name table full
The local object table is full. Each server specified with setname occupies two
entries in the object table. You can increase the table size (it is configurable) or
delete some objects from the object table. Use the listname command to display
entries in the table.

<server>, name already exists
The specified server name is already defined on the network. Select a different
server name.

illegal name
The specified server name is more than 16 characters long. Select a shorter name.

illegal value
The specified network address is in the wrong format. Re-enter the address.

NFS command share

Command Reference Chapter 2 349

shutdown
Shuts the system down in an orderly fashion; can only be invoked by the Super user.
All HI users are warned at fixed intervals of an impending shutdown, until the
shutdown takes place.

Syntax

shutdown [p] [w = num] [sd=:device_name:]
[b [d= list|all]]

Parameters

p(artial)
Requests a partial shutdown. HI terminals are locked and all HI jobs except this
operator's are aborted.

w(ait) = num

The delay period in minutes (0 to 30) before shutdown procedures begin. The default
value is 10. A value of 0 indicates no delay.

sd = :device_name:
A logical name for the system device containing the system directory and the volume
master files. Colons are required. The device name must be a named volume that is
currently attached. The default value is :sd:. Although the system device may be
different than the default, do not change it unless you have a specific reason to do so.

b(ackup)
The shutdown utility creates a backup of the system device volume master files and
any other devices specified in the devices parameter.

d(evices) = list|all

Backs up the fnode files on the specified devices and marks the devices as shut down.
List is a list of logical device names surrounded by colons and separated by
commas. All specifies all attached EIOS logical named devices.

Additional Information

This command indicates a 10 minute wait, a backup of the fnode file, and the
marking of :dev1: and :dev2: as shut down on the volumes.

shutdown W=10 B D=:dev1:,:dev2:,:sd: <CR>

You may use the partial option to delete only a limited number of HI users, such
as when backing up a disk. When the system is ready to return to general use, invoke
the unlock command to reinitialize all users.

The logical operations defined in the shutdown utility are shown below:

shutdown HI command

350 Chapter 2 Command Descriptions

Operation Function
Terminal locking Locks all HI terminals.
Warnings Issues a warning every 5 minutes until 5 minutes before

shutdown, then issues a warning every minute.
Job deletion Deletes all HI user jobs, excluding the caller's job.
Time stamping Time-stamps the system directory.
Backup Backs up all fnode files.
Detaching Detaches all EIOS named and remote devices.
Marking Marks the volume as shutdown.
Delete job tree Deletes the caller's job tree.

All HI terminals are locked and the associated HI User Job Tree is deleted.

The default delay period of 10 minutes allows time to complete any cleanup
procedures; you may specify a different delay. When you invoke shutdown, this
message is issued to all terminals except your own at 5 minute intervals. When less
than 5 minutes remain, this message is issued at one minute intervals:

*** system WILL BE shutdown IN nn MINUTE(S)

All terminals remain active during the delay period, except the terminal from which
shutdown is invoked. This terminal becomes locked and cannot be used. If the
partial option is specified, the terminal used to invoke shutdown unlocks after the
delay period and can be used.

If shutdown is unable to delete one of the HI users for a period of five minutes, it
displays this, specifying the user name as defined by the HI:

**** unable to delete user, <HI-user>

**** Continue? (Y/N)

The user has the choice of proceeding with the shutdown or aborting it.

During the shutdown process, shutdown catalogs the r?shutdown object in the root
directory to ensure that first-level jobs are able to close down and exit in an orderly
fashion. If shutdown is aborted the r?shutdown object is uncataloged.

The system directory on the system device volume is stamped, enabling HI
initialization to set the system clock the next time the system is booted. This ensures
that the system clock, which is used to time-stamp files, moves forward
chronologically.

You can request that the system volume fnode file be copied to its duplicate file
r?save, by specifying the backup parameter. If the devices parameter is also
specified, the fnode files of those device are also backed up. When a successful
backup has been made, the HI displays this, where the first message indicates any
devices specified with the devices parameter :

HI command shutdown

Command Reference Chapter 2 351

****backup OF VOLUME files ON <logical_device> COMPLETED

****backup OF VOLUME files ON (system-device> COMPLETED

Any errors detected while trying to back up the files are displayed immediately. For
instance:

*** error in device fnode <number>

*** shutdown COMPLETED

Shutdown detaches all target devices, including the system device, that have been
logically attached using the EIOS. This closes all file connections on the devices and
flushes all EIOS and BIOS buffers associated with the devices.

Regardless of whether you specify a backup of specific devices, all EIOS logical
named and remote devices are marked as shut down. If an error is detected while
detaching a device or while marking a volume as shut down, one of these messages is
displayed:

*** error detaching device, <logical_name>

*** error marking shutdown device, <device>

When an error is detected during the backup and marking process of a logical named
device, as opposed to the system device, the processing continues. After named
volumes are marked as properly shut down, this message is displayed and the system
manager job tree is deleted:

:sd:, outstanding connections to device have been deleted

***shutdown COMPLETED

Any errors detected during the shutdown process cause the utility to abort and
display:

*** shutdown ABORTED

If a syntax error is encountered in the invocation of shutdown, the proper syntax is
displayed. The utility then aborts and returns control to the system command level.

Shutdown cannot be called from a program because shutdown removes logical
names, but cannot do so before the program terminates.

Aborting the Shutdown Utility

During operation of the shutdown utility, the system manager can enter <Ctrl-C> to
abort the procedure. Shutdown can be aborted only at the completion of a logical
operation; that is, only after all the terminals have been locked, but not during the
terminal-locking process. If you use <Ctrl-C> to abort shutdown, you must invoke
unlock to free each terminal.

shutdown HI command

352 Chapter 2 Command Descriptions

Failure to Issue Shutdown

If the system manager does not invoke shutdown before powering down or rebooting
the system, a warning message is displayed when the system is next powered on.
This is the default warning message:

*** WARNING: The System Device was not shutdown properly.

You may establish a different message in a file named :config:shutdown.msg. To
eliminate any message, create a 0 length :config:shutdown.msg file.

✏ Note
If you use iRMX-NET on a system with a local hard disk, any
previous shutdown message is removed. Therefore, if there was a
problem with the previous shutdown procedure, the system cannot
detect it and notify the system manager.

Error Messages

This list contains only syntax errors not previously explained in the Additional
Information section.

<keyword>, unknown keyword or switch
A keyword other than partial, wait, sd, backup or devices was encountered.

illegal keyword
A switch was used as a keyword.

illegal value
A keyword was assigned an illegal value.

<system_device>, not a logical device name
The name you entered is not cataloged as a logical device.

<system_device>, not a named device
The logical device name entered is not a named device.

HI command skim

Command Reference Chapter 2 353

skim
Displays one or more text files one screenful at a time, enabling you to page up and
down within the file.

Syntax

skim pathname [q] [tabwidth = num]

Parameters
pathname

The path name of the file to display. Specify more than one file by using wildcards.

q(uery) Prompts for permission to display each file. Respond to the prompt with:

Y Display the file
R Display remaining files without further query
E Exit the command
N or other Don't display this file; query for the next

tabwidth = num
The number of spaces to display for each horizontal tab character.

Additional Information

As each page is displayed, this prompt appears at the bottom of the screen:

more?

To scroll the text one line, press <CR>. To display the next screen, press the
spacebar. Press ? or H to see this display of other command characters used by skim:

A - repeat the last command
B - back one page
D - next half page
cr - display next line
E or Q - exit
N - next file
P - current path name
T - top of file
W - window
Z - last page of file
? or H - this display
space - next page

When the end of the file is reached, skim displays:

skim HI command

354 Chapter 2 Command Descriptions

--(EOF)--more?

At this point, pressing <CR> or the spacebar terminates skim (unless you specified
multiple files), but other commands may be used to continue displaying the current
file.

If terminal translation is not enabled, the screen commands for clear screen and clear
line are simulated. Long lines are wrapped to subsequent lines and unprintable
characters are displayed in hexadecimal.

HI command sleep

Command Reference Chapter 2 355

sleep
Suspends execution for a given number of seconds.

Syntax

sleep seconds

Parameter
seconds

The number of seconds to suspend execution.

Additional Information

The time needed to load the sleep command is not counted in the delay.

sort
Sorts lines alphanumerically in a text file and displays the output or writes it to
another file.

Syntax

sort inpath_list [to|over|after outpath_list] [q]

Parameters
inpath_list

One or more pathnames, separated by commas, of text files to sort.

to|over|after outpath_list
One or more output files where sorted data is to be written rather than to the screen.
Multiple pathnames must be separated with commas.

q(uery) Prompts for permission to sort each file in the list. Respond to the prompt with:

Y Sort the file
R Sort remaining files without further query
E Exit the command
N or other Don't sort this file; query for the next

Additional Information

If the input file contains these lines:

sort HI command

356 Chapter 2 Command Descriptions

field1
FIELD1
FIELD2
field2
field10
This is a long line without a carriage return at the edge of
the screen, allowing the line to wrap if possible.
New line.

This is the sorted output:

FIELD1
FIELD2
New line.
This is a long line without a carriage return at the edge of
the screen, allowing the line to wrap if possible.
field1
field10
field2

CLI or HI command submit

Command Reference Chapter 2 357

submit
Reads and executes a set of commands from a file rather than from the keyboard.

Syntax

submit pathname [(param_list)] [to|over|after outpath] [e]

Parameters
pathname

Name of the file from which the commands are executed. This file may contain
nested submit commands. Typically the filename has the extension .csd, which you
do not include in the pathname. If no such file is found, the filename is assumed to
be exactly as entered here.

param_list
One to ten actual parameters, separated by commas, that are to replace formal
parameters in the submit file. You must surround this parameter list with
parentheses. To omit a parameter in the middle of the list, reserve its position by
entering a comma. If a parameter contains a comma, space, or parenthesis, enclose
the parameter in single or double quotes. The sum of all characters in the parameter
list must not exceed 512 characters.

to|over|after outpath
Writes the output from each command in the submit file to the specified file rather
than to the screen. Commands in the submit file may redirect their own output, in
which case the output is not written to this file.

e(cho) Data written to an output file is also echoed to the screen. Nested submit commands
do not have their contents echoed to the screen unless they are also invoked with the
echo parameter.

Additional Information

If you use the CLI, this is an internal CLI command. It is also supplied as an HI
command for systems that use a custom interface. Invoke :system:submit for the
HI version of the command. The HI command does not support CLI features; you
cannot include such commands as alias and background in the submit file, nor can
you use an alias for a command.

To use the submit command, you must first create a data file that defines the
command sequence and formal parameters (if any). Any program that reads its
commands from the console input (:ci:) can be executed from a submit file.

submit CLI or HI command

358 Chapter 2 Command Descriptions

If the submit file itself contains a submit command, another submit file is invoked.
You can nest submit files to any level until memory is exhausted. When a nested
submit file completes execution, it returns control to the next higher level of submit
file.

Indicate formal parameters in the submit file by specifying the characters %n, where
n ranges from 0 through 9. When submit executes the file, it replaces the formal
parameters with the actual parameters listed on the invocation line. The first actual
parameter replaces all instances of %0, the second parameter replaces all instances of
%1, and so forth. If the actual parameter is surrounded by quotes (to avoid
command-line interpretation of a comma, space, or parenthesis in the parameter),
submit removes the quotes before performing the substitution. If there is no actual
parameter that corresponds to a formal parameter, submit replaces the formal
parameter with a null string.

If you specify an output file and do not specify the echo parameter in the submit
command, only your submit command entry is echoed on the console screen;
command entries in the submit file are not displayed as they are loaded and executed.
You own and have full access to output files created by the submit command and to
new files created by commands within the submit file.

If your command interface is the CLI, you may invoke the submit command as a
background job to execute large tasks while you continue entering data from the
terminal. If you invoke submit as a foreground job and enter <Ctrl-C> to abort
processing, all submit processing ends (including any nested submit commands),
and control returns to you.

When all commands in the submit file have been executed, this message is displayed:

END submit <pathname>

Examples

Following are two examples showing the use of submit files. The first uses the
BND386 utility; the second uses the MAP386 utility.

1. This example of the submit file invokes the BND386 utility. This utility creates
a bound object module (the & characters are syntax required by the Binder). The
example uses the file, bind.csd. It is located in the /intel/gen directory.

bnd386 &

/intel/lib/cstrmx3c.obj , & C startup module

%0.obj , & User module - include other

modules here

CLI or HI command submit

Command Reference Chapter 2 359

/intel/lib/crmx3c.lib , & iRMX III Floating-point

C-library

/intel/ndp387/cl387n.lib , & Floating point support

libraries

/intel/ndp387/80387n.lib , &

/rmx386/lib/rmxifc32.lib & iRMX III System Call

Interface library &

bind controls

renameseg (code32 to code) &

segsize (stack(2400h)) &

nodebug & Change to 'debug' if debug

info desired

object(%0) &

rc(dm(4000h,0FFFFFh))

;

Execute the submit file by issuing this command:

- submit /intel/gen/bind file.c echo

The file variable is the name of any C program which will be compiled under
the iC-386 compiler. The command executes as a foreground job. The submit
command substitutes the actual parameter of the file name in place of the formal
parameter %0 in the submit file. When the binding process starts, the CLI
displays the bind.csd file as it processes each line.

This system message shows that processing has begun:

iRMX III 386(TM) BINDER, <version>

Intel Corporation Proprietary Software

When the job is complete, the CLI displays:

- END SUBMIT bind.CSD

See also: Using the 80386 Binder, Intel386 Family Utilities User's Guide

2. This example of the submit file, titled map.csd, invokes the MAP386 utility.
This utility generates informational maps, such as table, segment, and cross-
reference maps, about any input object module (the & characters are syntax
required by the Binder).

The map.csd submit file contains this command sequence:

map386 %0 printcontrols(tables) &

Execute the submit file by issuing this command:

- submit map (file.obj) printcontrols(tables)

submit CLI or HI command

360 Chapter 2 Command Descriptions

The file variable is the name of any object file created by a compatible 32-bit
compiler, such as the iC-386 compiler. The submit command substitutes the
actual parameter of the file name in place of the formal parameter %0 in the
submit file. The printcontrols option specifies Global Descriptor, Local
Descriptor, and Interrupt Descriptor tables.

This system message shows that the job has begun:

iRMX III 386(TM) MAPPER, <vers>

Copyright 1986,1989,1990 Intel Corporation

When the job is complete, the CLI displays:

- END SUBMIT map.CSD

See also: Using the 80386 Mapper, Intel386 Family Utilities User's Guide

Error Messages
<pathname>, end of file reached before end of command

The last command in the input file was not specified completely. For example, the
last line might contain a continuation character.

<parameter>, incorrectly formed parameter
You separated parameters in the parameter list with a character other than a comma.

<pathname>, output file same as input file
You attempted to place the output from submit into the input file.

<pathname>, too many input files
You specified more than one pathname as input to submit; only one file can be
processed per invocation.

<parameter>, too many parameters
You specified more than ten actual parameters in the parameter list.

<condition code:mnemonic>, during submit execution
The commands in the submit file produced the error indicated by this condition code.

CLI or HI command super

Command Reference Chapter 2 361

super
Makes you the system manager (Super user), with user ID 0. You must know the
password (the default is passme).

Syntax

super

Additional Information

If you use the CLI, this is an internal CLI command. It is also supplied as an HI
command for systems that use a custom interface, in the :system:super file. The HI
command does not recognize any of the CLI features such as line-editing and
aliasing.

If you logged on as Super, you are already the system manager. You only need to
invoke super if you want to issue the changeid command to take on another user ID.
In this case the super command doesn't require you to enter the password.

If you logged on as any user other than Super, invoke the super command to become
the system manager; your user ID is changed to 0. In this case the super command
prompts you to enter the password. Although you have the privileges of the system
manager, the Super user logon files are not executed. For example, if Super has
different aliases defined than in your logon files, those aliases are not defined when
you invoke the super command.

After invoking the command, your prompt changes to super-. You can enter any
commands and access any files available to the system manager. You become a
verified user, which allows you to access any files with iRMX-NET. If you create
new files, they are listed as owned by user ID 0, unless you previously invoke
changeid to become another user.

The super command can be used only in the foreground. If you try to invoke it as a
background job, you receive a failure message. To return to your logon user ID after
invoking super, use the exit command.

See also: changeid and exit commands, in this chapter

super CLI or HI command

362 Chapter 2 Command Descriptions

Error Messages
<condition code:mnemonic> cannot set default user

A problem prevented the CLI from changing your user ID. The user definition file
(UDF) may be corrupted.

<condition code:mnemonic>
An internal system problem occurred. For example, the CLI could not find the
default user.

<condition code:mnemonic>, super is unavailable
The CLI encountered an error while reading the password you entered or while
accessing the UDF (to determine if the password is correct).

<parameter>, unexpected parameter
You entered a parameter; the super command does not accept any parameters.

HI command sysinfo

Command Reference Chapter 2 363

sysinfo
Displays information about the boot system that is currently running.

Syntax

sysinfo [l]

Parameter

l(ong) Displays an iRMX Job Tree which lists the jobs currently running and their memory
usage.

Additional Information

The displayed information varies, depending on the boot system and the associated
CPU board. The output has the general format:

The System Device DUIB Name is <duib_name>

The System Boot File Name is <boot_system>

The System Performance Index is <delay_constant>

The currently specified Time Zone is <time_zone>

The System Bus is <bus_type>

The CPU Type is <cpu_type> <cpu_model>

The System Board Type is <board_type>

The System Comments are:

<contents of ICU Comment Screen >

Where:

<duib_name>
The DUIB name of the physical device that is currently attached as the
system device (:SD:).

<boot_system>
The name of the boot device and file which was booted and is currently
executing.

sysinfo HI command

364 Chapter 2 Command Descriptions

<delay_constant>
A value computed by the Nucleus during initialization which is used by
the OS for timing purposes. All iRMX device drivers use this value for
timing loops so that the actual delay reflects the hardware's
requirements. This avoids having to increase the timing loop values
when faster hardware is available. It also avoids penalizing slower
hardware so that sufficient delay is present for faster hardware. The
higher the number, the faster the hardware. For Intel386 and Intel486
CPUs, the delay_constant is used for System Performance Index. In
Pentium systems, the System Performance Index is 2.5 times the
delay_constant.

<time_zone>
Always 0; this feature is reserved for future Intel use.

<bus_type>
Indicates your system bus: Multibus I, Multibus II, or PC Bus.

<board_type>
The value can be:

Value System Board Type

0H System unknown

1H SBC386/12, SBC386/12S

3H SBC 386/2x, SBC 386/3x

4H SBC 386/116, SBC 386/120,
SBC 386/133, SBC 386/258

5H SBC 486/125

6H SBC 486/12, SBC 486/12S

7H SBC 486/133SE

8H MIX 386/020

0FAH SBC PCP4DX2, SBC PCP4X4,
SBC PCP4SX33

0FBH SBC P5090

0FEH SBC 486SX25, SBC 486DX33

HI command sysinfo

Command Reference Chapter 2 365

<comments>
The entry on the COMNT screen of the ICU. This lets you refer to the
notes you placed in the definition file when you created the boot
system. In an iRMX for PCs system, the comments field identifies the
version of the OS as well as the licensed user and software serial
number.

When the l(ong) parameter is specified, this type of additional
information is given:

iRMX Job Tree

MEMORY JOB ID JOB NAME

USED AVAILABLE

5872K 7694K 0258 Root Job - Has Free System Memory

115K 0K 5E60 Application Starter Job

9K 0K 1108 Human Interface Job

69K 442K 80B8 CLI

19K 15K A9B8 sysinfo

518K 0K 62A8 iRMX-Net File Server Job

274K 0K 5290 iRMX-Net File Client Job

307K 5K 4828 /rmx386/jobs/iethxpn.job

37K 10K 45D0 /rmx386/jobs/smw.job

78K 4017K 3E50 /rmx386/jobs/himem.job

47K 2K 3578 /rmx386/jobs/keybd.job

101K 15K 2D10 /rmx386/jobs/sdb.job

120K 19K 2680 /rmx386/jobs/clib.job

6K 0K 1050 EIOS Job

20K 3K 1010 RTE Job

151K 0K 0F68 DOS

46K 0K 0ED8 BIOS Job

The sum of the Root Job Used and Available Memory is the total
amount of Free Space Memory available in the system when the boot
device was loaded. Also, the sum of the Used and Available Memory
in jobs other than the root job is equal to the Used Memory of the Root
Job.

sysload HI command

366 Chapter 2 Command Descriptions

sysload
Loads a dynamically loadable device driver or user job as a child job of the HI. The
driver or job remains resident in memory until the job is unloaded or the system is
reset.

Syntax

sysload [-i name] [-o name] [-w] [-r] [poolmin, poolmax]
pathname [target_params]

sysload -l

sysload -u job_name|job_token

Parameters
-i name

Used to specify a file, logical name, or logical device as the :ci: for the loaded job.
:CI: is the standard input for the job.

-o name
Used to specify a file, logical name, or logical device as the :co: for the loaded job.
:CO: is the standard output for the job.

-w Instructs the sysload command to wait until the loaded driver/job indicates that its
initialization is complete before terminating.

-r Replaces an existing instance of the job to be loaded with the new job. If the job to
be loaded already exists, the previous job is deleted. This has the same effect as
deleting a job with sysload -u and then loading a new version of the same job.

poolmin
A decimal number specifying the minimum allowable memory pool size for the job
being loaded, in Kbytes. The default is 296 Kbytes. Do not follow the number with
the character K, and do not use hexadecimal or octal numbers.

poolmax
A decimal number specifying the maximum allowable memory pool size for the job
being loaded, in Kbytes. The default is 16 Mbytes (0FFFFFH). Do not follow the
number with the character K, and do not use hexadecimal or octal numbers. For use
with himem, poolmax should be equal to poolmin.

See also: himem.job, System Configuration and Administration

pathname
The pathname of the driver or job to be loaded.

HI command sysload

Command Reference Chapter 2 367

target_params
Parameters specific to the driver/job being loaded. These may be optional, depending
on the driver or job. The syntax of any parameters is defined by each driver and I/O
job; sysload passes the parameters without interpreting them.

-l Used without parameters to display a list of current jobs and their job tokens loaded
from a previous sysload command. For example:

sysload -l

Loaded Jobs: (6)
c470 clib.job
dbf0 paging.job
54a0 remotefd.job
4ae8 netrdr.job
36a0 netat.job
2dc8 keybd.job

-u job_name|job_token
Used to unload a driver or a job. Use the job name or token returned by sysload -l.

▲▲! CAUTION
Most jobs and drivers provided with the OS are not unloadable.
Attempting to unload such a job may cause unpredictable results
such as a General Protection fault.

See also:Reference to Loadable Jobs and Device Drivers,
System Configuration and Administration, to
determine if a particular job or driver supports
unloading (-r and -u options)

Additional Information

If sysload is invoked without parameters, it displays a usage message and the list of
currently loaded jobs.

A loadable device driver is a device driver built as an HI command. Because you
load the driver while the system is running, rather than configuring it with the ICU,
you can dynamically change driver configuration. However, do not unload jobs with
interrupt handlers.

Loaded jobs are user applications that can be added to the OS in a semi-permanent
fashion. Once the job is loaded with the sysload command, the job remains part of
the OS until it explicitly exits or until the system is rebooted. Also, if the loaded job
supports the -u option, the job can be deleted by specifying that option with the
sysload command.

sysload HI command

368 Chapter 2 Command Descriptions

Typically, you only load a driver or job once each time the system is started. The
loaded driver is not deleted even after you log off, since sysload loads the driver as a
child job of the HI rather than the CLI. You may use the sysload command in a
submit file, such as r?logon or loadinfo.

If a driver is already loaded and you reload it without resetting the system, a new
instance of the driver is loaded. For example, you may load a RAM disk driver,
attach the device, and format it. If you then use sysload to reload the driver, and
attach to the same device, the attachdevice command reports an unformatted
volume, since it is a new RAM disk.

The loaded driver has access to standard :ci: and :co:. The default :ci:/:co:
connections are inherited from the user job that invoked the sysload command.
These defaults can be overridden by using the -i and/or -o command line options.

The OS provides loadable drivers for most uses. These are some of the drivers
provided:

• a RAM disk driver

• a terminal driver for Multibus I serial controller boards

• a driver for the system debug monitor, SDB

• a driver for the network redirector, Netrdr

• a driver for iRMX-NET

See also: Loadable device drivers, Loadable jobs, System Configuration and
Administration and Driver Programming Concepts

You may also write your own drivers or jobs to be loaded with sysload. OS drivers
follow a standard convention for log files. The driver writes to a log file in the same
directory as the driver. The log file has the same name as the driver file, with the
extension .log. By convention, the load operation is successful if the log file contains
only the sign-on message from the driver. Otherwise, an appropriate error message is
written to the log file.

By convention, a sysloadable job or driver should have the following components:

• Initialization section

Initializes application variables

Creates a deletion mailbox and catalogs it in the job’s object directory as
R?EXIT_MBOX

Creates one or more worker tasks

Falls through to cleanup section

• Useful work section

HI command sysload

Command Reference Chapter 2 369

Includes one or more tasks that perform the functions and services provided by
the job. Error conditions are either handled locally with the tasks continuing
their work, or by starting the termination process by signaling the cleanup
section.

Termination conditions that arise locally due to function completion or remotely
via some sort of message cause the cleanup section to be signaled.

• Cleanup section

Waits at the exit mailbox for termination instructions. Termination message is a
byte of 0xff.

Cleans up any resources that require special attention such as interrupt handlers,
regions, or alarms.

Does the appropriate job exitting function based on job type (rq_delete_job or
rq_exit_io_job).

You can also use sysload to add terminals defined by a loadable device driver to the
:config:terminals file, enabling those DUIB names to automatically become part of
the system during initialization.

See also: Loading and unlocking terminal devices, loading the PCX driver,
System Configuration and Administration

sysload HI command

370 Chapter 2 Command Descriptions

Examples

This example loads the RAM disk driver. Poolmin and poolmax are not specified,
so the default values are used:

sysload /rmx386/drivers/ramdrv (64)

This example loads the XMS server, specifying a poolmin of 500K, and a poolmax
of 500K:

sysload (500,500) /rmx386/jobs/himem.job

See also: himem.job and terminals, System Configuration and Administration
terminals, Driver Programming Concepts

Error Messages

Invalid PoolMin Value

Invalid PoolMax Value
Poolmin and poolmax must be decimal numbers without a suffix.

PoolMin larger than PoolMax
Poolmin must be equal to or smaller than poolmax.

Missing input parameter
You did not specify the driver's pathname.

Invalid Command Tail
You used a delimiter other than a space preceding the pathname parameter.

E_FILE_NOT_EXIST
You must use a fully specified pathname.

Could not attach <name> as CI, using default CI
You specified <name> with the -i option, but an error occurred when an attempt was
made to attach to it. The default :ci: will be used.

Could not attach <name> as CO, using default CO
You specified <name> with the -o option, but an error occurred when an attempt was
made to attach to it. The default :co: will be used.

TCP/IP command telnet

Command Reference Chapter 2 371

telnet
Communicates with another host using the TELNET protocol.

▲▲! CAUTION
Do not use this command in an esubmit file or an
rq_c_send_command because queries for user input will not be
received.

Syntax

telnet [-ec] [-8] [host[port]]

Parameters

-ec Changes the escape character to c for a telnet session.

-8 Enables the transmission of 8-bit data.

host The remote host name or its Internet address.

port The service number or its name.

Additional Information

Use telnet to connect to a remote host.

When invoked without the host and port arguments, telnet enters command mode,
as indicated by its prompt, telnet>. In this mode, it accepts and executes the
commands discussed below.

When invoked with a host (and/or port), telnet performs an open command with
those arguments. If port is not specified, telnet attempts to contact the server at the
default port. Once a connection has been opened, telnet enters input mode. In this
mode, all text entered from the keyboard is sent to the remote host for processing.

See also: services file, TCP/IP and NFS for the iRMX Operating System

To enter command mode from input mode, enter the telnet escape character. To
return to input mode, enter a <CR> at the telnet> prompt. To execute a single
TELNET command from input mode, and return automatically to input mode, enter
the command preceded by the escape character (for example, ^]linemode). The
default escape character is ^] when TELNET is invoked with the telnet comm. Use

telnet TCP/IP command

372 Chapter 2 Command Descriptions

the -e command line option or the escape command to change the escape character
for a telnet session.

The -8 option lets you communicate with hosts that use an 8-bit character set, such
as the Asian and European character sets. If this option is not used, parity bits are
stripped from the data.

Logging out of the shell on the remote host terminates the telnet connection,
returning you to the local shell if the connection was opened from the telnet
command line or to the telnet> prompt if the connection was opened from
command mode. This can also be accomplished with the close command. The quit
command terminates both the open connection and the telnet session, always
returning you to the local shell.

Commands

These commands are recognized by the telnet command interpreter. They may be
abbreviated, as long as they remain unique. The normal terminal editing conventions
are available in command mode.

close Close an open telnet connection, returning to the telnet> prompt
(command mode) or to the local shell (input mode).

display Display the current operating parameters of telnet.

environ Change environment variables (type 'environ ?' for more environment
options).

logout Forcibly logout a remote user and close the connection, returning you to
the local shell.

mode Try to enter line or character mode (type 'mode ?' for more mode
options.

open [-ec] [-8] host [port]
Open a connection to the named host. The -e option specifies an
alternate escape character and -8 enables eight-bit mode. These
options apply only to the session being opened. Host can be a host
name or Internet address. Port can be a service name or number; if not
specified, telnet attempts to contact the server at the default port.

quit Close the open TELNET connection, if there is one, and exit to the
local shell.

send Transmit special characters to the remote host (type 'send ?' for more
send options).

set Set the operating parameters of the TELNET connection (type 'set ?' for
more set options).

TCP/IP command telnet

Command Reference Chapter 2 373

slc Change the state of the TELNET connection’s special characters (type
'slc ?' for more slc options).

status Show the current status of the TELNET connection, modes, and
options.

telnet Open a connection to the named host

toggle Toggle the operating parameters of the TELNET connection (type
‘toggle ?' for more toggle options).

unset Unset the operating parameters of the TELNET connection (type 'unset
?' for more unset options).

? [command]
Display a list of telnet commands (no arguments), or a description of
the specified command.

! Invoke a new shell.

✏ Note
The TELNET specifications specify defaults for line mode
transmission with the local tty driver echoing. This
implementation, by default, provides character mode transmission
with the local tty driver echoing.

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.

term HI command

374 Chapter 2 Command Descriptions

term
Displays attributes of a connection or terminal, or modifies terminal attributes.

Syntax

term [logical_name] [query] [display] [halfduplex|fullduplex]
[vdt|hardcopy] [modem|nomodem] [translate|notranslate]
[xy|yx] [inputrate=num] [outputrate=num] [width=num]
[height=num] [offset=num] [overflow=num] [scroll=num]
[rpc= zero|ignore|even|odd|num]
[wpc= zero|one|even|odd|pass|num]
[flowcontrol|noflowcontrol] [highwater=num]
[lowwater=num] [fcon=num] [fcoff=num]
[linkparity= noparity|even|odd] [linklength= 6|7|8]
[linkstop= 1|1.5|2] [spchighwater=num]
[nospecialcharacter|specialcharacter (num [,num...])]

Parameters
logical_name

The logical name of the terminal. Colons are not required.

query Prompts you whether the changes are correct before applying them.

display
After setting terminal attributes, displays the new settings.

halfduplex|fullduplex
Sets the terminal to full- or half-duplex transmission.

vdt|hardcopy
Specifies whether the terminal is actually a video display terminal or a printer (hard
copy) device.

modem|nomodem
Specifies whether the terminal is connected to a modem.

translate|notranslate
Specifies whether the iRMX Terminal Support Code (TSC) should translate between
ANSI standard X3.64 escape sequences and unique terminal character sequences.

xy|yx Specifies whether horizontal (xy) or vertical (yx) screen coordinates are sent first.

inputrate=num outputrate=num
A decimal input and output baud rate.

HI command term

Command Reference Chapter 2 375

width=num height=num
The number of characters in the screen width and the number of lines in the screen
height.

offset=num overflow=num
The cursor offset that starts the numbering sequence on X and Y axes, and the
overflow value that axis numbering falls back to after reaching 127.

scroll=num
The number of lines to send to the terminal when the operator enters the scrolling
control character (default: <Ctrl-W>).

rpc=zero|ignore|even|odd|num wpc=zero|one|even|odd|pass|num
Input (rpc) and output (wpc) parity control settings that indicate how the TSC treats
the high bit of each character. Input refers to data entered at the terminal; output
refers to data sent to the terminal. Zero means the parity bit is always set to 0,
yielding 128 8-bit characters; you may also set the value to 1, which has the same
effect. Ignore means the parity bit is unchanged by the TSC, enabling 256 8-bit
characters. Even or odd means the parity bit is used to validate the parity; these
must be set the same, and yield 7-bit data.

flowcontrol|noflowcontrol
For buffered devices, enables or disables use of output flow control characters (<Ctrl-
S> and <Ctrl-Q> by default, or as defined by fcon and fcoff).

highwater=num lowwater=num
For buffered devices, specifies the number of bytes in the buffer at which controller
board firmware sends an off flow control character to stop receiving input data
(highwater) or an on flow control character to begin receiving data (lowwater).

fcon=num fcoff=num
For buffered devices, the decimal value of the ASCII character to use for on and off
flow control characters. The recommended value for fcon is 17 (<Ctrl-Q>) and for
fcoff is 19 (<Ctrl-S>).

linkparity=noparity|even|odd linklength=6|7|8 linkstop=1|1.5|2
For buffered devices, these specify how data is handled by the physical link between
the terminal and the controller device. Linklength is the number of bits per
character and linkstop is the number of stop bits.

spchighwater=num
For buffered devices, if specialcharacter is set this is the number of bytes in the
input buffer above which Special Character Mode is enabled and below which this
mode is disabled. Entering Special Character Mode means that the terminal driver
and the TSC use special characters (defined below) as interrupts for signaling
purposes.

term HI command

376 Chapter 2 Command Descriptions

nospecialcharacter|specialcharacter (num [,num...])]
For buffered devices, this specifies whether Special Character Mode can be enabled
and defines up to four ASCII characters as special characters. Surround the values
with parentheses and separate them with commas.

Additional Information

To display terminal attributes, enter only the logical name of the terminal or
connection. If the logical name is omitted, the attributes of the current terminal are
displayed. When setting terminal attributes, the control names need not be typed in
completely. Enter only enough characters of the keyword to make it unique from the
other parameters. All values are decimal by default.

Buffered devices are controllers that buffer input and output for the terminal. The
parameters that apply to buffered devices do not apply to the SBC 544A controller.

The term command cannot change connection attributes, since the changed attributes
would only be valid for the connection held by the term job and would disappear
whenever term exited. The command does not support translation specifications.

HI command time

Command Reference Chapter 2 377

time
Displays the current time or sets the time of the local (OS) or global (battery-backed)
time-of-day clock.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse

subcommands.

See also: esubmit command, in this chapter

Syntax
time [hh:mm:ss|q] [local|global]
time synchronize

Parameters

hh:mm:ss
Numerical designation for the hour, minute, and second. Specify only as many digits
as needed: hours in the range 0-23 and minutes and seconds in the range 0-59. You
may specify the hour only, the hour and minute, or all three. Any field not specified
is assumed to be 0.

q(uery) Displays the current date, time and clock type, then prompts you to enter the new
time. Enter a valid time as described above or the letter E to exit.

local Displays or sets the time portion of the local time-of-day clock maintained by the OS.
This is the default if local or global is not specified. Any user may set the time.

global Applies only to systems with hardware clock/calendar components, typically backed
up by battery power. Specifying global displays or sets the time portion of this
clock. Any user may display the time, but only the Super user can set it. If you set
the global clock, the local clock automatically takes on the same value.

synchronize
For systems with a global clock/calendar, this sets the time portion of the local clock
to the current time of the global clock. If you set the global clock, this parameter is
unnecessary.

time HI Command

378 Chapter 2 Command Descriptions

Additional Information

You must separate the individual time parameters with colons. If you omit the time
parameters, time displays the current date and time in this format:

dd mmm yyyy, hh:mm:ss <local or global clock type>

If you have a system without a global clock/calendar, whenever you start up or reset
the OS the time is automatically set to the time you last accessed the :system:
directory plus the time that elapsed since the system was started. You can reset the
time to any acceptable value.

If your system has a global clock/calendar and the OS is configured to recognize it,
the local clock is automatically set to the time maintained in the global clock when
you turn on or reset your system.

Error Messages
<time>, invalid time

You specified an invalid or out-of-range entry for one or more of the time
parameters.

<parameter>, invalid syntax
You specified an illegal combination of parameters, such as both a time and the
query parameter.

only the system manager may set the global clock
You specified the global parameter, but you are not the system manager.

E_SHARE, global clock busy
You attempted to access the global clock while another job was accessing it. Try the
command again.

<condition code:mnemonic>, while getting system time
This condition code occurred while the time command was getting the time from the
global clock. Possibly you specified the global or synchronize parameter, but
there is no global clock in the system.

E_INVALID_DATE, global date read was invalid
The date returned from the global clock was invalid. This condition usually occurs
when the global clock has never been initialized or when power to the clock has been
interrupted. The BIOS system call get_global_time gets the date from the global
clock, which the time command then displays.

HI command time

Command Reference Chapter 2 379

E_INVALID_TIME, global time read was invalid
The time returned from the global clock was invalid. This condition usually occurs
when the global clock has never been initialized or when power to the clock has been
interrupted. The BIOS system call get_global_time gets the time from the global
system clock, which the time command then displays.

E_SUPPORT, no global clock
There is no global clock in the system.

timer HI command

380 Chapter 2 Command Descriptions

timer
Times the execution of a given command and displays the elapsed time in seconds.

Syntax

timer command

Parameter
command

Any valid command line; continuation lines are allowed, using the & character.

Additional Information

The elapsed time cannot be measured in fractions of a second. The time needed to
load the command is included in the result. The reported time is only as accurate as
the system time.

HI command touch

Command Reference Chapter 2 381

touch
Changes file time stamps.

Syntax

touch inpath_list [date=date] [time=time]
[all|access|create|modify] [query]

Parameters
inpath_list

One or more pathnames of files to be touched. Multiple pathnames must be
separated by commas. Wildcards are permitted.

date=date
A fully specified date of the form: mm/dd/yyyy. If you omit this parameter, the
current date is used.

time=time
Time in the form: hh:mm:ss. Both mm and ss are optional. If you omit this
parameter, the current time is used.

all Modifies all available time stamps. Some file systems support full
create/access/modify time stamps (named file driver) and others only support last
modification time stamps (DOS file driver).

access (acc, a)
This parameter modifies only the last accessed time stamp, if supported by the file
system.

modify (modified, mod, m)
This parameter modifies only the last modification time stamp, if supported by the
file system.

create (cr, c)
This parameter modifies only the file creation time stamp, if supported by the file
system.

query (q)
Prompts for permission to touch each file. Respond to the prompt with:

Y Touch the file.
E Exit the command.
R Touch the remaining files without further query.
N or other Do not touch this file; go on to the next file in the inpath-list.

touch HI command

382 Chapter 2 Command Descriptions

Additional Information

If you do not specify any time stamps, the default action of the touch command is to
modify the last accessed and last modified time stamps. If you invoke touch without
any parameters, a help message listing the correct syntax and parameter descriptions
is displayed.

When you invoke touch, your user ID must have write permission for the files to be
modified by touch.

Error Messages
Invalid time specified

The time parameter was entered in an invalid format.

Invalid date specified
The date parameter was entered in an invalid format.

Missing parameter(s)
Either the time or the date parameter was specified without a corresponding time

or date value.

Request is not supported by the file driver
The file driver associated with one of the files in the inpath-list does not support the
s_set_file_status system call.

HI command translate

Command Reference Chapter 2 383

translate
Copies a file to the screen or to another file, converting the case of upper- or lower-
case characters as specified.

Syntax

translate inpath_list [to|over|after outpath_list] [q] [u] [l]
[n [=value]]

Parameters
inpath_list

One or more pathnames, separated by commas, of files to be translated. Wildcards
are permitted.

to|over|after outpath_list
Writes the output to the specified file(s) rather than to the screen.

q(uery)
Prompts for permission to process each file. Respond to the prompt with:

Y Translate the file
R Translate remaining files without further query
E Exit the command
N or other Don't translate this file; query for the next

u(pper)
All lower-case characters are forced to upper-case.

l(ower)
All upper-case characters are forced to lower-case.

n(onprinting)
If no value is specified, nonprinting characters are displayed as question marks. If a
value is specified, nonprinting characters are displayed as the ASCII character
represented by the numeric value. The value is decimal by default, but may be
specified in octal or hexadecimal by appending an O or H.

Additional Information

If no parameters are given, the translate command performs a slightly slower copy
function. If you specify both upper and lower in the same invocation, all characters
are changed to the opposite case. You cannot specify what characters are considered
non-printable.

traverse HI command

384 Chapter 2 Command Descriptions

traverse
Recursively travels a directory hierarchy, executing the specified command in each
directory in the tree. The command line may use the :$: logical file; :$: is set to
indicate whatever directory is being traversed at the moment.

Syntax

traverse directory command

Parameters
directory

Pathname of the topmost directory in the hierarchy to be traversed.

command
The command, along with arguments and parameters, to be executed in each
directory.

Example

To change the access rights for all files under the /helps directory to have read
permission, and for all subdirectories to have list permission, enter:

traverse /helps permit * R U=world

Error Messages
<file> is not a directory

The starting path is not a directory.

rq_c_send_command, exception 0021: E_FILE_NOT_EXIST
The HI rq_c_send_command system call cannot process the specified command.

HI command tree

Command Reference Chapter 2 385

tree
Displays the name (and optionally, size) of each data file and/or subdirectory in a
directory tree.

Syntax

tree pathname [to|over|after outpath] [s] [i] [noda|nodi]

Parameters
pathname

The topmost directory of the tree to be displayed. Wildcards may be used to indicate
more than one directory. However, if a wildcard pattern matches a filename in the
tree, the name is displayed regardless of a nodata or nodirectory parameter.

to|over|after outpath
Writes the output to the specified file rather than to the screen.

s(ize) Displays sizes of files and directories.

i(ndent)
Displays filenames using indentation.

noda(ta)
Data files are not displayed.

nodi(rectory)
Directory files are not displayed.

Additional Information

By default, the tree command lists all files and subdirectories. If you enter the
command with no parameters, the tree begins in the current working directory. If
you specify the size parameter, the number of bytes and blocks is displayed for
files, as well as the number of files in directories. When you use size, directories
are denoted by an asterisk in the first column. The sizes of directories reflect the sum
of all files contained in the directory.

To display the size of all directories beginning at the root directory, enter:

tree / s noda

The size displayed for the / directory (which is the final entry) is the size of the entire
file system.

uniq HI command

386 Chapter 2 Command Descriptions

uniq
Finds duplicated lines in a file and displays either the duplicated lines or non-
duplicated lines, or a combination. A line is only considered a duplicate if the second
line immediately follows the first.

Syntax

uniq pathname [to|over|after outpath] [s] [m] [d]

Parameters
pathname

The text file to be processed. If a wildcard is used, uniq processes only the first file
found.

to|over|after outpath
Writes the output to the specified file rather than to the screen.

s(ingle)
Displays only lines with no duplicates.

m(ultiple)
Displays only lines that are duplicated.

d(uplicate)
Displays the extra line of lines that are duplicated.

Additional Information

The single, multiple, and duplicate parameters may be used in any
combination. If none of these is entered, the default is single and multiple,
which causes uniq to display all lines that contain no adjacent duplicate lines. The
lines must be adjacent in order to be detected. Two otherwise identical lines with a
different number of lines at the end are not considered to be duplicates by uniq.

NET command unloadname

Command Reference Chapter 2 387

unloadname
Removes from the local Name Server object table the names and addresses of iRMX-
NET servers listed in a specified file.

Syntax

unloadname [pathname]

Parameter
pathname

The name of the file containing the list of network servers. The default file is
:sd:net/data. If you specify another file, it must use the format defined for the
net/data file.

See also: :sd:net/data file, Chapter 11, Network User’s Guide and Reference

Additional Information

The unloadname command deletes names from the object table that were previously
entered by the loadname command. The list of objects is read from a file and the
names are deleted from the object table. The format of the input file is the same as
that of the loadname command.

See also: listname and loadname commands, in this chapter

If an error message contains the name of one of the objects specified in the input file,
the error occurred just for that name. Other entries in the file are processed.

Error Messages
<name>, illegal input file format

The input format of the file is not correct.

<name>, syntax error. TYPE not found
The entry in the input file for this object does not contain the keyword TYPE=. The
name is ignored and unloadname processes the next entry.

<name>, property type too long
The property type or the system type field for this object is not the correct format.

<name>, not valid property type
The system type field for this object does not contain a valid value for the property or
system type.

<name>, syntax error. ADDRESS not found
The entry for this object does not contain the keyword ADDRESS.

unloadname NET command

388 Chapter 2 Command Descriptions

<name>, value too long
The transport address for this object is too long.

<name>, illegal property value
The transport address for this object contains invalid characters.

<name>, name does not exist
The object name in the input file is not present in the local object table. However, the
object may be present in another system.

<name>, illegal name
The object name specified in the input file is more than 16 characters long.

HI command unlock

Command Reference Chapter 2 389

unlock
Enables users whose terminals have been locked out of the system to log back on;
cannot be used for virtual terminals.

Syntax

unlock [terminal_id_list|*]

Parameters
terminal_id_list

One or more physical device names of the terminals to be unlocked. Multiple names
must be separated with commas.

* All configured terminals are to be unlocked.

Additional Information

Only the Super user can invoke the unlock command. Unlock unlocks terminals that
were locked out by either the lock or shutdown commands. When you invoke
unlock, the HI initiates logon procedures for terminals where the user is logged off.

When a terminal is unlocked, this message is displayed on the terminal where unlock
is invoked:

unlocked

<terminal_id>, unlocked

This message is displayed on the unlocked terminal:

Terminal is now unlocked and available for use.

See also: Loading and unlocking terminals, System Configuration and
Administration, for information about enabling terminals defined by
loadable device drivers

Error Messages
not multi-user system

You entered more than one terminal number in a system that is not configured as a
multi-user system.

unlock not allowed to non-super users
You are not the system manager and are not entitled to issue this command.

parameters required
You entered unlock with no parameters.

unlock HI command

390 Chapter 2 Command Descriptions

<terminal_id>, not found
The terminal you specified is not configured into the system.

<terminal_id>, already unlocked
The terminal you specified is not locked.

<terminal_id>, terminal connected
The terminal you specified has been connected with the connect command. Use the
disconnect command to disconnect the terminal before unlocking it.

NFS command unshare

Command Reference Chapter 2 391

unxlate Net command

392 Chapter 2 Command Descriptions

unxlate
Displays information about the format of a file that was translated with the xlate
command. The xlate command translates OMF files into bootloadable (iNA 960)
network files.

Syntax

unxlate pathname

Parameter
pathname

A file produced with the xlate command

Additional Information

This utility can be used to determine the format of an xlate-translated file. Such a
file consists of multiple modules that contain a command field, a length, a load
address, a starting address, and the actual data to be loaded. The output from unxlate
shows information about each module. The information is listed in a table containing
entries as shown below:

CMD=<cmd> LOADADDR=<base:offset> LENGTH=<len>

STARTADDR=<base:offset>

Where:

<cmd> One of these values:

0 For the last module on the LAN controller; execution waits for a
GO command.

1 For modules that will reside on the LAN controller and are not
the last module.

2 For the last module on the LAN controller; execution starts
immediately.

C For the last module on the host.

D For modules that will reside on the host; not the last module.

<base:offset>
Memory addresses in which to load the code. The base and offset for
STARTADDR is only used if the module is the last to load and execution
starts immediately afterward.

<len> The length of the module to load.

See also: xlate command, in this chapter

HI command version

Command Reference Chapter 2 393

version
Displays the version number of one or more library files or object files, such as HI
commands.

Syntax

version pathname_list [l]

Parameters
pathname_list

One or more pathnames, separated by commas, of files from which to display version
numbers. Wildcards are permitted.

l(ong) Displays all the version numbers residing in the input file.

Additional Information

If there is a version number in the file, version displays it in this format:

<pathname>, <module_name> version is x.y

Where:

<pathname>
The file containing the command

<module_name>
Name of the specified command or library; Intel-supplied commands
have names as listed in this manual.

x.y Version number of the command.

You can use version to determine the version number of any HI command. You can
also use it to determine the version numbers of commands that you write. If the file
is a library, the command shows the current and previous version numbers.

For version to work on your commands, you must include a literal string in the
command's source code to specify the name of the command and its version. The
string contains this information:

'program_version_number=xxxx',

'program_name=yyyy...yyy',0

version HI command

394 Chapter 2 Command Descriptions

Where:

program_version_number=
Specify this exactly as shown (lower-case, underscore separating the
words, no spaces).

xxxx Version number of the product; this can be any four characters, but it
must be exactly four characters long.

program_name=
This is optional, but if you want version to recognize and display the
program name, you must specify this exactly as shown.

yyyy...yyy
Name of the command; this can be any number of characters.

0 The literal string must be terminated with a byte of binary 0.

Example

This is an example of a literal string:

DECLARE version (*) BYTE

DATA('program_version_number=V8.5',

'program_name=MYPROG',0);

If your program included this declaration, version would display:

<pathname>, MYPROG version is V8.5

This is an example of a literal string that does not include the program name:

DECLARE vers2(*) BYTE

DATA('program_version_number=1986',0);

If your program included this declaration, version would display:

<pathname>, version is 1986

Error Messages
<pathname>, does not contain a program version number.

The command you specified does not contain version number information.

<pathname>, is not an object module.
The pathname you specified is not a file containing executable object code.

HI command whoami

Command Reference Chapter 2 395

whoami
Lists your current user ID and access rights.

Syntax

whoami

Additional Information

The whoami command produces a display similar to:

User id: # 5

Access IDs: 5, WORLD

The access IDs are the IDs of other users who have granted you access to their files.

See also: permit command, in this chapter

HI command

396 Chapter 2 Command Descriptions

xlate
Processes files in Object Module Format (OMF86/286/386) to produce an iNA 960
boot image file.

Syntax

xlate pathname to|over outpath [options]

Parameters
pathname

The name of the input OMF file.

to|over outpath
Writes the output to the specified file.

options
A list of options separated by a single space. These options may be used to translate
any OMF file:

Option Definition
Q Quiet - Do not display information as translation is done

V Verbose - Print information as translation is done

N Not Last Module - Sets bit 0 of the command byte of the boot module
structure to 1; other modules follow this one. If the complete boot module
comprises more than one file, specify this option for all files except the last
one. If this option is not specified, the translation assumes that the module
is the last one and sets bit 0 of the command byte of the boot module
structure to 0.

HI command

Command Reference Chapter 2 397

These additional options may be specified to translate OMF286 and OMF386 files:

Option Definition
I Information only - Do not translate, only display contents of file header.

T No task information - Do not load any task information data. If this option
is used, it must be the last option specified, because xlate assumes that
anything following the T is an address.

T address Load task information at the specified address (a
hexadecimal number with the prefix 0x). Recognized
address suffixes are "k" for kilo and "M" for Mega. If this
option is not specified, the translation assumes the no task
information option (T with no address).

O address Address offset - Add the specified address (a hexadecimal
number with the prefix 0x) as an offset to all output
addresses. Recognized address suffixes are "k" for kilo and
"M" for Mega.

H size Output the result of the translation as hexadecimal records of
the specified length (size).

These additional options may be specified to translate OMF86 files:

Option Definition
G Go - Start execution upon loading. Sets bit 1 of the command byte of the

boot module structure to 1, and jumps to the execution address immediately
when loading is completed. If the boot module consists of more than one
file, specify this option only for the last file. If neither G nor W is specified,
the translation assumes G.

W Wait - Sets bit 1 of the boot module structure to 0; when loading is
completed, saves the execution address and waits for the start instruction. If
the boot module consists of more than one file, specify this option only for
the last file.

A Absolute addresses used in module - Sets bit 2 of the command byte of the
boot module structure to 1. If this option is not specified, bit 2 is set to 0,
which indicates that the load and execution addresses are pointers.

HI command

398 Chapter 2 Command Descriptions

Option Definition
R Remote - File loaded into remote memory. Sets bit 3 of the command byte

of the boot module structure to 1: the module is to be loaded into remote
host memory (from the perspective of the NIA). If this option is not
specified, bit 3 is set to 0, which indicates that the module is to be loaded
into local memory. If this option is used with G, they must be specified in
the order R G. If this option is specified without a W or G, W is assumed
for the translation.

D Data - Include data segments in the output file. If this option is not
specified, only the code segments are translated and included in the output
file.

Additional Information

After files are translated by xlate, they can be downloaded to a local network
controller board with the load utility. The files can be loaded on a remote network
controller by including their names in a ccinfo file produced with the bcl command.

See also: bcl and load commands, in this chapter
boot file format, Network User's Guide and Reference

If processor-dependent options are not specified, the xlate utility applies these
defaults to the translation:

• Normal translation information display mode.

• Last module - Sets bit 0 of the command byte of the boot module structure to 0.

• Go - If this is an OMF86 file translation, sets bit 1 of the command byte of the
boot module structure to 1 and jumps to the execution address immediately when
loading is completed.

• Load in local memory - If this is an OMF86 file translation, sets bit 3 of the
command byte of the boot module structure to 0; the module is to be loaded into
local memory (from the perspective of the NIA).

• Pointer addresses used in module - If this is an OMF86 file translation, sets bit 2
of the command byte of the boot module structure to 0.

• Code segments only in the output file - If this is an OMF86 file translation, only
the code segments are translated; data segments are ignored.

• Load task information at address 1050H.

See also: unxlate command, in this chapter

HI command

Command Reference Chapter 2 399

Examples

1. This example translates an OMF86 file including the data segments, and displays
translation information in verbose mode. This example is for local loading:

xlate file1.omf to file1.loc V D

Because no other options are specified, the translation makes these assumptions:

• Last module - Sets bit 0 of the command byte of the boot module structure
to 0.

• Go - Sets bit 1 of the command byte of the boot module structure to 1 and
jumps to the execution address immediately when loading is completed.

• Load in local memory - Sets bit 3 of the command byte of the boot module
structure to 0; the module is to be loaded into local memory (from the
perspective of the NIA).

• Pointer addresses used in module - Sets bit 2 of the command byte of the
boot module structure to 0.

If the file1.loc file already exists, xlate halts without translating, leaving the file
undisturbed.

2. This example translates two OMF86 files for downloading with a remote boot
request to a host:

xlate file1.omf over file1.loc N R A

xlate file2.omf over file2.loc R A

In this case, two files are created for loading into remote memory (option R).
The files are to be loaded in this order: file1.rem (option N), then file2.rem. The
loading order must match that in the ccinfo file.

Because no other options are specified, these defaults are applied:

• Go - Sets bit 1 of the command byte of the boot module structure to 1 and
jumps to the execution address immediately when loading is completed.

• Absolute pointer addresses (option A) used in module - Sets bit 2 of the
command byte of both the boot module structures to 1.

Any existing files named file1.loc or file2.loc are overwritten.

HI command

400 Chapter 2 Command Descriptions

3. This example translates an OMF286 file, including data segments:

xlate appcode.omf to appcode.out

Because no options are specified, the translation makes these assumptions:

• Normal translation information display mode.

• Load task information data at address 1050H.

If the appcode.out file already exists, xlate halts without translating, leaving the
file undisturbed.

■■ ■■ ■■

Command Reference Appendix A 401

Using Disk Mirroring A
iRMX disk mirroring is a hard disk configuration that maintains identical copies
(mirrors) of data on two hard disks for increased reliability.

✏ Note
The disks must have the same formatted capacity, granularity and
should be the same model type to ensure the same formatted disk
capacity.

Disk mirroring is implemented for the Peripheral Controller Interface (PCI) family of
controllers. Disk mirroring is available for:

• iRMX III systems using Multibus I and II
• DOSRMX and iRMX for PCs systems using Multibus II
• DOSRMX and iRMX for PCs systems using a PC bus with an

Adaptec 1542/1742 host adapter

This appendix is for operators who need to configure a system for disk mirroring and
for system developers who develop disk mirroring system applications.

This appendix contains this information about disk mirroring:

• Disk mirroring concepts

• Disk mirroring configurations

• Using disk mirroring, including a tutorial on using the mirror command and
information about the a_special system call

See also: mirror command, in this manual, for syntax, parameters, and basic
information
a_special call, System Call Reference

402 Appendix A Using Disk Mirroring

Introduction
Disk mirroring provides these benefits:

• Prevents system crashes due to hard disk and peripheral controller failure

• Increases data integrity by replicating write operations

• Increases data reliability and availability by allowing your system to continue
operating after a hard disk or peripheral controller failure

• Improves read performance by providing data access from both hard disks of a
mirror set

• Reduces downtime by supporting on-line repair and resynchronization of hard
disks

Disk Mirroring Concepts
This section explains these concepts:

• Mirror sets

• Failure detection

• Rollover

• On-line and off-line repair

• On-line resynchronization

• Automatically enabling disk mirroring

• Event notification

• Disk mirroring operations

A mirror set consists of two hard disks that contain identical data: the primary and
secondary hard disks. Rollover occurs when the primary disk of a mirror set fails,
and the secondary disk continues to perform I/O operations. On-line repair allows a
failed hard disk to be reformatted and reused without shutting down the system. On-
line resynchronization copies data from one hard disk to the other as a background
task. Event notification reports events such as rollover and resynchronization
completion to the operator or a file.

Command Reference Appendix A 403

Mirror Sets
Disk mirroring requires a pair of hard disks to use as a mirror set. Designate one
hard disk in the set as the primary hard disk and the other as the secondary hard disk.
The name of the primary hard disk serves as the name for the mirror set.

Once you enable disk mirroring on a mirror set, the hard disks are treated identically,
as illustrated in Figure A-1. The secondary hard disk becomes transparent to
application programs, I/O system calls to read and write take on different
characteristics:

• Applications may only direct write operations to the primary hard disk of a
mirror set. The device driver directs write operations to both the primary and the
secondary hard disks. Each write operation causes identical copies of the data to
be written to both members of the mirror set.

• Applications may only direct read operations to the primary hard disk of a mirror
set. The device driver can obtain the requested data by issuing a read operation
on either hard disk in the mirror set.

Figure A-1. Mirror Set Operations

Applications direct read operations to the primary disk, but you can set up the mirror
set so that the device driver issues a read on the primary or secondary disks

404 Appendix A Using Disk Mirroring

alternately. This operation is transparent to applications and improves read
performance by overlapping read operations.

Failure Detection
The device driver detects a hard disk failure when a read or write operation returns a
failed status or times out. The device driver keeps track of all transactions initiated to
the primary and secondary disks. If a transaction on a hard disk does not complete
within a fixed time period, the device driver marks that hard disk as failed. The
device driver frees up all the pending transactions on the failed hard disk and retries
them on the other hard disk of the mirror set.

Once a mirror set has encountered an error on one hard disk, read and write
operations are issued to only the good hard disk.

Rollover
With disk mirroring enabled, if either a read operation or a write operation results in
an I/O error, the device driver initiates an automatic rollover. The rollover feature
allows the device driver to detect a fault or a failure on a mirror set, determine which
hard disk failed, and direct I/O operations to the surviving hard disk of the mirror set.
This allows system operations to continue. Rollover is transparent to the application
requesting the I/O operation.

If an I/O operation on one hard disk of a mirror set results in an unrecoverable error,
the device driver retries the operation on the other disk. If the retry succeeds, the I/O
operation returns with no error. The device driver then updates its state to reflect that
only one hard disk of the mirror set is operational, and the device driver redirects all
succeeding read and write operations to the surviving hard disk. The disk that failed
is marked failed and, if the application has requested notification, the operator or
application is notified of the failure. Until a repair is performed, I/O operations
continue on the surviving disk. In the absence of disk mirroring, a hard disk failure
causes a system crash.

Once an I/O error has occurred, the device driver redirects all I/O to the surviving
hard disk. You can direct operations other than read and write (typically format) to
either hard disk, and they are performed on the hard disk to which they are directed.

Command Reference Appendix A 405

Figure A-2. Rollover, Repair, and Resynchronization

Rollover on Different Hard Disk Controllers

When mirrored hard disks are connected to two different hard disk controllers,
applications can recover from peripheral server and controller failures. The device
driver can detect a controller or a PCI server crash and automatically roll over to the
remaining server.

The peripheral server can support command queueing at the controller. If so, there
might be commands pending at the hard disk which failed. After rollover, these
commands can complete because the device driver will unconditionally retry all the
queued commands on the surviving hard disk when they are returned by the server.

Rollover on peripheral server and controller failures includes automatic rollover to
single disk operation on I/O errors.

On-line and Off-line Repair
When an I/O error occurs, the device driver redirects I/O operations to the surviving
disk. Diagnostic programs can then reformat or reassign alternates for bad blocks in
an attempt at on-line repair of the failed disk.

Because the device driver allows you to format the failed hard disk when it is in the
rollover state, you can reformat a failed hard disk on-line, without ever powering

406 Appendix A Using Disk Mirroring

down the system. If you set up the system for disk mirroring with resynchronization,
normal operations can continue after the repair is completed.

You must shut down the system to physically replace a disk or for off-line repair. If
the system crashes or is in rollover state at the time of shutdown, disk mirroring is not
automatically enabled when you restart the system. You must resynchronize the new
or repaired hard disk with the surviving hard disk when the system is brought on-line.

See also: On-line resynchronization, in this appendix

System Device Repair

The procedure for mirroring a system device is identical to that of a non-system
device, but there are some issues that are unique to a system device in the event of a
failure.

When the system device fails, you might need to reboot the system from the
secondary hard disk. You must set the boot parameters so that the OS can be
rebooted from either the standard system device or its secondary.

On-line Resynchronization
Resynchronizing a mirror set involves copying data from one hard disk of the mirror
set to the other. You must explicitly resynchronize a mirror set; the device driver
does not automatically perform this operation.

You need to resynchronize a mirror set any time you recreate it, such as after a
rollover, when a new hard disk is added to an existing mirror set, or after off-line
repair. You resynchronize a mirror set while it is on-line, as a background job. This
minimizes system downtime after repair or on startup. I/O operations are allowed on
a mirror set while resynchronization is in progress.

See also: Tutorial: Using the Mirror Command, in this appendix

If the device driver detects an error during resynchronization, the resynchronization
operation is aborted and the surviving hard disk continues to respond to I/O requests.

Automatically Enabling Disk Mirroring
If you set up disk mirroring on your system, disk mirroring is automatically enabled
whenever the I/O system attaches the mirror set's primary hard disk. The automatic
enabling mechanism works as illustrated in Figure A-3.

Command Reference Appendix A 407

Figure A-3. Automatically Enabling Disk Mirroring

The process shown in Figure A-3 includes these steps:

1. When you attach the primary hard disk or initialize the system, the device driver
reads the volume label on the primary and secondary units before any read or
write operations are issued. The device driver determines whether the system
was shut down normally with the mirror sets left intact, or whether the system
had crashed, possibly leaving the elements of mirror sets holding different data.

If the state information indicates that the previous detach was not normal,
mirroring is not enabled and I/O operations are performed only by the surviving
disk in the mirror set.

If the previous detach was normal, the mirror set is created and mirroring is
enabled before any I/O operations occur. I/O operations are performed by both
disks in the mirror set. As a precautionary measure, the device driver changes
the state information on the disks to indicate an improper shutdown. Thus if a
disk fails while attached, disk mirroring will not be enabled on the next
reattachment.

2. When the primary hard disk is detached the device driver records, as state
information on the mirror set hard disks, that a normal detach occurred. Normal
detach information indicates that disk mirroring can be automatically enabled
when the primary hard disk is attached next time.

408 Appendix A Using Disk Mirroring

In addition to the normal or improper detach information, the device driver records
the device unit information block (DUIB) name of the secondary hard disk on the
primary hard disk's volume label; it records the DUIB name of the primary hard disk
on the secondary hard disk's volume label.

See also: Mirror state structure, in this appendix

The device driver also writes an incarnation signature pattern on both hard disks.
This unique 32-bit number marks this particular instance of the mirror set. This
prevents the device driver from accidentally enabling mirroring on the wrong
instance of a hard disk.

Event Notification
You can request event notification to monitor disk mirroring events. You can get the
disk mirroring status for these events:

• Rollover

• Resynchronization complete

• Resynchronization abort

When one of these events occurs, the device driver notifies the operator or
application with a message. You can have the message sent to the screen or a file.
Using the message, you can decide what actions to take in response to the event. For
example, if rollover occurs, you can obtain detailed status on the error that caused the
rollover.

After you receive notification of an event, you must request event notification again
to be notified of the next event.

Disk Mirroring Configuration
This section describes hardware and software configuration for disk mirroring.

Hardware Configuration
Disk mirroring is implemented for the peripheral controller interface (PCI) family of
controllers. This product family includes these boards:

• The SBC 386/12S and SBC 486/12S for Multibus I systems

• The SBC 386/258 and SBC 486/133SE for Multibus II systems

For Multibus I systems, one board includes both the PCI server and the iRMX host
device driver.

Command Reference Appendix A 409

There are several configuration options for Multibus II systems. The configuration
examples shown in these illustrations use the SBC 386/258 board as the PCI server.
The illustrations show:

• The primary and secondary hard disks can be on the same or on different SCSI
busses.

• The hard disks in a mirror set may reside on the same PCI server or on different
PCI servers.

• The iRMX device driver runs on one or more separate CPU boards or on the
same board that hosts the PCI server.

✏ Note
The disks in a mirror set must have the same formatted capacity
and granularity, and must be the same model type to ensure the
same formatted disk capacity.

Mirror Set on One PCI Server

In Figure A-4, the PCI Server runs on the SBC 386/258 board, which is connected to
a single SCSI bus. The primary and the secondary hard disks are connected to the
same single-ended SCSI bus.

410 Appendix A Using Disk Mirroring

Figure A-4. Mirror Set on One PCI Server

This configuration has two advantages:

• A cost effective solution, since the mirror set resides on one SBC 386/258 board

• Recovery from a primary or a secondary disk failure, as long as that failure does
not hang the SCSI bus

The major disadvantage in this configuration is that there is no recovery from either a
SCSI bus failure or an SBC 386/258 board failure.

Command Reference Appendix A 411

Mirror Set Across SCSI Busses

In Figure A-5, the PCI Server runs on the SBC 386/258D (dual) board, which is
connected to two SCSI busses. The primary hard disk is connected to the differential
SCSI bus and the secondary hard disk is connected to the single-ended SCSI bus.

Figure A-5. Mirror Set Across a SCSI Bus

This configuration has two advantages:

• A cost effective solution using a single SBC 386/258D board

• Recovery from any single SCSI bus failure that does not cause the SBC
386/258D board to fail

The major disadvantage to this configuration is that there is no recovery from an SBC
386/258D board failure.

412 Appendix A Using Disk Mirroring

Mirror Set Across Two PCI Servers

In Figure A-6, the mirror set includes two SBC 386/258 boards. The PCI Server runs
on the SBC 386/258 boards, each of which is connected to a single-ended SCSI bus.
The primary hard disk is connected to one SCSI bus on one of the SBC 386/258
boards and the secondary hard disk is connected to a different SCSI bus on the other
SBC 386/258 board.

Figure A-6. Mirror Set Across Two PCI Servers

This configuration has two advantages:

• Recovery from

- A single hard disk failure on either board

- A SCSI bus failure on either board

- An SBC 386/258 board failure

• Better performance because there are two paths to the disks using the two
SBC 386/258 boards

Command Reference Appendix A 413

Mirror Set on Multiple Multibus II Systems

In Figure A-7, there are two individual Multibus II systems. Each system has its own
mirror set across the single-ended and differential SCSI busses of its SBC 386/258D
board. A PCI Server runs on each SBC 386/258D board. The systems are connected
by a shared differential SCSI bus on the two SBC 386/258D boards.

Using two SBC 386/258D boards has two advantages:

• If either system fails, the primary hard disk of the failed system can still be
accessed from the surviving system because of the shared SCSI bus.

• Recovery is possible from any single SCSI bus failure that does not cause the
SBC 386/258D board to fail.

This redundant system configuration also provides better performance.

Figure A-7. Mirror Set on Multiple Multibus II Systems

Software Configuration
There are two aspects of software configuration: setting up the mirror set with the
mirror command, and setting the number of maximum outstanding commands. The
transaction timeout period is fixed in the device driver and is not set by the user.

414 Appendix A Using Disk Mirroring

See also: Disk mirroring tutorial, in this appendix
mirror command, Chapter 2

Command Reference Appendix A 415

Setting the Maximum Outstanding Commands

You must equally divide the number of outstanding messages at each PCI server
among all the PCI drivers in the system. For example, if a PCI server supports 100
messages and there are 5 iRMX hosts with 2 PCI driver instances on each host, you
must configure each PCI driver to have at most 10 messages (100 / (5*2))
outstanding.

Set the Maximum Outstanding Commands (MOC) option in the PCI Driver Screen.
You do not need to change the defaults used in the standard definition files. This is
the formula for setting the MOC:

MOC = total outstanding messages / (number of hosts * number of
device driver instances on each host)

After you configure and regenerate the OS with the new driver, use the mirror
command to set up the mirror sets.

See also: Using the mirror command, in this appendix
How to Use the Peripheral Controller Interface (PCI) Server

Using Disk Mirroring
These topics are described in this section:

• Summary of disk mirroring operations

• Tutorial on using the mirror command

• Handling events

• Handling failures

− Secondary hard disk failures

− Primary hard disk failures

• Protecting hard disks

• Using the a_special system call

Summary of Disk Mirroring Operations
You perform disk mirroring operations using both a command interface and a system
call subfunction. The mirror command lets you change and monitor disk operations
from the command line while the system is running. The disk mirroring subfunction
of the BIOS a_special system call lets you develop disk mirroring applications.

416 Appendix A Using Disk Mirroring

The mirror command and the disk mirroring subfunction of the BIOS a_special
system call provide these operations:

Create mirror set Requests the device driver to create a mirror set of two specified
hard disks. You specify one hard disk as primary and the other
hard disk as secondary. The primary hard disk's name becomes the
mirror set's name.

Enable mirroring
with
resynchronization

Enables disk mirroring by resynchronizing the primary and
secondary hard disks on-line. Resynchronizing a mirror set
involves copying data from one hard disk of the mirror set to the
other. You explicitly specify the source hard disk and destination
hard disk for the data copy.

Disable mirroring Requests the device driver to disable and discontinue mirroring
operations on a specified mirror set.

Request mirror
event notification

Requests notification when certain events occur on a mirror set.
These events include rollover, resynchronization completion, and
resynchronization abort. You can have the status message sent to
the screen or to a file.

Get mirror status Reports disk mirroring status for a mirror set. For example, the
status information includes whether a rollover has occurred and
whether resynchronization is in progress on a mirror set.

Get mirror attach
status

Reports attach status for a hard disk after it is attached to the
system. The status report contains such information as the name of
the hard disk's mirror set and the state of the disk when it was last
detached.

Set mirror options Sets or changes the read policy for a mirror set.

See also: mirror command, in this manual
a_special system call, System Call Reference

Command Reference Appendix A 417

Tutorial: Using the Mirror Command
To set up the mirror set, use the mirror command as illustrated in this example. The
PCI mirroring driver and the mirror command must be installed and the OS must be
rebuilt. Assume that the primary and the secondary disks are Maxtor 4380 with SCSI
units 2 and 3, and that the system was properly configured and generated with the
ICU. The DUIB names for the two disks are M4380_2 and M4380_3 respectively.

Follow these steps to set up a mirror set on a new system.

1. Attach and format the primary and secondary disks:

ad m4380_2 as :w:

ad m4380_3 as :w1:

format :w: <format command options>

format :w1: <format command options>

Formatting will take 15 to 30 minutes for each disk, depending on the disk.

2. Detach the secondary hard disk by entering:

dd :w1:

3. Create the mirror set by entering:

mirror create :w: m4380_3

4. Get the status of the mirror set by entering:

mirror getstat :w:

This information is displayed on the screen:

State = Mirror Set Created

Primary Unit = M4380_2

Secondary Unit = M4380_3

Read Policy = Alternate Read

5. Resynchronize the primary hard disk with the secondary hard disk by entering:

mirror resync :w: p2s

The resync function has started when the hard disk lights start flashing.
Resynchronization takes 15 to 30 minutes, depending on the disk.

6. You can check on the progress of the resynchronization by entering:

mirror getstat :w:

418 Appendix A Using Disk Mirroring

This information is displayed on the screen:

State = Resync In Progress

Primary Unit = M4380_2

Secondary Unit = M4380_3

Resync Source Unit = M4380_2

Resync Percent Complete = xy%

Read Policy = Alternate Read

7. Obtain notification of the resynchronization completion by entering:

bk mirror waitevent :w: > :config:mirror.log

This causes a task to wait in the background for the resynchronization to
complete. The status of the resynchronization is written into :config:mirror.log.

When the resynchronization is finished, the background job waiting for an event
will complete, and send a message to the screen. Examine :config: mirror.log to
see if the resynchronization completed normally. The Mirror Set Event message
should read Resync complete.

8. To verify that mirroring is now enabled, use the getstat parameter. All read
commands now alternate between both disks and all write commands are
duplicated on both disks. This information is displayed on the screen:

State = Mirroring Enabled

Primary Unit = M4380_2

Secondary Unit = M4380_3

Read Policy = Alternate Read

9. To verify that mirroring gets automatically enabled after a normal detach, detach
the primary hard disk M4380_2:

dd :w:

10. Attach the primary hard disk again, then enter:

mirror attstat :w:

The mirror state information that was written on the disk during the detach will
be displayed on the screen. The incarnation number is a unique 9-digit number
assigned at shutdown time.

Mirror Attach Status = Mirror Set Valid

Other Unit Name = M4380_3

Incarnation Number = XXXXXXXXX

Disk Status = Marked Good

The attstat parameter is also useful for troubleshooting in certain situations.
For instance, if you expect mirroring to be enabled automatically when a hard

Command Reference Appendix A 419

disk is attached, you can use the attstat parameter to check this. It might not
be enabled if the secondary hard disk is accidentally attached instead of the
primary.

11. To verify that mirroring has been automatically enabled, use the getstat
parameter.

This information is displayed on the screen:

State = Mirroring Enabled

Primary Unit = M4380_2

Secondary Unit = M4380_3

Read Policy = Alternate Read

Now you can start normal operations.

If there are multiple mirror sets, the preceding steps must be repeated for each mirror
set.

Handling Events
To receive notification of important events, such as rollover or resynchronization
completion, you must always keep a mirror command with the waitevent
parameter operating in the background. When an event occurs, the command prints
the event that occurred. You can redirect the output to a log file. Once an event has
been reported, use the mirror command with the getstat parameter to get more
details about the event. You can use a submit file for this purpose. This file has two
lines:

mirror waitevent :w:

mirror getstat :w:

To wait for an event, type:

bk <submit file name> > :config:mirror.log

Once an event has been reported, you must again invoke the submit file to obtain
further notification of events.

420 Appendix A Using Disk Mirroring

Handling Failures
This section discusses options for handling primary and secondary failures. A failure
may be a hard disk failure, a SCSI bus failure, a disk controller failure, or a PCI
Server failure.

When a failure occurs, two possibilities exist:

Off-line
repair

Keep the system running on the surviving disk until the next scheduled
shutdown and fix the failure while the system is shut down. Re-
introduce the fixed disk into the mirror set when the system is rebooted.

On-line
repair

Try to fix the failure and restart the failed entity without shutting the
system down. A failed hard disk may be fixed by attempting to format
it. For example, the reboot command can be used to restart a failed
SCSI controller, and the SCSI bus may be fixed by resetting it. (The
PCI server has an option to reset the SCSI bus on startup.)

The next two sections describe how to handle secondary and primary hard disk
failures.

Handling Secondary Hard Disk Failure

Assume the primary hard disk is M4380_2 and the secondary hard disk is M4380_3.
Hard disk M4380_3 crashed and the system is running on its primary hard disk,
M4380_2.

Off-line Repair of Secondary Hard Disk

To perform an off-line repair, take these steps.

1. Shut the system down and replace the secondary hard disk.

2. Attach the primary hard disk M4380_2 and get the system started while
formatting the new secondary hard disk:

ad m4380_2 as :w:

<perform normal operations on :w:>

ad m4380_3 as :w1:

format :w1: <format parameters>

Formatting will take 15 to 30 minutes, depending on the disk.

Command Reference Appendix A 421

3. When the format is finished, detach the new secondary hard disk:

dd :w1:

4. Create the mirror set and resynchronize the new secondary hard disk:

mirror create :w: m4380_3

mirror resync :w: p2s

Resynchronization takes 15 to 30 minutes, depending on the disk.

5. You can check on the progress of the resynchronization by entering:

mirror getstat :w:

6. Get the resynchronization notification by invoking the mirror command to wait
for an event in the background:

bk mirror waitevent :w: > :config:mirror.log

When the resynchronization is complete, you receive a notification. The two
disks are now identical.

On-line Repair of Secondary Hard Disk

To attempt to fix the secondary hard disk by formatting it on-line, take these steps.

1. Attach and format the secondary hard disk, M4380_3:

ad m4380_3 as :w1:

format :w1: <format options>

Formatting will take 15 to 30 minutes, depending on the disk.

If the format is not successful, the hard disk may have to be repaired off-line.

2. After the format is complete, detach the secondary hard disk:

dd :w1:

3. Resynchronize the primary hard disk with the secondary:

mirror resync :w: p2s

Resynchronization takes 15 to 30 minutes, depending on the disk.

422 Appendix A Using Disk Mirroring

4. You can check on the progress of the resynchronization by entering:

mirror getstat :w:

5. Wait for the resynchronization to complete:

bk mirror waitevent :w: > :config:mirror.log

When the resynchronization is complete, you receive a notification. The two
disks are now identical.

Handling Primary Hard Disk Failure

Assume that the hard disk M4380_2 crashed and the system is running on its
secondary, M4380_3.

Off-line Repair of Primary Hard Disk

When the primary hard disk fails, you have the option of either replacing the disk or
attaching the secondary disk as the primary and trying to reformat the former primary
disk. Both options require shutting the system down.

To perform an off-line repair, take these steps.

1. Shut the system down and replace the primary hard disk if necessary.

2. Attach the secondary hard disk M4380_3 as the primary hard disk and get the
system started while formatting the new (or former primary) hard disk:

ad m4380_3 as :w:

<Perform normal operations on :w:>

ad m4380_2 as :w1:

format :w1: <format parameters>

Formatting takes 15 to 30 minutes, depending on the disk.

3. When the format is finished, detach the new hard disk:

dd :w1:

4. Create the mirror set and resynchronize the new hard disk:

mirror create :w: m4380_2

mirror resync :w: p2s

Resynchronization takes 15 to 30 minutes, depending on the disk.

Command Reference Appendix A 423

5. You can check on the progress of the resynchronization by entering:

mirror getstat :w:

6. Wait for the resynchronization notification by invoking the mirror command to
wait for an event in the background:

bk mirror waitevent :w: > :config:mirror.log

When the resynchronization is complete, you receive a notification. The two
disks are now identical.

On-line Repair of Primary Hard Disk

On-line repair using the iRMX format command is not possible when the primary
disk has failed, since the OS does not allow a hard disk to be reformatted when it is in
use. Even though the device driver redirects all I/O to the secondary hard disk, the
I/O System is not aware of this and assumes that all I/O is being performed on the
primary hard disk.

Utility programs that directly communicate with the PCI server may be used to
format the primary hard disk in an attempt to fix it. If these are available, take these
steps:

1. Attempt to fix the primary disk by formatting it. If the format is not successful,
you must repair the hard disk off-line.

2. If the format is successful, resynchronize the primary with the secondary. The
resynchronization direction is from secondary to primary:

mirror resync :w: s2p

Resynchronization takes 15 to 30 minutes, depending on the disk.

3. You can check on the progress of the resynchronization by entering:

mirror getstat :w:

4. Wait for the resynchronization to complete:

bk mirror waitevent :w: > :config:mirror.log

When the resynchronization is complete, you receive a notification. The two
disks are now identical.

See also: How to Use the Peripheral Controller Interface (PCI) Server, for more
information

424 Appendix A Using Disk Mirroring

Protecting Hard Disks
The PCI device driver reserves both the primary hard disk that is being attached and
the secondary hard disk in a mirror set. If a hard disk is reserved and an attempt is
made to reserve it again, the driver returns a Write Protect Error. This protects a hard
disk from being used by two instances of the device driver at the same time. This can
happen when a hard disk is attached and another driver tries to use it as a secondary
hard disk of a mirror set.

Using A_special for Disk Mirroring
Function code 19 of the a_special system call performs disk mirroring operations on
the primary hard disk of the mirror set and is valid for physical and named drivers.
The iRMX PCI device driver implements the actual mirroring, error detection and
rollover, and on-line resynchronization. Refer to the mirror.lit and mirror.h files for
the literal definitions for the disk mirroring subfunction.

See also: Function 19 and error messages for a_special, System Call Reference

Mirror State Structure

Each mirrored disk contains a mirr_state_struct structure, located in the
Volume Label at a byte offset of 896 decimal. When the first attach is performed on
a hard disk, the device driver uses this structure to detect whether this hard disk was
part of a mirror set and, if it was, to identify the name of the secondary disk. The
format of this structure in PL/M is:

DECLARE mirr_state_struct STRUCTURE(

other_name(14) BYTE,

valid_flg WORD32,

incarnation WORD32,

prim_flg BYTE,

good_flg BYTE);

The format of the structure in C is:

typedef struct {

UINT_8 other_name(14);

UINT_32 valid_flg;

UINT_32 incarnation;

UINT_8 prim_flg;

UINT_8 good_flg;

} MIRR_STATE_STRUCT;

Command Reference Appendix A 425

Where:

other_name
Specifies the DUIB name of the other hard disk of the mirror set. The
DUIB name must be in capital letters, be null-terminated, and be a
maximum of 14 characters not including the null.

valid_flg Specifies if the mirror set is valid. A valid set has the pattern
600ddi5c (looks like gooddisc) on both disks; an invalid set has the
pattern deadbeef. If the mirror set is valid, the device driver
automatically re-enables mirroring. The valid flag is set at the end of a
normal detach if no I/O errors have occurred. The device driver clears
the flag on each disk when it reads the disk so that mirroring is not
automatically enabled if the system crashes.

incarnation
Is a pattern that is written on the disks to uniquely identify the correct
instance of a mirror set.

prim_flg Specifies if this hard disk is the primary or secondary unit of a mirror
set:
1 primary unit
2 secondary unit

good_flg Specifies whether this disk was good when it was detached:
0AAH good
055H not good

■■ ■■ ■■

426 Appendix A Using Disk Mirroring

Command Reference Appendix B 427

Using Diskverify in Interactive Mode B
You can use diskverify in one of two ways:

• In interactive mode, which requires an understanding of the iRMX file
structures. This appendix describes using diskverify in interactive mode.

• As a single Human Interface command, which does not require as much
understanding of the iRMX file structures

See also: diskverify as a single command, Chapter 2
named volume structure, Appendix C

Introduction
The Disk Verification Utility (DVU) inspects, verifies, and corrects the data
structures of iRMX named or physical volumes after such occurrences as power
irregularities or accidental reset. Diskverify can be used on named and physical
volumes; it cannot be used on remote, NFS, or DOS volumes. In DOSRMX, use this
command only for an iRMX partition, not for a DOS drive or a partition containing
the DOS file system.

The DVU can reconstruct the file descriptor node (fnode) file, the volume label, the
fnode map, the volume free space map, and the bad blocks map of the volume. In
addition, with diskverify you can view bad track information, and manipulate fnodes
and the actual data on the volumes. The DVU also supports auto-volume recognition,
which means you can verify any iRMX named volume without detaching and
reattaching the device with the correct DUIB. These processes usually involve
reading a portion of the volume into a buffer, modifying that buffer, and writing the
information back to the volume.

This appendix includes:

• Invocation instructions and invocation error messages
• Information about using commands and parameters
• Diskverify error messages
• Instructions for using diskverify to back up and restore volume labels and fnodes
• A command summary table
• Descriptions of the 36 Disk Verification Utility commands

428 Appendix B Using Diskverify in Interactive Mode

You must be familiar with volume structure to use the full capabilities of the Disk
Verification Utility. You should also understand the OS, and particularly the BIOS
and Human Interface layers.

See also: Volume structure, Appendix C
I/O Systems, Introducing the iRMX Operating Systems for general
information
System Concepts for information on the BIOS and for information on
the HI

▲▲! CAUTION
Do not use the diskverify commands in an interactive program
unless you understand the iRMX volume structure. Some
commands, if not used correctly, can render your volumes
unusable.

It is recommended that you first try using diskverify on an expendable diskette.
Format a spare diskette and create a simple file structure on it. Include some data
files in the directories.

See also: format command, Chapter 2

Command Reference Appendix B 429

Invoking Diskverify
Unless you are the Super user, you may only invoke diskverify for devices attached
by you or the World user. The diskverify utility reattaches the device as a physical
device before verifying it. When the utility finishes, it reattaches the device as it was
before you invoked the utility.

If you verify the system device (:sd:), the OS deletes all connections to the device.
You must either use the attachfile command with the system option or reboot the
system to restore the system logical names before you can enter more commands.
Attachfile can also be used to restore your :home: directory.

See also: attachfile in Chapter 2

To invoke diskverify in interactive mode, enter:

diskverify :logical_name: [to|over|after outpath]

Where:

:logical_name:
Logical name of the secondary storage device containing the volume to be verified.
The colons are not required.

to|over|after
To writes the output of the DVU to the specified file, over copies the output over the
specified file, and after appends the output to the end of the specified file; if the file
does not exist, it is created.

outpath
Pathname of the file to receive the output from the DVU. You cannot direct the
output to a file on the volume being verified. If you attempt this, the utility returns an
error message.

If you omit the outpath parameter and/or the preposition, output is directed to the
console screen (:co:) by default.

When you invoke diskverify, the utility displays a header message (where Vx.y is the
version number of the utility) and the utility prompt (*), as follows:

iRMX Disk Verify Utility, Vx.y

Copyright <year> Intel Corporation

All Rights Reserved

*

You can then enter any of the diskverify commands. If you enter anything else, the
utility displays an error message.

430 Appendix B Using Diskverify in Interactive Mode

Invocation Error Messages
These error messages can be generated when you invoke the DVU:

argument error
The option specified is not valid.

<logical_name>, invalid logical name
The logical name does not exist, was longer than 12 characters, contained invalid
characters, or was missing a matching colon.

0045 : E_LOG_NAME_NEXIST or <logical_name>, logical name does not

exist
A nonexistent logical name was specified in either the :logical_name: or
outpath parameter.

<outpath>, 0038 : E_ALREADY_ATTACHED
The output was directed to a file on the volume being verified.

command syntax error
You made an error when entering the command.

<logical_name>, outstanding connections to the device have been
deleted.

This warning is not fatal, and will occur every time you try to verify the system
device or any other volume on which files have been attached.

<logical_name> or <outpath>, invalid wildcard specification
The logical name or output pathname contained a wildcard character.

<logical_name>, can't attach device
The device cannot be attached and read.

device size inconsistent

size in volume label = <value1> : computed size = <value2>
When the DVU computed the size of the volume, the size it computed did not match
the information recorded in the iRMX volume label. The volume label may contain
invalid or corrupted information. This is not a fatal error, but it is an indication that
further error conditions may result during the verification session. You may have to
reformat the volume or use the DVU to restore the volume label.

<partial logical_name>, 0081: E_STRING_BUFFER
The logical name was longer than 12 characters, not including colons.

<logical_name>, device does not belong to you
An attempt was made to verify a device that was attached by another user. For
example, the system device is :sd: and the user is not the Super user.

<logical_name>, device size is zero
The logical name entered does not define a mass storage device. For example, you
cannot perform diskverify on a line printer.

Command Reference Appendix B 431

Using Diskverify Commands
This section provides information about:

• Abbreviating command names

• Using parameters

• Input radices

• Aborting diskverify commands

The notation used for diskverify command syntax is the same as for other commands
in this manual.

See also: Command Syntax, Chapter 2

Abbreviating Command Names
When you enter a diskverify command, you can enter the command name, its
abbreviation, or any unique portion of the command name. For example, when
specifying the displayfnode command, you can enter any of these:

displayfnode fnodenumber

df fnodenumber

displayf fnodenumber

You can also enter any other partial form of the word displayfnode that contains at
least the characters displayf.

Command name abbreviations are provided in the Command Summary Table (in
parentheses after the command name) and in the syntax description for each
command. The syntax descriptions give any standard abbreviations or substitutes
with the full name as options. For example:

d|db|displaybyte
means that d or db may be used for displaybyte

>|<CR>|dnb|displaynextblock
means that a right angle bracket (>), carriage return, or dnb may be
used for displaynextblock

432 Appendix B Using Diskverify in Interactive Mode

Using Parameters
Several diskverify commands have parameters in this form:

keyword = value

You can also enter these parameters in this form:

keyword (value)

For example, both of these specify a free command:

free fnode = 10

free fnode (10)

The use of the to, over, and after parameters is the same as for other commands
in this manual.

See also: Using the to, over, and after parameters, Chapter 1

Abbreviating Parameters
These parameters, used with the verify and fix commands, have standard
abbreviations:
Parameter Abbreviation
named n
named1 n1
named2 n2

Both the full name and the abbreviation are listed in the individual commands'
parameter descriptions.

Specifying Input Radices
Diskverify always produces numerical output in hexadecimal format. You can
provide input to diskverify in any one of these three radices by including a radix
character immediately after the number. The valid radix characters are:

Radix Character Example
hexadecimal h or H 16h, 7CH
decimal t or T 23t, 100T
octal o, O, q, or Q 27o, 33Q

If you omit the radix character, diskverify assumes the number is hexadecimal.

Command Reference Appendix B 433

Aborting Diskverify Commands
You can abort some diskverify commands by typing <Ctrl-C>. This terminates the
command and returns control to the DVU, not the HI command level. These
commands are:

disk
displaybyte
displaydirectory
displayfnode
displaynextblock
displaypreviousblock
displayword
editfnode
editsavefnode
fix
getbadtrackinfo
listbadblocks
substitutebyte
substituteword
verify

434 Appendix B Using Diskverify in Interactive Mode

Diskverify Error Messages
Each diskverify command can generate a number of error messages, which indicate
errors in the way you specified the command, or problems with the volume itself.
Individual command descriptions list the error messages generated by the particular
command.

These messages can be generated by many of the commands:

block I/O error
The utility attempted to read or write a block on the volume, found that the block was
physically damaged, and therefore could not complete the requested command. Or,
the utility tried to write a block to a disk volume that is write-protected. The error
message states whether read or write was performed, and the number of the block
causing the error.

command syntax error
A syntax error was made in a command.

illegal command
The command specified is not a valid diskverify command.

fnode file/space map file inconsistent
One of the files, r?save (the fnode backup file) or r?fnodemap (the map of file
descriptor nodes), is damaged and diskverify cannot perform further verification.

argument error
The command was missing a required argument, the argument was illegally
specified, or an argument was entered for a command that does not accept one.

not a named disk
Either the device is not a named volume, or the iRMX volume label, obtained when
diskverify begins processing, contains invalid information. The latter may cause the
DVU to assume that a named volume is a physical volume. In this case, the
commands that apply to named volumes only (such as displayfnode,
displaydirectory, and verify named) issue this message. If you are sure the volume
is a named volume, this message may indicate that the iRMX volume label is
corrupted.

If the file was formatted with the reserve option of the format command,
diskverify issues this message only if both volume labels are corrupted. When only
the volume label is invalid, the duplicate in the save area is used.

seek error
The utility unsuccessfully attempted to seek to a location on the volume. This error
normally results from invalid information in the iRMX volume label or the fnodes,
from inserting a new volume after diskverify is invoked, or from a defective disk.

Command Reference Appendix B 435

Tutorial: Backing Up and Restoring Fnodes
To access data on a named volume (such as a disk), the iRMX OSs create and
maintain an index of pointers to the location of every file on the disk.

This index consists of the iRMX volume label and a file descriptor node (fnode) file.
The volume label is the initial entry point into the device. The fnode file contains a
pointer and other vital information for each file on the disk. Since both contain
information essential to accessing and maintaining the volume and files, if either one
is damaged or destroyed it is very difficult to locate files and recover the data on the
disk.

The backup and restore fnodes feature enables some recovery of data lost as a result
of damage to the volume label or the fnode file. This feature is not intended to
provide comprehensive protection from the loss of data associated with damaged
iRMX volume labels or fnode files. Rather, it offers a tool that, when properly
applied, can be useful in maintaining volume integrity in certain situations. For
comprehensive protection against loss of data use the HI backup command.

See also: backup command, Chapter 2

To use this feature, you must create and maintain a backup version of the volume
label and the fnode file, as detailed later in this section. You can then:

• Examine the contents of the backup file, r?save

• Restore damaged fnodes

• Restore the volume label

• Edit fnodes or save fnodes

This section provides a description of each operation, followed by one or more
examples of a typical implementation.

Structure of the Volume Label and Fnode File
The organization of the volume label and the fnode file reflects the hierarchical file
structure. The iRMX volume label contains a pointer to the fnode of the file
structure's root directory, the starting address for any file or directory on the volume.
The fnode file begins with the root directory and continues down through the
directory and file levels. Each file or directory is represented by an fnode. The
pointers and fnodes are adjusted each time a file is created, deleted, or changes size.

436 Appendix B Using Diskverify in Interactive Mode

The fnode, in addition to other data describing the file or directory, contains pointers
to blocks on the volume. If the fnode describes a short file, these blocks contain the
actual file data. If the fnode describes a long file, these blocks contain pointers to
other blocks containing the actual data. If the fnode describes a directory, these
blocks contain entries which describe the contents of the directory. Each entry lists
the fnode number and name of the associated file or directory.

See also: Short and long files, Appendix C

The number of unallocated fnodes in the fnode file is controlled by the files
parameter of the format command. In addition to the unallocated fnodes, seven
(with an option of nine) allocated fnodes are established when the fnode file is
created. These allocated fnodes represent:

• The fnode file

• The volume label file, r?volumelabel

• The volume free space map file, r?spacemap

• The free fnodes map file, r?fnodemap

• The bad blocks file, r?badblockmap

• The root directory

• The space accounting file

• Optionally, the duplicate volume label file, r?save

See also: format command, Chapter 2

Creating the Backup Volume Label and Fnode File
Use the optional reserve parameter of the format command to create a file named
r?save. Format places a copy of the iRMX volume label in the front (that is, the
physical end) of the file, and copies the fnode file into r?save.

The r?save file is stored in one of the innermost tracks of the disk where the chance
of accidental loss of data is minimal. (In normal use, the disk heads do not extend to
the innermost tracks.)

▲▲! CAUTION
The format command overwrites all of the data currently on the
disk. Therefore, before invoking format, use the HI backup
command to make a backup copy of any files you wish to save.
Or, use a blank disk to experiment with these procedures.

Command Reference Appendix B 437

Example

Assume that you have booted your system from a diskette to format the system disk.
The command below uses the format command, specifying the reserve parameter.
This will format the disk, create the r?save backup file, and copy the volume label
and initialized fnode file into r?save.

-attachdevice cmbo as :mydisk: <CR>

-format :mydisk: il = 4 files = 3000 reserve <CR>

The HI responds:

volume () will be formatted as a named volume

granularity = 1,024 map start = 7,859

interleave = 4

files = 3000

extensionsize = 3

save area reserved = yes

bad track/sector information written = no

TTTTTTTTTTTTTTTTT

volume formatted

✏ Note
The map start value may change if r?save is present.

The disk has now been formatted. If you use the DVU command displaydirectory
on the volume root fnode (fnode 6) or the HI dir command with the invisible (I)
option on the volume root directory, you will find an fnode listed for r?save. R?save
contains a duplicate copy of the fnodes in the fnode file: eight allocated fnodes
(r?save, r?spacemap, r?fnodemap, etc.) and 2,999 unallocated fnodes. (The r?save
fnode is allocated out of the 3,000 fnodes specified through the files parameter.)

438 Appendix B Using Diskverify in Interactive Mode

Maintaining the Backup Fnode File
The format command creates a backup of the fnode file in its initialized state.
R?save is not automatically updated as files are created, written to, or deleted from
the volume. Therefore, it is very important to back up the fnode file at regular
intervals, such as once a day, or before each system shutdown. Otherwise the backup
fnode file will contain incorrect information and be useless for data recovery.

There are two ways to back up the fnode file on a volume:

• Use the HI shutdown command with the backup option.

• Use the backupfnodes option of diskverify.

In both cases, you must reboot the system after backing up the fnodes on the volume.

Examples

1. This example uses shutdown with the backup option to copy the volume fnode
file to its duplicate file, r?save, on any attached volume:

super-shutdown B <CR>

***SYSTEM WILL BE SHUTDOWN IN 10 MINUTE(S)

:SD:, outstanding connections to device have been deleted

***SHUTDOWN COMPLETED ***

2. This example uses the diskverify command backupfnodes to copy all fnodes in
the system disk (:sd:, attached as a logical device) fnode file into the r?save file:

super- diskverify :sd: <CR>

iRMX Disk Verify Utility, Vx.x

Copyright <year> Intel Corporation

All Rights Reserved

:sd:, outstanding connections to device have been deleted

*backupfnodes <CR> or bf <CR>

fnode file backed up to save area

*

Command Reference Appendix B 439

Restoring Fnodes
If the volume label or the fnode file become damaged, you can attempt to recover
files on the volume by using the DVU commands restorefnode and
restorevolumelabel to rebuild the index. To assist in this process, you can use the
displaysavefnode DVU command to look at individual fnodes stored in the r?save
file.

▲▲! CAUTION
The system changes the fnode file each time a volume is modified.
If you do not back up the fnodes after each modification, some
fnodes in r?save may not be associated with the same files as the
corresponding fnodes in the fnode file. Attempting to recover
fnodes under these conditions is dangerous because the
restorefnode command could overwrite valid information with
invalid information.

Examples

1. This example uses the verify command to examine the fnode file on the volume
:sd:(attached as a logical device):

super- diskverify :sd: <CR>

iRMX Disk Verify Utility, Vx.x

Copyright <year> Intel Corporation

All Rights Reserved

:sd:, outstanding connections to device have been

deleted

*verify

After examining the structure of the disk, you find that fnodes 09H through 0CH
have probably been destroyed. You then use the restorefnode command to
recover these fnodes; the DVU prompts you to confirm each fnode:

*restorefnode 9, 0C <CR> or rf 9, 0C <CR>

restore fnode 9? Y <CR>

restored fnode number: 9

restore fnode 0A? Y <CR>

restored fnode number: 0A

restore fnode 0B? Y <CR>

restored fnode number: 0B

restore fnode 0C? Y <CR>

restored fnode number: 0C

440 Appendix B Using Diskverify in Interactive Mode

The DVU has now copied fnodes 09H through 0CH in the r?save file into fnode
09H through 0CH in the fnode file. You should now be able to recover the data
on the disk.

2. Assume the same situation as in Example 1 except that two files, at fnodes 0AH
and 0BH, have been modified since the last time the fnodes were backed up.
You do not wish to restore them, since you might be replacing valid data with
invalid data.

To pass over the restoration of these two fnodes, respond to the confirmation
prompt with some character other than Y, as shown. The DVU returns the
message: allocation bit not set for saved fnode.

*restorefnode 9, 0C <CR> or rf 9, 0C <CR>

restore fnode 9? Y <CR>

restored fnode number: 9

restore fnode 0A? <CR>

allocation bit not set for saved fnode

restore fnode 0B? <CR>

allocation bit not set for saved fnode

restore fnode 0C? Y <CR>

restored fnode number: 0C

The r?save fnodes 09H and 0CH have now been copied into the fnode file; 0AH
and 0BH were not restored.

Restoring the Volume Label
Since the contents of the iRMX volume label do not change, the copy of the volume
label in r?save does not need updating to remain valid.

When the DVU encounters a damaged volume label, it automatically uses the backup
volume label if the r?save file is present. However, it does not restore unless
explicitly instructed to do so.

When the backup label is used, the DVU issues the message: duplicate volume

label used. If this message appears when the DVU is activated, then the volume
label is damaged. It can be restored by being overwritten with the volume label copy
from r?save.

Command Reference Appendix B 441

Example

When you attempt to access files on :sd: (the logical name of the current volume) the
system returns an E_ILLEGAL_VOLUME message. Invoke the DVU to check the
possibility that the volume label is damaged:

super- diskverify :sd: <CR>

iRMX Disk Verify Utility, Vx.x

Copyright <year> Intel Corporation

All Rights Reserved

:sd:, outstanding connections to device have been deleted

duplicate volume label used

*

The message duplicate volume label used confirms that the volume label has
been damaged. Restore the volume label using the restorevolumelabel command:

*restorevolumelabel <CR> or rvl <CR>

The DVU responds:

volume label restored

*

The original volume label has been overwritten with the duplicate copy from the
r?save file. Attempts to access files on volume :sd: should now be successful.

Displaying R?save Fnodes
If you cannot access a file, it may be because the fnode file is damaged. You can use
the DVU to display the file's directory and identify the file's fnode, and then display
the fnode.

Any fnode (both allocated and unallocated) in the r?save file can be examined by
using the DVU displaysavefnode command with the fnode's hexadecimal number.
The DVU will display vital information about the fnode (total blocks, total size, block
pointers, parent node, etc.). The fnode is displayed in the same format used by the
displayfnode command.

442 Appendix B Using Diskverify in Interactive Mode

Example

Assume that you cannot access a file at fnode 3C8H on a disk attached as :sd:. You
use displayfnode to display fnode 3C8H, but you are not confident of the data you
see. Since the fnode for the file has been backed up since the file was last modified,
you decide to compare the data in the r?save fnode. To do so, invoke diskverify,
then enter this command to display the data for fnode 3C8H in r?save:

*displaysavefnode 3C8 <CR> or dsf 3C8 <CR>

The DVU responds:

Fnode number = 3C8 (saved)

path name: /USER/MYFILE

flags : 0025 => short file

type : 08 => data file

file gran/vol gran : 01

owner : 0001

create,access,mod times : 00000000, 00000000, 00000000

total size,total blocks : 00002D01, 0000000C

block pointer (1) : 000C, 004910

block pointer (2) : 0000, 000000

block pointer (3) : 0000, 000000

block pointer (4) : 0000, 000000

block pointer (5) : 0000, 000000

block pointer (6) : 0000, 000000

block pointer (7) : 0000, 000000

block pointer (8) : 0000, 000000

this size : 00003000

id count : 0001

accessor (1) : 0F, 0001

accessor (2) : 00, 0000

accessor (3) : 00, 0000

parent, checksum : 03C4, 56CA

aux (*) : 000000

*

You can modify the contents of the both the original fnode file and the saved fnode
file by using either the editfnode or editsavefnode commands.

Command Reference Appendix B 443

Diskverify Command Descriptions
This section provides a command summary followed by a complete description of
each command.

In the descriptions, the commands are presented in alphabetical order except when
two commands are similar, such as displaybyte and displayword. In this case, the
first command is in its alphabetical order, and the second command follows it with
only the differences described.

Command Summary
The command summary below lists the name, name abbreviation, and a brief
description of each diskverify command.

Table B-1. Diskverify Command Summary

Command Description

allocate Marks a particular fnode or volume block as allocated

arithmetic commands Perform arithmetic functions: add (+), sub (-), div (/), mul (*),
and mod (finds the remainder of a division process)

backupfnodes (bf) Copies current fnode file into a backup file named r?save

conversion commands Perform conversion functions: address and block convert
between block numbers and absolute addresses; dec and hex
convert between decimal and hexadecimal numbers

disk Displays the attributes of the volume being verified

displaybyte (db or d) Displays the working buffer in byte format

displayword (dw) Displays the working buffer in word format

displaydirectory (dd) Displays directory contents

displayfnode (df) Displays the specified fnode information

displaysavefnode (dsf) Displays the fields of a single fnode in the r?save file

displaynextblock
(dnb or > or <CR>)

Displays the next volume block

continued

444 Appendix B Using Diskverify in Interactive Mode

Table B-1. Command Summary (continued)

Command Description

displaypreviousblock
(dpb or <)

Displays the previous volume block

editfnode (ef) Edits the specified fnode

editsavefnode (esf) Edits the specified saved fnode

exit (e) Exits the Disk Verification Utility

fix Verifies the disk and fixes inconsistencies

free Marks a particular fnode or volume block as free

getbadtrackinfo (gb) Displays the bad track information

help (h) Lists the diskverify commands

listbadblocks (lbb) Displays all the bad blocks on the volume

quit (q) Exits the Disk Verification Utility

read (r) Reads a volume block into the working buffer

restorefnode (rf) Copies one fnode (or range of fnodes) from the r?save file to the
fnode file

restorevolumelabel (rvl) Copies the duplicate volume label to the volume label offset on
track 0

save Writes the updated fnode map, free space map, and bad block
map to the volume

substitutebyte
(sb or s)

Modifies the contents of the working buffer in byte format

substituteword (sw) Modifies the contents of the working buffer in word format

verify (v) Verifies the volume

write (w) Writes the working buffer to the volume

DVU command allocate

Command Reference Appendix B 445

allocate
Designates fnodes or volume blocks as allocated. You can also use this command to
designate one or a range of volume blocks as bad.

Syntax

allocate fnode=fnodenum[,fnodenum]|
block=blocknum[,blocknum]|
badblock=blocknum[,blocknum]

Parameters
fnodenum

Number of the fnode to allocate. This number can range from 0 through (max fnodes
- 1), where max fnodes is the number of fnodes defined when the volume was
originally formatted. Two fnode values separated by a comma signify a range of
fnodes.

blocknum
Number of the volume block to allocate. This number can range from 0 through
(max blocks - 1), where max blocks is the number of volume blocks in the volume.
Two block numbers separated by a comma signify a range of block numbers.

Output

Allocate returns one of these messages, depending on whether you specify fnodes,
blocks, or badblocks:

<fnodenum>, fnode marked allocated

<blocknum>, block marked allocated

<blocknum>, block marked bad

Where:

<fnodenum>
Is the number of the fnode that the utility designated as allocated.

<blocknum>
Is the number of the volume block that the utility designated as
allocated or bad.

If a block is not allocated before you designate it as bad, allocate also displays:

<blocknum>, block marked allocated

allocate DVU command

446 Appendix B Using Diskverify in Interactive Mode

Allocate checks the allocation status of fnodes or blocks before allocating them.
Therefore, if you specify allocate for a block or fnode already allocated, allocate
returns one of these messages:

<fnodenum>, fnode already marked allocated

<blocknum>, block already marked allocated

<blocknum>, block already marked bad

Additional Information

When you discover an inconsistency between allocated fnodes or volume blocks and
referenced fnodes or volume blocks (most often as a result of using the verify
command), you can use allocate and to help correct the errors.

Fnodes are data structures that describe the files on the volume. They are created
when the volume is formatted. An allocated fnode is one that represents an actual
file. Allocate designates fnodes as allocated by updating the flags field of the
fnode and free fnodes map file.

An allocated volume block is a block of data storage that is part of a file; it is not
available to be assigned to a new file. Allocate designates volume blocks as
allocated by updating the volume free space map with this information.

When you use allocate to designate bad blocks, it updates the volume free space map
and marks an associated bit as bad in the bad blocks file.

Error Messages
argument error

A syntax error was made in the command, or a nonnumeric character was specified
in the blocknum or fnodenum parameter.

<blocknum>, block out of range
The block number specified was larger than the largest block number in the volume.

<fnodenum>, fnode out of range
The fnode number specified was larger than the largest fnode number in the volume.

no badblocks file
The volume does not have a bad blocks file. This message could appear if you used
an earlier version of the format command to format the disk.

DVU command arithmetic commands

Command Reference Appendix B 447

arithmetic commands
Perform arithmetic operations within the DVU: add adds two numbers together, sub
subtracts one number from another, div divides one number by another, mul
multiples one number by another, and mod finds the remainder of one number
divided by another.

Syntax

+|add arg1, arg2
-|sub arg1, arg2
/|div arg1, arg2
*|mul arg1, arg2
mod arg1, arg2

Where:

arg1 and arg2

Numbers on which the command operates. The value of each argument cannot be
greater than 232-1. Sub subtracts arg2 from arg1; div divides arg1 by arg2; mod
performs the operation arg1 modulo arg2.

Output

The commands perform their operations on unsigned numbers only and do not report
any overflow conditions. The number is displayed in hexadecimal format first,
followed by the decimal number in parentheses. For example:

13 (19T)

arithmetic commands DVU command

448 Appendix B Using Diskverify in Interactive Mode

Examples

In all the examples below, the beginning asterisk is the DVU prompt. In the first
example, the second asterisk is the multiply operator.

** 134T, 13T <CR> or *MUL 134T, 13T <CR>
6CE (1742T)

*+ 8, 4 <CR>

0C (12T)

*SUB 8884, 256 <CR>

862E (34350T)

*MOD 1225, 256T <CR>

25 (37T)

Error Messages

This error message may be returned by any of the arithmetic commands:

argument error
A syntax error was made in the command, a nonnumeric value was specified for one
of the arguments, or a value was specified for a block number parameter that was not
a valid block number.

DVU command backupfnodes (bf)

Command Reference Appendix B 449

backupfnodes
Copies the current fnode file into a designated fnode backup file named r?save.

Syntax

bf|backupfnodes

Output

fnode file backed up to save area

Additional Information

The backupfnodes command ensures against data loss that occurs when the fnode
file is damaged or destroyed. Be sure that the current fnode file is valid before
executing the backupfnode command (using named verification).

To use this command, you must have formatted the volume using the reserve
option in the format command (V1.1 or later) to create a special reserve area
(r?save). If not, the backupfnodes command will be unable to copy the fnode file to
r?save, and will return an error message.

The format command writes the initialized copy of the fnode file into r?save.
Therefore, you do not have to use backupfnodes on a newly formatted volume.
Subsequently, you can routinely (for example, once a day) back up fnodes to assure
that the data in r?save matches the data in the fnode file. You can do this by using
either the backupfnodes command or the HI shutdown command with the backup
option.

See also: shutdown command, in this chapter

backupfnodes (bf) DVU command

450 Appendix B Using Diskverify in Interactive Mode

Error Messages
argument error

Backupfnodes does not accept an argument.

no save area was reserved when volume was formatted
To support fnode backup, use the backup command to save the data on the volume,
reformat the volume using the reserve option of the format command, and then
restore the volume data.

not a named disk
The volume specified when the DVU was invoked is a physical volume, not a named
volume.

Example

super- diskverify :sd: <CR>

iRMX Disk Verify Utility, Vx.x

Copyright <year> Intel Corporation

All Rights Reserved

:sd:, outstanding connections to device have been deleted

*verify named <CR>

.

.

.

BIT MAPS O.K.

*backupfnodes <CR> or bf <CR>

fnode file backed up to save area

*

DVU command address

Command Reference Appendix B 451

conversion commands
Perform conversion operations within the Disk Verification Utility: address and
block convert between block numbers and absolute addresses; dec and hex convert
between decimal and hexadecimal numbers.

address
Converts a block number into an absolute address on the volume; the inverse of the
block command.

Syntax

address blocknum

Where:

blocknum
Volume block number that address converts into an absolute address in hexadecimal.
This parameter can range from 0 through (max blocks - 1), where max blocks is the
number of volume blocks in the volume.

Output

In response, address displays:

absolute address = <addr>

Where:

<addr> Absolute address in hexadecimal that corresponds to the specified block
number. This address represents the number of the byte that begins the
block and can range from 0 through (volume size - 1), where volume
size is the size, in bytes, of the volume.

Additional Information

All memory in a volume is divided into volume blocks, which are areas of memory
the same size as the volume granularity. Volume blocks are numbered sequentially
in the volume, starting with the block containing the smallest addresses (block 0).

block DVU command

452 Appendix B Using Diskverify in Interactive Mode

block
Converts an absolute address into a volume block number; the inverse of the address
command.

Syntax

block address

Where:

address
32-bit absolute address, in hexadecimal, that block converts into a block number.
This parameter can range from 0 through (volume size - 1), where volume size is the
size, in bytes, of the volume.

Output

In response, block displays:

block number = <blocknum>

Where:

<blocknum>
Number of the volume block that contains the specified absolute
address in hexadecimal. The block command determines this value by
dividing the absolute address by the volume block size and truncating
the result.

DVU command dec

Command Reference Appendix B 453

dec
Finds the decimal equivalent of a number.

Syntax

dec arg

Where:

arg Number for which dec finds the decimal equivalent. The value of the argument
cannot be greater than 232-1. The default base is in hexadecimal.

Output

Dec displays the decimal equivalent of the specified number.

hex DVU command

454 Appendix B Using Diskverify in Interactive Mode

hex
Finds the hexadecimal equivalent of a number.

Syntax

hex arg

Where:

arg Number for which the command finds the hexadecimal equivalent. To specify a
decimal number, follow it with a T. The value of the argument cannot be greater
than 232-1.

Output

Hex displays the hexadecimal equivalent of the specified number.

Examples

*HEX 155T <CR>

9B

*ADDRESS 15 <CR>

absolute address = 0A80

*BLOCK 2236 <CR>

block number = 44

Error Messages

This error message may be returned by any of the conversion commands:

argument error
A syntax error was made in the command, a nonnumeric value was specified for one
of the arguments, or a value was specified for a block number parameter that was not
a valid block number.

DVU command hex

Command Reference Appendix B 455

This error message may be returned by the address command:

<blocknum>, block out of range
If the command was an address command, the block number entered was greater
than the number of blocks in the volume.

This error message may be returned by the block command:

<address>, address not on the disk
If the command was a block command, block converted the address to a volume
block number, but the block number was greater than the number of blocks in the
volume.

disk DVU command

456 Appendix B Using Diskverify in Interactive Mode

disk
Displays the attributes of the volume being verified.

Syntax

disk

Output

The output of the disk command depends on whether the volume is formatted as a
physical or named volume. For a physical volume:

device name = <devname>

physical disk

device granularity = <devgran>

block size = <devgran>

number of blocks = <numblocks>

volume size = <size>

Where:

<devname> Physical name of the device containing the volume. This is the physical
name of the device, as specified in the attachdevice HI command.

<devgran> Granularity of the device, as defined in the Device Unit Information
Block (DUIB). For physical devices, this is also the volume block size.

See also: DUIBs, Driver Programming Concepts

<numblocks>
Number of volume blocks in the volume.

<size> Size of the volume, in bytes.

DVU command disk

Command Reference Appendix B 457

Output for a named volume:

device name = <devname>

named disk, volume name = <volname>

device granularity = <devgran>

block size = <volgran>

number of blocks = <numblocks>

number of free blocks = <numfreeblocks>

volume size = <size>

interleave = <inleave>

extension size = <xsize>

number of fnodes = <numfnodes>

number of free fnodes = <numfreefnodes>

root fnode = <rootfnode>

save area reserved = (yes/no)

The <devname>, <devgran>, <numblocks>, and <size> fields are the same as for
physical files. The remaining fields are:

<volname> Name of the volume, as specified when the volume was formatted.

<volgran> Volume granularity, as specified when the volume was formatted.

<numfreeblocks>
Number of available volume blocks in the volume.

<inleave> The interleave factor for a named volume.

<xsize> Size, in bytes, of the extension data portion of each fnode.

<numfnodes>
Number of fnodes in the volume. The fnodes were created when the
volume was formatted.

<numfreefnodes>
Number of available fnodes in the named volume.

<rootfnode>
The number of the fnode that contains the volume's root directory.

save area reserved
Indicates whether the r?save file is reserved for volume label and fnode
file backups.

See also: Named disk fields, in this appendix
format command, Chapter 2

disk DVU command

458 Appendix B Using Diskverify in Interactive Mode

Additional Information

You can abort this command by typing <Ctrl-C>.

Example

This example shows the output of the disk command for a 5.25-inch diskette:

super- diskverify :f0: <CR>

iRMX Disk Verify Utility, Vx.x

Copyright <year> Intel Corporation

All Rights Reserved

*disk <CR>

device name =wmf0

named disk, volume name =rmx286

device granularity =0200

block size =0200

number of blocks =0000027C

number of free blocks =000001E9

volume size = 0004F800

interleave = 0005

extension size = 03

number of fnodes =00CF

number of free fnodes =00BE

root fnode =0006

save area reserved = no

DVU command displaybyte (d or db)

Command Reference Appendix B 459

displaybyte
Displays the specified portion of the working buffer in 16-byte rows.

Syntax

d|db|displaybyte [startoffset [,endoffset]]

Parameters
startoffset

Number of the byte at which you want the display to begin. With this parameter,
displaybyte starts with the row containing the specified offset; if you omit this
parameter, displaybyte starts at the beginning of the working buffer.

endoffset
Number of the byte, relative to the start of the buffer, at which you want the display
to begin. If you omit this parameter, displaybyte shows only the row indicated by
startoffset. However, if you omit both startoffset and endoffset,
displaybyte displays the entire working buffer.

Output

Displaybyte begins by listing the block number where data resides in the working
buffer. It then lists the specified portion of the buffer, providing the column numbers
as a header and beginning each row with the relative address of the first byte in the
row. It also includes, at the right of the listing, the ASCII equivalents of the bytes, if
the ASCII equivalents are printable characters. If a byte is not a printable character,
displaybyte displays a period in the corresponding position. For example:

*displaybyte 7,13 <CR>

BLOCK NUMBER = blocknum

offset 0 1 2 3 4 5 6 7 8 9 A B C D E F ASCII STRING

0000 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0010 61 6E 20 65 78 61 6D 70 6C 65 20 20 20 20 20 20 an example

displaybyte (d or db) DVU command

460 Appendix B Using Diskverify in Interactive Mode

Additional Information

Diskverify maintains a working buffer for read and write commands. The size of
the buffer is equal to the volume's granularity value. After you read a volume block
of memory into the working buffer with the read command, you can display part or
all of that buffer, in BYTE format, by entering the displaybyte command.
Displaybyte displays the hexadecimal value for each byte in the specified portion of
the buffer. You can also use substitutebyte and substituteword to change the data
in the block. Finally, you can use the write command to write the modified block
back out to the volume.

You can abort this command by typing <Ctrl-C>.

Error Messages
argument error

A syntax error was made in the command, or a nonnumeric character was specified
in one of the offset parameters.

<offset>, invalid offset
Either a larger value was specified for startoffset than for endoffset, or an
offset value larger than the number of bytes in the block was specified.

DVU command displayword (dw)

Command Reference Appendix B 461

displayword
Is the same as the displaybyte command, except that it displays the working buffer in
eight words per row.

Syntax

dw|displayword [startoffset [,endoffset]]

Examples

Assuming that the volume granularity is 128 bytes and that you have read block 20H
into the working buffer with the read command, this command displays that block:

*displayword <CR>

BLOCK NUMBER = 20

offset 0 2 4 6 8 A C E

0000 0000 0000 0000 0000 0000 0000 0000 0000

0010 0000 0080 0000 0000 0000 0001 FF0F 00FF

0020 0000 0000 0500 0000 0000 0025 0108 FFFF

0030 1F25 0000 002E 0000 1F25 0000 002B 0000

0040 0001 0000 0001 0080 0000 0000 0000 0000

0050 0000 0000 0000 0000 0000 0000 0000 0000

0060 0000 0000 0000 0000 0000 0000 0080 0000

0070 0000 0000 0001 FF0F 00FF 0000 0000 0500

*

This command displays the portion of the block that contains the offsets 31H through
45H (words beginning at odd addresses):

*dw 31, 45 <CR>

BLOCK NUMBER = 20

offset 0 2 4 6 8 A C E

0031 001F 2E00 0000 2500 001F 2B00 0000 0100

0041 0000 0100 8000 0000 0000 0000 0000 0000

*

displayword (dw) DVU command

462 Appendix B Using Diskverify in Interactive Mode

This command displays the portion of the block that contains the offsets 30H through
45H (words beginning at even addresses). Notice how the output differs from the
previous example:

*displayword 30, 45 <CR>

BLOCK NUMBER = 20

offset 0 2 4 6 8 A C E

0030 1F25 0000 002E 0000 1F25 0000 002B 0000

0040 0001 0000 0001 0080 0000 0000 0000 0000

*

DVU command displaydirectory (dd)

Command Reference Appendix B 463

displaydirectory
Lists all the files contained in a directory, with their fnode numbers and types.

Syntax

dd|displaydirectory fnodenum

Parameter
fnodenum

Number of the fnode that corresponds to a directory file. This number can range
from 0 through (max fnodes - 1), where max fnodes is the number of fnodes defined
when the volume was originally formatted. Displaydirectory lists all files or
directories contained in this directory.

Output

The format of the display is:

FILE NAME FNODE TYPE FILE NAME FNODE TYPE FILE NAME FNODE TYPE

<filenam> <fnode> <type> <filenam> <fnode> <type> <filenam> <fnode> <type>

<filenam> <fnode> <type> <filenam> <fnode> <type> <filenam> <fnode> <type>

. . .

. . .

. . .

Where:

<filename>
Name of the file or directory contained in the directory.

<fnode> Number of the fnode that describes the file.

<type> Type of the file, as follows:

Type of file Description
data data files
dir directory files
smap volume free space map
fmap free fnodes map
bmap bad blocks map
vlab volume label file
**** indicates an illegal fnode type

displaydirectory (dd) DVU command

464 Appendix B Using Diskverify in Interactive Mode

Additional Information

You can abort this command by typing <Ctrl-C>.

Example

This command lists the files contained in the directory with fnode 6:

*displaydirectory 6 <CR>

FILE NAME FNODE TYPE FILE NAME FNODE TYPE FILE NAME FNODE TYPE

R?SPACEMAP 0001 SMAP R?FNODEMAP 0002 FMAP R?BADBLOCKMAP 0004 BMAP

R?VOLUMELABEL 0005 VLAB R?SAVE 0007 DATA RMX286 0008 DIR

MYFILE 0009 DATA YOURFILE 000A DATA ONEFILE 000B DATA

*

Error Messages
argument error

A nonnumeric character was specified in the fnodenum parameter.

<fnodenum>, fnode not allocated
The number specified for the fnodenum parameter does not correspond to an
allocated fnode. This fnode does not represent an actual file.

<fnodenum>, not a directory fnode
The number specified for the fnodenum parameter is not an fnode for a directory
file.

<fnodenum>, fnode out of range
The number specified for the fnodenum parameter is larger than the largest fnode
number on the volume.

DVU command displayfnode (df)

Command Reference Appendix B 465

displayfnode
Displays the fields associated with an fnode.

Syntax

df|displayfnode fnodenum

Parameter
fnodenum

Number of the fnode to be displayed. This number can range from 0 through (max
fnodes - 1), where max fnodes is the number of fnodes defined when the volume was
originally formatted.

Output

Displayfnode displays the fields of the specified fnode in this format:

Fnode number = <fnodenum>

path name: <pathname>

flags : <flgs>

type : <typ>

file gran/vol gran : <gran>

owner : <own>

create,access,mod times : <crtime>, <acctime>, <modtime>

total size,total blks : <totsize>, <totblks>

block pointer (1) : <blks>, <blkptr>

block pointer (2) : <blks>, <blkptr>

block pointer (3) : <blks>, <blkptr>

block pointer (4) : <blks>, <blkptr>

block pointer (5) : <blks>, <blkptr>

block pointer (6) : <blks>, <blkptr>

block pointer (7) : <blks>, <blkptr>

block pointer (8) : <blks>, <blkptr>

this size : <thissize>

id count : <count>

accessor (1) : <access>, <id>

accessor (2) : <access>, <id>

accessor (3) : <access>, <id>

parent, checksum : <prnt>, <checksum>

aux(*) : <auxbytes>

displayfnode (df) DVU command

466 Appendix B Using Diskverify in Interactive Mode

Where:

<fnodenum>
Number of the fnode being displayed. If the fnode does not describe an
actual file (that is, if it is not allocated), this message appears next to
this field:

*** ALLOCATION STATUS BIT IN THIS FNODE NOT SET ***

In this case, the fnode fields are normally set to 0.

<pathname>
Full pathname of the file described by the fnode. This field is not
displayed if the fnode does not describe a file.

<flgs> A word defining the attributes of the file. Significant bits of this word
are:

Bit Attribute Setting
6 deletion 1 to indicate a temporary file or a file to be

deleted
5 modification 1 whenever a file is modified
1 long or short file 1 for long files

0 for short files
0 allocation status 1 for allocated fnodes

0 for free fnodes

The displayfnode command displays a message next to this field that indicates
whether the file is a long or short file.

<typ> Type of file. This field contains a value, and a description which is
displayed next to the value. The possible values and descriptions are as
follows:

Value Descriptions
00 fnode file
01 volume map file
02 fnode map file
03 account file
04 bad block file
06 directory file
08 data file
09 volume label file

any other value illegal value

<gran> File granularity, specified as a multiple of the volume granularity.

<own> User ID of the owner of the file.

DVU command displayfnode (df)

Command Reference Appendix B 467

<crtime>

<acctime>

<modtime>

Time and date of file creation, last access, and last modification. These
values are expressed as the time, in seconds, since midnight (00:00) on
January 1, 1978.

<totsize> Total size, in bytes, of the actual data in the file.

<totblks> Total number of volume blocks used by the file, including indirect
block overhead.

<blks>, <blkptr>
Values that identify the data blocks of the file. For short files, each
<blks> parameter indicates the number of volume blocks in the data
block, and each <blkptr> is the number of the first such volume
block. For long files, each <blks> parameter indicates the number of
volume blocks pointed to by an indirect block, and each <blkptr> is
the block number of the indirect block.

<thissize>
Size in bytes of the total data space allocated to the file, minus any
space used for indirect blocks.

<count> Number of user IDs associated with the file.

<access>, <id>
Each pair of fields indicates the access rights for the file and the ID of
the user who has that access ID. Bits in the <access> field are set to
indicate these access rights:

Bit Data File Directory File
3 update change entry
2 append add entry
1 read list
0 delete delete

The first ID listed is the owner's ID.

<prnt> Fnode number of the directory that contains the file.

<checksum>
Checksum of the fnode.

<auxbytes>
Auxiliary bytes associated with the file.

displayfnode (df) DVU command

468 Appendix B Using Diskverify in Interactive Mode

Additional Information

Each time a file is created on the volume, the BIOS allocates an fnode for the file and
fills in the fnode fields to describe the file. The displayfnode command enables you
to examine these fnodes and determine where the data for each file resides.

You can abort this command by typing <Ctrl-C>.

Example

This example displays fnode 10 of a volume, which represents a directory:

*displayfnode 10 <CR>

Fnode number = 10

path name : /MYDIR

flags : 0025 =>short file

type : 06 =>directory file

file gran/vol gran : 01

owner : FFFF => world

create,access,mod times : 10219017, 10219E58, 10219E58

total size,total blocks : 00000360, 00000001

block pointer (1) : 0001, 000050

block pointer (2) : 0000, 000000

block pointer (3) : 0000, 000000

block pointer (4) : 0000, 000000

block pointer (5) : 0000, 000000

block pointer (6) : 0000, 000000

block pointer (7) : 0000, 000000

block pointer (8) : 0000, 000000

this size : 00000400

id count : 0001

accessor (1) : 0F, FFFF

accessor (2) : 00, 0000

accessor (3) : 00, 0000

parent, checksum : 0006, 796D

aux(*) : 000000

*

DVU command displayfnode (df)

Command Reference Appendix B 469

Error Messages
argument error

The value entered for the fnodenum parameter was not a legitimate fnode number.

<fnodenum>, fnode out of range
The number specified for the fnodenum parameter is larger than the largest fnode
number on the volume.

Unable to get pathname - <reason>
The pathname specified could not be retrieved. Possible causes of this error are seek
error, I/O error, invalid parent, or insufficient memory.

displaysavefnode (dsf) DVU command

470 Appendix B Using Diskverify in Interactive Mode

displaysavefnode
Is identical to displayfnode, except displaysavefnode takes the fnode information
from the r?save file, and displays the fnode as saved.

Syntax

dsf|displaysavefnode fnodenum

Output

The output is identical to displayfnode except for the first line, which indicates that
the fnode is saved. The format of the first line is:

Fnode number = <fnodenum> (saved)

Error Messages
argument error

When the command was entered, no argument was supplied. Displaysavefnode
requires a designation of the fnode number.

<fnodenum>, fnode out of range
The number specified for the fnodenum parameter is larger than the largest fnode
number on the volume.

no save area was reserved when volume was formatted
To support fnode backup, use the backup command to save the data on the volume,
reformat the volume using the reserve option of the format command, and then
restore the volume data.

Unable to get pathname - <reason>
The pathname specified could not be retrieved. Possible causes of this error are seek
error, I/O error, invalid parent, or insufficient memory.

DVU command displaynextblock (dnb)

Command Reference Appendix B 471

displaynextblock
Displays the next volume block: the block immediately following the block currently
in the working buffer. The display format can be either word or byte.

Syntax

dnb|>|<CR>|displaynextblock

Additional Information

Displaynextblock copies the next volume block from the volume to the working
buffer and displays it at your terminal. If you specify displaynextblock at the end of
the volume, the utility wraps around and displays the first block in the volume. It
destroys any data currently in the working buffer.

The utility remembers the mode (word if you used displayword, or byte if you used
displaybyte) in which you displayed the volume block currently in the working
buffer, and it displays the next block in that format. Displaynextblock uses the byte
format as a default if you have not yet displayed a volume block.

Once the block is in the working buffer, you can use substitutebyte and
substituteword to change the data in the block. Finally, you can use the write DVU
command to write the modified block back out to the volume.

You can abort this command by typing <Ctrl-C>.

displaypreviousblock (dpb) DVU command

472 Appendix B Using Diskverify in Interactive Mode

displaypreviousblock
Is identical to displaynextblock, except that it displays the volume block preceding
the current block in the working buffer.

Syntax

dpb|<|displaypreviousblock

DVU command editfnode (ef)

Command Reference Appendix B 473

editfnode
Allows you to edit values within a specified fnode.

Syntax

ef|editfnode fnodenum

Parameter
fnodenum

Number of the fnode to edit. This number can be in the range of 0 through (max
fnodes - 1), where max fnodes is the number of fnodes defined when the volume was
originally formatted.

Output

Fnode number = nnnn

Where:

nnnn is the number of the fnode you want to edit.

The first field of the fnode, flags, is displayed with its current value:

flags(xxxx):

Where:

xxxx is the current value of the flags field.

From this point on, you can edit the fnode fields, one at a time. After you have edited
the last fnode field or entered a Q while in edit mode, this query appears on the screen
and the modified fnode is displayed:

Write back?

A response of Yes causes the fnode with the modified values to be written on the
volume and this message to be displayed:

Fnode has been updated

Any other response causes the fnode to remain unchanged, and this message is
displayed:

Fnode not changed

editfnode (ef) DVU command

474 Appendix B Using Diskverify in Interactive Mode

Additional Information

The current value of each field is displayed followed by a colon. Editfnode then
waits for one of these responses from the terminal:

Response Meaning
<CR> No modification to the field.
numerical value <CR> The new value to be assigned. This value is always

interpreted as hexadecimal.
QUIT or Q or q <CR> Skip the remaining fields and display the query.

Any response other than those listed above causes the field to remain unchanged, and
the next field to be displayed.

Once the fnode has been updated, you can use displayfnode to examine the contents
of the fnode and the changes you made. Changing the contents of an fnode causes it
to have a bad checksum; use fix with the named1 option to correct it.

See also: displayfnode and fix commands, in this appendix

This command can be aborted by typing <Ctrl-C>.

Example

This example illustrates using editfnode to edit fnode 10:

*editfnode 10 <CR>

fnode number = 10

flags(0025):<CR>

type(0006):<CR>

file gran/vol gran(01): <CR>

owner(0FFFF): 0 <CR>

create time(10219CB2): q <CR>

DVU command editfnode (ef)

Command Reference Appendix B 475

The only edit is the owner field. Entering q causes the modified fnode to be
displayed, with the new owner value:

flags : 0025 =>short file

type : 06 =>directory file

file gran/vol gran : 01

owner : 0000

create,access,mod times : 10219CB2, 10219CC8, 10219CC8

total size,total blocks : 00000360, 00000001

block pointer (1) : 0001, 000050

block pointer (2) : 0000, 000000

block pointer (3) : 0000, 000000

block pointer (4) : 0000, 000000

block pointer (5) : 0000, 000000

block pointer (6) : 0000, 000000

block pointer (7) : 0000, 000000

block pointer (8) : 0000, 000000

this size : 00000400

id count : 0001

accessor (1) : 0F, FFFF

accessor (2) : 00, 0000

accessor (3) : 00, 0000

parent, checksum : 0006, 0000

aux(*) : 000000

Write back? yes <CR>

Fnode has been updated

*

Error Messages
argument error

The option specified is not valid.

<fnode num>, fnode out of range
The fnode number specified was larger than the largest fnode number on the volume.

Error in Input
Invalid input was entered while editing an entry.

editsavefnode (esf) DVU command

476 Appendix B Using Diskverify in Interactive Mode

editsavefnode
Is identical to editfnode, except that you can edit an fnode from the r?save file. In
addition, it designates the fnode as saved when displaying the fnode number.

Syntax

esf|editsavefnode fnodenum

Error Messages

The error messages are the same as in editfnode, with the addition of this message:

no save area was reserved when volume was formatted
To support fnode backup, use the backup command to save the data on the volume,
reformat the volume using the reserve option of the format command, and then
restore the volume data.

DVU command exit (e)

Command Reference Appendix B 477

exit
Exits the DVU and returns control to the HI command level; identical to the quit
command.

Syntax

e|exit

Additional Information

Although you can use diskverify to verify the system device (:sd:), all connections to
this device are deleted by the OS. After exiting, you must reboot or warm start the
system.

See also: Warm start feature, System Debugger

fix DVU command

478 Appendix B Using Diskverify in Interactive Mode

fix
Verifies the volume in the same way as the verify command; also fixes various kinds
of inconsistencies discovered during verification.

Syntax

fix [[all|named1|named] [,list]] [named2|physical]

Parameters

all Performs all operations appropriate to the volume. For named volumes, this option
performs both the named and physical verification functions. For physical
volumes, this option performs only the physical verification function. For both
named and physical volumes, all performs the fixes for the relevant verifications.

named1 or n1
Performs named1 verification and fixes these inconsistencies:

• Fixes bad checksums

• Attaches orphan fnodes to their parents. An orphan fnode is an fnode contained
within a directory, whose parent field does not point back to this directory. If the
parent field of the specified fnode points to a second valid directory, and the
second directory also points to the fnode, no fix is performed since the specified
fnode belongs to an existing directory. This is a case of multiple references
(discussed in named2 below).

• If the parent field does not point to a valid parent, the parent field is fixed to
point to the directory that contains this fnode in its file list.

named or n
Performs both the named1 and named2 verification functions on a named volume
and fixes the inconsistencies defined for these options.

list Lists the file information displayed in the verify command description later in this
appendix, for any verification that includes named1.

DVU command fix

Command Reference Appendix B 479

named2 or n2
Performs named2 verification and fixes these inconsistencies:

• Removes fnodes from their illegal parents. If there is a multiple reference to an
fnode, the fnode is removed from the directories that it does not point to (if fix
was performed with named1, the fnode should now point to one valid parent).

• Saves fnode and block bit maps on completion of named2.

physical
Performs physical verification and saves the bad block bit map.

See also: verify command, in this appendix

Output

Fix produces the same output as the verify command (see examples there) with
additional messages displayed when an inconsistency is fixed. Named1 output
includes these messages:

Checksum Fixed

fnode nnnn was attached to parent nnnn

The first message appears after a bad checksum is fixed. The second message is
displayed when the parent field of an fnode is modified to point to a valid parent.

Named2 displays this message when an fnode with multiple references is removed
from the directory:

fnode removed from this directory

If an fnode exists on a disk and is marked allocated, but has not been referenced, fix
issues a warning message and asks if you want to save the bit maps. This prevents
save from freeing this fnode and its blocks, possibly causing a file to be lost.

Additional Information

Because fix and verify perform the same verification functions and generate the same
error messages, the command description given here describes only the additional
functions of fix.

See also: verify command, in this appendix

You can abort this command by typing <Ctrl-C>. <Ctrl-C> is ignored when fix is
writing to the volume in order to prevent inconsistencies on the volume.

free DVU command

480 Appendix B Using Diskverify in Interactive Mode

free
Designates fnodes and volume blocks as free (unallocated); also removes volume
blocks from the bad blocks file.

Syntax

free fnode=fnodenum[,fnodenum]|
block=blocknum[,blocknum]|
badblock=blocknum[,blocknum]

Parameters
fnodenum

Number of the fnode to free. This number can range from 0 through (max fnodes -
1), where max fnodes is the number of fnodes defined when the volume was
originally formatted. Two fnode values separated by a comma signify a range of
fnodes.

blocknum
Number of the volume block to free. This number can range from 0 through
(max blocks - 1), where max blocks is the number of volume blocks in the volume.
Two block numbers separated by a comma signify a range of block numbers.

Output

Free returns one of these messages, depending on whether you specify fnodes,
blocks, or badblocks:

<fnodenum>, fnode marked free

<blocknum>, block marked free

<blocknum>, block marked good

Where:

<fnodenum>
is the number of the fnode that the utility designated as free.

<blocknum>
is the number of the volume block that the utility designated as free or
good.

DVU command free

Command Reference Appendix B 481

Free checks the allocation status of fnodes or blocks before freeing them. Therefore,
if you specify free for a block or fnode that is already unallocated, free returns one of
these messages:

<fnodenum>, fnode already marked free

<blocknum>, block already marked free

<blocknum>, block already marked good

Additional Information

When you discover an inconsistency between allocated fnodes or volume blocks and
referenced fnodes or volume blocks (most often as a result of using the verify
command), you can use free and to help correct the errors. You can also use free to
correct inconsistencies in good block and bad block information.

Free fnodes are fnodes for which no actual files exist. Free designates fnodes as free
by updating both the flags field of the fnode and the free fnodes map file.

Free volume blocks are blocks that are not part of any file; they are available to be
assigned to any new or current file. Free designates volume blocks as free by
updating the volume free space map.

When you use the free command to designate one or more bad blocks as good, it
removes the block number from the bad blocks file. However, free badblock does
not designate the blocks as free. To update the volume free space map and designate
these blocks as free, use the free block command.

Error Messages
argument error

A syntax error was made in the command, or a nonnumeric character was specified
in the blocknum or fnodenum parameter.

<blocknum>, block out of range
The block number specified was larger than the largest block number in the volume.

<fnodenum>, fnode out of range
The fnode number specified was larger than the largest fnode number in the volume.

no badblocks file
The volume does not have a bad blocks file. This message could appear if you used
an earlier version of the format command to format the disk.

not a named disk
Free was performed on a physical volume.

getbadtrackinfo (gb) DVU command

482 Appendix B Using Diskverify in Interactive Mode

getbadtrackinfo
Displays the volume's bad track information as written by the manufacturer or the HI
format command.

Syntax

gb|getbadtrackinfo

Output

Bad track information:

cyl head sector

cccc hh ss

cccc hh ss

. . .

. . .

Where:

cccc is the cylinder number

hh is the head number

ss is the sector number (always 0 for all devices supported in this release
of the OS)

Additional Information

The output displayed by the getbadtrackinfo command is compatible with the
format required by the HI format command when writing bad track information on
the disk. To use the output as input to format, exit diskverify and reboot the system.
Then edit :w:bad.lst and remove the header lines. The file can then be used as
input to the bad track information file created by the format command.

The example below shows how to use getbadtrackinfo this way:

-attachdevice wmf0 as :w: <CR>

-diskverify :sd: to :w:bad.list <CR>

*getbadtrackinfo <CR>

*exit <CR>

Getbadtrackinfo can be aborted by typing <Ctrl-C>.

DVU command getbadtrackinfo (gb)

Command Reference Appendix B 483

Error Messages
I/O error while trying to read bad track information

An I/O error occurred while reading the bad track information.

No valid bad track info found
Bad track information is not valid and cannot be displayed.

No bad track info found
The area designated for bad track information is empty.

help (h) DVU command

484 Appendix B Using Diskverify in Interactive Mode

help
Lists all available Disk Verification Utility commands and provides a short
description of each command.

Syntax

h|help

Output

*help

allocate/free : allocate/free fnodes, space blocks, bad blocks

backup/restore fnodes (bf/rf) : backup/restore fnode file to/from save area

Control-C : abort the command in progress

disk : display disk attributes

display byte/word (d,db/dw) : display the buffer in (byte/word format)

display directory (dd) : display the directory contents

display fnode (df) : display fnode information

display next block (>,dnb) : read and display 'next' volume block

display previous block (<,dpb) : read and display 'previous' volume block

display save fnode (dsf) : display saved fnode information

exit,quit : quit disk verify

list bad blocks (lbb) : list bad blocks on the volume

read (r) : read a disk block into the buffer

restore volume label (rvl) : copy volume label from save area

save : save free fnodes, free space & bad block maps

substitute byte/word (s,sb/sw) : modify the buffer (byte/word format)

verify : verify the disk

write (w) : write to the disk block from the buffer

edit fnode (ef) : edit an fnode

edit save fnode (esf) : edit a saved fnode

fix : perform various fixes on the volume

get bad track info (gb) : get the bad track info on the volume

arithmetic and conversion commands-

address : convert block number to absolute address

block : convert absolute address to block number

hex/dec : display number as hexadecimal/decimal number

add,+,sub,-,mul,*,div,/,mod : arithmetic operations on unsigned numbers

DVU command listbadblocks (lbb)

Command Reference Appendix B 485

listbadblocks
Displays all the bad blocks on a named volume.

Syntax

lbb|listbadblocks

Output

Listbadblocks displays up to eight columns of block numbers from the bad blocks
file, in this format:

Badblocks on Volume: volumenum

<blocknum> <blocknum> <blocknum> <blocknum> <blocknum>

<blocknum>

<blocknum> <blocknum> <blocknum> <blocknum> <blocknum>

<blocknum>

.

.

.

<blocknum> <blocknum> <blocknum> <blocknum> <blocknum>

<blocknum>

If no blocks have been marked as bad, listbadblocks displays this message:

no badblocks

Additional Information

You can abort this command by typing <Ctrl-C>.

Error Messages
no badblocks file

The volume does not have a bad blocks file. This message could appear because you
used an earlier version of the HI format command when formatting the disk, or
because the disk is a physical volume.

quit (q) DVU command

486 Appendix B Using Diskverify in Interactive Mode

quit
Exits the DVU and returns control to the HI command level; identical to exit.

Syntax

q|quit

Additional Information

Although you can use diskverify to verify the system device (:sd:), all connections to
this device are deleted by the OS. After exiting, you must reboot the system or use
the warm start feature.

See also: Warm start feature, System Debugger

DVU command read (r)

Command Reference Appendix B 487

read
Reads a volume block from the disk into the working buffer.

Syntax

r|read [blocknum]

Parameter
blocknum

Number of the volume block to read. This number can range from 0 through
(max blocks - 1), where max blocks is the number of volume blocks in the volume.
If you omit this parameter, the read command reads the most recently accessed
block.

Output

Read reads the block into the working buffer and displays:

read block number: <blocknum>

Where:

<blocknum>
is the number of the block.

Additional Information

Read destroys any data currently in the working buffer. Once the block is in the
working buffer, you can use displaybyte and displayword to display the block, and
you can use substitutebyte and substituteword to change the data in the block.
Finally, you can use the write command to write the modified block back to the
volume and repair damaged volume data.

Error Messages
argument error

A nonnumeric character was specified in the blocknum parameter.

<blocknum>, block out of range
The block number specified was larger than the largest block number in the volume.

FFFFFFFF, block out of range
No block number was specified and no previous read request was executed on this
volume.

restorefnode (rf) DVU command

488 Appendix B Using Diskverify in Interactive Mode

restorefnode
Copies an fnode or a range of fnodes from the r?save file to the fnode file.

Syntax

rf|restorefnode fnodenum[,fnodenum]

Parameter
fnodenum

The hexadecimal number of the fnode to be restored. This number must be greater
than or equal to 0 and less than the maximum number of fnodes defined when the
volume was formatted. Two fnode numbers specifies a range of fnodes to be
restored. The second number must be greater than the first.

Output

Before changing the fnode file, restorefnode displays each fnode number to be
changed and prompts you to confirm (by entering a Y or y) that the fnode is to be
restored:

restore fnode (fnodenum)? Y <CR>

When you respond Y or y, and the fnode is restored:

restored fnode number: (fnodenum)

*

If you do not respond with Y, the fnode is not restored, and the response is the
asterisk (*) prompt:

restore fnode (fnodenum)? <CR>

*

Restorefnode passes on to the next fnode in the range.

Additional Information

The restorefnode command enables you to rebuild a damaged fnode file, thereby re-
establishing links to data that would otherwise be lost.

Since restorefnode operates on the r?save file (the fnode backup file), you must have
reserved this file with the reserve option of the format command when the volume
was formatted. Otherwise, restorefnode will return an error message.

DVU command restorefnode (rf)

Command Reference Appendix B 489

▲▲! CAUTION
When using this command, be sure that any fnode you restore
represents a file that has not been modified since the last fnode
backup. Restorefnode overwrites the specified fnode in the fnode
file with the corresponding fnode in the r?save file. If that fnode
has not been backed up since the last file modification, a valid
fnode may be overwritten with invalid data. Thus, all links to the
associated file will be destroyed, and you will lose all of the data in
the file.

Example

super- diskverify :sd: <CR>

iRMX Disk Verify Utility, Vx.x

Copyright <year> Intel Corporation

All Rights Reserved

:sd:, outstanding connections to device have been deleted

*restorefnode 9,0B <CR> or rf 9,0B <CR>

restore fnode 9? Y <CR>

restored fnode number: 9

restore fnode 0A? Y <CR>

restored fnode number: 0A

restore fnode 0B? Y <CR>

restored fnode number: 0B

*

restorefnode (rf) DVU command

490 Appendix B Using Diskverify in Interactive Mode

Error Messages
argument error

The required argument was not supplied when the command was entered.

no save area was reserved when volume was formatted
To support fnode backup, use the backup command to save the data on the volume,
reformat the volume using the reserve option of the format command, and then
restore the volume data.

not a named disk
The volume specified when the DVU was invoked is a physical volume, not a named
volume.

<fnode num>, fnode out of range
The fnode number specified is not in the range of 0 to (maximum fnodes - 1).

allocation bit not set for saved fnode

restore fnode <fnode num>?
The fnode you specified has not been backed up in the r?save file. If you respond to
the query with a Y or y, the data in the file associated with the original fnode will be
lost.

See also: Caution, restorefnode command

DVU command restorevolumelabel (rvl)

Command Reference Appendix B 491

restorevolumelabel
Copies the duplicate volume label to the volume label on track 0.

Syntax

rvl|restorevolumelabel

Output

Volume label restored

Additional Information

Use restorevolumelabel to rebuild a damaged volume label, thereby re-establishing
links to data that would otherwise be lost.

The duplicate volume label must have been constructed when the volume was
formatted, by using the reserve option of the format command. The volume label
is automatically copied to the end of the r?save file at this time. Because the contents
of the volume label do not change, no other volume label backup is required.

If a duplicate volume label has been reserved on a volume, the DVU can access that
volume as a named volume even if the volume label is damaged. When the original
volume label is corrupted, the DVU attempts to use the duplicate volume label. If the
backup label is used, a DUPLICATE VOLUME LABEL USED message appears when
the utility is invoked.

If the duplicate volume label was not reserved when the volume was formatted,
restorevolumelabel will return an error message.

Example

super- diskverify :sd: <CR>

iRMX Disk Verify Utility, Vx.x

Copyright <year> Intel Corporation

All Rights Reserved

:sd:, outstanding connections to device have been deleted

DUPLICATE VOLUME LABEL USED

*restorevolumelabel <CR> or rvl <CR>

volume label restored

*

restorevolumelabel (rvl) DVU command

492 Appendix B Using Diskverify in Interactive Mode

Error Messages
argument error

This command does not accept an argument, but one was supplied when the
command was entered.

no save area was reserved when volume was formatted
To support volume label backup, use the backup command to save the data on the
volume, reformat the volume using the reserve option of the format command, and
then restore the volume data.

not a named disk
The volume specified when the DVU was invoked is a physical volume, not a named
volume.

DVU Command save

Command Reference Appendix B 493

save
Writes the reconstructed free fnodes bit map, volume free space bit map, and the bad
blocks bit map to the volume being verified.

Syntax

save

Output

save fnode map?

If you want to write the reconstructed free fnodes map to the volume, enter Y, y, or
YES. Otherwise, enter any other character or a <CR>. If you enter Y, save writes the
fnode map to the volume and displays:

free fnode map saved

In any case, save next displays this message:

save space map?

If you want to write the reconstructed free space map to the volume, enter Y.
Otherwise, enter any other character or a <CR>. If you enter Y, save writes the space
map to the volume and displays:

free space map saved

Save displays this message if the bad blocks map is reconstructed:

save bad block map?

If you want to write the reconstructed bad blocks map to the volume, enter Y.
Otherwise, enter any other character or a <CR>. If you enter Y, save writes the bad
blocks map to the volume and displays:

bad block map saved

Additional Information

The save command takes the free fnodes map, the volume free space map, and the
bad block map created during the verify operation and writes them to the volume,
replacing the maps that currently exist. The maps were originally created with the
named2 and physical options of the verify command.

See also: verify command, in this appendix

save DVU command

494 Appendix B Using Diskverify in Interactive Mode

Example

This example illustrates the format of the save command after you use verify with
the named or named2 option.

*VERIFY NAMED2 <CR>

'NAMED2' VERIFICATION

.

.

.

BIT MAPS O.K.

*SAVE <CR>

save fnode map? y <CR>

free fnode map saved

save space map? y <CR>

free space map saved

*

Error Message
nothing to save

No bit map was constructed with the verify command prior to invoking save.

DVU command substitutebyte (s or sb)

Command Reference Appendix B 495

substitutebyte
Interactively changes the contents of the working buffer, in byte format.

Syntax

s|sb|substitutebyte [offset]

Parameter
offset

Number of the first byte, relative to the start of the working buffer, that you want to
change. This number can range from 0 to (block size - 1), where block size is the
size of a volume block and thus the size of the working buffer. If you omit this
parameter, the command assumes a value of 0.

Output

Substitutebyte displays the specified byte and waits for you to enter a new value:

<offset>: val -

Where:

<offset> is the number of the byte, relative to the start of the buffer.

val is the current value of the byte.

At this point, you can enter one of these:

<CR> alone Substitutebyte leaves the current value as is, displays the
next byte in the buffer, and waits for further input. If you
enter a <CR> when you are at the last byte of the buffer,
substitutebyte displays the first byte of the buffer.

A value and <CR> Substitutebyte substitutes the new value for the current
byte. If the value you enter requires more than one byte of
storage, substitutebyte uses only the low-order byte of the
value. It then displays the next byte in the buffer and waits
for further input.

A value followed by a
period (.) and <CR>

Substitutebyte substitutes the new value for the current
byte. It then exits from the command and gives the asterisk
(*) prompt, enabling you to enter any diskverify command.

substitutebyte (s or sb) DVU command

496 Appendix B Using Diskverify in Interactive Mode

A period (.) and <CR> This exits the substitutebyte command and gives the
asterisk (*) prompt, enabling you to enter any diskverify
command.

Additional Information

Use substitutebyte to consecutively step through the working buffer and change
whatever bytes are appropriate. When you finish changing the buffer, enter a period
(.) followed by a <CR> to exit the command.

The substitutebyte command changes only the values in the working buffer. To
make the changes in the volume, enter the write command to write the working
buffer back to the volume.

You can abort this command by typing <Ctrl-C>.

Example

This example changes several bytes in two portions of the working buffer. Two
substitutebyte commands are used.

*substitutebyte<CR>

0000: A0 - 00<CR>

0001: 80 - <CR>

0002: E5 - <CR>

0003: FF - 31<CR>

0004: FF - .<CR>

*substitutebyte 40<CR>

0040: 00 - E6<CR>

0041: 00 - E6.<CR>

*

Error Messages
argument error

A nonnumeric character was specified in the offset parameter.

<offsetnum>, invalid offset
An offset value larger than the number of bytes in the block was specified.

DVU command substituteword (sw)

Command Reference Appendix B 497

substituteword
Is identical to substitutebyte, except that it displays the working buffer in word
format, and substitutes word values in the buffer.

Syntax

sw|substituteword [offset]

Example

This example changes several bytes in two areas of the working buffer. Two
substituteword commands are used. In the first command the words begin on even
addresses, and in the second command, they begin on odd addresses.

*substituteword<CR>

0000: A0B0 - 0000<CR>

0002: 8070 - <CR>

0004: E511 - <CR>

0006: FFFF - 3111<CR>

0008: FFFF - .<CR>

*substituteword 35<CR>

0035: 0000 - E6FF<CR>

0037: 0000 - E6AB.<CR>

*

verify (v) DVU command

498 Appendix B Using Diskverify in Interactive Mode

verify
Checks physical and named volumes to ensure that the volumes contain valid file
structures and data areas.

Syntax

v|verify [[named1|named|all] [,list]] [named2|physical]

Parameters

named1 or n1

Checks named volumes to ensure that the information recorded in the fnodes is
consistent and matches the information obtained from the directories themselves.
Verify performs these operations during a named1 verification:

• Checks fnode numbers in the directories to see if they correspond to allocated
fnodes

• Checks the parent fnode numbers recorded in the fnodes to see if they match the
information recorded in the directories

• Checks the fnodes against the files to determine if the fnodes specify the proper
file type

• Checks the pointer(n) structures of long files to see if the indirect blocks
accurately reflect the number of blocks used by the file

• Checks each fnode to see if the total size, total blks, and this size

fields are consistent

• Checks the bad blocks file to see if the blocks in the file correspond to the blocks
marked as bad on the volume

• Checks the checksum of each fnode

named2 or n2
Checks named volumes to ensure that the information recorded in the free fnodes
map and the volume free space map matches the actual files and fnodes. Verify
performs these operations during a named2 verification:

• Creates a free fnodes map by examining every directory in the volume. It then
compares that free fnodes map with the one already on the volume.

• Creates a free space map by examining the information in the fnodes. It then
compares that free space map with the one already on the volume.

DVU command verify (v)

Command Reference Appendix B 499

• Checks to see if the block numbers recorded in the fnodes and the indirect blocks
actually exist.

• Checks to see if two or more files use the same volume block. If so, it lists the
files referring to each block.

• Checks the volume free space map for any bad blocks that are marked as free.

• Checks to see if two or more directories reference the same fnode. If so, it lists
the directories referring to each fnode.

named or n
Performs both the named1 and named2 operations on a named volume. If you
specify the verify command with no option, named is the default.

physical
Reads all blocks on the volume and checks for I/O errors. This parameter applies to
both named and physical volumes. Verify also creates a bad blocks map by
examining every block on the volume.

all Performs all operations appropriate to the volume. For named volumes, performs
both the named and physical operations. For physical volumes, performs only the
physical operations.

list When you specify this option, the file information shown in Named1 Output below is
displayed for every file on the volume, even if the file contains no errors. You can
use this option with all parameters that either explicitly or implicitly specify the
named1 parameter.

Output

Verify produces a different kind of output for each of the named1, named2, and
physical options. The named and all options produce combinations of these three
kinds of output.

Named1 Output

Named1 used without the list option:

DEVICE NAME = <devname> : DEVICE SIZE = <devsize> : BLOCK SIZE = <blksize>

'NAMED1' VERIFICATION

FILE=(<filename>, <fnodenum>): LEVEL=<lev>: PARENT=<parnt>:

TYPE=<typ>

<error messages>

verify (v) DVU command

500 Appendix B Using Diskverify in Interactive Mode

FILE=(<filename>, <fnodenum>): LEVEL=<lev>: PARENT=<parnt>: TYPE=<typ>

<error messages>

FILE=(<filename>, <fnodenum>): LEVEL=<lev>: PARENT=<parnt>:

TYPE=<typ>

<error messages>

Where:

<devname> Physical name of the device, as specified in the attachdevice command.

<devsize> Hexadecimal size of the volume, in bytes.

<blksize> Hexadecimal volume granularity. This number is the size of a volume
block.

<filename>
Name of the file (1 to 14 characters).

<fnodenum>
Hexadecimal number of the file's fnode.

<lev> Hexadecimal level of the file in the file hierarchy. The root directory of
the volume is the only level 0 file. Files contained in the root directory
are level 1 files. Files contained in level 1 directories are level 2 files.
This numbering continues for all levels of files in the volume.

<parnt> Fnode number of the directory that contains this file, in hexadecimal.

<typ> Type of file:

Type Meaning
DATA data files
DIR directory files
SMAP volume free space map
FMAP free fnodes map
BMAP bad blocks map
VLAB volume label file

If verify cannot ascertain that the file is a directory or data file, it
displays the characters **** in this field.

<error messages>
Messages that indicate the errors associated with the previously-listed
file. The possible error messages are listed later in this section.

DVU command verify (v)

Command Reference Appendix B 501

As shown above, the named1 option (without the list option) displays information
about each file that is in error. If you use the list option with the named1 option,
the file information above is displayed for every file, even if the file contains no
errors. The named1 display also contains error messages that immediately follow the
list of the affected files.

Named2 Output

If verify detects an error during named2 verification, it displays one or more error
messages in place of the BIT MAPS O.K. message.

DEVICE NAME = <devname> : DEVICE SIZE = <devsize> : BLK SIZE = <blksze>

'NAMED2' VERIFICATION

BIT MAPS O.K.

The fields in the named2 output are exactly the same as the corresponding fields in
named1 output.

Physical Output

DEVICE NAME = <devname> : DEVICE SIZE = <devsize> : BLOCK SIZE =

<blksize>

'PHYSICAL' VERIFICATION

NO ERRORS

The fields in physical output are exactly the same as the corresponding fields in
named1 output.

If verify detects an error during physical verification, it displays this message in
place of the NO ERRORS message:

<blocknum>, error

Named and All Output

If you specify named verification, verify displays both the named1 and named2

output. If you specify the all verification for a named volume, verify displays the

verify (v) DVU command

502 Appendix B Using Diskverify in Interactive Mode

named1, named2, and physical output. If you specify the all verification for a
physical volume, verify displays the physical output.

DVU command verify (v)

Command Reference Appendix B 503

Additional Information

Verify can perform three kinds of verification: named1, named2, and physical.
Named1 and named2 verifications check the file structures of named volumes. They
do not apply to physical volumes. A physical verification checks each data block
of the volume for I/O errors, and applies to both named and physical volumes.

As part of the named2 verification, verify creates a new free fnodes map and a new
volume free space map. To create the free fnodes map, it examines every directory
on the volume to determine which fnodes represent actual files. To create the volume
free space map, it examines the pointer(n) fields of the fnodes to determine which
volume blocks the files use. It compares these with the corresponding maps on the
volume. You can use the save command to write the maps produced during named2

verification to the volume, overwriting the maps on the volume.

When you perform a physical verification on a named volume, if the volume has a
bad blocks file, verify also creates its own bad blocks map. It does this by examining
every block on the volume, not by copying the maps that exist on the volume. Verify
then compares the newly created maps with the maps that exist on the volume. If a
discrepancy exists, verify displays a message indicating this. You can use the save
command to write the bad blocks map produced during physical verification to the
volume; this destroys the bad blocks map already on the volume.

You can abort this command by typing <Ctrl-C>.

Example

This command performs both named and physical verification on a named volume:

*verify ALL <CR>

DEVICE NAME = F1 : DEVICE SIZE = 0003E900 : BLOCK SIZE = 0080

'named1' VERIFICATION

'named2' VERIFICATION

BIT MAPS O.K.

'physical' VERIFICATION

NO ERRORS

*

Error Messages

Four kinds of error messages can occur: as a result of entering the verify command,
or from the named1, named2, or physical error messages.

verify (v) DVU command

504 Appendix B Using Diskverify in Interactive Mode

Verify Command Error Messages

argument error
The parameter specified is not a valid verify parameter.

Named1 Error Messages

These messages can appear in a named1 display, immediately after the file to which
they refer:

<blocknum 1 - blocknum n>, block bad
The block numbers displayed in this message are marked as bad.

<blocknum 1 - blocknum n>, invalid block number recorded in the
fnode/indirect block
One of the pointer(n) fields in the fnode specifies block numbers larger than the
largest block number in the volume.

directory stack overflow
A directory on the volume lists itself or one of the parent directories in its pathname.
Thus when the utility searches through the directory tree it continually loops through
a portion of the tree, overflowing an internal buffer area. Performing named2

verification may indicate the cause of this problem.

file size inconsistent

total_size = <totsize> :this_size = <thsize> :data blocks = <blks>
The total size, this size, and total blks fields of the fnode are
inconsistent.

<filetype>, illegal file type
The file type of a user file, as recorded in the type field of the fnode, is not valid.
The valid file types and their descriptions are:

File Type NumberDescription
smap 1 volume free space map
fmap 2 free fnodes map
bmap 4 bad blocks map
dir 6 directory
data 8 data
vlab 9 volume label file

DVU command verify (v)

Command Reference Appendix B 505

<fnodenum>, allocation status bit in this fnode not set
The file is listed in a directory but the flags field of its fnode indicates that fnode is
free. The free fnodes map may or may not list the fnode as allocated.

<fnodenum>, fnode out of range
The fnode number is larger than the largest fnode number in the fnode file.

<fnodenum>, parent fnode number does not match
The file represented by fnodenum is contained within a directory whose fnode
number does not match the parent field of the file.

invalid blocknum recorded in the fnode/indirect block
One of the pointers within the fnode or within the indirect block specifies a block
number that is larger than the largest block number in the volume.

insufficient memory to create directory stack
There is not enough dynamic memory available in the system for the utility to
perform the verification.

sum of the blks in the indirect block does not match block in the
fnode
The file is a long file, and the number of blocks listed in a pointer(n) field of the
fnode does not agree with the number of blocks listed in the indirect block.

total-blocks does not reflect the data-blocks correctly
The total blks field of the fnode and the number of blocks recorded in the
pointer(n) fields are inconsistent.

Bad Checksum, checksum is : <number>

Checksum should be : <number>
The checksum recorded in the fnode does not match the checksum calculated by
diskverify.

Named2 Error Messages

These messages can appear in a named2 display:

<blocknum1 - blocknum2>, bad block not allocated
The volume free space map indicates that the blocks are free, but they are marked as
bad in the bad blocks file.

<blocknum>, block allocated but not referenced
The volume free space map lists the specified volume block as allocated, but no
fnode specifies the block as part of a file.

<blocknum>, block referenced but not allocated
An fnode indicates that the specified volume block is part of a file, but the volume
free space map lists the block as free.

verify (v) DVU command

506 Appendix B Using Diskverify in Interactive Mode

directory stack overflow
A directory on the volume lists itself or one of the parent directories in its pathname.
Thus when the utility searches through the directory tree it continually loops through
a portion of the tree, overflowing an internal buffer area. In this case, performing
named2 verification may indicate the cause of this problem. The Multiple
reference message (explained below) may help you find the cause of this problem.

Fnodes map indicates fnodes > max_fnode
The free fnodes map indicates that there are a greater number of unallocated fnodes
than the maximum number of fnodes in the volume.

<fnodenum>, fnode-map bit marked allocated but not referenced
The free fnodes map lists the specified fnode as allocated, but no directory contains a
file with the fnode number.

<fnodenum>, fnode referenced but fnode-map bit marked free
The specified fnode number is listed in a directory, but the free fnodes map lists the
fnode as free.

Free space map indicates Volume block > max_volume_block
The free space map indicates that there are a greater number of unallocated blocks
than the maximum number of blocks in the volume.

insufficient memory to create directory stack
Not enough dynamic memory is available in the system for the utility to perform the
verification.

insufficient memory to create fnode and space maps
During a named2 verification, the utility tried to create a free fnodes map and a
volume free space map, but did not have enough dynamic memory available in the
system.

Multiple reference to fnode <fnodenum>

Path name : <full path name>

referring fnodes:

<fnodenum> Path name: <full path name>

<fnodenum> Path name: <full path name>
The directories on the volume list more than one file associated with this fnode
number.

DVU command verify (v)

Command Reference Appendix B 507

Multiple reference to block <blocknum>

referring fnodes:

<fnodenum> Path name: <full path name>

<fnodenum> Path name: <full path name>
More than one fnode specifies this block as part of a file.

Physical Error Messages

<blocknum>, error
An I/O error occurred when verify tried to access the specified volume block. The
volume probably has a physical defect.

insufficient memory to create bad blocks map
During a physical verification, the utility tried to create a bad blocks map, but did
not have enough dynamic memory available in the system.

Miscellaneous Error Messages

These messages indicate internal errors in the Disk Verification Utility. Under
normal conditions these messages should never appear. If these (or other
undocumented messages) do appear during a named1 or named2 verification, exit the
DVU and re-enter the diskverify command:

directory stack empty

directory stack error

directory stack underflow

write (w) DVU command

508 Appendix B Using Diskverify in Interactive Mode

write
Writes the contents of the working buffer to the volume.

Syntax

w|write [blocknum]

Parameter
blocknum

Number of the volume block to which the command writes the working buffer. This
number can range from 0 through (max blocks-1), where max blocks is the maximum
number of blocks in the volume. If you omit this parameter, write writes the buffer
back to the block most recently accessed.

Output

write to block <blocknum>?

Where:

<blocknum>
is the number of the volume block to which write intends to write the
working buffer.

If you respond by entering Y or any character string beginning with Y or y, write
copies the working buffer to the specified block on the volume and displays:

written to block number:<blocknum>

Any other response aborts the write process.

DVU command write (w)

Command Reference Appendix B 509

Additional Information

The write command is used in conjunction with the read, displaybyte, displayword,
substitutebyte, and substituteword commands to modify information on the
volume. Initially you use read to copy a volume block from the volume to a working
buffer. Then you can use displaybyte and displayword to view the buffer and
substitutebyte and substituteword to change the buffer. Finally, you can use write
to write the modified buffer back to the volume. By default, write copies the buffer
to the block most recently accessed by a read or write command.

A write command does not destroy the data in the working buffer. The data remains
the same until the next substitutebyte, substituteword, or read command modifies
the buffer.

Example

This command copies the working buffer to the block from which it was read:

*write <CR>

write 4B? y <CR>

write to block 4B? y

written to block number: 4B

*

Error Messages
argument error

A syntax error was made or nonnumeric characters were specified in the blocknum
parameter.

<blocknum>, block out of range
The block number specified was larger than the largest block number in the volume.

FFFFFFFF, block out of range
No blocknum was specified and no previous read request was executed on this
volume.

■■ ■■ ■■

write (w) DVU command

510 Appendix B Using Diskverify in Interactive Mode

Command Reference Appendix C 511

Structure of a Named Volume C
Introduction

This appendix describes the structure of an iRMX volume that contains named files.
It is provided as reference information to help you interpret output from the
commands (especially diskverify, format, and restore) or to help you create your
own formatting utility programs. It covers the structure of directory files, the
concepts of long and short files, and also includes information on the:

• ISO Volume Label

• iRMX Volume Label, including partition table

• MSA Bootloader Location Table

• Fnode file

• Volume free space map file

• Free fnodes map file

• Bad blocks map file

• Root directory

The blocks reserved for the Bootstrap Loader (in Figure C-1) are not discussed.
Bootstrap Loader blocks are automatically included on a new volume when you
format a volume with the format command.

See also: Bootstrap option, format command, Chapter 2

This appendix is for programmers with experience in reading and writing actual
volume information. It does not attempt to teach these functions.

512 Appendix C Structure of a Named Volume

Volume Structure
Figure C-1 illustrates the general structure of a named file volume.

Figure C-1. General Structure of Named Volumes

Volume Labels
Each iRMX named volume contains ISO (International Standardization
Organization) label information as well as iRMX label information and files. This
section describes the structure of ISO volume labels and iRMX volume labels, both
of which must be present on a named volume.

Command Reference Appendix C 513

ISO Volume Label
The ISO volume label is recorded in absolute byte positions 768 through 895 of the
volume (for example, sector 07 of a single-density diskette, or the middle of the
second logical sector for a uniform-format double-density diskette). This is the
structure of the volume label in PL/M notation:

DECLARE

iso_vol_label STRUCTURE(

label_id(3) BYTE,

reserved_a BYTE,

vol_name(6) BYTE,

vol_struc BYTE,

reserved_b(60) BYTE,

rec_side BYTE,

reserved_c(4) BYTE,

ileave(2) BYTE,

reserved_d BYTE,

iso_version BYTE,

reserved_e(48) BYTE);

This is the structure in C notation:

typedef struct {

UINT_8 label_id[3];

UINT_8 reserved_a;

UINT_8 vol_name[6];

UINT_8 vol_struc;

UINT_8 reserved_b[60];

UINT_8 rec_side;

UINT_8 reserved_c[4];

UINT_8 ileave[2];

UINT_8 reserved_d;

UINT_8 iso_version;

UINT_8 reserved_e[48];

} ISO_VOL_LABEL_STRUCT;

514 Appendix C Structure of a Named Volume

Where:

label_id(3)
Label identifier. For named file volumes, this field contains the ASCII
characters VOL.

reserved_a
Reserved field containing the ASCII character 1.

vol_name(6)
Volume name. This field can contain up to six printable ASCII
characters, left-justified and space-filled. A value of all spaces implies
that the volume name is recorded in the iRMX volume label (absolute
byte positions 384-393).

vol_struc For named file volumes, this field contains the ASCII character N,
indicating that this volume has a non-ISO file structure.

reserved_b(60)
Reserved field containing 60 bytes of ASCII spaces.

rec_side For named file volumes, this field contains the ASCII character 1 to
indicate that only one side of the volume is to be recorded.

reserved_c(4)
Reserved field containing four bytes of ASCII spaces.

ileave(2) Two ASCII digits indicating the interleave factor for the volume, in
decimal. ASCII digits consist of the numbers 0 through 9. When
formatting named volumes, you should set this field to the same
interleave factor that you use when physically formatting the volume.

reserved_d
Reserved field containing an ASCII space.

iso_version
For named file volumes, this field contains the ASCII character 1,
which indicates ISO version number one.

reserved_e(48)
Reserved field containing 48 ASCII spaces.

Command Reference Appendix C 515

iRMX Volume Label and Partition Table
The iRMX volume label is recorded in absolute byte positions 384 through 511 of the
volume (sector 04 of a single density diskette). If the disk is partitioned, the partition
table is written into this location as well.

This is the structure of the Named32 volume label in PL/M notation:

DECLARE rmx_volume_information STRUCTURE(

vol_name(10) BYTE,

flags BYTE,

file_driver BYTE,

vol_gran WORD_16,

vol_size WORD_32,

max_fnode WORD_16,

fnode_start WORD_32,

fnode_size WORD_16,

root_fnode WORD_16,

dev_gran WORD_16,

interleave WORD_16,

track_skew WORD_16,

system_id WORD_16,

system_name(12) BYTE,

device_special(8) BYTE,

vol_flags BYTE),

This is the structure of the Named48 volume label in PL/M notation:

DECLARE rmx_volume_information STRUCTURE(

vol_name(10) BYTE,

flags BYTE,

file_driver BYTE,

vol_gran WORD_16,

vol_size WORD_32,

max_fnode WORD_16,

fnode_start WORD_32,

fnode_size WORD_16,

root_fnode WORD_16,

dev_gran WORD_16,

interleave WORD_16,

track_skew WORD_16,

system_id WORD_16,

system_name(12) BYTE,

device_special(8) BYTE,

516 Appendix C Structure of a Named Volume

vol_flags BYTE),

directory_type BYTE ,

firmware_flag BYTE,

fnode_ptr_count WORD_16,

dir_entry_size WORD_32,

vol_size_hi WORD_32,

fnode_ofst_hi WORD_32,

max_fnodes_mid WORD_16,

max_fnodes_hi WORD_16;

This is the structure of the Named32 volume label in C notation:

typedef struct {

UINT_8 vol_name[10];

UINT_8 flags;

UINT_8 file_driver;

UINT_16 vol_gran;

UINT_32 vol_size;

UINT_16 max_fnode;

UINT_32 fnode_start;

UINT_16 fnode_size;

UINT_16 root_fnode;

UINT_16 dev_gran;

UINT_16 interleave;

UINT_16 track_skew;

UINT_16 system_id;

UINT_8 system_name[12];

UINT_8 device_special[8];

UINT_8 vol_flags;

} RMX_VOLUME_INFORMATION_STRUCT;

Command Reference Appendix C 517

This is the structure of the Named48 volume label in C notation:

typedef struct {

UINT_8 vol_name[10];

UINT_8 flags;

UINT_8 file_driver;

UINT_16 vol_gran;

UINT_32 vol_size;

UINT_16 max_fnode;

UINT_32 fnode_start;

UINT_16 fnode_size;

UINT_16 root_fnode;

UINT_16 dev_gran;

UINT_16 interleave;

UINT_16 track_skew;

UINT_16 system_id;

UINT_8 system_name[12];

UINT_8 device_special[8];

UINT_8 vol_flags;

UINT_8 directory_type;

UINT_8 firmware_flag;

UINT_16 fnode_ptr_count;

UINT_32 dir_entry_size;

UINT_32 vol_size_hi;

UINT_32 fnode_ofst_hi;

UINT_16 max_fnodes_mid;

UINT_16 max_fnodes_hi;

} RMX_VOLUME_INFORMATION_STRUCT;

Where:

vol_name(10)
Volume name in printable ASCII characters, left-justified and zero-
filled.

flags Byte that lists the device characteristics for automatic device
recognition. The individual bits in this byte indicate these
characteristics (bit 0 is rightmost bit):

Bit Meaning
7-5 Reserved
4 vf_format flag. This bit indicates the type of format on track

0. When set to one, it indicates that all tracks, including track
0, have the same format (Uniform format). When set to 0, it
indicates track 0 is formatted to be single density with
128-byte sectors (Standard format).

518 Appendix C Structure of a Named Volume

3 vf_mini flag. This bit indicates the size of the recording
media. When set to one, it indicates double density. When set
to 0, it indicates either quad density or an 8-inch diskette.

2 vf_sides flag. This bit indicates the number of recording sides
on the volume. When set to one, it indicates a double-sided
volume. When set to 0, it indicates a single-sided volume.

1 vf_density flag. This bit indicates the recording density of the
volume. When set to one, it indicates modified frequency
modulation (MFM) or double-density recording. When set to
0, it indicates frequency modulation (FM) or single-density
recording.

0 vf_auto flag. When set to one, this bit indicates that the flags
byte contains valid data for automatic device recognition.
When set to 0, it indicates that the remaining flags contain
meaningless data.

file_driver
Number of the file driver used with this volume. For named file
volumes, this field is set to four.

vol_gran Volume granularity, specified in bytes. This value must be a multiple
of the device granularity. It sets the size of a logical device block, also
called a volume block.

vol_size Size of the entire volume, in bytes.

max_fnode Number of fnodes in the fnode file.

See also: Fnodes, in this appendix

fnode_start
A 32-bit value that represents the number of the first byte in the fnode
file (byte 0 is the first byte of the volume).

fnode_size
Size of an fnode, in bytes.

root_fnode
Number of the fnode describing the root directory.

dev_gran Device granularity of all tracks except track 0 (which contains the
volume label). This field is important only when the system requires
automatic device recognition.

interleave
Block interleave factor for this volume. This value indicates the
physical distance, in blocks, between consecutively-numbered blocks on
the volume. A value of one indicates that consecutively-numbered

Command Reference Appendix C 519

blocks are adjacent. A value of 0 indicates an unknown or undefined
interleave factor.

track_skew
Offset, in bytes, between the first block on one track and the first block
on the next track. A value of 0 indicates that all tracks are identical.

system_id Numerical code identifying the OS that formatted the volume. These
codes are reserved for Intel OSs:

Operating System Code
iRMX 0–0Fh
iNDX 20h–2Fh

Currently, the OSs place a 0 in this field.

system_name(12)
Several pieces of information are in this field:

The leftmost eight bytes of this field contain the name of the OS that
formatted the volume, in printable ASCII characters, left-justified and
space-filled. Zeros (ASCII nulls) indicate that the OS is unknown.

The next byte is an ASCII character that identifies the program that
formatted the volume, usually F for the Human Interface format
command. If the formatting program is unable to provide this
information, it places an ASCII space in this field.

The Human Interface format command places characters in the last 3
bytes of this field based on the OS version. For iRMX III, the
characters are 03.

device_special(8)
Reserved for special device-specific information. When none exists,
this field must contain 0s. For example, if the device is a hard disk with
an SBC 214/215G controller, the iRMX OSs impose a structure on this
field and supply this information (PL/M notation):

SPECIAL STRUCTURE(

cylinders WORD_16,

fixed BYTE,

removable BYTE,

sectors BYTE,

sector_size WORD_16,

alternates BYTE);

This is the structure in C notation:

typedef struct {

UINT_16 cylinders;

520 Appendix C Structure of a Named Volume

UINT_8 fixed;

UINT_8 removable;

UINT_8 sectors;

UINT_16 sector_size;

UINT_8 alternates;

} SPECIAL_STRUCT;

Where:

cylinders Total number of cylinders on the disk drive.

fixed Number of heads on the fixed disk or Winchester disk.

removable Number of heads on the removable disk cartridge.

sectors Number of sectors in a track.

sector size
Sector size, in bytes.

alternates
Number of alternate cylinders or spare sectors on a track.

vol_flags Contains flags for general volume information, defined as:

Flag Bit Meaning
vf_integrity 0 The volume has been properly shut down.

1 Possible disk corruption (the volume was
attached, but was not subsequently detached).

directory_type
Specifies the directory type:

Linear TBD

Sorted TBD

firmware_flag
Reserved.

fnode_ptr_count
Specifies the number of pointers for each fnode.

dir_entry_size
Specifies the size of the directory.

vol_size_hi
Contains the upper 32 bits of the volume size.

fnode_ofst_hi
Contains the upper 32 bits of the location of the fnode file.

max_fnodes_mid
Specifies bits 32–47 of the maximum fnode number.

Command Reference Appendix C 521

max_fnodes_hi
Specifies bits 48–63 of the maximum fnode number.

Partition Table Structure

For an unpartitioned disk the remainder of the iRMX volume label (bytes 441
through 511) is reserved and must be set to 0.

A partitioned disk contains a partition table of 64 bytes beginning at byte 446 and
ending at byte 509. The partition table contains four contiguous 16-byte structures as
shown below in C notation:

typedef struct {

UINT_8 boot;

UINT_8 start_head;

UINT_16 start_cylinder_sector;

UINT_8 system;

UINT_8 end_head;

UINT_16 end_cylinder_sector;

UINT_32 first_partition_sector;

UINT_32 number_of_sectors;

} PARTITION_TABLE_STRUCT;

Where:

boot Specifies whether this is the active boot partition.

start_head
The beginning head of this partition.

start_cylinder_sector
The beginning cylinder of this partition.

system Specifies the OS type and whether this is a primary or extended
partition.

end_head The last head of this partition

end_cylinder_sector
The last cylinder of this partition.

first_partition_sector
The beginning sector number of this partition.

number_of_sectors
Number of sectors in this partition.

522 Appendix C Structure of a Named Volume

✏ Note
For more information on the partition table structure, refer to a
DOS technical reference; this is the same structure used for a DOS
partition table.

See also: Appendix F in this manual

Bootloader Location Table
The Bootloader Location Table (BOLT) describes the location of the Multibus II
System Architecture (MSA) second stage bootstrap loader, which is normally in the
file r?secondstage. The MSA first stage bootstrap loader requires the BOLT to read
and load the MSA second stage. The BOLT describes the location of the
r?secondstage file as a set of data blocks on the disk by listing the number of data
blocks and the byte offset and length of each block. The BOLT also contains other
information about the MSA second stage needed by the first stage.

The format command writes the BOLT structure to bytes 512 through 767 of a
named volume. This replaces the area marked uninitialized, reserved for future ISO
standardization in previous versions of the iRMX OSs.

The BOLT structure in PL/M is:

BOLT STRUCTURE(

reserved(4) WORD_32,

magic_word1 WORD_32,

magic_word2 WORD_32,

version WORD_16,

types WORD_16

data_size WORD_32,

num_entries WORD_32,

tbl_entry(num_entries) STRUCTURE(

byte_offset WORD_32,

length WORD_16));

Command Reference Appendix C 523

The BOLT structure in C:

typedef {

UINT_32 reserved[4];

UINT_32 magic_word1;

UINT_32 magic_word2;

UINT_16 version;

UINT_16 types;

UINT_32 data_size;

UINT_32 num_entries;

struct tbl_entry[num_entries]{

UINT_32 byte_offset;

UINT_16 length;

}}BOLT_ STRUCT

Where:

reserved(4)
Reserved for future use. Set to 0.

magic_word1
A value which defines a valid MSA second stage bootloader image.
This value is 0B00F10ADH.

magic_word2
Reserved for future use. Set to 0.

version The version of the BOLT structure. The BOLT structure listed here is
version 2.

types Defines the type of code and data segments used in the second stage file
to be bootloaded.

Bit Meaning
1 Indicates the type of data segment:

0 = Use16
1 = Use32

0 Indicates the type of code segment:
0 = Use16
1 = Use32

The format command sets these bits to 0 (Use16).

data_size The size of the data segment for the second stage bootstrap loader.

524 Appendix C Structure of a Named Volume

num_entries
The number of entries in the table describing the second stage location.

tbl_entry(num_entries)
A table containing byte_offset and length pairs which indicate
where the second stage is located on the media.

On disks larger than 4 Gbytes, this 32-bit value requires that the MSA
second stage be placed within the first 4 Gbytes of the volume. The
Format HI Command has been changed so that it will place the MSA
Second Stage immediately after the Volume Label on drives larger than
4 Gbytes. On drives less than 4 Gbytes, the Format Command will
continue to place the MSA Second Stage at the high (address) end of
the volume.

byte_offset The offset, in bytes, from the beginning of the media
to this part of the second stage bootstrap loader.

length The length of this part of the second stage bootstrap
loader.

Command Reference Appendix C 525

Initial Files
Any mechanism that formats iRMX named volumes must place seven files, with the
option of an eighth and ninth file, on the volume during the format process. These
files are:

File File Name
fnode file not accessible as a file
volume label file r?volumelabel
volume free space map file r?spacemap
free fnodes map file r?fnodemap
bad blocks file r?badblockmap
root directory not accessible as a file
space accounting file, not accessible as a file
Optionally, duplicate volume label file r?save
Optionally, MSA second stage file r?secondstage

The first of these files, the fnode file, contains information about all of the files on
the volume. The general structure of the fnode file is discussed first. Then all of the
files are discussed in terms of their fnode entries and their functions.

Fnode File
A data structure called a file descriptor node (fnode) describes each file in a named
file volume. All the fnodes for the entire volume are grouped together in a file called
the fnode file. When the I/O System accesses a file on a named volume, it examines
the iRMX volume label to determine the location of the fnode file, and then examines
the appropriate fnode to determine the actual location of the file.

See also: iRMX volume label, in this appendix

When a volume is formatted, the fnode file contains seven allocated fnodes and any
number of unallocated fnodes. The original number of unallocated fnodes depends
on the files parameter of the format command. These allocated fnodes represent
the fnode file, the volume label file, the volume free space map file, the free fnodes
map file, the bad blocks file, the root directory, and the space accounting file. The
size of the fnode file is determined by the number of fnodes that it contains. The
number of fnodes in the fnode file also determines the number of files that can be
created on the volume. The number of files is set when you format the storage
medium.

See also: Fnode file, volume label file, volume free space map file, free fnodes
map file, bad blocks file, root directory, and space accounting file, in
this appendix.

526 Appendix C Structure of a Named Volume

This the structure of an individual fnode in a Named32 file volume in PL/M notation:

DECLARE
fnode STRUCTURE (

flags WORD_16,
type BYTE,
gran BYTE,
owner WORD_16,
cr_time WORD_32,
access_time WORD_32,
mod_time WORD_32,
total_size WORD_32,
total_blks WORD_32,
pointr(40) BYTE,
this_size WORD_32,
reserved_a WORD_16,
chk_sum WORD_16,
id_count WORD_16,
acc(9) BYTE,
parent WORD_16,
aux(*) BYTE);

This the structure of an individual fnode in a Named48 file volume in PL/M notation:

DECLARE
fnode STRUCTURE (

flags WORD_16,
type BYTE,
gran BYTE,
owner WORD_16,
cr_time WORD_32,
access_time WORD_32,
mod_time WORD_32,
total_size WORD_32,
total_size_hi WORD_32,
total_blks WORD_32,
total_blks_hi WORD_32,
pointr(40) BYTE,
pointr[72] BYTE,
this_size WORD_32,
this_size_hi WORD_32,
reserved_a WORD_16,
chk_sum WORD_16,
id_count WORD_16,
acc(9) BYTE,
parent WORD_16,
aux(*) BYTE);

Command Reference Appendix C 527

This is the structure of an individual fnode in a Named32 file volume, in C:

typedef struct {
UINT_16 flags;
UINT_8 type;
UINT_8 gran;
UINT_16 owner;
UINT_32 cr_time;
UINT_32 access_time;
UINT_32 mod_time;
UINT_32 total_size;
UINT_32 total_blks;
UINT_8 pointr[40];
UINT_32 this_size;
UINT_16 reserved_a;
UINT_16 chk_sum;
UINT_16 id_count;
UINT_8 acc[9];
UINT_16 parent;
UINT_8 aux[2];/*adjust aux#

for application*/
} FNODE_STRUCT

This is the structure of an individual fnode in a Named48 file volume, in C:

typedef struct {
UINT_16 flags;
UINT_8 type;
UINT_8 gran;
UINT_16 owner;
UINT_32 cr_time;
UINT_32 access_time;
UINT_32 mod_time;
UINT_32 total_size;
UINT_32 total_size_hi;
UINT_32 total_blks;
UINT_32 total_blks_hi;
UINT_8 pointr[40];
UINT_8 pointr[72];
UINT_32 this_size;
UINT_32 this_size_hi;
UINT_16 reserved_a;
UINT_16 chk_sum;
UINT_16 id_count;
UINT_8 acc[9];
UINT_16 parent;
UINT_8 aux[2];/*adjust aux#

for application*/
} FNODE_STRUCT

528 Appendix C Structure of a Named Volume

Where:

flags A word that defines a set of attributes for the file. The individual bits in
this word indicate these attributes (bit 0 is the rightmost bit):

Bit Meaning
15-7 Reserved bits, always set to 0.
6 Deletion attribute. This bit is set to one to indicate that the

file is a temporary file or that the file will be deleted (the
deletion may be postponed because additional connections
exist to the file). Initially, when the volume is formatted,
this bit is set to 0 in each fnode.

5 Modification attribute. Whenever a file is modified, this
bit is set to one. Initially, when a volume is formatted,
this bit is set to 0 in each fnode.

3-4 Reserved bits, always set to 0.
2 Reserved bit, always set to one.
1 Long or short file attribute. This bit describes how the ptr

fields of the fnode are interpreted. If set to 0, indicating a
short file, the ptr fields identify the actual data blocks of
the file. If set to one, indicating a long file, the ptr fields
identify indirect blocks. When formatting a volume, this
bit is always set to 0, since the initial files on the volume
are short files.
See also: Indirect blocks, in this appendix

0 Allocation status. If set to one, this fnode describes an
actual file. If set to 0, this fnode is available for
allocation. When formatting a volume, this bit is set to
one in the seven allocated fnodes. In other fnodes, it is set
to 0.

Command Reference Appendix C 529

type Type of file. These are acceptable types:

Mnemonic Value Type
ft_fnode 0 fnode file
ft_volmap 1 volume free space map
ft_fnodemap 2 free fnodes map
ft_account 3 space accounting file
ft_badblock 4 device bad blocks file
ft_dir 6 directory file
ft_data 8 data file
ft_vlabel 9 volume label file

During system operation, only the I/O System can access file types
other than ft_data and ft_dir.

See also: File types, in this appendix

gran File granularity, specified in multiples of the volume granularity. The
default value is 1. This value can be set to any multiple of the volume
granularity.

owner User ID of the owner of the file. For the files initially present on the
volume, this parameter is important only for the root directory. For the
root directory, this parameter should specify the user World (FFFFH).
The I/O System does not examine this parameter for the other files
(fnode file, volume free space map file, free fnodes map file, bad blocks
file, volume label), so a value of 0 can be specified.

cr_time Time and date that the file was created, expressed as a 32-bit value.
This value indicates the number of seconds since a fixed, user-
determined point in time. By convention, this point in time is midnight
(00:00), January 1, 1978. For the files initially present on the volume,
this parameter is important only for the root directory. A 0 can be
specified for the other files (fnode file, volume free space map file, free
fnodes map file, bad blocks file, volume label.)

access_time
Time and date of the last file access (read or write), expressed as a 32-
bit value. For the files initially present on the volume, this parameter is
important only for the root directory.

mod_time Time and date of the last file modification, expressed as a 32-bit value.
For the files initially present on the volume, this parameter is important
only for the root directory.

total_size
In Named32 file volumes, this field indicates the total size, in bytes, of

530 Appendix C Structure of a Named Volume

the actual data in the file. In Named48 file volumes, this field indicates
the low 32 bits of total data.

total_size_hi
Available only in Named48 file volumes, this field indicates the upper
16 bits of total data.

total_blks
In Named32 file volumes, this field indicates the total number of
volume blocks used by this file, including indirect block overhead. In
Named48 file volumes, this field indicates the low 32 bits of total
blocks used by the file.

A volume block is a block of data whose size is the same as the volume
granularity. All memory in the volume is divided into volume blocks,
which are numbered sequentially, starting with the block containing the
smallest addresses (block 0).

See also: Indirect blocks, in this appendix

total_blks_hi
Available only in Named48 file volumes, this field indicates the upper
16 bits of total blocks used by the file.

pointr(40) A group of bytes on which this structure is imposed (in PL/M):

PTR(8) STRUCTURE(

NUM_BLOCKS WORD_16,

BLK_PTR(3) BYTE);

The same structure in C:

typedef struct {

UINT_16 num_blocks;

UINT_8 blk_ptr[3];

} ptr_struct[8];

Command Reference Appendix C 531

This structure identifies the data blocks of the file. These data blocks
may be scattered throughout the volume, but together they make up a
complete file. If the file is a short file (bit 1 of the flags field is set to
0), each ptr structure identifies an actual data block. In this case, the
fields of the ptr structure contain:

num_blocks Number of volume blocks in the data block.

blk_ptr(3) A 24-bit value specifying the number of the first
volume block in the data block. Volume blocks are
numbered sequentially, starting with the block with
the smallest address (block 0). The bytes in the
blk_ptr array range from least significant (blk_ptr(0))
to most significant (blk_ptr(2)).

If the file is a long file (bit 1 of the flags field is set to one), each ptr

structure identifies an indirect block (possibly consisting of more than
one contiguous volume block), which in turn identifies the data blocks
of the file. In this case, the fields of the ptr structure contain:

num_blocks Number of volume blocks pointed to by the indirect
block.

blk_ptr(3) A 24-bit volume block number of the indirect block.

See also: Indirect blocks, in this appendix.

pointr(72)
A group of bytes on which this structure is imposed (in PL/M):

PTR(8) STRUCTURE(

num_blocks unsigned long,

blk_ptr[5] unsigned char;

The same structure in C:

typedef struct PTR_STRUCT {

unsigned long num_blocks;

unsigned char blk_ptr[5];

} ptr_struct[8];

532 Appendix C Structure of a Named Volume

This structure identifies the data blocks of the file. These data blocks
may be scattered throughout the volume, but together they make up a
complete file. If the file is a short file (bit 1 of the flags field is set to
0), each ptr structure identifies an actual data block. In this case, the
fields of the ptr structure contain:

num_blocks Number of volume blocks in the data block.

blk_ptr(5) A 24-bit value specifying the number of the first
volume block in the data block. Volume blocks are
numbered sequentially, starting with the block with
the smallest address (block 0). The bytes in the
blk_ptr array range from least significant (blk_ptr(0))
to most significant (blk_ptr(2)).

Command Reference Appendix C 533

If the file is a long file (bit 1 of the flags field is set to one), each ptr

structure identifies an indirect block (possibly consisting of more than
one contiguous volume block), which in turn identifies the data blocks
of the file. In this case, the fields of the ptr structure contain:

num_blocks Number of volume blocks pointed to by the indirect
block.

blk_ptr(5) A 24-bit volume block number of the indirect block.

See also: Indirect blocks, in this appendix.

this_size In Named32 file volumes, this field indicates the size, in bytes, of the
total data space allocated to the file. In Named48 file volumes, this field
indicates the low 32 bits of total data space used by this file.

This figure does not include space used for indirect blocks, but it does
include any data space allocated to the file, regardless of whether the
file fills that allocated space.

this_size_hi
Available only in Named48 file volumes, this field indicates the upper
16 bits of total data space used by this file.

reserved_a
Reserved field, unsigend long, set to 0.

chk_sum Contains a checksum value for the fnode.

Id_count Number of access-ID pairs declared in the acc(9) field.

acc(9) A group of bytes on which this structure is imposed (in PL/M):

ACCESSOR(3) STRUCTURE(

access BYTE,

id WORD_16);

The same structure in C:

typedef struct {

UINT_8 access;

UINT_16 id;

}ACCESSOR_STRUCT[3];

534 Appendix C Structure of a Named Volume

This structure contains the access-ID pairs that define the access rights
for the users of the file. By convention, when a file is created, the
owner's ID is inserted in accessor(0), along with the code for the
access rights. The fields of the accessor structure contain:

access Encoded access rights for the file. The settings of the
individual bits in this field grant (if set to 1) or deny (if set
to 0) permission for the corresponding operation. Bit 0 is
the rightmost bit.

Bit Data File Operation Directory Operation
7-4 reserved (must be 0)
3 update change entry
2 append add entry
1 read list
0 delete delete

id ID of the user who gains the corresponding access
permission.

parent Fnode number of directory file that lists this file. For files initially
present on the volume, this parameter is important only for the root
directory. For the root directory, this parameter should specify the
number of the root directory's own fnode. For other files (fnode file,
volume free space map file, free fnodes map file, bad blocks file,
volume label) the I/O System does not examine this field.

aux(*) Auxiliary bytes associated with the file. The named file driver does not
interpret this field, but the user can access it by making
get_extension_data and set_extension_data system calls. The size of
this field is determined by the size of the fnode, specified in the iRMX
volume label. If you use the format command or create your own
utility to format a volume, you can make this field as large as you wish;
however, a larger aux field implies slower file access.

Certain fnodes designate special files that appear on the volume. These sections
discuss these fnodes and the associated files.

Command Reference Appendix C 535

Fnode 0: Fnode File
The first fnode structure in the fnode file describes the fnode file itself. This file
contains all the fnode structures for the entire volume. It must reside in contiguous
locations in the volume. The fields of fnode 0 must be set as:

• The bits in the flags field are set to (bit 0 is the rightmost bit):

Bit Value Description
15-7 0 Reserved bits

6 0 File will not be deleted

5 0 Initial status is unmodified

3-4 0 Reserved bits

2 1 Primary fnode

1 0 Short file

0 1 Allocated file

• The type field is set to ft_fnode.

• The gran field is set to 1.

• The owner field is set to the ID of the user who formatted it.

• The cr_time, access_time, and mod_time fields are set to the time the
system was formatted.

• Since the iRMX volume label specifies the size of an individual fnode structure
and the number of fnodes in the fnode file, the value specified in the
total_size field of fnode 0 must equal the product of the values in the
fnode_size and max_fnode fields of the iRMX volume label.

• The total_blocks field specifies enough volume blocks to account for the
memory listed in the total_size field. The product of the value in the
total_blocks field and the volume granularity equals the value of the
this_size field, since the fnode file is a short file.

• Since the fnode file must reside in contiguous locations in the volume, only one
ptr structure describes the location of the file. The value in the num_blocks
field of that ptr structure equals the value in the total_blocks field. The
blk_ptr field indicates the number of the first block of the fnode file.

• The id_count field is set to 1.

536 Appendix C Structure of a Named Volume

Fnode 1: Volume Free Space Map File
The second fnode, fnode 1, describes the volume free space map file. The type field
for fnode 1 is set to ft_volmap to designate the file as such.

The volume free space map file keeps track of all the space on the volume. It is a bit
map of the volume, in which each bit represents one volume block (a block of space
whose size is the same as the volume granularity). If a bit in the map is set to one,
the corresponding volume block is free to be allocated to any file. If a bit in the map
is set to 0, the corresponding volume block is already allocated to a file. The bits of
the map correspond to volume blocks such that bit n of byte m represents volume
block (8 * m) + n. The bits in the remaining space allocated to the map file (those
that do not correspond to actual blocks of memory) must be set to 0.

When the volume is formatted, the volume free space map file indicates that the first
3328 bytes of the volume (the label and bootstrap information) plus any files initially
placed on the volume (fnode file, volume free space map file, free fnodes map file,
bad blocks file) are allocated. Space is also reserved for the r?save and
r?secondstage files if they are selected during formatting.

Fnode 2: Free Fnodes Map File
The third fnode, fnode 2, describes the free fnodes map file. The type field of fnode
2 is set to ft_fnodemap to designate the file as such.

The free fnodes map file keeps track of all the fnodes in the fnodes file. It is a bit
map in which each bit represents an fnode. If a bit in the map is set to one, the
corresponding fnode is not in use and does not represent an actual file. If a bit in the
map is set to 0, the corresponding fnode already describes an existing file. The bits in
the map correspond to fnodes such that bit n of byte m represents fnode number (8 *

m) + n. The bits in the remaining space allocated to the map file (those that do not
correspond to actual fnode structures) must be set to 0.

When the volume is formatted, the free fnodes map file indicates that fnodes 0, 1, 2,
3, 4, 5, and 6 are in use. If the reserve option is selected when the volume is
formatted, the map file also indicates fnode 7 is in use. If other files are initially
placed on the volume, the free fnodes map file must be set to indicate this as well.

Fnode 3: Accounting File
Fnode 3 is a placeholder. When a volume is formatted, fnode 3 is set up representing
a file of type ft_account. The fnode is set up as allocated, and of the indicated
type, but it does not assign any actual space for the file.

Command Reference Appendix C 537

Fnode 4: Bad Blocks Map File
The fifth fnode, fnode 4, describes a file containing a map of all the bad blocks on the
volume. The type field of fnode 4 is set to ft_badblock to indicate this.

The bad block map file keeps track of all the bad blocks on the volume. It is a bit
map of the volume, in which each bit represents one volume block (a block of space
whose size is the same as the volume granularity). If a bit in the map is set to 0, the
corresponding volume block has no bad blocks and may be allocated to any file. If a
bit in the map is set to one, the corresponding volume block is bad. If a block is
marked bad, it must also be marked allocated in the volume free space file. The bits
of the map correspond to volume blocks such that bit n of byte m represents volume
block (8 * m) + n.

Fnode 5: Volume Label File
This fnode describes a file containing the first 3328 bytes of any volume. The
information in this file defines the volume as a whole. The type field of this fnode
is set to ft_vlabel. You cannot write to this fnode.

Fnode 6: Root Directory
The root directory is a special directory file. It is the root of the named file hierarchy
for the volume. The iRMX volume label specifies the fnode number of the root
directory. The root directory is its own parent; thus the parent field of its fnode
specifies its own fnode number.

The root directory (and all directory files) associates file names with fnode numbers.
It consists of a number of entries that have this

This is the 16-byte structure in PL/M notation:

DECLARE

DIR_ENTRY STRUCTURE(

fnode WORD_16,

component(14) BYTE);

This is the 32-byte structure in PL/M notation:

DECLARE

DIR32_ENTRY STRUCTURE(

name[14] unsigned char,

reserved[5] unsigned short,

fnode_num_lo unsigned_long,

fnode_num_hi unsigned_long;

538 Appendix C Structure of a Named Volume

This is the 16-byte structure in C:

typedef struct {

UINT_16 fnode;

UINT_8 component[14];

} DIR_ENTRY_STRUCT;

This is the 32-byte structure in C:

typedef struct dir32_entry_struct {

unsigned char name[14];

unsigned char reserverd[5];

unsigned long fnode_num_lo;

unsigned long fnode_num_hi];

} DIR_ENTRY32_STRUCT;

Where:

fnode Fnode number of a file listed in the directory.

fnode_num_lo
To be developed.

fnode_num_hi
To be developed.

component(14)
A string of ASCII characters that is the final component of the path
name identifying the file. This string is left-justified and null padded to
14 characters.

name[14]
To be developed.

reserved[5]
To be developed.

When a file is deleted, its fnode number in the directory entry is set to 0.

Fnodes 7 and 8: R?secondstage and R?save
These fnodes may or may not be reserved depending on whether the reserve and
msaboot (iRMX II only) options are used during formatting. If both options are
used, the r?secondstage file is placed in fnode 7 and the r?save file is placed in fnode
8. If only reserve is used, r?save is placed in fnode 7 and fnode 8 remains
unallocated. If only msaboot (iRMX II only) is used, r?secondstage is placed in
fnode 7 and fnode 8 remains unallocated. If neither option is used, both fnode 7 and
fnode 8 remain unallocated.

Command Reference Appendix C 539

R?secondstage

R?secondstage is a file which may be optionally created by the msaboot option of
the format command. R?secondstage is the second stage bootloader for systems that
conform to the Multibus II System Architecture (MSA) specification. R?secondstage
is created at the end of the volume. However, if the reserve option is also
specified, r?secondstage will be placed in the volume blocks immediately preceding
r?save. (The fnode for the r?secondstage file is allocated out of the fnodes reserved
through the files parameter of the format command.)

R?save

R?save is a file which may be optionally created by the reserve option of the
format command. R?save contains the duplicate volume label, in the innermost
track of the volume. A copy of the iRMX volume label is placed at the physical end
of the file and an fnode is allocated for r?save in the fnode file, out of the fnodes
reserved through the files parameter of the format command.

540 Appendix C Structure of a Named Volume

The format command creates a backup of the fnode file in its initialized state.
R?save is not subsequently updated as files are written to or deleted from the volume.
Therefore, you will have to use the backupfnodes command or the backup option of
the Human Interface shutdown command to back up the fnode file at regular
intervals.

Other Fnodes
When formatting a volume, no other fnodes in the fnode file represent actual files.
The remaining fnodes must have bit 0 (allocation status) set to 0.

Command Reference Appendix C 541

Short and Long Files
A file on a volume is not necessarily one contiguous string of bytes. In many cases, it
consists of several blocks of data scattered throughout the volume. The fnode for the
file indicates the locations and sizes of these blocks in one of two ways, as short files
or as long files.

Short Files
If the file consists of eight or fewer distinct blocks of data, its fnode can specify it as
a short file. The fnode for a short file has bit 1 of the flags field set to 0. This
indicates to the I/O System that the PTR structures of the fnode identify the actual
data blocks that make up the file. Figure C-2 illustrates an fnode for a short file.
Decimal numbers are used in the figure for clarity.

Figure C-2. Short File Fnode

As you can see in Figure C-2, fnode 8 identifies the short file. The file consists of
three distinct data blocks. Three ptr structures give the locations of the data blocks.
The num_blocks field of each ptr structure gives the length of the data block (in
volume blocks), and the blk_ptr field points to the first volume block of the data
block.

The other fields shown in Figure C-2 include total_blks, this_size, and
total_size. The total_blks field specifies the number of volume blocks

542 Appendix C Structure of a Named Volume

allocated to the file, which in this case is eight. This equals the sum of num_blocks
values (3 + 2 + 3), since short files use all allocated space as data space.

The this_size field specifies the number of bytes of data space allocated to the
file. This is the sum of the num_blocks values (3 + 2 + 3) multiplied by the volume
granularity (1024) and equals 8192.

The total_size field specifies the number of bytes of data space that the file
occupies (designated in Figure C-2 by the shaded area). As you can see, the file does
not occupy all the space allocated for it, so the total_size value (8000) is not as
large as the this_size value.

Long Files
If the file consists of more than eight distinct blocks of data, its fnode must specify it
as a long file. The fnode for a long file has bit 1 of the flags field set to one. This
tells the I/O System that the ptr structures of the fnode identify indirect blocks. The
indirect blocks identify the actual data blocks that make up the file.

Each indirect block contains a number of indirect pointers, which are structures
similar to the ptr structures. However, an indirect block can contain more than eight
structures and thus can point to more than eight data blocks. In fact, an indirect block
can consist of more than one volume block; however, all volume blocks of an indirect
block must be contiguous.

This is the 32-byte structure of each indirect pointer, in PL/M notation:

DECLARE

IND_PTR STRUCTURE(

nblocks BYTE,

blk_ptr(3) BYTE);

This is the 48-byte structure of each indirect pointer, in PL/M notation:

DECLARE

IND_PTR STRUCTURE(

num_blocks BYTE,

blk_ptr(5) BYTE);

This is the 32-byte structure in C:

typedef struct {

UINT_8 nblocks;

UINT_8 blk_ptr[3];

} IND_PTR_STRUCT;

This is the 48-byte structure in C:

Command Reference Appendix C 543

typedef struct indir48_ptr_struct{

unsigned short num_blocks;

unsigned char blk_ptr[5];

} INDIR48_PTR_STRUCT;

Where:

nblocks, num_blocks
Number of volume blocks in the data block.

blk_ptr A 24-bit volume block number of the first volume block in the data
block. Volume blocks are numbered sequentially throughout the
volume, starting with the block with the smallest address (block 0).

The OS determines how many indirect pointers there are in an indirect block by
comparing the nblocks fields of the indirect pointers with the num_blocks field of
the fnode. It assumes that the indirect block contains as many pointers as necessary
for the sum of the nblocks fields to equal the num_blocks field.

Because indirect blocks can span several volume blocks, any utility that uses indirect
blocks must determine if an indirect block consists of more than one volume block.
To do this:

1. Use the read DVU command to read the volume block pointed to by the
blk_ptr field in the fnode's pointr structure. Blk_ptr points to the
beginning of a volume block containing all or the first part of an indirect block.

2. If the sum of all nblocks fields in the volume block is less than num_blocks,
the indirect block continues into the next contiguous volume block. The utility
must read and process the next volume block.

3. Add the nblocks values in the new volume block to the sum of all previous
nblocks. When the sum of the nblock values equals num_blocks you have
reached the end of the indirect block. If necessary, continue reading volume
blocks and summing nblocks values until the sum of the nblocks values
equals num_blocks. The utility may have to read several volume blocks before
finding the end of the indirect block.

544 Appendix C Structure of a Named Volume

Figure C-3 illustrates an fnode for a long file. Decimal numbers are used in the
figure for clarity.

Figure C-3. Long File Fnode

Command Reference Appendix C 545

As you can see in Figure C-3, fnode 9 identifies the long file. The actual file consists
of nine distinct data blocks. One ptr structure and an indirect block give the
locations of the data blocks. The num_blocks field of the ptr structure contains the
number of volume blocks pointed to by the indirect block. The blk_ptr field points
to the first volume block of the indirect block.

In the indirect block, each nblocks field gives the length of an individual data block,
and each blk_ptr field points to the first volume block of a data block.

Figure C-3 also lists the total_blks, +this_size, and total_size values,
which are more complex than for a short file. The total_blks field specifies the
number of volume blocks allocated to the file, which in this case is 21. Of these 21
and 20 are used for actual data storage and 1 is used for the indirect block.

The this_size field specifies the number of bytes of data space allocated to the
file, and does not include the size of the indirect block. This size is equal to the
num_blocks value (20) or the sum of nblocks values in the indirect block (2 + 1 +
2 + 3 + 2 + 3 + 3 + 2 + 2 = 20) multiplied by the volume granularity (1024) and
equals 20480.

The total_size field specifies the number of bytes of data space that the file
currently occupies (designated in Figure C-3 by the shaded areas). As you can see,
the file does not occupy all the space allocated for it, so the total_size value
(20300) is not as large as the this_size value.

546 Appendix C Structure of a Named Volume

Diskette Formats
The diskette device drivers supplied with the iRMX Basic I/O Systems can support
several diskette characteristics, listed in Tables C-1, C-2, and C-32.

Table C-1. Characteristics of 5 1/4-Inch Non-SCSI Boot Diskettes

Sectors Device Size (in bytes)
Sector

Size Density
per

Track Format
One-Sided

40 Tracks 80 Tracks
Two-Sided

40 Tracks 80 Tracks
128 Single 16 Standard 81920 163840 163840 327680
256 Single 9 Standard 91904 184064 184064 368384
512 Single 4 Standard 81920 163840 163840 327680

1024 Single 2 Standard 81920 163840 163840 327680
256 Double 16 Standard 1617921 325632 325632 653312
512 Double 8 Standard 1617921 325632 325632 653312

1024 Double 4 Standard 1617921 325632 325632 653312

For compatibility with ECMA (European Computer Manufacturers Association) and
ISO (International Organization for Standardization), the iRMX device drivers, when
called by the format command, can format the beginning tracks of all 5 1/4-inch
diskettes in the same way. The device drivers format track 0 of side 0 with single-
density, 128-byte sectors, with an interleave factor of 1.

Table C-2. Characteristics of 5 1/4-Inch SCSI Boot and Data Diskettes

Sectors Device Size (in bytes)
Sector

Size Density
per

Track Format
One-Sided

40 Tracks 80 Tracks
Two-Sided

40 Tracks 80 Tracks
512 Double 9 Uniform -- -- 368640 --
512 Quad 15 Uniform -- -- -- 1228800

Command Reference Appendix C 547

Table C-3. Characteristics of 3 1/2-Inch SCSI Boot and Data Diskettes

Sectors Device Size (in bytes)
Sector

Size Density
per

Track Format
One-Sided
80 Tracks

Two-Sided
80 Tracks

512 Quad 18 Uniform -- 14745600

512 Double 9 Uniform 737280 --

The iRMX device drivers map the sectors on these beginning tracks into blocks of
device granularity size so that the BIOS and the Bootstrap Loader can treat diskettes
as if they contained a contiguous string of blocks, all of the same size.

When the device driver tries to combine these leftover sectors of track 0, side 1 with
the first sectors of track 1, side 0, it finds that the sectors of track 1, side 0 are already
of device granularity size. Therefore, since the device driver cannot access partial
sectors, it is left with one block (the leftover sectors of track 0, side 1) that is less
than device granularity size. When the device granularity is 512, this small block is
block 19; when the device granularity is 1024, it is block 9.

If nothing is done to exclude this smaller-than-normal block from use, the device
driver will treat this block as a normal block, assuming it is of device granularity size.
Thus, if you try to write information to that block, the driver will attempt to write an
entire device granularity block of information into a block that is much smaller,
thereby losing data.

To prevent this situation, the format command automatically declares this smaller-
than-normal block as allocated in the volume free space map when it formats the
volume. This prevents the BIOS from ever writing information into this block. If
you write your own formatting utility, you should also declare this block as allocated.

■■ ■■ ■■

548 Appendix C Structure of a Named Volume

Command Reference Appendix D 549

Real-Time Graphics Interface D
Description

The iRMX II and III OSs contain a driver that supports the SBX 279 and 279A
graphics interface modules. These modules attach to a Multibus CPU board and
provide users with a graphics interface, including:

• A windowed environment

• A mouse to use in manipulating windows

• A PC-style keyboard for entering data

These sections describe the windows and how to manipulate them with the mouse.

Using the Windows
The windows provided by the SBX 279 or 279A board are ways of viewing many
operations simultaneously on one screen. You can think of them as many terminals
contained in one, with each window representing a terminal. For example, the
System 520 initializes with multiple windows. For each CPU board there are at least
two windows: one for the Monitor/Bootstrap loader/Debugger display and one for
the CPU HI screen.

At system start-up, the windows are layered on top of each other. You can
manipulate the windows with the mouse (move, resize, and relayer them) so that you
can view all or some of the windows at once. In the example screen in Figure D-1, X
is the OS (II for iRMX II, III for iRMX III) and y is the release level (1.0 for Release
1, 4.0 for Release 4).

550 Appendix D Real-Time Graphics Interface

Figure D-1 is a simple display showing two windows for a single CPU.

MSA Bootstrap Loader

Booting from SCW_2

┌──
Loading Bo│copied to :menu:

│
│4:46 global

Loading ta│onfig:R?INIT
│
│-*
│
│ iRMX* X.y operating system

│
│s a Registered Trademark of Intel Corporation

│
│-*
│

└──

Figure D-1. An Example of Windows Displayed on the System 520

Command Reference Appendix D 551

Using the Mouse
You can use the mouse to move, resize, and relayer the windows. All of these
actions are provided in one of two pop-up menus: basic or expanded.

The basic menu exists in EPROM on the SBX 279A Multimodule before the OS is
initialized. Once initialized, the OS can load the expanded menu when executing the
:config:r?init file during the boot up procedure. The default system command file for
the System 520 contains several options that are commented out. Activate the option
that is appropriate. The expanded menu offers more options and provides a faster
method of selecting windows: just point at the desired window and press any of the
mouse buttons.

To select an option from either pop-up menu, do this:

1. Move the mouse so the pointer is outside any window.

2. Press and hold any one of the mouse buttons; the menu appears on the screen.

3. Move the mouse up or down the menu to select an option. Each option is
highlighted as the pointer passes over it.

4. To select an option, release the mouse button when the option is highlighted.
The menu disappears and the pointer changes to an icon. The icons are shown to
the right of the menu in figures D-2 and D-3.

The mouse cannot be used to select anything inside a window (a file, for instance).

With the expanded menu map window function, you can also use the mouse to
associate an <Alt>-Function key combination with a specific window. This is
especially helpful when using numerous windows; for example, when there are
multiple CPU boards in a Multibus II system.

To load the expanded menu as part of your application, enter:

ad g279_0 as :vdi: physical

copy :config:<menu-name> to :vdi:

dd :vdi:

Where <menu-name> is one of these; both menus are initially installed in the
:config:default directory:

menu.279 For the SBX 279 board

menu.279A For the SBX 279A board

If these commands are executed in a submit file, you cannot detach the :vdi: logical
name until about 2 seconds after copying the menu, due to buffer flushing in the
BIOS. If the copying has not completed before the device is detached, the menu is
lost and the system must be restarted. To accomplish the 2 second delay, use the
pause command or a status command such as date before the detach command.

552 Appendix D Real-Time Graphics Interface

Basic Menu
This section explains the selections provided by the basic menu, which is shown in
Figure D-2. The icon for each menu selection is shown to the right of the menu item.
This menu appears before the iRMX III OS is installed or initialized. Once installed,
the OS invokes an expanded menu, which is described later.

Figure D-2. Basic Menu Selections

Command Reference Appendix D 553

The meaning of the basic menu selections is:

Pop This causes the selected window to appear on top of all other windows. The
keyboard might not be attached to the window that has been popped. Use the
Keyboard Focus selection to direct keyboard input to the popped window.

1. Select Pop from the menu with the mouse. The pointer changes to an up arrow.

2. Place the arrow within the desired window and press any of the mouse buttons.

3. The selected window is displayed on top of all other windows.

Push This causes the selected window to be placed behind all other windows.

1. Select Push from the menu with the mouse. The pointer changes to a down
arrow.

2. Place the arrow within the desired window and press any of the mouse buttons.

3. The selected window is placed behind all other windows.

Pan This moves the contents of a window within the window. This selection is useful for
viewing the contents of a window that has been reduced in size.

1. Select Pan from the menu with the mouse. The pointer changes to the icon
shown in Figure D-2.

2. Place the icon within the desired window. Press and hold down any of the
mouse buttons.

3. Moving the mouse moves the contents of the window.

4. Release the mouse button when the desired contents are displayed.

Move This moves a window around the screen.

1. Select Move from the menu with the mouse. The pointer changes to the icon
shown in Figure D-2.

2. Position the icon within the desired window. Press and hold down any of the
mouse buttons.

3. Moving the mouse moves the entire window.

4. Release the mouse button when the window is in the desired location.

554 Appendix D Real-Time Graphics Interface

Resize This selection changes the size of a window.

1. Select Resize from the menu with the mouse. The pointer changes to the icon
shown in Figure D-2.

2. Position the icon within the desired window and near one of the four corners of
the window. The selected corner will be the part of the window that moves.
Press and hold down any of the mouse buttons.

3. Move the mouse to shrink or enlarge the window.

4. Release the mouse button when the window is at the desired size. Window
contents are not rescaled when the window is resized. The maximum size of a
window is either the size of the bitmap in which it is drawn or the size of the
screen.

Keyboard Focus
This selection directs keyboard input to a window.

1. Select Keyboard Focus from the menu with the mouse. The pointer changes to
a box icon.

2. Position the icon within the desired window and press any of the mouse buttons.

3. Keyboard input is now directed to the selected window.

Pop/Focus
This causes the selected window to appear on top of all the other windows, with
keyboard input directed to the selected window. This is the same as using Pop
followed by Keyboard Focus.

1. Select Pop/Focus from the menu with the mouse. The pointer changes to the
icon shown in Figure D-3.

2. Position the icon within the desired window and press any of the mouse buttons.

3. The selected window is displayed on top of all other windows and keyboard
input is directed to it.

Command Reference Appendix D 555

Pop/Focus/Resize
This causes the selected window to appear on top of the other windows with
keyboard input directed to it, and expands the window to full width and
approximately three-quarter height.

1. Select Pop/Focus/Resize from the menu with the mouse. The pointer changes to
the icon shown in Figure D-3.

2. Position the icon within the desired window and press any of the mouse buttons.

3. The selected window is displayed on top of other windows, expanded in size,
with keyboard input directed to it.

Exit Use this selection to leave the menu list without affecting the windows.

556 Appendix D Real-Time Graphics Interface

Expanded Menu
This section explains the selections provided by the expanded menu, which is shown
in Figure D-3. The icon for each menu selection is shown to the right of that menu
item. This menu is provided by the OS on the System 520.

Figure D-3. Expanded Menu Selections

Command Reference Appendix D 557

The meaning of the expanded menu selections is:

Pan This moves the contents of a window within the window. This selection is useful for
viewing the contents of a window that has been reduced in size.

1. Select Pan from the menu with the mouse. The pointer changes to the icon
shown in Figure D-3.

2. Place the icon within the desired window. Press and hold down any of the
mouse buttons.

3. Moving the mouse moves the contents of the window.

4. Release the mouse button when the desired contents are displayed.

Attach Keyboard
This selection directs keyboard input to a window.

1. Select Attach Keyboard from the menu with the mouse. The pointer changes to
a box icon.

2. Position the icon within the desired window and press any of the mouse buttons.

3. Keyboard input is now directed to the selected window.

Pop to Foreground
This causes the selected window to appear on top of all other windows. The
keyboard might not be attached to the window that has been popped. Use the Attach
Keyboard selection to direct keyboard input to the popped window.

1. Select Pop to Foreground from the menu with the mouse. The pointer changes
to an up arrow.

2. Place the arrow within the desired window and press any of the mouse buttons.

3. The selected window is displayed on top of all other windows.

Push to Background
This causes the selected window to be placed behind all other windows.

1. Select Push to Background from the menu with the mouse. The pointer
changes to a down arrow.

2. Place the arrow within the desired window and press any of the mouse buttons.

3. The selected window is placed behind all other windows.

558 Appendix D Real-Time Graphics Interface

Pop and Set Focus
This causes the selected window to appear on top of all other windows, with
keyboard input directed to the selected window.

1. Select Pop and Set Focus from the menu with the mouse. The pointer changes
to a combination box and up arrow icon.

2. Place the icon within the desired window and press any of the mouse buttons.

3. The selected window is displayed on top of all other windows and keyboard
input is directed to it.

Move Window
This moves a window around the screen.

1. Select Move Window from the menu with the mouse. The pointer changes to
the icon shown in Figure D-3.

2. Position the icon within the desired window. Press and hold down any of the
mouse buttons.

3. Move the mouse to move the entire window.

4. Release the mouse button when the window is in the desired location.

Resize Window
This selection changes the size of a window.

1. Select Resize Window from the menu with the mouse.

2. Position the icon within the desired window and near one of the four corners of
the window. The selected corner will be the part of the window that moves.
Press and hold down any of the mouse buttons.

3. Move the mouse to shrink or enlarge the window.

4. Release the mouse button when the window is at the desired size. Window
contents are not rescaled when the window is resized. The maximum size of a
window is either the size of the bitmap in which it is drawn or the size of the
screen.

Command Reference Appendix D 559

Expand Window
This causes the selected window to appear on top of the other windows with
keyboard input directed to it, and expands the window to full width and
approximately three-quarter height.

1. Select Expand Window from the menu with the mouse.

2. Position the icon within the desired window and press any of the mouse buttons.

3. The selected window is displayed on top of other windows, expanded in size,
with keyboard input directed to it.

Reduce Window
This selection allows you to shrink the size of a window quickly and move it out of
the way of other windows.

1. Select Reduce Window from the menu with the mouse.

2. Position the icon within the desired window next to one of the four corners.
Press and hold down any one of the mouse buttons.

3. Move the mouse; the window shrinks rapidly.

4. Release the mouse when the window reaches the desired size and position on the
screen.

Map Window
This selection assigns an <Alt>-Function key combination (F1-F10) to each window.
When the <Alt>-Function key combination is pressed, the corresponding window is
displayed on top of other windows and keyboard input is directed to that window.

1. Select Map Window from the menu with the mouse.

2. Position the icon within the desired window and press any one of the mouse
buttons.

3. On the keyboard, hold down the <Alt> key and press the function key you want
assigned to the window.

4. To use the function keys to select a window, hold down the <Alt> key and press
the corresponding function key. The window assigned to that key is displayed on
top of other windows and keyboard input is directed to it.

See also: SBX 279A Display Subsystem Hardware Reference Manual and
Programmer's Guide to the Real-Time Graphics Interface

■■ ■■ ■■

560 Appendix D Real-Time Graphics Interface

Command Reference Appendix E 561

Supplied Device Drivers and
Physical Device Names

Supplied Device Drivers

Preconfigured Drivers, DOSRMX and iRMX For PCs
These are the device drivers that are built into DOSRMX and iRMX for PCs:

• ROM BIOS-based Hard Disk Driver

• ROM BIOS-based Diskette Driver

• Byte Bucket Driver

• COM1 driver and COM2 driver

If you are using an iRMX driver to attach a flexible disk or hard disk partition, don't
attempt to attach it using the EDOS file driver.

ROM BIOS-based Hard Disk Driver

The ROM BIOS-based Hard Disk Driver is the link between iRMX and one or two
IBM PC-AT-compatible hard disk controllers. This is a random access driver. The
driver supports one to four partitions on a single hard disk. Each partition is accessed
as a logical device. The partitions can support different file structures, allowing
multiple operating systems to exist on a single drive. The Physical File driver can
access all partitions created on a hard disk; the Named File driver can access only
iRMX partitions.

A generic unit is associated with each physical drive. This unit automatically maps
to the first iRMX partition. The unit is part of the Automatic Device Characteristics
Recognition (ADCR) feature of the OS.

Each disk drive can support up to six device-units, as shown in Table E-1.

E

562 Appendix E Physical Device Names

Table E-1. Hard Disk Partition Names

DUIB Name Description
C_RMX Generic name for C: drive
C_RMX0 DUIB for entire drive (all partitions)
C_RMX1 Partition 1
C_RMX2 Partition 2
C_RMX3 Partition 3
C_RMX4 Partition 4
D_RMX Generic DUIB name for D: drive
D_RMX0 DUIB for entire drive
D_RMX1 Partition 1
D_RMX2 Partition 2
D_RMX3 Partition 3
D_RMX4 Partition 4

ROM BIOS-based Diskette Driver

The ROM BIOS-based diskette driver is the link between DOSRMX and one IBM PC-
AT-compatible diskette controller. This random-access driver supports the disk
controller as one device with two device-units. Table E-2 lists the device names
available for the diskette drives.

✏ Note
You must use the drivers in Table E-2 for iRMX For PCs. Do not
use a_dos and b_dos.

Command Reference Appendix E 563

Table E-2. Diskette Driver Device Names

Device Name Disk Capacity
Drive 0 (Unit 0)

Disk Format Drive Capacity
A 360 Kbytes Uniform 360 Kbytes 48 TPI
AH 1.2 Mbytes Uniform 1.2 Mbytes 96 TPI
AM 720 Kbytes Uniform 135 TPI
AMH 1.44 Mbytes Uniform 135 TPI
AMO 2.88 Mbytes Uniform 135 TPI

Device Name Disk Capacity
Drive 1 (Unit 1)

Disk Format Drive Capacity
B 360 Kbytes Uniform 360 Kbytes 48 TPI
BH 1.2 Mbytes Uniform 1.2 Mbytes 96 TPI
BM 720 Kbytes Uniform 135 TPI
BMH 1.44 Mbytes Uniform 135 TPI
BMO 2.88 Mbytes Uniform 135 TPI

Byte Bucket Driver

This driver provides a pseudo device interface for operations that don't require device
activity. It is used for discarding output (byte bucket) and for direct communication
between tasks (stream files).

Driver characteristics are

• Returns EOF for read operations and write-completed for write operations

• Accepts all operations except special and seek, in the case of stream files, but
does no operations for them

See also: Stream files, System Concepts

COM1 and COM2 Driver

See also: comdrv, System Configuration and Administration, for a description of
the COM1 and COM2 drivers and how to set the I/O addresses and
interrupts to use them

564 Appendix E Physical Device Names

Loadable Device Drivers
You add loadable drivers to the OS dynamically using the sysload command instead
of building the driver into the OS with the ICU.

See also: Loadable Jobs and Device Drivers, System Configuration and
Administration, for descriptions of each loadable driver

The OS includes source code for loadable driver initialization front-ends in these
directories: /rmx386/demo/c/ldd for C and /rmx386/demo/plm/ldd for PL/M. The
default drivers are found in /rmx386/drivers. Use the soource code examples when
writing your own loadable drivers.

See also: Making a Driver Loadable, Driver Programming Concepts
loadable device drivers, System Configuration and Administration

Loadable Device Driver Support Files

The OS provides a number of include files, for both C and PL/M, and a library that
supports loadable drivers. The files contain literal and data structure definitions,
macros, and utilities required for custom, random access, and terminal drivers. These
files are described below:

lddinfo.lit Contains the PL/M literal declarations that define the data structures
used by loadable drivers.

lddinfo.h Contains the C literal declarations that define the data structures used by
loadable drivers.

lddinfo.mac Contains ASM literal declarations and macros that are used to produce
loadable device driver configuration files.

lddupc.ext Contains PL/M external declarations for a number of driver utilities
found in the loadable device driver library ldd.lib.

lddupc.h Contains C external declarations for a number of driver utility
procedures found in the loadable device driver library ldd.lib. The
procedures are described in later chapters.

ldd.lib Contains the linkable utility procedure and driver modules provided in
loadable and reconfigurable form. The library is found in the
/rmx386/lib directory along with the standard iRMX interface libraries.

Command Reference Appendix E 565

ICU-configurable Drivers For iRMX III Systems
Table E-3 lists the ICU-configurable random access, terminal, and custom drivers.

See also: ICU help screens for complete reference and usage information

Table E-3. Supplied ICU-configurable Device Drivers

Type Device Driver
Random Access or Common Mass Storage Controller (MSC) driver *

Line printer driver for SBX 350
Line printer driver for x86/12
PCI driver **
SBC 208 diskette driver
SBC 220 SMD driver

Terminal Terminal Communications Controller (TCC) driver
ATCS Driver ***
8251A terminal driver
8274 terminal driver
82530 terminal driver

Custom Byte bucket driver
RAM-disk driver

* Supports the SBC 214, SBC 215G, and SBC 221 controllers, and the SBX 217C
controller when mounted on the SBC 215G board

** Supports the SBC 386/258 and 386/258D, 386/12S, 486/12S, 486/133SE, 486/166SE,
SBCP5xxx boards, and PC SCSI controllers

*** The SBC 186/410 cannot pass error codes when the device cannot be attached;
subsequent read/write operations will fail

The PCI driver includes generic SCSI DUIBs, gscw_N (for 1024-byte granularity)
and gscw5_N (for 512-byte granularity) where N is the SCSI target ID of the device.
The generic DUIBs allow you to format new SCSI hard disk drives, as well as attach,
read and write to them, without creating a specific DUIB for each SCSI hard disk
drive. You must configure the rq_pci_a parameter in the BPS file when using the
gscw_N DUIBs.

See also: Table E-10 of this appendix
Partitioning information, Appendix F
BPS parameters, MSA for the iRMX Operating System

The OS reads the disk geometry and defect management information from the hard
disk drive and uses its defaults when you use the format command.

See also: UPCI PCI Driver Unit Information and IPCI PCI Driver Device-unit
Information ICU help screens, particularly the GRA parameter

566 Appendix E Physical Device Names

The PCI driver also includes SCSI DUIB, scw_N where N is the device-unit number
of the device. This DUIBs allow you to attach, read and write iRMX preformatted
SCSI hard disk drives.

See also: Table E-10 of this appendix

Physical Device Names
The tables in this section list the physical device names for disk drives, tape drives,
and terminals, as supplied by default drivers in the operating system. You can make
other device names available by loading device drivers. Physical names identify a
particular Device Unit Information Block (DUIB) that specifies the physical
characteristics of the device.

See also: Loadable device drivers, System Configuration and Administration
physname command, Chapter 2

You use the physical names for disk and tape devices in the attachdevice and mirror
commands. The physical name you use to attach a device is also used by the format
and backup commands to properly format the device. Therefore, it is important to
use the name that specifically describes the device characteristics, or use the gscw_N
DUIBs provided. The non-generic DUIBs listed in the tables specify product names.
If a device by a different manufacturer corresponds to the physical characteristics of a
device listed in the table (number of cylinders, heads, etc.), you may use the physical
name in the table.

If a device is already formatted and you are attaching it to read or write files (but not
to back up files), you may attach it under a generic name (scw_N) listed in the
appropriate table.

You use the physical names for terminals in the attachdevice, connect, lock, and
unlock commands. You also specify terminal physical names in the
:config:terminals file.

See also: attachdevice, mirror, format, backup, connect, lock, and unlock
commands, Chapter 2

iRMX for Windows/PCs Systems

Command Reference Appendix E 567

DOSRMX and iRMX for PCs Systems
The following tables list the default device names for DOSRMX and iRMX for PCs.

Table E-4. DOSRMX/PCs Default Device Names

Device Names
Drive 1 Drive 2 Device Type Density

Bytes/
Sector

Tracks/
Inch

iRMX-FORMAT DISKETTE DRIVES

a b 5.25 inch uniform format,
360 Kbyte

Double 512 48

ah bh 5.25 inch uniform format,
1.2 Mbyte

High 512 96

am bm 3.5 inch, 7.2 Mbyte Double 512 135
amh bmh 3.5 inch, 1.44 Mbyte High 512 135
amo bmo 3.5 inch, 2.88 Mbyte High 512 135

iRMX-FORMAT HARD DISK DRIVES

c_rmx d_rmx First iRMX partition on the drive
c_rmx0 d_rmx0 The whole physical drive
c_rmx1 d_rmx1 First partition on the drive, including DOS or other partitions
c_rmx2 d_rmx2 Second partition on the drive, including DOS or other partitions
c_rmx3 d_rmx3 Third partition on the drive, including DOS or other partitions
c_rmx4 d_rmx4 Fourth partition on the drive, including DOS or other partitions
Device Names Device Type

DOS-FORMAT LOGICAL DRIVES (DOSRMX only)

a_dos ... b_dos Correspond to DOS drives A: through Z:, using the EDOS filedriver (if
those drives are available under DOS)

c_dos ... z_dos Correspond to DOS drives A: through Z:, using the DOS filedriver (if
those drives are available under DOS)

OTHER DEVICES

com1 com2 Same as DOS COM1 and COM2
lpt1* ... lpt3** Same as DOS LPT1 to LPT3
d_cons* DOS console device (CON)

* Installed by loadable jobs or device drivers

Table E-5. PC Terminal Device Names

Controller Device Names Unit
Serial Port com1

com2
0
0

Console d_cons 0

iRMX for Windows/PCs Systems

568 Appendix E Physical Device Names

✏ Note
The PCI driver makes available a set of DUIBs including generic
DUIBS for SCSI devices and for partitioned SCSI devices.
Partitioned SCSI hard disk drives have different DUIBs than non-
partitioned drives. Refer to Appendix F for information on how
partitions are specified.

See also: Tables of DUIBs in pcidrv, System Configuration and
Administration

Multibus I and II Systems iRMX III OS

Command Reference Appendix E 569

iRMX III Systems
The tables in this section list device names for iRMX III systems using various
controller boards.

iRMX III PC Systems
The tables in this section list device names available on standard PC platforms
running the iRMX III OS with no dependence on the ROM BIOS.

Table E-6. Device names for PC systems

Device Names
Drive 1 Drive 2 Device Type Density

Bytes/
Sector

Tracks/
Inch

iRMX-FORMAT DISKETTE DRIVES

a b 3.5 inch, 1.44 Mbyte High 512 135

OTHER DEVICES

com1 com2 Same as DOS COM1 and COM2
con DOS console device (CON)

Table E-7. Device Names for IDE Controllers

Device
Names

IDE
Controller

Master/
Slave

Partition

ATA-COMPATIBLE HARD DRIVES

hda0 0 Master whole disk
hda1 0 Master 1
hda2 0 Master 2
hda3 0 Master 3
hda4 0 Master 4
hda 0 Master active
hdb… 0 Slave as above
hdc… 1 Master as above
hdd… 1 Slave as above

ATAPI CD-ROM DRIVES

cda 0 Master (n/a)
cdb 0 Slave (n/a)
cdc 1 Master (n/a)
cdd 1 Slave (n/a)

iRMX III OS Multibus I and II Systems

570 Appendix E Physical Device Names

iRMX III Multibus I and Multibus II Systems
The tables in this section list device names available on Multibus I and Multibus II
systems running the iRMX III OS.

Table E-8. Device Names for SBC 214, 221, and 215G/217C/218A Controllers

Device
Names Device Type

Unit
Number Sides Density

Bytes/
Sector

Tracks/
Inch

5.25-INCH DISKETTE DRIVES

wqf0* Teac 55GFR 8 2 High 512 96
wqf1* Teac 55GFR 9 2 High 512 96
wdf0* Shugart 460 9 2 Double 512 48
wdf1* Shugart 460 9 2 Double 512 48
wdos0* Shugart 460 9 2 Double 512 48
wmf0 Shugart 450 8 2 Double 512 48
wmf1 Shugart 450 9 2 Double 512 48
wmfdy0 Shugart 460 8 2 Double 512 96
wmfdy1 Shugart 460 9 2 Double 512 96

* Uniform granularity, other diskettes use iRMX standard granularity continued

Multibus I and II Systems iRMX III OS

Command Reference Appendix E 571

Table E-8. Device Names for SBC 214, 221, and 215G/217C/218A Controllers
(continued)

Device Names Device Type Unit Number Bytes/Sector

HARD DISK DRIVES

w0 generic drive 0 1024
w1 generic drive 1 1024
cm0 CMI 5412 0 1024
cm1 CMI 5412 1 1024
cmb0 CMI 5419 and Fujitsu M2235 0 1024
cmb1 CMI 5419 and Fujitsu M2235 1 1024
mma0 Maxtor XT-1140 0 1024
mma1 Maxtor XT-1140 1 1024
mmb0 Maxtor XT-1085 0 1024
mmb1 Maxtor XT-1085 1 1024
mmc0 Maxtor XT-4170E 0 1024
mmc1 Maxtor XT-4170E 1 1024
mmd0 Maxtor XT-4380E 0 1024
mmd1 Maxtor XT-4380E 1 1024
mme0 Maxtor XT-8760E 0 1024
mme1 Maxtor XT-8760E 1 1024
qma0 Quantum Q540 0 1024
qma1 Quantum Q540 1 1024
sma0 Seagate ST-225 0 1024
sma1 Seagate ST-225 1 1024
tma0 Toshiba MK56FB 0 1024
tma1 Toshiba MK56FB 0 1024

5.25-INCH CARTRIDGE TAPE DRIVES

wta0 Archive 12 N/A

ADDITIONAL DEVICE NAMES FOR iSBC 221S CONTROLLER ONLY

GW500M_0 Generic 500 Mbyte drive 0 512
GW500M_1 Generic 500 Mbyte drive 1 512
GW700M_0 Generic 700 Mbyte drive 0 512
GW700M_1 Generic 700 Mbyte drive 1 512
GW1G_0 Generic 1 Gbyte drive 0 512
GW1G_1 Generic 1 Gbyte drive 1 512
GW2G_0 Generic 2 Gbyte drive 0 512
GW2G_1 Generic 2 Gbyte drive 1 512
GW4G_0 Generic 4 Gbyte drive 0 512
GW4G_1 Generic 4 Gbyte drive 1 512

iRMX III OS Multibus I and II Systems

572 Appendix E Physical Device Names

Table E-9. Device Names for SBC 386/12S and 486/12S SCSI Controllers

Device Names
Example
Device Type

SCSI
Adapter

SCSI-ID
Number Density

Bytes/
Sector

5.25-INCH DISKETTE DRIVES

sqf0* Teac 55GFR NCR ADP-20 0 high 512
sqf1* Teac 55GFR NCR ADP-20 1 high 512
sdf0* Teac 55GFR NCR ADP-20 0 double 512
sdf1* Teac 55GFR NCR ADP-20 1 double 512
smf0** Teac 55GFR NCR ADP-20 0 double 512
smf1** Teac 55GFR NCR ADP-20 1 double 512
t55_0* Teac 55GFR*** N/A 0 high 512
t55_1* Teac 55GFR*** N/A 1 high 512
t55D_0* Teac 55GFR*** N/A 0 double 512
t55D_1* Teac 55GFR*** N/A 1 double 512
Device Names Device Type SCSI-ID (N) Bytes/Sector

5.25-INCH CARTRIDGE TAPE DRIVES

sta0 Archive 2125S 6 N/A

OPTICAL DRIVES

OPT 1G1G_N Maxoptix Tahiti II 0, 1, 2, 3 1024
OPT 1G1G5_N Maxoptix Tahiti II 0, 1, 2, 3 512
OPT 650M_N Maxoptix Tahiti II 0, 1, 2, 3 1024
OPT 650M5_N Maxoptix Tahiti II 0, 1, 2, 3 512
* Uniform granularity
** Using the SCSI interface, smf0/1 diskettes that have iRMX Standard granularity can be read only

if they are formatted on a Multibus I system with the parameters:
format :F:disk ms=0 ext=41. They cannot be written to or formatted on a SCSI device.

*** The SCSI adapter is part of this drive. No separate SCSI adapter board (for example, an NCR
ADP-20) is required.

See also: Table E-10 for Hard Drive names
PCI Generic SCSI DUIB, Driver Programming Concepts
MSA for the iRMX Operating System Manual

Multibus I and II Systems iRMX III OS

Command Reference Appendix E 573

Table E-10. Device Names for SBC 386/258(D) and 486/133SE Controllers

Device Names
Example
Device Type

SCSI
Adapter

SCSI-ID
Number Density

Bytes/
Sector

5.25-INCH DISKETTE DRIVES

wqf0* Teac 55GFR NCR ADP-20 0 high 512
wqf1* Teac 55GFR NCR ADP-20 1 high 512
wdf0* Teac 55GFR NCR ADP-20 0 double 512
wdf1* Teac 55GFR NCR ADP-20 1 double 512
wmf0** Teac 55GFR NCR ADP-20 0 double 512
wmf1** Teac 55GFR NCR ADP-20 1 double 512
t55_0* Teac 55GFR*** N/A 0 high 512
t55_1* Teac 55GFR*** N/A 1 high 512
t55D_0* Teac 55GFR*** N/A 0 double 512
t55D_0* Teac 55GFR*** N/A 1 double 512

3.5-INCH DISKETTE DRIVES

t235_0* FD-235HF*** N/A 0 high 512
t235_1* FD-235HF*** N/A 1 high 512
Device Names Device Type SCSI-ID (N) Bytes/Sector

OPTICAL DRIVES

OPT 1G1G_N Maxoptix Tahiti II 0, 1, 2, 3 1024
OPT 1G1G5_N Maxoptix Tahiti II 0, 1, 2, 3 512
OPT 650M_N Maxoptix Tahiti II 0, 1, 2, 3 1024
OPT 650M5_N Maxoptix Tahiti II 0, 1, 2, 3 512

* Uniform granularity continued
** Using the SCSI interface, wmf0/1 diskettes that have iRMX Standard granularity can be read only if

they are formatted on a Multibus I system with the parameters:
format :F:disk ms=0 ext=41. They cannot be written to or formatted on a SCSI device.

*** The SCSI adapter is part of this drive. No separate SCSI adapter board (for example, an NCR ADP-
20) is required.

iRMX III OS Multibus I and II Systems

574 Appendix E Physical Device Names

✏ Note
The DUIBs wmf0 and wmf1, which refer to standard format iNDX-
compatible diskettes, are only present for backward compatibility
and are not recommended. Their use is strictly READ-ONLY.

Table E-10. Device Names for SBC 386/258(D) and 486/133SE Controllers (continued)

Device Names Device Type SCSI-ID (N) Bytes/Sector

HARD DISK DRIVES

scw_N* Generic SCSI 2, 3 1024
gscw5_N Generic SCSI 2, 3 512
gscw_N Generic SCSI 2, 3 1024
gscw5_NMxEy Generic Partitioned SCSI 2, 3 512
m4170_N Maxtor XT-4170S 2, 3 1024
m4380_N Maxtor XT-4380S 2, 3 1024
m8380_N Maxtor XT-8380S 2, 3 1024
m8760_N Maxtor XT-8760S 2, 3 1024

CARTRIDGE TAPE DRIVES

wta0 wtab0 Tape drive 6 N/A

CD-ROM DRIVES

cd0 CDROM drive 5 2048
cd1 CDROM drive 6 2048

* This DUIB can be used to access SCSI hard drives that have been formatted with the iRMX
format command, without creating a specific DUIB for each type of disk.

See also: PCI Generic SCSI DUIB, Driver Programming Concepts

✏ Note
Partitioned SCSI hard disk drives have different DUIBs than non-
partitioned drives. Refer to Appendix F for information on how
partitions are specified.

Multibus I and II Systems iRMX III OS

Command Reference Appendix E 575

Table E-11 lists standard physical device names of terminals. Where a board number
appears, the ICU definition file supports multiple instances of the controller board.

Table E-11. Multibus I Terminal Device Names

Controller CPU Boards Device Names Unit
8251A SBC 386/2x/3x t0 0
8247 SBC 386/12(S) t1 0

SBC 486/12(S)
SBC 544A SBC 386/12(S) t3 1

SBC 486/12(S) t4 2
t5 3

SBC 188/56 SBC 386/12(S)
SBC 486/12(S)
SBC 386/2X/3X

SBC 548 SBC 386/12(S)
SBC 486/12(S)

Controller CPU Boards Device Names Unit Board
SBC 547 SBC 386/2X/3X t547_0 ... t547_7 0-7 1

t547_8 ... t547_1 0-7 2
t547_16 ... t547_23 0-7 3

iRMX III OS Multibus I and II Systems

576 Appendix E Physical Device Names

Table E-12 lists standard physical device names of Multibus II terminals. ATCS
devices refer to devices defined by the Asynchronous Terminal Controller Server.

See also: ATCS driver, ICU User’s Guide and Quick Reference
atcsdrv, System Configuration and Administration

Table E-12. Multibus II Terminal Device Names

Controller CPU Board Device Name Unit

82530 SBC 386/100 (with SBX 354) t82530_0 0
SBC 386/116 (with SBX 354) t82530_1 1
SBC 386/120 (with SBX 354)
SBC 386/133
SBC 386/258D
SBC 486/125
SBC 486/150
SBC 486/133SE
SBC 486/166SE

82091AA P5090/120ISE COM1 0
SBC P5090- COM2 0

ATCS DEVICE NAMES: All Multibus II definition files that include the ATCS device driver
provide the same ATCS device names

Controller Boards: CPU Boards:
SBC 186/410 or 186/450
MIXn86/020(A) with MIX/450 modules
MPI 450

Any Multibus II CPU or I/O Server Board
hosting the ATCS/450 Server Job

Board ID Device Names Unit Instance

186/410 t_atcs_a0 ... t_atcs_a11 0-11 1
186/450 t_atcs_b0 ... t_atcs_b11 0-11 1
MIXn86/020(A) (with MIX/450 modules) t_atcs_c0 ... t_atcs_c35 0-35 1
486/125 (used for any CPU board) t_atcs_d0 ... t_atcs_d35 0-35 1
486/133SE atcs_con_0 0 1
(used for any I/O server board) t279_0 ... t279_4 0-4 1

Other Controller Boards iRMX III OS

Command Reference Appendix E 577

Table E-13 lists suggested physical device names for iRMX III systems using other
controller boards.

Table E-13. Suggested Physical Device Names for Other Devices

Device
Names

Device
Type

Unit
Number Sides Density

Bytes/
Sector

Tracks/
Inch

8-INCH DISKETTE DRIVES CONTROLLED BY THE SBC 208 BOARD

af0 Shugart SA800 0 1 Single 128 77
af1 Shugart SA800 1 1 Single 128 77
afd0 Shugart SA800 0 1 Double 256 77
afd1 Shugart SA800 1 1 Double 256 77
afdd0 Shugart SA850/SA851 0 2 Double 256 77
afdd1 Shugart SA850/SA851 1 2 Double 256 77
afdx0 Shugart SA850/SA851 0 2 Double 1024 77
afdx1 Shugart SA850/SA851 1 2 Double 1024 77

5.25-INCH DISKETTE DRIVES CONTROLLED BY THE SBC 208 BOARD

amf0 Shugart 450 0 2 Double 512 48
amf1 Shugart 450 1 2 Double 512 48
amfdy0 Shugart 460 0 2 Double 512 96
amfdy1 Shugart 460 1 2 Double 512 96

continued

iRMX III OS Other Controller Boards

578 Appendix E Physical Device Names

Table E-13. Suggested Physical Device Names For Other Devices (continued)

Device Names Device Type Unit Number Bytes/Sector

HARD DISK DRIVES CONTROLLED BY THE SBC 186/224A BOARD

w0 generic 0 1024
w1 generic 1 1024
cm0 CMI 5412 0 1024
cm1 CMI 5412 1 1024
cmb0 CMI 5419 and Fujitsu M2235 0 1024
cmb1 CMI 5419 and Fujitsu M2235 1 1024
qma0 Quantum Q540 0 1024
qma1 Quantum Q540 1 1024
mma0 Maxtor XT-1140 0 1024
mma1 Maxtor XT-1140 1 1024
mmb0 Maxtor XT-1085 0 1024
mmb1 Maxtor XT-1085 1 1024

5.25-INCH CARTRIDGE TAPE DRIVES Controlled by the SBC 186/224A Board

wta0 QIC-02 12 N/A

STORAGE MODULE DISK DRIVES (SMD) Controlled by the SBC 220 Board

smd0 0 1024
smd1 1 1024

■■ ■■ ■■

Command Reference Appendix F 579

Partitioning PCI Hard Disk DrivesF
This appendix describes how you can use the iRMX OS to configure partitions on a
SCSI hard disk managed by the iRMX PCI (peripheral controller interface) driver.
The typical use of partitions in the iRMX OS is to provide multiple system devices
(:sd:) on a single hard disk in a Multibus II system. A file server board runs the PCI
server and controls the hard disk. Diskless boards in the system that boot
dependently each use a separate partition as the :sd: device.

See also: The ICU definition files p90scpp.bck and 433scpp.bck for examples of
DUIBs on partitioned devices

To partition a hard disk, you first attach the full drive with an attachdevice command
and perform a low-level format with the iRMX format command. Then partition the
drive with the rdisk command. After partitioning, you attach each partition with the
appropriate DUIB name for that partition, then format each partition to install the
appropriate file system. For example, you could install an iRMX file system on one
partition and DOS on another.

The Partition Table
The rdisk utility sets up a partition table compatible with DOS 3.3 and later, which
supports a linked list of partitions within an Extended Partition table entry. An
Extended Partition entry is not a partition itself, but it lets you add logical drives,
each of which is simply another partition on the hard disk Because DOS uses
alphabetic drive letters, it is limited to 24 logical devices (C-Z) on a hard disk.
However, because the mechanism is a linked list there is no inherent limit on the
number of partitions. The number of partitions under the iRMX OS is limited only
by the amount you want to subdivide your hard disk.

The partition table starts at byte 1BEH in the Master Partition Boot sector located in
the first physical sector of the hard disk drive. There are four 16-byte entries in the
partition table. Each entry describes the physical location of the partition on the hard
disk drive, the size of the partition, and the type of operating system. DOS can use
only two of these entries: one primary partition and one Extended partition (which
can hold multiple logical drives).

Appendix F Partitioning PCI Hard Disk Drives580

Figure F-1 is an example of a partition table that has both DOS and iRMX partitions.
The first two entries indicate the DOS primary partition and DOS extended partition.
The extended partition is the beginning of a list pointing to two additional DOS
partitions. From this partition table, DOS finds three logical DOS drives: D:, E:, and
F: (assuming that this is not a disk drive from which DOS boots, which would be
drive C:). The DOS primary partition is drive d: and the two logical drives in the
Extended Partition are drives E: and F:.

Entries 3 and 4 in the partition table are an iRMX primary partition and an iRMX
Extended Partition, which contains two logical drives The iRMX OS is not limited to
one partition of each type. For example, you could have two iRMX primary
partitions and two iRMX extended partitions. Or you could have up to three iRMX
extended partitions. Entry 1 of the partition table must be a primary partition, not an
extended partition. There is no inherent limit on the number of logical drives you can
create within an iRMX extended partition.

DOS Partition

DOS Extended Partition

Master Boot Partition

DOS Partition DOS Partition

Extended Logical Drive(s)

OM04458

iRMX Partition

iRMX Extended Partition iRMX Partition iRMX Partition

Figure F-1. Partition Table With iRMX and DOS Partitions

Specifying iRMX Partitions
A special DUIB name supports partitioned SCSI hard disk drives, gscw5_NMxEy.
This name is formed by adding a Master Boot Partition (M) number and Extended
Logical Drive (E) number to the generic SCSI disk drive DUIB. In this DUIB name,
substitute SCSI ID 2 or 3 for N. The M and E are part of the name. For x and y,
substitute:

x The number of the Master Boot Partition, in the range 1-4.

y The decimal number of the Extended Logical Drive. Only Master Boot
partitions 2-4 can have Extended Logical Drives.

Command Reference Appendix F 581

Example DUIB Name
The PCI DUIB gscw5_2 specifies a generic SCSI hard disk drive with 512-byte
granularity and a SCSI ID of 2. Using the example of Figure F-1, the DUIB
gscw5_2M3 describes the first iRMX partition. The DUIB gscw5_2M4E2 specifies
the second Extended Logical Drive of the iRMX extended partition.

How to Use PCI Partitioning
To prepare a hard disk drive for the installation of a new operating system, you must
perform three tasks:

1. Low-level format, with 512-byte granularity required for PCI support.
2. Partitioning
3. High-level format

If the hard disk drive is already formatted with the required granularity (512), a
low-level format is unnecessary. If, however, the hard disk drive is not formatted
with 512 byte granularity, you must perform a low level format. Use the iRMX
format command and specify either the named or dos option without the quick
option to perform the low-level format. If you do a named format, specify the msa
option to install the second-stage bootstrap loader on the disk; this is required if you
want to boot the iRMX OS from this disk.

After the drive is low-level formatted, use the rdisk command to partition the hard
disk and build the partition table. Typically, you also use the partitioning utility to
specify one of the primary partitions as the active boot partition.

After partitioning, use either the DOS or iRMX format command to perform a high-
level format on each partition. A high-level format writes OS-dependent file system
information (volume label, FAT, root directory, etc.). Before using the iRMX
format command, you must attach each partition with the attachdevice command,
specifying the DUIB name that identifies each partition.

Partitioning and Formatting Tools
These tools are used for partitioning and formatting PCI hard disk drives:
rdisk A DOS and iRMX command provided by the iRMX OS for

partitioning hard disk drives
format An iRMX command that can perform a low level format (physical

sectoring) and high level format (iRMX file system information)
of hard drives and diskettes

format A DOS command that can perform a high level format (DOS files
system information) of hard drives and diskettes

Appendix F Partitioning PCI Hard Disk Drives582

▲▲! CAUTION
If a hard disk drive is partitioned with the DOS version of rdisk,
use only the DOS version of rdisk to view or modify the partition
table. The different OS versions of rdisk get the CHS (cylinder,
head, sector) information in two different ways. The two ways are
not consistent and trying to use the two different versions of rdisk
interchangeably will corrupt the hard disk drive.

Partitioning Example for the iRMX III OS
This example includes a 20-slot Multibus II system with an I/O Server and six CPU
boards. The I/O Server board contains a diskette drive, a tape drive, and a 1 Gbyte
hard disk drive. Assuming that each CPU board requires a system disk, partition the
hard disk drive into six partitions of approximately equal size (165 Mbytes) to hold
the OS. The general procedure for partitioning the hard drive is:

1. Boot the iRMX OS from a diskette.

2. Attach the hard disk with the attachdevice command. Use a DUIB that
describes the entire hard disk, for example, gscw_2.

3. Low-level format: Use the iRMX format command to install the MSA second
stage on the hard disk by specifying the named and MSA switches on the
command line. If the disk already has a low-level format with 512-byte
granularity, you can skip the low-level format by specifying the quick option.
At this point you need not specify the files option.

4. Partitioning: Use rdisk to partition the drive into six parts. The Master Boot
Partition Table will have only two entries, an iRMX primary partition and an
iRMX extended partition which is the header to a linked list of five partitions.

5. High-level format: Attach each partition with the appropriate DUIB name and
format the partition using the format command with the quick option to write
the file system information on the partition while skipping the low level format.
If you forget to specify the quick option, the PCI device driver ignores a low
level format request on a partition. Specify the files option and any other
options you want for each partition.

6. Use the ICU to create an iRMX OS image for each board in the system, with the
required DUIBs to recognize the disk partition(s) that OS will use. Install the
iRMX OS images and development tools on each formatted partition since each
partition will serve as a different board’s system disk.

Command Reference Appendix F 583

✏ Note
If you are installing the OS as described in the Installation and
Startup manual, most of the steps listed above are performed by
submit files during the installation. Steps 3 and 4 above are
covered by the partitioning instructions of Chapter 5, Step 4 in the
Installation manual. Steps 5 and 6 above are covered for
installation on the first partition by the instructions in Chapter 5,
Step 5 of the Installation manual.

After you install the OS on the first partition, you may choose to
perform the installation in Step 6 above by attaching subsequent
partitions and copying files from the first partition.

MSA Booting
The Bootstrap Loader operates in two stages. The first stage loader resides in ROM
and is independent of the OS. The first stage loads the second stage from the mass
storage device. The second stage loads the OS. The second stage bootstrap process
can follow one of three methods: independent, dependent, or quasi-independent.

Boards that have a hard disk drive attached locally, such as the SBC 486/166SE or
SBC P5120ISE, can boot independently. The disks attached to these boards must be
formatted with the msa option. The msa option writes the MSA second stage at the
end of the disk. The exact location of the second stage is written into an entry in the
Bootloader Location Table (BOLT), also written by format. As long as these tracks
at the end of the disk space are not included in any partition, the second stage is
available to boot from. Rdisk reserves the last cylinder of the disk for this purpose; it
will not allow you to include that cylinder in any partition you define.

The MSA second stage uses the bl_boot_master_part and
bl_boot_logical_part BPS parameters to specify which partition to boot from.
Use these parameters to override the default (active) boot partition. You must
specify these BPS parameters at the Master Test Handler (MTH) prompt using the
mp command. If you don’t enter the master partition number at the MTH prompt
and the hard disk drive is partitioned, with the master partition marked active, then
the second stage boots from that partition.

For example, to specify the primary iRMX partition from Figure F-1, you would set
bl_boot_master_part=3 because it is the third entry in the master partition table.

To specify the last iRMX logical drive partition from Figure F-1, you would set
bl_boot_master_part=4 and bl_boot_logical_part=2. This partition is the
second logical drive entry in the fourth entry of the master partition table.

See also: BPS parameters, MSA for the iRMX Operating System

Appendix F Partitioning PCI Hard Disk Drives584

Partition Support for Multibus I Systems or PCs
The iRMX partitioning support is only provided for SCSI drives controlled by the
PCI driver. Support is thus limited for systems other than the iRMX III OS in a
Multibus II chassis.

Multibus I Systems
These limitations apply in a Multibus I system:

• There is no boot support for partitioned drives

• Once booted, PCI can support a second disk drive that has been partitioned, but
this does not allow for booting diskless boards from individual partitions, as in a
Multibus II system. Thus there is little point in partitioning the drive.

PC Systems
On a PC or PC-compatible board in a Multibus system you can run DOSRMX or
iRMX for PCs. These limitations apply to such systems:

• There is no boot support for partitioned drives

• The DUIBs to support partitioning are provided by the loadable PCI driver,
pcidrv. However, these DUIBs are not available until the driver is loaded from
the disk, so they can support only a second disk drive that has been partitioned,
after booting.

■■ ■■ ■■

Command Reference Index 585

Index

! command, 18, 45
& character

for continuing command lines, 14
/ (slash) character

as pathname separator, 10
; (semicolon) as comment character, 14
? (question mark) character

as wildcard, 12
in hidden files, 14

A
abbreviating

command names, 18
command parameters, 17
commands, 57

absolutely-located files, 338
access rights, 9

changing, 99
code definitions, 129
displaying, 126, 393
for backup, 81
for deleting DOS files, 115
for deleting iRMX files, 114
for deleting remote files, 115
for DOS files, 302
meaning, 297
remote directories, 105
remote files, 130, 299
root directory, 182
setting, 297
specifying, 298

accessing
DOS files, 67
iRMX files from Unix or Xenix, 92
logical names, 66

accounting command, 47

accounting file, 538
add DVU command examples, 450
adding numbers, 449
addloc command, 50
address

Ethernet, 63
Internet, 63
translation, 63

address DVU command, 453
examples, 456

aedit command, 54
AEDIT text editor, 54
after parameter, 17
AL (Application Loader), 4
alias command, 57

examples, 20, 61
alias table, 57

setting size of, 343
alias.csd file, 286
aliases

creating, 20, 57
default, 60
defining, 57
deleting, 110
displaying, 58
displaying definition, 57
examples, 20
for ic command, 215
in background job, 77
nesting, 20, 57
permanent storage, 58
system, 58
table of, 58
temporary storage, 58
uses, 20

allocate DVU command, 447
allocated fnodes, 438
allocating

fnodes, 447

Index586

volume blocks, 447
Application Loader, see AL
arithmetic DVU commands examples, 450
ARP tables, 63

displaying, 64
modifying, 64
permanent entries in, 63

arpbypass command, 63
ASCII characters, 142, 148, 374, 381
ASCII files, conversion to binary, 87
ASCII name for volume, 176
asterisk (*) character, 12
ATCS (Asynchronous Terminal Controller

Server), 577
devices, 577

attachdevice command, 30, 31, 32, 66
device names in, 568
examples, 27

attachfile command, 30, 31, 32, 72
changing the working directory, 34
creating and cataloging logical names, 32
examples, 24
limitations, 74
using with Posix, 30

attaching
devices, 66
diskette drives, 68
diskettes, 69
DOS-format diskettes, 70
files, 72

AU (Administrative Unit), iRMX-NET, 269
automatic device recognition, 519, 520

B
background command, 21, 76

examples, 14, 21, 78
background jobs, 74

cancelling, 76
deleting, 226
displaying, 224
memory pool sizes, 342
output limitations, 76
when logging off, 247

backup command, 79
caution, 79
with restore command, 82

with tapes, 27
backup fnode file

creating, 438
maintaining, 440

backup utility, DOS, 340
backup volume label, creating, 438
backup volumes, 81, 331
backupfnodes DVU command, 451

examples, 440, 452
bad blocks, 447

displaying, 487
bad blocks file, 438, 448, 495, 500, 501
bad blocks map file, 496, 505, 509, 539
bad track information, 136, 185
Basic I/O System, see BIOS:
batch files, 356
bcl command, 87

examples, 88
bcl, definition, 87
bf (backupfnodes) DVU command, 451
binding, improving efficiency, 337
BIOS (Basic I/O System), 4

and debug command, 112
buffers, 350

BLD286, 50
BLD386, 50
block allocation, 447
block DVU command, 454

examples, 456
blocks

bad, map of, 539
indirect, 533, 535, 544
indirect, description, 544

BND386, example of submit command, 357
BOLT (Bootloader Location Table), 524
boot system, information about, 362
bootdos command, 90
bootfile, 51, 234
bootloadable file, creating, 51
Bootloader Location Table (BOLT), 524
bootrmx command, 91
bootstrap loader

MSA first stage, 524
MSA second stage, 524

Bootstrap Loader
blocks, 513
stages of, 186

Command Reference Index 587

third stage, 240
byte bucket, 33
Byte Bucket device driver, 565

C
case command, 92

examples, 92
case-sensitive items

client system name, 269
converting filenames, 92
grep parameter, 207
password, 283
translating file contents, 381

cataloging
logical names, 32

cataloging logical names, 32
ccinfo file, 87, 88, 397
CDF (Client Definition File), 269
changeid command, 93
characters

finding, 54
in logical names, 30
special, 10, 11, 21
substituting, 54

checksums, 476, 480, 500
chkdsk command, 236
chmod command, 202
circumflex (^) character in pathnames, 10
CLI (Command Line Interpreter)

as initial program, 286
description, 5
environment values, 341
loadable, 94
prompt, 343

cli command, 94
CLI commands

compared with HI commands, 14
not allowed in esubmit file, 165
summary table, 40

Client Definition File, see CDF
colon (:) character, 30

in logical names, 30
COM1 and COM2 driver, 565
command aliases

creating, 20
entering, 18

examples, 20
nesting, 20
provided, 18
uses, 20

command interface
custom, 5
user-written, 4

Command Line Interpreter, see CLI
command lines

continuing, 14
maximum length, 14

command parameters
abbreviating, 17
to, over, and after, 17

command usage
abbreviating, 18, 57
aliases for, 18
case-sensitivity, 14, 29
CLI, 40
comment character ;, 14
continuing lines, 14
customizing, 19
deleting aliases, 110
DOS, 42
editing, 18, 45
entering, 18
entering, 14
executing throughout directory, 382
HI (Human Interface), 40
HI (Human Interface), 42
in esubmit file, 144
in makefile, 248
in submit file, 356
invoking, 18
iRMX-NET, 43
length of, 14
multiple pathnames, 13, 19
network, 43, 44
NFS, 29
on :$: logical name, 23
recalling, 18, 45, 211
search path, 19, 20
selecting, 4
summary table, 39
syntax, 15, 16, 29
table of, 39
TCP/IP, 29, 44

Index588

timing execution of, 378
using to/over/after parameters, 17
writing, 19

comment character ;
using, 14

comments in code, 14
communicating

using stream files, 7
configuration

and home directory, 34
and iRMX for Windows, 1
and logical names, 33, 35
and number of mailboxes, 37
and search paths, 19
for RAM disk, 239

configuration files directory, 33
configuring

for RAM disk, 51
public directories, 279

connect command, 95
terminal names in, 568

connections
displaying, 274
to files, 74

console command, 97
examples, 97

console input
logical name for, 35
redirecting, 21

console input device, 35
console output

logical name for, 35
redirecting, 21

console output device, 35
continuation character, 14

setting, 145
continuing command lines, 14
conversion DVU commands

address, 453
block, 454
dec, 455
examples, 456
hex, 456

converting
absolute address into volume block number,

454
block number into absolute address, 453

copy command, 11, 98
as background job, 14, 21
examples, 13, 14, 21, 26
limitations, 99

copydir command, 101
examples, 103

crdir (createdir) command, 105
crdir command (createdir), 105
createdir command, 105

examples, 22, 24
creating

backup volume label, 438
directories, 24
files, 8
large programs automatically, 248
mirror set, 419
r?save file, 438
r?save file, example, 439

Ctrl-Q keys, 373
Ctrl-S keys, 373
current working directory, 34

D
d (displaybyte) DVU command, 461
Data Link Layer, 219
datagrams, 307
date

default, 108
format, 107

date command, 107
db (displaybyte) DVU command, 461
dd (detachdevice) command, 119
dd (displaydirectory) DVU command, 465
dd command (detachdevice), 119
dealias command, 57, 110
debug command, 111

interrupts disabled by, 112
limitations, 111

debug monitor, 97
dec DVU command, 455

examples, 456
decimal equivalent of a number, finding, 455
default aliases, 60
default date, 108
default directory, 24
default prefix, 34

Command Reference Index 589

default route, 275
default search path, 19
delete command, 114

examples, 25, 26
deletedir command, 116
deletename command, 118
deleting

directories, 25
server names and addresses, 118

detachdevice command, 119
detachfile command, 121
detaching

devices, 119, 350
diskettes, 69
DOS-format diskettes, 70
files, 121

detaching
devices, 68

device drivers
built into DOSRMX, 563
Byte Bucket, 565
COM1 and COM2, 565
flexible disk, 564
hard disk, 563
loadable, 365, 566
loading, 1
supplied, 567

device names
DOSRMX, 569, 570
in pathnames, 24
iRMX for PCs, 569, 570
iRMX III, various controller boards, 578
Multibus I, 571
Multibus II, 571
using, 568
where used, 568

device recognition, automatic, 519, 520
Device Unit Information Block, see DUIB

names
deviceinfo command, 123
devices

attaching, 66
detaching, 68, 119, 350
physical names, 568

df (detachfile) command, 121
df (displayfnode) DVU command, 467
df command (detachfile), 121

dir command, 9, 22, 125
and hidden files, 14
examples, 5, 26, 128

directories
available to network, 279, 309, 325
combining, 102
command search path, 19
copying, 102
creating, 22, 24, 105
default, 24
deleting, 25
displaying, 22, 127, 465
fnodes, 438
home, 24, 34
naming, 8
naming conventions, 22
overwriting, 101
renaming, 25
root, 10

directory access
for backup, 81
remote, 105

directory tree, 8
disconnect command, 133
disk DVU command, 458

examples, 460
disk mirroring

applications, 403, 405, 417
automatic enabling, 409, 410
benefits, 404
creating the mirror set, 419
disk protection, 426
event notification, 410
event notification, example, 421
failure detection, 406
hardware configuration, 411, 412, 413, 414,

415
maximum outstanding commands, 417
mirror set, definition, 404
mirror state structure, 426
operation, 405
operations, summary, 417
primary disk failure, 424
repair, 408
repair of system device, 408
repair off-line, example, 422
repair off-line, example, 424

Index590

repair on-line, example, 425
repair on-line, example, 423
repair options, 422
resynchronization, 406, 408
rollover, 406, 407
secondary disk failure, 422
setup, example, 419, 420
software configuration, 416
system device repair, 408
terminology, 404
using a_special, 426

Disk Verification Utility, see DVU. see DVU
diskette drives, attaching, 68
diskettes

attaching and detaching, 69
attaching and detaching, caution, 69
characteristics of 3 1/2-inch, 549
characteristics of 5 1/4-inch, 548
formats, 548
formatting, 27
interleave factor, 184
standard and uniform granularity, 189
track 0 abnormalities, 548

disks
bad track information, 185
detecting failure, 406
interleave factor, 184
making bootable, 187
mirroring, 263, 403
verifying, 134

diskverify command, 134, 178
examples, 138
in interactive mode, see DVU
interactive mode, 429

diskverify commands, see DVU commands
displaybyte DVU command, 461

examples, 461
displaydirectory DVU command, 465

examples, 466
displayfnode DVU command, 467

examples, 470
displaying

bad blocks, 487
bad track information, 484
DUIB names, 304
fnode fields, 467
fnodes from r?save file, 472

iRMX OS fixes, 399
volume block, 473, 474
working buffer, 461, 463

displaynextblock DVU command, 473
displaypreviousblock DVU command, 474
displaysavefnode DVU command, 472
displayword DVU command, 463

examples, 463
div DVU command examples, 450
dividing numbers, 449
dnb (displaynextblock) DVU command, 473
domain command, 141
DOS

interface, 339
DOS commands

summary table, 42
DOS directories

access rights, 302
DOS file driver, 67
DOS files, 7

access, 9, 67
access rights, 302
user, 302

DOS format option, 180
DOS NUL device, 33
DOS-format diskettes

attaching, 70
detaching, 70

DOSRMX
debugging tools, 97
device names, 569, 570

dpb (displaypreviousblock) DVU command, 474
dsf (displaysavefnode) DVU command, 472
DUIB names, 68, 95, 189, 263, 568

displaying, 304
dump command, 142
duplicate volume label file, 438, 541
duplicated lines, finding in files, 384
DVU (Disk Verification Utility)

aborting commands, 435
as single command, 134
caution, 430
command names, abbreviating, 433
command names, entering, 433
command parameters, 434
command radices, 434
directing output, 431

Command Reference Index 591

error messages, 436
exiting, 479, 488
functions, 429
interactive mode, 429
invocation error messages, 432
invoking, 431
parameters, 434
quitting, 488
radices, 434

DVU commands
< (displaypreviousblock), 474
> (displaynextblock), 473
aborting, 435
address, 453, 454
bf (backupfnodes), 451
conversion, 453
d (displaybyte), 461
db (displaybyte), 461
dd (displaydirectory), 465
dec, 455
df (displayfnode), 467
disk, 458
displaybyte, 461
displaydirectory, 465
displayfnode, 467
displaynextblock, 473
displaysavefnode, 472
displayword, 463
dnb (displaynextblock), 473
dpb (displaypreviousblock), 474
dsf (displaysavefnode), 472
dw (displayword), 463
e (exit), 479
editfnode, 475
editsavefnode, 478
ef (editfnode), 475
esf (editsavefnode), 478
exit, 479
fix, 480
free, 482
gb (getbadtrackinfo), 484
getbadtrackinfo, 484
h (help), 486
help, 486
hex, 456
lbb (listbadblocks), 487
listbadblocks, 487

q (quit), 488
quit, 488
r (read), 489
read, 489
restorefnode, 490
restorevolumelabel, 493
rf (restorefnode), 490
rvl (restorevolumelabel), 493
s (substitutebyte), 497
save, 495
sb (substitutebyte), 497
substitutebyte, 497
substituteword, 499
summary table, 445
sw (substituteword), 499
v (verify), 500
verify, 500
w (write), 510
write, 510

dw (displayword) DVU command, 463
dynamic terminals, 4

restricting access to, 284

E
e (exit) DVU command, 479
ECHO_REQUEST packets, 307
ECHO_RESPONSE packets, 307
editfnode DVU command, 475

examples, 476
editing

fnodes, 475
r?save fnodes, 478
working xe "DVU

commands:substituteword"xe "DVU
commands:sw (substituteword)"xe
"substituteword DVU command"xe "sw
(substituteword) DVU command"buffer,
499

working buffer, 497
editsavefnode DVU command, 478
EDOS (Encapsulated DOS) files, 7

access, 9
EDOS file driver, 67
EDOS volume, 27
ef (editfnode) DVU command, 475
EIOS (Extended I/O System), 4

Index592

attached devices, 350
buffers, 350

enetinfo command, 143
environment values, 341
error messages

description, 35
general HI, 35
general iRMX-NET, 37

errors
displaying network, 273
Streams, 276

esf (editsavefnode) DVU command, 478
esubmit command, 144

examples, 165
esubmit file, 144

using pause command, 291
Ethernet address, 88, 173, 219

displaying local, 143
format of, 205
getting local, 204, 227
mapping to Internet, 63
of boot clients, 88
of spokesman system, 171

examples
add DVU command, 450
address DVU command, 456
alias command, 20, 61
arithmetic DVU commands, 450
attachdevice command, 27
attachfile command, 24
background command, 14, 21, 78
backupfnodes DVU command, 440, 452
bcl command, 88
block DVU command, 456
case command, 92
command aliases, 20
console command, 97
conversion DVU commands, 456
copy command, 13, 14, 21, 26
copy command and wildcards, 12
copydir command, 103
createdir command, 22, 24
creating r?save file, 439
dec DVU command, 456
delete command, 26
dir command, 5, 26, 128
disk DVU command, 460

disk mirroring event notification, 421
disk mirroring setup, 419, 420
disk mirroring, off-line repair of primary

disk, 424
disk mirroring, off-line repair of secondary

disk, 422
disk mirroring, on-line repair of primary

disk, 425
disk mirroring, on-line repair of secondary

disk, 423
diskverify command, 138
displaybyte DVU command, 461
displaydirectory DVU command, 466
displayfnode DVU command, 470
displaying r?save file, 444
displaysavefnode DVU command, 444
displayword DVU command, 463
div DVU command, 450
DVU command radices, 434
editfnode DVU command, 476
esubmit command, 165
file tree, 8
format command, 27, 439
grep command, 208
help DVU command, 486
hex DVU command, 456
history command, 212
I/O redirection, 21
ic command, 216
listbadblocks DVU command, 487
loadable device driver, 566
loadrmx command, 235
locdata command, 239
logical names, 31
logicalnames command, 245
maintaining backup fnode file, 440
mod DVU command, 450
mul DVU command, 450
offer command, 279
pathname prefixes, 23
pathnames, 23
physname command, 305
remini command, 324
renaming directories, 25
restorefnode DVU command, 491
restorevolumelabel DVU command, 443,

493

Command Reference Index 593

restoring fnodes, 441
restoring the volume label, 443
save DVU command, 496
shutdown command, 440
specifying volume names, 10
sub DVU command, 450
submit command, 357
substitutebyte DVU command, 498
substituteword DVU command, 499
sysload command, 368
traverse command, 382
verify DVU command, 441, 505
version command, 392
wildcards, 12
wildcards in pathnames, 13
write DVU command, 511
xlate command, 397

exit command, 169
exit DVU command, 479
exiting the DVU, 479, 488
Extended I/O System, see EIOS
extended memory

limitations, 339
requirements, 234

extension data, 182
required by HI, 182

extension objects, 222

F
fdisk utility, 320
file descriptor nodes, 527
file drivers, 8
file tree, 8
filenames, permitted characters, 8
files

access rights to
DOS, 67

access rights to, 9
changing, 99
DOS, 302
for backup, 81
iRMX from Unix or Xenix, 92
network, 9
remote, 9

bad track, 185
concatenating, 13

connections to, 74
copying across directories, 99
creating, 8
denying network access to, 325
detaching, 121
displaying, 352
displaying in hexadecimal, 142
displaying in pages, 281
displaying names of, 383
DOS access to, 9
editing, 54
EDOS, 7
finding, 170
finding duplicate lines in, 384
granularity of, 182
hidden, 14
included in esubmit file, 162
initial, 527
long, 500, 544
map, 183
moving between volumes, 26
named, 7
naming conventions, 8
owner of, 9, 99
physical, 7
remote, 7
remote access to, 279, 299
searching for string in, 207
short, 537, 543
size of, 500, 544, 547
sorting contents of, 354
stream, 7
system, 182
types of, 7, 531

as specified in fnodes, 500
user ID, 297
viewing, 54

find command, 170
findname command, 171
fix DVU command, 480
fixing

bad checksums, 480
volumes, 480

flexible disk driver, 564
fnode files, 437, 438, 537

backing up, 348, 451
structure, 437

Index594

fnodes (file descriptor nodes), 136, 181
access ID, 535
allocated, 438
allocating, 447
auxiliary bytes, 536
creation time, 531
data block identification, 532, 533
description, 181, 527
displaying, 467
editing, 475
flags, 448, 530
for long files, 438, 547
for short files, 438, 543
freeing, 482
granularity, 531
last file access, 531
last modification, 531
owner, 531
parent, 500, 536
restoring, 441, 490
restoring, caution, 441
size (bytes) actual data, 531
size (bytes) data space, 535
structure, 528
type, 531

format command, 174, 583
DOS option, 180
examples, 27, 439
quick option, 181

formatting
remote volumes, 27
volumes, 27, 28

formfeed in paginate command, 282
FPI (Front Panel Interrupt) server, 213
free DVU command, 482
free fnodes map file, 438, 448, 483, 495, 496,

500, 505, 508, 538
free space, 538

on volume, 124, 127, 182
free space map file, 508
freeing

fnodes, 482
FTP

commands, 195
get command, 196
macros, 197, 200
open command, 200

put command, 200
ftp command, 193

G
gateway, 275
gb (getbadtrackinfo) DVU command, 484
getaddr command, 204
getbadtrackinfo DVU command, 484
getname command, 205
global object directory, 32, 34, 72, 74, 121
granularity, 28

device, 182
volume, 182

graphics interface modules
and :config:r?init file, 553
basic menu, 554
expanded menu, 558
for Multibus, 551
multiple windows, 552

grep command, 207
examples, 208

H
handling

disk failures, 422
hard disk driver, 563
hard disks, protecting, 426
headings used by the dir command, 129
help command, 209
help DVU command, 486
help files, 210
hex DVU command, 456

examples, 456
hexadecimal equivalent of a number, finding,

456
HI (Human Interface)

description, 4
HI (Human Interface) commands, 42

summary table, 40, 42
HI commands

compared with CLI commands, 14
description, 4
directory, 34

hidden files, 14, 182
specifying, 14

Command Reference Index 595

history command, 18, 211
examples, 212

home directory, 24, 34, 72
UNIX, 285

host name
displaying, 274

host-unique ID, 345

I
I/O redirection, examples, 21
I/O requests

PCI buffering, 292
I/O streams, redirecting, 97
ic command, 213

examples, 216
ICMP (Internet Control Message Protocol), 307
ICU (Interactive Configuration Utility), 1, 4

and client definition file, 269
directory, 34

iNA 960
boot file, 231
bootloadable files, 390, 394
Remote Boot Server, 87
software, 272
starting locally, 231
subsystem ID, 143
transport address format, 347

inamon command, 219
indirect block, 533, 535, 544

description, 544
spanning more than one volume block, 545

iNDX-based development, 189
init_file_name parameter, 234
initial files, 527
initial program, 4
initstatus command, 220
Interactive Configuration Utility, see ICU
interactive jobs, 4, 32

deleting, 222
interconnect registers, 215
interconnect space, 213
interface between DOS, ROM BIOS, and iRMX

OS, 339
interfaces

displaying, 275
interleave factor, 28, 183

selecting, 184
Internet address

mapping to Ethernet, 63
iRMX for PCs

device names, 569, 570
remote booting, 324

iRMX for Windows, 1
layers, 4

iRMX layers, 3
iRMX volume

labels, 517, 518, 519
structure, 513

iRMX-NET
as optional layer, 4
description, 5

iRMX-NET commands, 6
directory, 34
summary table, 43

iSBX 279 board and graphics interface modules,
551

iSBX 279(A) board
and debugging, 112
and graphics interface modules, 551

ISO volume label, 515
ISO-TP4, 5

J
job ID

background jobs, 76, 226
interactive jobs, 222

jobdelete command, 222
jobs

background, 74, 224
deleting background, 226
deleting interactive, 222
object directories, 32

jobs command, 224

K
keyb command, 225
kill command, 226

L
language products, directory, 33

Index596

lanstatus command, 227
large programs, creating automatically, 248
layers of iRMX OS, 3
lbb (listbadblocks) DVU command, 487
length of command lines, 14
line printer

logical name for, 34
line-editing keys, 18
listbadblocks DVU command, 487
listing

bad blocks, 487
commands entered, 18
current background jobs, 224
files and fnodes, 465
files in directory, 26
hidden files, 14
iRMX OS fixes, 399
objects in Name Server, 228

listname command, 228, 347
load command, 231
loadable device drivers, 68, 365, 367, 566

code examples, 566
include files, 566

loadname command, 205, 232
loadrmx command, 234

examples, 235
local object directory, 32, 35
location of files, 543
locdata command, 238

examples, 239
lock command, 242

terminal names in, 568
log file

accounting, 47
produced by esubmit file, 163

logical names
:$:, 34
:bb:, 33
:ci:, 35
:co:, 35
:config:, 33
:home:, 34
:icu:, 34
:lang:, 33
:lp:, 34
:prog:, 34
:rmx:, 34

:sd:, 33
:stream:, 34
:system:, 34
:util286:, 34
:utils:, 34
:work:, 34
access to, 32
accessing, 66
as prefixes, 31
cataloging, 32
creating, 30
default, 33
definition, 6
deleting, 119, 121
duration of validity, 74
for devices, 31, 66
for directories, 25, 31
for files, 31, 72
in background jobs, 32, 77
in pathnames, 10
listing, 244
order of search, 33
rules for, 30
syntax, 30
system-wide, 33
user, 34
with attachfile command, 72

logicalnames command, 30, 244
examples, 245
to view attached devices, 68

logoff
recording activity, 48

logoff command, 57, 247
logon

home directory, 72
recording activity, 48

logon command as HI command, 5
long files, 500, 544

fnode, 547
fnode, 438

loopback
MTU, 275

low-level format, 179

M
macro

Command Reference Index 597

FTP, 197, 200
macros, creating, 54
make command, 248
makefile, 248
map files, 183

rmxloc command, 338
MAP386

example, submit command, 358
marking bad blocks, 447
memory command, 262
memory pools

allocated to user, 262
changing values in modules, 271
for background jobs, 342
size for background job, 76
when debugging, 112

memory requirements, 234
Message Interprocess Protocol, see MIP
metacharacter

setting, 145
MIP (Message Interprocess Protocol), 37
mirror command, 263, 403

device names in, 568
mirroring, see disk mirroring
MIX 560 boards, 143
mkdep command, 267
mod DVU command examples, 450
modcdf command, 269
modinfo command, 271
mouse and graphics interface modules, 553
moving

files between volumes, 26
MSA Bootstrap Loader, 186

first stage, 524
second stage, 524

MSA, booting from a partitioned disk, 585
msaboot, 541
MTU

Ethernet, 275
loopback, 275

mul DVU command examples, 450
Multibus and graphics interface modules, 551
Multibus I

Bootstrap Loader, 186
device names, 571

Multibus II
Bootstrap Loader, 186

device names, 571
interconnect space, 213
locating and controlling boards, 213
network names, 205
slot ID, 213
slot ID in prompt, 343
slot ID in TSAP ID, 347

multiple pathnames, 11
multiplying numbers, 449

N
Name Server, 141

property types, 172
Name Server object table, 118, 228, 232, 345,

385
named file driver, 8, 66, 69
named files, 7
named volumes, 137, 179

structure, 513, 514
verifying, 500

naming
directories, 8, 22
files, 6, 8
using logical names, 30
volumes, benefits, 27

netinfo command, 272
netstat command, 273

-a option, 274
-sp option, 276

network controller board, 227, 231
network file access, 9
Network Management Facility (NMF), 219
network name, displaying, 274
network names

cataloging, 232
getting, 205

network routing, 219
networking commands, 6
networking software, 5
NFS file driver, 67
NMF (Network Management Facility), 219
NMI (Non-Maskable Interrupt), 213
Nucleus, 4

and debug command, 112

Index598

O
object directories

cataloging logical names, 32
global, 32, 34, 72, 74, 121
local, 32, 35
order of search through, 33
root, 33, 66, 95, 119, 133

Object Module Format (OMF), 236
offer command, 279

examples, 279
OMF (Object Module Format), 236, 394
OMF286, 271, 394
OMF386, 394
OMF-386

reducing module size, 337
OMF86, 271, 394
OpenNET, 285

description, 5
optional parameters, 15
orphan fnodes, 480
over parameter, 17

P
packet traffic, 277
paginate command, 281
parameters

assigning, 20
optional, 15
to, over, and after, 17
with alias command, 58

Parameters
entering, 16
order of entry, 16

partition table, 313, 582
DOS and iRMX, 582
structure of, 523
verifying, 316

partitions
caution, 313, 584
PCI disks, 581

DUIB, 582
example, 584

valid numbers, 313
password

client system, 269

creating or changing, 283
password command, 283
path command, 290
pathnames

circumflex (^) in, 10
definition, 6
entering, 22
examples, 23
full, 10
input and output, 13
listing, 290
prefix in, 23, 31
relative, 10
shortening, 24, 25
specifying, 10, 11
using, 22
using multiple, 11, 13
using wildcards in, 11

pause command, 291
PC, Bootstrap Loader, 186
pci command, 292
PCI driver, 190
PCI requests, direct, 292
PCI server, 292
pcnet command, 294
permit command, 9, 295
physical device names, 568
physical files, 7
physical ports, 95
physical volumes, 137

verifying, 500
physname command, 304

examples, 305
ping command, 307
port, displaying names, 274
Posix shell, 30
prefix, 31

default, 34
definition, 6
in pathname, 23
volume, 26

Program Table Index Register (PTIR), 214
prompt

setting, 343
telnet, 369, 370
while transferring files, 200

property types, 172, 205, 345

Command Reference Index 599

protected mode, 236
protocols

displaying, 274
displaying statistics for, 276

PTIR (Program Table Index Register), 214
public directories, 279, 309, 325
publicdir command, 309

Q
q (quit) DVU command, 488
question mark (?) character, 12
quick format option, 181
quit DVU command, 488

R
r (read) DVU command, 489
r?badblockmap file, 182
r?fnodemap file, 182
r?logoff file, 286
r?logon file, 286
r?save file, 178, 182, 349, 438, 443, 451, 541

creating, 438
creating, example, 439
displaying, 443
displaying fnodes, 472

r?save file, 451, 490, 493
r?save fnodes

editing, 478
r?secondstage file, 524, 541
r?shutdown object, 349
r?spacemap file, 182
r?volumelabel file, 182
RAM disk, 51

loadable driver, 367
rdisk command, 310, 583
rdisk command, caution, 584
read DVU command, 489
reading

volume blocks, 489
redirecting

I/O, example, 21
remini command, 324

example, 324
Remote Boot Server, 87
remote booting

iRMX for PCs, 324
remote device, backing up, 81
remote files, 7

access, 9
access rights, 130
displaying, 130
user ID, 299

remote server
in attachdevice command, 67

remote systems, 69
remote volumes

formatting, 27
remove command, 325
rename command, 326

limitations, 26
renaming

directories, 25
repairing

primary disk of mirror set, 424
secondary disk of mirror set, 422
system device, 408

restore command, 329
with backup command, 82
with tapes, 27

restore utility, DOS, 340
restorefnode DVU command, 490

examples, 491
restorevolumelabel DVU command, 493

examples, 443, 493
restoring

fnodes, 490
volume label, 442, 443, 493

resynchronizing disks, 408
retension command, 336
rf (restorefnode) DVU command, 490
rmextdbg command, 337
rmxloc command, 338
rmxtsr command, 339
ROM BIOS

interface, 339
root directory, 10, 539

owner and accessors, 182
root object directory, 33, 66, 95, 119, 133
route command, 275
routing table

displaying, 275
rpstsr command, see iRMX for PCs Installation

Index600

rvl (restorevolumelabel) DVU command, 493

S
s (substitutebyte) DVU command, 497
save DVU command, 495

examples, 496
sb (substitutebyte) DVU command, 497
SCSI DUIB, generic, 567
search path, 20

default, 19
definition, 19
using, 19

security, 283
semicolon (;) as comment character, 14
serial ports, 95
server names, cataloging, 345
service information inside back cover, 1
set command, 341

with alias table, 57
setname command, 345
setting up disk mirroring, 419
setup utility, 320
short files, 543

fnode, 543
fnode, 438

shutdown command, 348
examples, 440

site commands, 202
size of files, 500, 544, 547
skim command, 352
slash (/) character

as pathname separator, 10
sleep command, 354
sort command, 354
space accounting file, 438
spokesman system, 171
standard granularity, 189

devices, 571, 573, 574
static terminals, 4
stream file connection

logical name for, 34
stream files, 7
Streams

displaying failed requests, 276
message buffers, 276

structures

named volume, 513
sub DVU command examples, 450
submit command, 58, 356

and esubmit command, 146
MAP386 example, 358

submit command as HI command, 5
submit file, 20, 356

used with esubmit command, 165
using pause command, 291

subnet IDs, searching, 141
subnetwork, 269, 299
substitutebyte DVU command, 497

examples, 498
substituteword DVU command, 499

examples, 499
substitution character

setting, 145
subtracting numbers, 449
super command, 360
super command as HI command, 5
super user

becoming another user, 93
becoming the, 360
exiting, 169

supplied device drivers, 567
DOSRMX, 563

sw (substituteword) DVU command, 499
symbolic names, see logical names
syntax of commands, 15

diagram, explanation, 16
sysinfo command, 362
sysload command, 365

examples, 368
system

displaying information about, 362
performance index, 362
shutting down, 348

system 520
multiple windows, 552

System 520
and graphics interface modules, 551

system aliases, 58
System Debug Monitor, 111
system device, 234

logical name for, 33
system files, 182

displaying ZAPs, 399

Command Reference Index 601

system manager, 360
system types, 1, 362

T
tapes

formatting, 81, 179
retensioning, 336

TCP/IP commands, summary, 44
TELNET

close command, 370
commands, 370
help command, 371
open command, 370
quit command, 370

telnet command, 369
term command, 372
terminals

disconnecting, 133
displaying or changing attributes, 372
displaying status of, 220
iRMX III PC device names, 569
loadable drivers, 367
locked, 95, 133, 242, 349, 387
Multibus I device names, 576
Multibus II device names, 577
restricting access to, 284
setting type of, 342
static and dynamic, 4
virtual, 133, 242, 387

text
copying, 54
moving, 54

time command, 375
timer command, 378
tnrmx command, 369
to parameter, 17
tokens, 32
touch command, 379
track 0 abnormalities, diskettes, 548
traffic display, 277
translate command, 381
traverse command, 382

examples, 382
tree command, 383
TSAP ID, 172

table, 346

turn-around time, 184

U
UDF (User Definition File), 283, 299
ulimit command, 202
umask command, 202
uniq command, 384
UNIX shell, 285
unloadname command, 233, 385
unlock command, 387

terminal names in, 568
unxlate command, 390
user

adding, 284
and logical names, 34
changing password, 283, 287
creating, 283
displaying current ID, 393
displaying information about, 287
listing access rights, 126
locking out, 242
remote, 279
removing, 286
verified, 93

user ID, 297
changing Super's, 93
displaying, 393
remote files, 299

utility programs, directory, 34

V
v (verify) DVU command, 500
valid partition numbers, 313
ver DOS command, 340
verified user, 9, 93, 360
verify DVU command, 500

examples, 441, 505
functions, 500

verifying
partition table, 316
volumes, 500

version command, 391
examples, 392

virtual terminals, 133, 242, 387
volume blocks

Index602

displaying, 473, 474
freeing, 482
reading, 489

volume free space map file, 438, 448, 483, 495,
496, 500, 505, 538

volume granularity, 182
volume label file, 182, 437, 438, 493, 539
volume labels, 514

creating backup, 438
iRMX, 517, 518, 519
ISO, 515
restoring, 442, 493
structure, 437
structure, iRMX, 517, 518, 519
structure, ISO, 515

volume map files, 183
volume name, 179
volumes

backup, 81, 331
definition, 6
displaying attributes, 458
displaying attributes, 135
displaying information about, 123
fixing, 480
formatting, 27, 28
free space, 124, 127
granularity, 28
named, 179
named and physical, 137
naming, benefits, 27
on remote systems, 69
prefix, 26
specifying, 26
specifying names, 10
structure, 513
structure, named, 514
verifying, 500

W
w (write) DVU command, 510
whoami command, 393
wildcards

characters, 11
definition, 6
in pathnames, 13
order of use, 13
to display aliases, 58
using multiple, 12
when copying files, 99
when deleting aliases, 110

windows, multiple
on system 520, 552

word processing, 54
working buffer

changing contents, 498
definition, 462
displaying, 461
editing, 497, 499
writing, 510

working directory, 10, 34
changing, 24, 72

write DVU command, 510
examples, 511

X
xlate command, 231, 390, 394

examples, 397

Z
ZAPs, displaying, 399
zscan command, 399

	iRMX® Command Reference
	Quick Contents
	Notational Conventions

	Contents
	Chapter 1: Using Commands
	How to Use This Manual
	Commands Available on Your System
	The Human Interface (HI)
	The Command Line Interpreter (CLI)
	Networking Software

	Understanding the File Systems
	File Types
	Named File Tree
	File Access and User IDs
	Using Pathnames
	Using the Copy Command with Multiple Pathnames
	Using Wildcards in Filenames
	Specifying Hidden Files

	Entering Commands
	Command Syntax
	Using the To, Over, and After Parameters
	Abbreviating Parameters
	Abbreviating Command Names
	Recalling and Editing Commands
	Using Command Search Paths
	Creating Command Aliases
	Redirecting I/O

	Using Commands on Directories
	Displaying Files with the DIR Command
	Creating a New Directory
	Referring to a Directory
	Creating a Directory Within a Directory
	Changing Your Working Directory
	Renaming Directories
	Deleting a Directory

	Using Commands on Volumes
	Formatting a New Volume

	Using TCP/IP and NFS Commands
	Executing TCP/IP Commands
	Case Sensitivity in TCP/IP and NFS Command Syntax
	Executing OS Commands From a Posix Shell

	Creating and Using Logical Names
	Creating Logical Names for Devices
	Creating Logical Names for Files
	Where Logical Names are Stored
	Logical Names Created by the Operating System

	Error Messages
	General HI Error Messages
	General iRMX-NET Error Messages

	Chapter 2: Command Descriptions
	Command Descriptions
	Command Summary
	!
	accounting
	addloc
	aedit
	alias
	arp
	attachdevice
	attachfile
	background
	backup
	bcl
	bootdos
	bootrmx
	case
	changeid
	cli
	connect
	console
	copy
	copydir
	createdir
	date
	dealias
	debug
	delete
	deletedir
	deletename
	detachdevice
	detachfile
	deviceinfo
	dir
	disconnect
	diskverify
	domain
	dump
	enetinfo
	esubmit
	exit
	find
	findname
	format
	ftp
	getaddr
	getname
	grep
	help
	history
	ic
	inamon
	initstatus
	jobdelete
	jobs
	keyb
	kill
	killjob
	lanstatus
	listname
	load
	loadname
	loadrmx
	locdata
	lock
	logicalnames
	logoff
	make (mk)
	memory
	mirror
	mkdep
	modcdf
	modinfo
	netinfo
	netstat
	offer
	paginate
	password
	path
	pause
	pci
	pcnet
	permit
	physname
	ping
	publicdir
	rdisk
	remini
	remove
	rename
	restore
	retension
	rmextdbg
	rmxtsr
	set
	setconfig
	setname
	shutdown
	skim
	sleep
	sort
	submit
	super
	sysinfo
	sysload
	telnet
	term
	time
	timer
	touch
	translate
	traverse
	tree
	uniq
	unloadname
	unlock
	unxlate
	version
	whoami
	xlate

	Appendix A: Using Disk Mirroring
	Introduction
	Disk Mirroring Concepts
	Mirror Sets
	Failure Detection
	Rollover
	On-line and Off-line Repair
	On-line Resynchronization
	Automatically Enabling Disk Mirroring
	Event Notification

	Disk Mirroring Configuration
	Hardware Configuration
	Software Configuration

	Using Disk Mirroring
	Summary of Disk Mirroring Operations
	Tutorial: Using the Mirror Command
	Handling Events
	Handling Failures
	Protecting Hard Disks
	Using A_special for Disk Mirroring
	Mirror State Structure

	Appendix B: Using Diskverify in Interactive Mode
	Introduction
	Invoking Diskverify
	Invocation Error Messages

	Using Diskverify Commands
	Abbreviating Command Names
	Using Parameters
	Abbreviating Parameters
	Specifying Input Radices
	Aborting Diskverify Commands

	Diskverify Error Messages
	Tutorial: Backing Up and Restoring Fnodes
	Structure of the Volume Label and Fnode File
	Creating the Backup Volume Label and Fnode File
	Maintaining the Backup Fnode File
	Restoring Fnodes
	Restoring the Volume Label
	Displaying R?save Fnodes

	Diskverify Command Descriptions
	Command Summary
	allocate
	arithmetic commands
	backupfnodes
	conversion commands
	disk
	displaybyte
	displayword
	displaydirectory
	displayfnode
	displaysavefnode
	displaynextblock
	displaypreviousblock
	editfnode
	editsavefnode
	exit
	fix
	free
	getbadtrackinfo
	help
	listbadblocks
	quit
	read
	restorefnode
	restorevolumelabel
	save
	substitutebyte
	substituteword
	verify
	write

	Appendix C: Structure of a Named Volume
	Introduction
	Volume Structure
	Volume Labels
	ISO Volume Label
	iRMX Volume Label and Partition Table
	Bootloader Location Table

	Initial Files
	Fnode File
	Fnode 0: Fnode File
	Fnode 1: Volume Free Space Map File
	Fnode 2: Free Fnodes Map File
	Fnode 3: Accounting File
	Fnode 4: Bad Blocks Map File
	Fnode 5: Volume Label File
	Fnode 6: Root Directory
	Fnodes 7 and 8: R?secondstage and R?save
	Other Fnodes

	Short and Long Files
	Short Files
	Long Files

	Diskette Formats

	Appendix D: Real-Time Graphics Interface
	Description
	Using the Windows
	Using the Mouse
	Basic Menu
	Expanded Menu

	Appendix E: Supplied Device Drivers and Physical Device Names
	Supplied Device Drivers
	Preconfigured Drivers, DOSRMX and iRMX For PCs
	Loadable Device Drivers
	ICU-configurable Drivers For iRMX III Systems

	Physical Device Names
	DOSRMX and iRMX for PCs Systems
	iRMX III Systems
	iRMX III PC Systems
	iRMX III Multibus I and Multibus II Systems

	Appendix F: Partitioning PCI Hard Disk Drives
	The Partition Table
	Specifying iRMX Partitions
	Example DUIB Name

	How to Use PCI Partitioning
	Partitioning and Formatting Tools

	Partitioning Example for the iRMX III OS
	MSA Booting
	Partition Support for Multibus I Systems or PCs
	Multibus I Systems
	PC Systems

	Index

