
BESSY 1

LanGpib Driver Support
for HP E2050A -
Release 2.4

Benjamin Franksen
BESSY GmbH
Albert-Einstein-Straße 15
12489 Berlin
Germany

Table of Contents

1 Introduction. 1

2 Design Concepts . 3

2.1 History .3
2.2 Task Structure. .4
2.3 Initialization .5
2.4 Hardware Link Type. .6
2.5 Device Support. .6
2.6 Module Structure .8

3 Interface Description . 8

3.1 Structures .9
3.2 Constants .10
3.3 Functions .11
3.4 Variables. .13

4 Installation. 14

5 Release Notes. 15

5.1 Release 2.4.a. .16
5.2 Release 2.4 .16
5.3 Release 2.3 .16
5.4 Release 2.0 .18

1 Introduction
� � � � � � � � � � 	
 � � � � � �

This document describes the EPICS driver support for the LAN/GPIB gateway HP
E2050A. It has been completely revised for release 2.4.

The goal of this document is

• to give users a simple introduction and a guide for installation and usage,

1 Introduction

2 Document Revision: 1.3

• to give device support developers a detailed interface description,

• to explain design concepts and structure to anyone interested.

The purpose of the LanGpib driver support module is to provide a set of functions to
allow other EPICS modules (especially device support modules) to interface GPIB-
connected devices.����� �
GPIB (General Purpose Interface Bus, also called HP-IB, IEC bus or IEEE-488) is a
parallel bus which can connect up to 16 devices. It is often used for connecting periph-
eral test and measurement devices to a control computer. The bus can handle an arbi-
trary amount of data (byte streams) and uses 3 hand-shake lines to adapt to the
different timing capabilities of the individual devices. Every device on the bus has a
unique number between (including) 0 and 30.

At one moment exactly one of the devices acts as the bus controller, sending out com-
mands and data to the other devices (there are some commands that are sent to all
devices), or receiving data from them. The controller is the only device on the bus that
can initiate data transfer (with the exception of SRQs (Service ReQuests)).

More detailed information on GPIB can be found in almost every manual for GPIB
devices such as - for example - the ‘Keithley, Model 617 Programmable Electrometer,
Instruction Manual’. The standard reference is ‘488.1-1987 (R1994) IEEE Standard
Digital Interface for Programmable Instrumentation (ANSI)’.� �������������
The Hewlett-Packard HP E2050A is a gateway between a local area network (LAN)
and a GPIB network. On the GPIB side it acts as the bus controller, whereas on the
LAN side it acts as an RPC (Remote Procedure Call) server. Besides its GPIB connec-
tor it has an interface to RS232. On the LAN side it has a BNC and a 10 Base-T con-
nection. It needs (and is shipped with) an external power supply.��� � "!�!
The software interface to the control computer is called VXI-11, a standard provided
by the VXIbus Consortium. It is based on Sun’s RPC protocol which in turn relies on
TCP/IP as the network/transport layer. See ‘VXI-11: TCP/IP Instrument Protocol and
Interface Mapping Specifications’ and ‘How To Use VXI-11 and HP E2050A for Pro-
gramming GPIB Devices’ for more information on VXI-11.�#��� $%�
EPICS demands that a driver support module exports a so called Driver Support Entry
Table, a structure that contains at least

• the number of entries,

• a report function, and

• an init function,

but possibly more functions. Entry points to the driver should be limited to this table
and all functions should be declared as ‘static’ in order to hide the names from other
modules in the system. There is one exception to this rule: if a function is intended to
be called from the command line either as a debugging tool or as a configuration tool
(to be called before& '�(*) +�& ,) then it is necessary that this function is not static. A similar
reasoning applies to global variables.

EPICS device support for specific record types demand further that each device
belongs to a certain class (the hardware-link type). This class determines the type and
amount of information the person who configures a database has to specify in the
hardware-links that symbolically ‘connect’ a record with the hardware. A method has
to be determined, how a specific device on a specific gateway/bus is to be addressed
(from EPICS).�.-0/ ��132*	
VxWorks is currently the only real-time operating system that the EPICS real-time
core supports. It is a preemptive multitasking system , which implies that concurrent
access to a driver must be viewed as normal. Any function that is called during normal
processing (that is: after initialization) must be reentrant. Also concurrent accesses to
the same device (that is: the same gateway instance) must be sequentialized.

2 Design Concepts

BESSY 3

Since the software interface of the HP E2050A is realized by building on Sun’s ONC/
RPC protocol, it is necessary to observe the limitations of the specific RPC implemen-
tation under VxWorks. One important limitation is that VxWorks allows only one task
to operate on a certain RPC channel. Therefore (and also for other reasons) access to
the driver must be queued and only one dedicated task per gateway may call RPCs
directly.�������154�6*78��9���� 1:���;���� 	
Based on and according to the restrictions stated so far, the driver is supposed to

• handle multiple gateways and the maximal number of allowed devices per
gateway (16),

• reserve exclusive access to devices to block other IOCs from manipulating
them, and

• serialize concurrent access from within a single IOC.�<78���=4�1>2
This will probably be the last major revision of LanGpib, and won’t be further sup-
ported appart from bug-fixes, of course. By now, it should work stable under most cir-
cumstances. A completely restructured version of the EPICS GPIB support in which
LanGpib co-exists with other low-level drivers (for NI card, Bitbus, etc..) will appear
in the not-too-distant future, if all goes well.

2 Design Concepts

2.1 History

I did not write driver support for GPIB from scratch because there was already a
working driver that supported interfaces like the NI1014 VME board. The author of
this driver (John Winans) also wrote a library, containing a lot of functions to make
writing specific device support for new devices (or changing existing ones) much eas-
ier. I decided it was a good idea to keep as much of the concepts and structure and
only change the functions that depended directly on the hardware. As it turned out this
was possible but not to the extent I originally planned (partly because of the limita-
tions mentioned in the Introduction).

What was finally kept was mainly the overall design structure, the functional interface
to the device support and almost all of the library.

Many of the concepts which are discussed in greater detail in the next sections are not
my own, but are part of the original driver. No attempt was made to clearly separate
new concepts from old ones.? � 1 � � � 6 � @ A B C 6 � 2 D
Also, for historical reasons the word ‘link’ is used for a number of only partially
related things:

• EPICS hardware link, symbolic way to ‘connect’ a record to a specific
hardware device.

• VXI-11 calls a connection from a network instrument client (such as one of our
linkTasks, see below) to a (e.g. GPIB) device a link.

• John Winans calls the connection to a GPIB controller (such as one of our
gateways) a link.

These definitions are in descending granularity: One VXI device link controls multi-
ple EPICS hardware links, and one J. Winans link controls multiple VXI device links.

I apologize to the reader for this confusing terminology and hope that it is clear from
the context which type of link is meant. In this document when the word ‘link’ or ‘link
number’ is used without further specification, the J. Winans link is meant. VXI links
are called ‘device links’.

2 Design Concepts

4 Document Revision: 1.3

2.2 Task Structure

Every gateway controlled by the IOC under consideration has associated a structureE F G & + H and a two tasks. The driver maintains a list of the link structures in which all
information belonging to a certain link (meaning GPIB controller connection) is
stored.

Figure 1: Task Structure

6 � 2 ? 4 	 2
The first task is theI & + H J K L H and maintains two lists in which work requests from other
tasks are queued, one for high and one for low priority requests. TheI & + H J K L H also
maintains a ring buffer for SRQ events. The working loop of theI & + H J K L H starts to pro-
cess when some other task has given the link event semaphoreM I & + H N O P + , Q P R , also part
of the link structure). The task first checks for SRQ events in the ring buffer, then for
normal high priority requests and then for low priority requests.	 1 9 ? 4 	 2
The other task, theL S T J K L H , acts as RPC server for incoming SRQs. It executes RPCs
from the GPIB controller which come over the intr channel. The work done here is not
very complicated: the call is checked for validity and if it is valid, the SRQ flag on the
link is set and the linkTask is woken up by giving the link event semaphore.

get event

srq flag set? poll devices

handle srq’s

get work req

handle req

get work req

until empty

linkTask

srqRing

handle req

until empty

put

get

hiPriList

loPriList

get

get

srq flag

get

srqTask

get srq

set flag

put event

qGpibReqcall

put

user tasks

2 Design Concepts

BESSY 5

Requests for reading and writing data to devices as well as for executing special com-
mands are mapped onto the corresponding RPCs. SRQs are handled by polling all reg-
istered devices on the bus (reading the status byte in serial poll mode). If a device has
the corresponding bit set, the information is stored in the ring buffer. After polling, the
ring buffer is processed: if there is an SRQ handler function installed for this link and
this device, it is called, otherwise only the device status of the device is cleared (so
that it releases the SRQ line).

2.3 Initialization

Driver initialization is a bit complicated. The main reason for this is that VXI-11
demands that for every device on the bus a separate communication channel (a so
called device link, see the notes on terminology) is to be created using a dedicated
RPC. But this RPC can only be called by the linkTask that controls the particular bus
segment in question. This is because the VxWorks implementation of ONC/RPC
allows only one task to communicate on a given RPC channel (if another task tries to
perform an RPC on the same RPC channel the result is a system crash), and there are
exactly two RPC channels per GPIB gateway: one for SRQs (served by the srqTask)
and one for everything else (served by the linkTask).

Also, at the time& ' () + & , calls the driver init function, i.e.before record instances are ini-
tialized, it might be unknown how many LAN/GPIB gateways the IOC has to control
and even more what devices are on the corresponding bus segments and what their
GPIB addresses are. This is in contrast to drivers for VMEbus cards where the driver
can simply look for responses from specific VMEbus addresses to detect how many
cards of a certain type are present in the system.

The inititialization function that is called by iocInit for every driver does only the most
basic things like initialization of global variables. It creates the mutex structure for the
list of link structures and determines the IOC’s IP address and network address.

The ‘real’ initialization takes place as soon as ioctl is called with parameter cmd ==
IBGENLINK. If this is the first call for the given link number, a lot of things happen.
First the list of link structures is locked. Then the link structure is created, and the link
task is started. The task calling ioctl blocks on the init semaphore for this link.

The link task will perform all further initialization which are mainly:

1. Reset the gateway by opening a telnet connection and sending
‘reset<nl>y<nl>’ (yes, it’s ugly, but there is NO other way to do that).

2. Create the RPC channels, one for normal operation, the other (in backward
direction) for SRQs.

3. Create a device link for every possible GPIB address.

4. Signal end-of-init by giving the init semaphore and start processing events as
described in Section2.2 on page4.

On reception of the semaphore, the calling task is unblocked and the list of link struc-
tures is unlocked.

Thus, in the usual setting, i.e. the driver as a low-level module called by (record type
dependent) device supports, the actual construction of a link to a GPIB device takes
place during the device supports init_record method. It should be noted, though, that it
is equally possible to call the driver from any other task in the system, e.g. another
driver. In fact, this was the reason why the initialization procedure of older versions
was changed to the one described here. A lot of the work that led from the old compli-
cated solution to the current one, which is much simpler but also more flexible, was
done by Till Straumann (then member of the PTB, Physikalisch Technische Bunde-
sanstalt).

2 Design Concepts

6 Document Revision: 1.3

2.4 Hardware Link Type

The hardware link type was chosen asU V) W X) Y mainly because this type already
existed. A second reason was to make replacing the old driver (and interface device)
with the new one as easy as possible. With this link type, the record’s OUT resp. INP
field has to be specified with a string of the form “Z G [I & + H \] [K ^ ^ S \ _ [' , E P S F K S K R L \ ”.
The parameters

[I & + H \ and
[K ^ ^ S > are integral positive numbers that specify:[I & + H \ the local part of the IP address of the gateway (e.g. in a class C

network this is the number after the last point of the IP address),[K ^ ^ S \ the GPIB address of the device.

This assumes that the gateway and the controlling IOC are on the same local network,
i.e. have the same network address. The remaining parameter

[' , E P S F K S K R L \ is for use
by device supports.

WARNING: The subnet mask (which can be configured in the IOC’s NVRAM) is cur-
rently NOT used when the driver determines the gateway’s IP address from the link
number. It is therefore necessary to specify thecomplete local address inside thenet-
work, not the address inside the localsubnet.

When record instances are loaded (^ ` G ' K ^ a P (' S ^ L , called before& ' () + & ,) this string is
parsed and the numbers are assigned to a certain record field (the) b V or Y c J link).
The value of a link with typeU V) W X) Y has the definition (see link.h):

L , S d (, e F & ` & ' f
L E ' S , I & + H g
L E ' S , K ^ ^ S g h i ^ P O & (P K ^ ^ S P L L i h
(E K S i F K S R gj g

This implies that this driver can only be used with class C and class B networks
because the link number is restricted to aL E ' S , .1

1. The decision to use GPIB_IO further implies, that no other GPIB driver can be used in
parallel with this one on the same IOC.

2.5 Device Support

The driver support discussed in this document is independent from any special hard-
ware that may be connected to the IOC via GPIB. It only transports raw data from and
to such devices via the gateway. In order to make use of a specific device, it must be
known which commands the device understands and in which format it answers.
Unfortunately there is no common set of commands accepted by all GPIB devices.
[Since IEEE-488.2 some common commands should be understood by most devices.
But this is a very small set and not sufficient for even the most simple tasks.]

This implies that for every new device to be supported a new device support must be
written. To simplify this task, John Winans wrote the GPIB Device Support Library2.
It resides in the files

^ P O k ' R R ' + U F & ` l E Interface to the GPIB Device Support Library

^ P O k ' R R ' + U F & ` l (Implementation of the GPIB Device Support Library

There is an extensive documentation on how the library functions can be used to cre-
ate device support for new devices, see

http://www-csr.bessy.de/asd/controls/epics/EpicsDocumentation/HardwareManuals/
GPIB/gpib.960325.html.

2. Not to be confused with the EPICS Device Support Library that supports registration of
VMEbus card addresses and interrupt vectors.

2 Design Concepts

BESSY 7

$%��4��@���	�� �;� ���;��6
nmo��13	*� ��
Although in the beginning I planned to write the new driver in such a way that the
GPIB Device Support Library could remain untouched, this turned out to be impossi-
ble. Anyway, the interface to device support modules is such that it should be possible
to re-compile old device supports without changes to the source code.

Any device support module writtenwithout using the library (in the manner described
in the above document) will only work with the new driver if at least the following
change is done: In the init_record function of the device support there should be a call
to ^�S OpU F & `ql & '�(r,sI , where the 4th parameter (command) has value) W#U�N�b G) b%t . The 5th
parameter was previously unused and has probably a value like 0 or -1. This must be
changed to the GPIB address of the device the record belongs to.

WARNING: I never personnaly tested the driver without the library. If you find any
incompatibilities or other problems that should be noted here, please report them to
me.3

The library exports a standard get_ioint_info function (the same for all record types)
that is used for SRQ initiated processing, if the record’s SCAN field is set to ‘I/O Intr’.
The corresponding) Y�Q#ku]vb%V#w�J is part of the

E�xyF O*, structure for the device.

There is also a simple srqHandler function in the library. Since it cannot generically
analyze the status byte (so the latter is ‘lost’ to the program) that was received from
the device, its use is limited. You may use it as a starting point for developing your
own, device specific, handler. The antique method for I/O interrupt scanned records as
described in J.W.’s manual, using a so called ‘magic param number’ is completely
obsolete and should no longer be used. Any number of records (with different parm
numbers) may be I/O interrupt scanned.

3. That is, send an email to franksen@mail.bessy.de.

� � � 1 � � � � 4
 � 1 z 6 �
I also wrote a header file called

^ P O U F & ` l E (Default DSETs and entry functions.)

to be included in device support modules. This further simplifies writing a new device
support. If any of the macros{ Q N J X]) h i K & i h{ Q N J X] Y h i K ' i h{ Q N J X G) h i I ' + e & + i h{ Q N J X G Y h i I ' + e ' d , i h{ Q N J X W) h i ` & i h{ Q N J X W Y h i ` ' i h{ Q N J X | W W) h i R ` ` & i h{ Q N J X | W W Y h i R ` ` ' i h{ Q N J X | W W) { h i R ` ` & { & S P (, i h{ Q N J X | W W Y { h i R ` ` ' { & S P (, i h{ Q N J X Q) h i L , S & + e & + i h{ Q N J X Q Y h i L , S & + e ' d , i h{ Q N J X N w h i P O P + , i h{ Q N J X } ~ h i x K O P � ' S R i h
are defined before including devGpib.h, a standard DSET is generated automatically
for the corresponding record types, as well as standard init and report functions for the
DSETs which call the GPIB Device Support Library.

The file devNewSkeletonGpib.c is provided as an example device support module
using the devGpib.h header file.

3 Interface Description

8 Document Revision: 1.3

2.6 Module Structure

The following files belong to the driver support module:

Header files:

^ S O U F & `) + , P S � K (P l E Interface to the driver support module

^ S O G K + U F & ` l E VXI-11 specific constants

O � & � � (' S P l E Interface to core/abort channel RPC protocol (generated but
changed)

O � & � � & + , S l E Interface to intr channel RPC protocol (generated but changed)

Program files:

^ S O G K + U F & ` l (Driver implementation

O � & � � (' S P X � ^ S l (XDR functions for core/abort channel (generated)

O � & � � & + , S X � ^ S l (XDR functions for intr channel (generated)

The interface to the driver is hardware independent in the sense, that it can be used not
only for the HP E2050A but also for other hardware (like NI1014 VME cards). In fact,
it is (almost) exactly the same as the one used for the older versions of the driver.

The files beginning with ‘vxi11’ implement the VXI-11 standard interface for LAN
driven GPIB devices. Some of them are generated from protocol descriptions and
some are manually changed to fit the special application. For details concerning VXI-
11 and how the protocol is used see the document ‘VXI-11 and HP E2050A, A Pro-
grammer’s Guide’.

Figure2 on page8 shows the modular decomposition of device/driver support for
GPIB records. An arrow means ‘calls/uses’; the text besides the arrows denotes the
header file that specifies the interface. The dotted line from ‘devSup Module 2’ to
‘drvLanGpib’ means that a device support module may call the driver directly. For
most devices this will not be necessary.

Figure 2: Module Structure

3 Interface Description

The (public) declarations and definitions discussed in this section can be used by
including ^ S O U F & `) + , P S � K (P l E .

vxi11core_xdr vxi11intr_xdr

drvLanGpib

devCommonGpib

devSup Module 1 devSup Module 2

vxi11intr.hvxi11core.h

drvGpibInterface.h

devCommonGpib.h

drvGpibInterface.h

devCommonGpib.h

3 Interface Description

BESSY 9

3.1 Structures

The most important data structure in the driver is
E F G & + H . It contains all information

about a single GPIB link. It is split into a public part (& ` G & + H , declared in̂ P O U F & `) + , P S �
� K (P l E) and a private hardware specific part (the actual

E F G & + H). Originally, the ibLink
part was defined public, and the separation was done to allow different hardware to be
operated with a single driver (NI1014 and bitbus links and now LanGpib) while main-
taining a common interface. At some time I decided that to make ibLink opaque. The
fields are therefore no longer documented here.� � � � 2 L , S d (, & ` G & + H g
, � F P ^ P � L , S d (, & ` G & + H � � � � � � g
 � m � � � � � � � 4

Every device support that uses the gpib driver must supply the records’ device private
field with a pointer to a structure that begins with ^ F O , U F & ` � P K ^ . This structure is given
as parameter toT U F & ` a P T (see also next section).

, � F P ^ P � L , S d (, ^ F O , U F & ` � P K ^ f
N G G b Y { N I & L , g
k] G G W] k t (K I I ` K (H g
& + , M i x ' S H Q , K S , � M � g
& + , I & + H g
& + , ^ P O & (P g
& ` G & + H i F & ` G & + H g
L , S d (, ^ F O , W & , W d L � P K ^ i ` & , W d L { F O , g
& + , ^ R K J & R P ' d , gj � � � � � � � � � � � � g

I & L , List node used to put this structure into the loPriList or hiPriList of
an ibLink struct.

(K I I ` K (H Callback structure used in the completion phase of asynchronous
record processing. Not used directly by the driver.x ' S H Q , K S , A pointer to the work function. It should return) { G N if the request
has been completed andW c Q � if not (ie because it waits for SRQ
completion). As parameter it should accept a pointer to the request
it is part of (the dpvtGpibHead).

I & + H The link number.

^ P O & (P The GPIB address.F & ` G & + H A pointer to the corresponding ibLink structure.

` & , W d L { F O , Obsolete.

^ R K J & R P ' d , Obsolete.	 1 9 � � 4 � � 	
This structure represents the items that are placed on the& ` G & + H � \ L S T a & + e . Its fields are:

, � F P ^ P � L , S d (, L S T Q , K , d L f
d + L & e + P ^ (E K S ^ P O & (P g
d + L & e + P ^ (E K S L , K , d L gj � � � � � � � � � g

^ P O & (P GPIB address of device.

L , K , d L Result of the srq poll (status byte).
 1 m � � � � � � �
The driver exports a set of entry points via its driver support entry table. The entry
table has the following entries:

, � F P ^ P � L , S d (, ^ S O U F & ` Q P , f
I ' + e + d R ` P S g{ a w Q c V ~ c b S P F ' S , g{ a w Q c V ~ c b & + & , g

3 Interface Description

10 Document Revision: 1.3

& +�, M:i�T�U F & `�a%P�T��:M3�:g
& +�, M:i�S:P�e�& Lr,sP�S:Q#S:T�k%K�I I `�K�(*H*�3M:�:g
& +�, M:i x S:& ,sP�) `��3M:�:g
& +�, M:i�S:P�K�^�) `��3M:�:g
& +�, M:i�S:P�K�^�) `�N#'�L*�:M:�3g
& +�, M:i x S:& ,sP�) `�k8R;^��3M:�:g
& +�, M:i�& '�(r,sI �:M:�3g
& +�, M:i�L*S:T�V�'�I I) + E & `�& ,o�3M:�:gj���������� � � � � � g

+�d�R=`�P�S Number of entries in this table.

S:P F '�S , Print report on the console.

& +�& , Initialize driver support

T�U F & `�a%P�T Queue a GPIB work request for future execution.

S:P�e�& Lr,sP�S:Q#S:T�k%K�I I `�K�(�H Register an SRQ event handler.x S>& ,oP�) ` Write data to GPIB devices.

S:P�K�^�) ` Read data from GPIB devices.

S:P�K�^�) `�N#'�L Read data from GPIB devices using end-of-string char.x S>& ,oP�) `�k%R;^ Write raw data out the bus, while keeping the ATN line high.

& '�(r,oI Provides access to low-level GPIB protocol operations. Also used to
create and retrieve links.

L*S:T�Vu'�I I) + E & `�& , Mark a given device as non-pollable.

For a detailed descriptions including parameters and return values see Section3.3 on
page11.
�1�mr� �¡� � P��*,sP�S:+=^�S OpU F & `�Q�P�, �����¡��� � ��g
The driver entry table variable.

3.2 Constants

These are also defined in^ S O U F & `) + , P S � K (P l E .� ¢ $? � � � � � 4
 	
The possible values for parameter(R ^ in function & ' (, I (see Section on page13).

) W b) G b t Return the max allowable NI links. Obsolete.

) W J | Y One time timeout setting for next GPIB command. Obsolete.

) W) ~ k Send an interface clear pulse.

) W a N b Turn on or off the REN line.

) W U J Q Go to controller standby (ATN off...).

) W U J] Go to active state.

) W U N b G) b t Ask the driver to start a link running.

) W U N J G) b t Request address of the ibLink structure.

) W U J G Go to local.

) W G G Y Local lockout.

) W { N w k G N] a If the parameter v is the GPIB address of the controller, then send a
DCL (device clear, all devices). If it is a device address then send a
SDC (selective device clear).

) W a N Q N J G b t Reset this link, reinitialize all communication.

Remarks:

3 Interface Description

BESSY 11

• The commands) W�b%) G b%t and) W�J£|;Y are now obsolete and should not be used.

• The commands) W#UvN#b G) b%t and) W#U�N�J G) b%t should only be used during device
support initialization. The parameterO here means GPIB address.

• All other commands may ONLY be used in the same way as the
x S3& ,oP�) ` , S3P�K�^�) ` ,

... functions, i.e. not directly but only from a work function, that is given to
T�U F & `�a%P�T ./ ��1>2�7%��9�����	*����1>� ��1>� � � ��) W�X�¤ X G Y¡} Request has low priority.

) W�X�¤ X¡�8) U�� Request has high priority.¥ �umr� �*�;�#� 4�� ��	¦ms4�6 ����) {%G N Device is currently idle.

W�c%Q�� Device is currently busy.

These are return values for request callbacks and SRQ handler functions. A return
value of W#c%Q�� tells the driver not to initiate further requests to this device until) {%G N is
returned. Typically, a request that sends a command and expects an asynchronous
answer (via SRQ) will returnW�c%Q�� on sending the command and let the srqHandler
return) {%G N on completion.¢�� ����1�$%���	*� 4���) W�]vV#N#a G) b%t Max number of devices per link.

3.3 Functions

Some general remarks:

All functions in the driver except L S T V ' I I) + E & ` & , and S P L P ,) ` are static and can only be
accessed via the driver support entry table (see Section on page9). Note that the
names of the fields are not necessarily the names of the functions. A user call looks
like ^ S O U F & ` l z � 6
 4 � � M � 4 1 4 � � � � 1 	 l l l � .
Return type for all functions is& + , (or I ' + e). They return N a a Y a if an error happened,
otherwiseY t . Exceptions: returnN a a Y a or, if successful, the number of bytes actu-
ally read or written./ � 7 § � § � ¨
The user programs MUST NEVER call any of the functionsS P K ^) ` © S P K ^) ` N ' L © x S & , P) ` ,
or

x S & , P) ` k R ^ directly. This applies also to& ' (, I , if the (R ^ parameter is anything but
) W U N b G) b t or) W U N J G) b t . Instead they must be called by a user supplied work func-
tion which is given indirectly as a parameter in the call toT U F & ` a P T . This is checked
by an assertion!4

4. Assertions also check for valid parameters like the pointer to the link structure (must be
!=0) and the GPIB address (must be between 0 and 30). To disable assertions, compile
the driver with the symbol ‘NDEBUG’ defined.

1 � � � 1 � I ' + e � � � ª � � M & + , 6 � m � 6 � g
Print report on the console.

level Interest level (0 and 1 supported).

Return value Y t .� � � I ' + e � � � � M � g
First step of driver initialization. Automatically called by& ' () + & , .
Return value Y t or N a a Y a .9 � � � � 7 � 9 & + , � � � � � « � � M ^ F O , U F & ` � P K ^ i �
 � m � © & + , � 1 � � � g
Queue a GPIB work request for future execution. The ONLY way a user function can
initiate a GPIB message transaction.

3 Interface Description

12 Document Revision: 1.3

A work request represents a function that the& ` G & +�HrJ¬K�L*H is to call (when ready). A
pointer to this wrok function is contained in the^ F O*,sU F & `��%P�K�^ structure. This work
function is allowed to call theS:P�K�^�) ` , S:P�K�^�) `�N#'�L , x S>& ,sP�) ` , and

x S>& ,oP�) `�k%R;^ functions.��
��mr�
Head of device private structure.��13� �
Priority of the request. Can be) W�X¡¤ X G Y�} or) W�X�¤#X��%) U�� .

Return value Y�t or N�a8a0Y�a .1:��@�� 	*� ��1:�#1:9�$%4�6 6 ��4��.2 & +�, � ��®�� ��� � ���#����¯ ��° ° ����±���M:& ` G & +�Hvi ��� ����� �2 ©�& +�, @��¡� ���v
�
�1 ©�& +�,¡M3i ��4��
�6 ��1 �:M3�:©�Op'�& ^=i �¡4�1:� �3g
Register an SRQ event handler. When the SRQ handler is called, it is passed the
requested parm and the poll-status from the gpib device. Similar to the workStart
function, a registered handler should return either) {%G N or W�c8Q�� , indicating wether the
device is now ready to accept new commands and queries or not.��� ����� �2

Pointer to the link structure.@��¡� ���v
�
�1
GPIB address of device.��4��
�6 ��1
SRQ handling function.��4�1s�
Parameter to be passed to

E K�+�^�I P�S .
Return value Y�t or N�a8a0Y�a .

² 1>� � ��� � & +�,�³ � � � ��´ ��M:& ` G & +�H�i �¡� ����� �2 ©�& +�, @���� ���
�
�1 ©�(E K�S�i
�4�� 4 ©�& +�, 6 ���@�� � ©�& +�, � � �;� �:g
Write data to GPIB devices.��� ����� �2

Pointer to the link structure.@��¡� ���v
�
�1
GPIB address of device.
�4�� 4
Pointer to the data to be written.6 ���@�� �
Number of bytes to be written.� � �;�
Timeout (in ticks) for the operation.

Return value Number of bytes written orN�a8a0Y�a%l1:��4�
�� � & +�, � ��� � ´ �uM:& ` G & +�H�i �¡� ����� �2 ©�& +�, @���� ���v
�
�1 ©�(E K�Sui
�4�� 4 ©�& +�, 6 ���@�� � ©�& +�, � � �=� �3g
Read data from GPIB devices. Equivalent toS:P�K�^�) `�N#'�L*M:l l l © �:��� .��� ����� �2

Pointer to the link structure.@��¡� ���v
�
�1
GPIB address of device.
�4�� 4
Pointer to a buffer where to put the data.6 ���@�� �
Length of data buffer.� � �;�
Timeout (in ticks) for the operation.

Return value Number of bytes read orN�a%a£Y�a%l1:��4�
�� ���#��	 & +�, � ��� � ´ ��µ ª�� M:& ` G & +�H�i ��� ����� �2 ©�& +�, @���� ���v
�
�1 ©�(E K�S�i
�4�� 4 ©�& +�, 6 ���@�� � ©�& +�, � � �;� ©�& +�, ����	 �:g
Read data from GPIB devices; extra parameter specifies end-of-string character.��� ����� �2

Pointer to the link structure.@��¡� ���v
�
�1
GPIB address of device.
�4�� 4
Pointer to a buffer where to put the data.6 ���@�� �
Length of data buffer.� � �;�
Timeout (in ticks) for the operation.����	
A character that signals end-of-string.

Return value Number of bytes read orN�a%a£Y�a%l
² 1>� � ��� ��$%�;
 & +�,�³ � � � ��´ � ¯%¶·� M:& ` G & +�H�i ��� ����� �2 ©�(E K�S�i
�4�� 4 ©�& +�, 6 ���@�� � �:g

Write raw data out the bus, while keeping the ATN line high. This is almost obsolete.

3 Interface Description

BESSY 13

��� ����� �2
Pointer to the link structure.
�4�� 4
Pointer to the data.6 ���@�� �
Number of bytes to write.

Return value Y�t or N�a8a0Y�a .� ���*� 6 & +�,¡� ª ± � ° M:& +�, 6 � �2 ©�& +�, 6 � �2 ©�& +�, ����@ ©�& +�, �*�;
 ©�& +�, m ©�Op'�& ^;i � �:g
Provides access to low-level GPIB protocol operations. Also used to create and
retrieve links. Parameter cmd, tells it what to do exactly. Most of these commands are
obsolete now. See Section3.3.1 on page8 for a list of supported values for(*R=^ .6 � �2 ? A*���

Must be GPIB_IO.6 � �2
Link number. If p points to a valid link structure then link is
checked against the link number inside the link structure. Otherwise
the link structure is searched using the link number.�¸��@
Obsolete. Set to -1.�*�;

The command to execute.m
Depends on cmd: If -1, ignored. If 0 or 1 and cmd=IBREN then
means OFF resp. ON. Otherwise means GPIB address if that makes
sense.�
Depends on cmd: If cmd=IBGETLINK then pointer to pointer to
the hpLink structure (result). Else pointer to a valid hpLink
structure (see description of itemlink).

Return value Y�t or N�a8a0Y�a%l	*1:9�����6 6 � ���� ��� � & +�, ������¹#ª ° ° ´ ��º�� ��� � M3& +�, 6 � �2 ? A*��� ©�& +�, 6 � �2 ©�& +�, ����@ ©�& +�, @��¡� ���v
�
�1 �3g
Mark a given device as non-pollable. This is only necessary for some older devices
who are too dumb to deal with beeing polled.

This function is may be called from the VxWorks command line or from a startup
script before& '�(*) +�& , .6 � �2 ? A*���

Must be GPIB_IO.6 � �2
Link number.�¸��@
Obsolete. Set to -1.@��¡� ���v
�
�1
GPIB address of device.

Return value Y�t or N�a8a0Y�a%l1:��	*��� � � O�'�& ^ � � � � � ´ ��M:& +�,�I & +�H*�:g
This function is an exception, in that it is not part of the^�S OpU F & `�Q�P�, . It is meant to be
called from the VxWorks command line, but during operations: it is a convenient way
to re-initialize a link, for example if the gateway has been shut down or disconnected.
It is called with the link number as argument.

3.4 Variables

There are some global variables that may be changed from the startup file or from the
command line. They adapt the behavior of the driver to handle different situations.
The flags all default to zero (off).¥ � � � @ » 6 4 @ 	 & + , & ` { P ` d e Set to 1 to turn on debug messages. This slows down the driver

considerably.

& + , & ` Q S T { P ` d e Set to 1 to turn on only debug messages related to SRQ handling.¢ � � � 1 » 6 4 @ 	 & + , & ` Q S T G ' (H Set to 1 to disable all SRQ checking and polling.

4 Installation

14 Document Revision: 1.3

& +�,¡& `�a%P�(*'�O�P�S }¼& , E) ~�k Set to 1 to fire out an IFC pulse after device timeouts.

& +�,¡& ` { P½Op& (*P G�G Y Set to 1 if devices should be locked on initialization.? � �=������� 	 & +�,¡& `�Q#S:T�J£& R;P�'�d�, Number of seconds to wait for SRQ completion. Default is 2.

& +�,¡& `�Q#S:T�a%& +�e�¾�& ¿�P Maximum number of events stored in the SRQ event ring. Default is
2.

& +�, E�F�G K�+�J£& R;P�'�d�, Number of seconds after which gateway is assumed dead. Default is
10.

Lr,oS3d�(r,�,o& R=P"O�K�I*S F (rJ£& R=P�'�d�, May be changed if device timouts are greater than 10 seconds.
Default is {10, 0}, meaning 10 seconds, 0 microseconds.

4 Installation

This section explains how the lanGpib driver is installed in an existing EPICS envi-
ronment. By far the easiest way to install the package is to create a seperate <top>
area (named, for example, ‘GPIB’) with R K H P W K L P] F l F I (this requires that you use
EPICS3.13.1 or later). Copy the tar file into the new <top> directory and unpack it.
You may need to adapt the config/RELEASE resp. config/RELEASE.<arch> to your
local EPICS configuration. Then ‘make’ everything from the <top> directory. Be sure
that any application that uses GPIB has an entry for this <top> area in its local config/
RELEASE file. THIS ENTRY MUST COME BEFORE THE ENTRY FOR THE
EPICS BASE. Otherwise the application will include the old header files from base,
which will lead to unpredictable results.

If you use an EPICS release before 3.13.1, or you don’t want to use makeBaseApp, or
you cannot for any reason make a separate <top> area or use the Makefiles provided
with the package, you will be interested in the following information. The term ‘appli-
cation’ refers to ANY C-code, that includes the above header files. This includes
device support modules.» � 6 � 	
You must compile and link at least the following files to your application:

À ^ S O G K + U F & ` l (À ^ P O k ' R R ' + U F & ` l (À O � & � � (' S P X � ^ S l (À O � & � � & + , S X � ^ S l (
Further more, you must replace the following header files

À ^ S O U F & `) + , P S � K (P l EÀ ^ P O k ' R R ' + U F & ` l E
by the new version. The new versions are software compatible with the old ones (i.e.
old device support modules will compile without change). The best way to do that is
to add them to the) b k macro in your local| K H P Á I P l w � like

) b k Â Ã ^ S O U F & `) + , P S � K (P l E
) b k Â Ã ^ P O k ' R R ' + U F & ` l E
in the same place where you usually put LIBOBJS and similar stuff. This installes
them into

[, ' F \ h & + (I d ^ P . If you use an EPICS relase before 3.13.1, it may be necessary
to add the linec Q a X) b k G c { N Q Â Ã �) Ä M) b Q J] G G X G Y k] J) Y b � h & + (I d ^ P to the | K H P Á I P l w � of
your application.
The header files

À O � & � � (' S P X � ^ S l EÀ O � & � � & + , S X � ^ S l EÀ ^ S O G K + U F & ` l E

5 Release Notes

BESSY 15

are only used internally by the driver.

A special thing is the header file
À ^�P"OpU F & `Ål E

because it is not necessarily needed in order to write new device support modules, but
very useful if you don’t like typing. So it should also be installed in your

[,o' F \�ho& +�(*I d�^�P
directory. You can use

À ^�P"Opb%P x Q#H.P�I P�,o'�+�U F & `Ål (
as a kind of template for GPIB device supports. This is an example file that shows how
to implement GPIB device support modules (see also J.W.’s doc on the GPIB device
support library). Use your favorite editor to search-and-replace ‘Skeleton’ by the
name of your device. The resulting file should at least compile without errors.
devNewSkeletonGpib.c is contained in the Makefiles for devCommonGpib, to check
compliance. It can be commented out, there.�.-0/ ��132*	��#� 4�1�� ���n»u� 6 �
In principle this driver needs no special call from your startup file. Nevertheless there
is one case in which you must make such a call. This is when you are working with
some older device that doesn’t like to be polled (as a result of an SRQ). Then you have
to make the call L*S3T�Vu'�I I) + E & `�& ,oM [I & +�H*) ^�\¬© [e F & `�]v^�^�S:\¬� which prevents this device from
being polled when an SRQ is encountered. You can make as many of these calls as
you like.

You can set the global variables ibDebug and ibSrqDebug at any time to values other
than zero in order to generate debug messages, although I doubt that they are really
useful to someone who has not studied the source code carefully (or written it).
WARNING: this slows down the driver remarkably!

Other variables that may be set in the startup file are listed in Section3.4 on page13.
The S F (rJ£& R;P�'�d�, is a special thing: you can treat it like an integer value (specifying only
seconds) from the command line or startup file.¢�6
 ¥ ��mr� �*�=�������¡��1o�
If you want to use old device support modules written for the NI1014/BitBus version
of the GPIB driver, you have to remember:

1. The link numbers now have a slightly different meaning: Although in both
versions a link number identifies a GPIB bus segment, the difference is that in
the old version it was the equal to card number in the IOC (probably a value
between 0 and 3) whereas in the new version it is the local part of the IP
address of the gateway, and so can be any number between 0 and 0xFFFF. You
must probably change your database definitions accordingly.

2. Be careful if device support calls the driver directly or if it uses theUvV#) W#k%buJ G
command (seê�P"Opk%'�R;R;'�+�U F & `ql E). This can lead to desaster, if not done with
extraordinary care and knowledge - of GPIB as well as the driver.

In contrast to an earlier version of this driver, old device support modules in general
do not need to be changed.

5 Release Notes

This chapter exists solely in order to keep track of the main development path. The
documented changes are neither complete nor particularly reliable because they have
mostly been written in retrospection. You can ignore them completely without loosing
any vital information, especially if you use this package for the first time. Itmay be of
interest for people who upgrade from earlier versions.

5 Release Notes

16 Document Revision: 1.3

5.1 Release 2.4.a

This is a bug-fixed version of 2.4.

The startup message of the driver now correctly reports ‘release 2.4.a’.

The two | K H P Á I P l w � have been cleaned up. They no longer contain thec Q a X) b k G c { N
Â Ã � � , because this is not necessary for

[, ' F \ environments created with the newest
version ofR K H P W K L P] F F l F I .
I copied the fixes in devCommonGpib (detected and corrected by Marty Kraimer in
the EPICS base version): the results of theL L (K + � calls are now tested against Ã Ã �
instead ofÆ Ã Ç .
The claimed compatibility to old device supports was violated in two places:

• Several Z & + (I d ^ P statements were missing.

• The structure taĝR K J & R P ' d , in L , S d (, ^ P O Q d F V K S R L was changed to, & R P ' d , .
Both have been fixed, the first by including all necessary header files inside^ S O U F & ` �
) + , P S � K (P l E and ^ P O k ' R R ' + U F & ` l E , the second by addingZ ^ P Á + P ^ R K J & R P ' d , , & R P ' d , to
^ P O k ' R R ' + U F & ` l E .
The re-init procedure had a severe bug that caused most records to hang with
V] k J Ã Ã J a c N after a re-initialization. This was fixed by issuing any outstanding call-
backs with a dummy return value before re-initialization (in addition to emptying the
work queues; see function& ` G & + H J K L H).

5.2 Release 2.4

Most of the changes concern SRQ handling. A number of deeply hidden bugs have
been found by Peter Müller from the PTB. He also helped a great deal in testing, ana-
lyzing the problems and finding solutions.

The general problem has been to use the VXI-11 function read_stb for serial polling.
This call is seriously flawed and should not be used. Instead, I went back to the good
old method already present in J. Winan’s old driver (i.e. do the ‘send SPE, read
devices, send SPD’ cycle by simply using writeIbCmd and readIb). After correcting
this, other errors (actually errors in the VXI implementation of the RPC calls) that
were masked before, appeared. These were corrected (i.e. worked around) by inserting
additional UNL and UNT commands into the read and write functions, wherever they
were missing.

Maybe support for additional record types (mbb[io]Direct) has already been added in
an earlier release. Can’t remember that exactly.

Complete revision of the documentation (phew!), including purge of all the obsolete
stuff (the old remnants caused more confusion than providing any help). I kept the old
release notes, though, but I rearranged them a bit.

5.3 Release 2.3

Many things have changed from release 2.0 to release 2.3. I’ll try to summarize them:� � � � 4 6 � È 4 � � � 4 @ 4 �
First, the initialization has been changed again. A device link is now created for every
possible device address on a link on the first call to^ S O U F & ` l & ' (, I M) W U N b G) b t � . This has
been done in order to prepare for a unification of all the GPIB drivers that is overdue
and should be done by the end of the year 1999. As a result, the dynamic initialization
feature of release 2.0 became to a large part - but not completely - obsolete.

5 Release Notes

BESSY 17

On the other hand, a problem that had already been observed in earlier versions was
now no longer tolerable: If a lot of links have been created and then the IOC was
rebooted, the gateway sometimes failed to create some of the the new links because it
erroneously thought that the old ones were still valid (error VXI_NORES = no
resources left). No possible timeout configuration of the gateway seemed to solve the
problem. Furthermore, due to the idiotic way in which VxWorks makes a reboot (the
netTask is always shut down before any other task) it is not possible to install a reboo-
tHook to clean up things.

The only way out of the trouble was to reset the gateway before initialization. This has
been done by opening a telnet socket (port 23) to the gateway and automatically
inserting ‘reboot\ny\n’. After that, we wait 5 seconds and then proceed. Mark that this
is also done on re-initialization (see “Re-initialization” on page18).

Mind that it is still necessary to register every single device with the driver, since
unregistered devices are never polled (to avoid never ending timeout storms during
poll).¢�� ����1 ¥ 1>�5mo��1�$%��4��@���	
First, the code has been thoroughly tested under EPICS Release 3.13.1.

The srqAcknowledge function is now obsolete and has been removed from the header
file drvGpibInterface.h as well as the finish function. Pending SRQs are now acounted
for in a much simpler fashion (once again Till Straumann pointed that out to me).

The SRQ polling procedure has been fixed. There are severe bugs in the read_stb RPC
call (no SPD after timeout!!). This call is no longer used. Instead, (serial) polling is
done in the good old way: SPE, read all registered devices, SPD. After that was done,
it became clear that a number of devices completely stopped working, after one poll-
ing round. A lot of GPIB analyzing revealed that the RPC call device_read and
device_write never did sent UNT messages. After adding UNT at the beginning of a
read/write operation and UNT+UNL at the end, everything worked fine.

Timeouts are no longer reported on the command line.

The symbol DEBUG must be defined in order for the driver and device support library
to generate debug messages.

The ibLink structure is no longer public. There has never been a need for this.¥ �umr� �*�;�#��������1������ ��154�1 A
The GPIB device support library has been overhauled quite a bit. It does not look like
the original one any longer.

Some structure definitions in devCommonGpib.h have changed slightly. The member
dmaTimeout in struct devGpibParmBlock has been changed to timeout; the members
bug and linkType have been removed from struct hwpvt; the members process and
processPri in struct gpibDpvt have been replaced by the member callback; a new
member timeout was added and linkType was removed from struct gpibDpvt. All
these changes should not interfere with existing device supports since they are used
only by the driver and the library.

A new GPIB command GPIBIOCTL has been added, see the comment in the header
file.

Read with terminating EOS character is now fully supported, see remarks in the
header file.

A default L*S:T�X E K�+�^�I P�S as well as a default e�P�, X�& '�X�& +�, DSET function are exported by the
GPIB device support library and may be used by device supports.

Peter Müller from the PTB helped a great deal in debugging and error detection. Most
of the improvements would not have been possible without that.

5 Release Notes

18 Document Revision: 1.3

5.4 Release 2.0
� 4 È A � � � � 4 6 � È 4 � � �

Due to the work of Till Straumann from the PTB (Physikalisch-Technische Bundesan-
stalt) the driver supports lazy initialization. New devices and even new gateways can
now be added at runtime (and not only during iocInit).

For the EPICS Application Developer the main difference is that the initHooks call is
now completely obsolete. For the EPICS system programmer it means mainly that
other drivers (such as motor controllers) may call^ S O U F & ` l & ' (, I M) W U N b G) b t © l l l �), even
before ^ S O U F & ` l & + & , has been called. Semantics of this command now includes creating
only the link but no device connection.

Initialization procedes as follows:

If & ' () + & , calls ^ S O U F & ` l & + & , before any other module, the first step of initialization is the
same as before. Additionally, this stage can be jumped over by immediately calling
^ S O U F & ` l & ' (, I with command parameter) W U N b G) b t . Any further call to ^ S O U F & ` l & + & , will
be ignored.

The driver function̂ S O U F & ` l & ' (, I , when called with command) W U N b G) b t , first checks if
there is already a linkTask for the given link number. If not, the task is created and& ' (, I
blocks until the task gives the& + & , Q P R . If the parameterO is b Y b N 5 nothing further hap-
pens. If it is a valid GPIB address, the device link to this address is created by sending
a certain work request to the linkTask and taking& + & , Q P R which is used here for a sec-
ond synchronization. This request contains as

x ' S H Q , K S , procedure a special callback
that first generates the device link and afterwards gives the& + & , Q P R , thereby signalling
^ S O U F & ` l & ' (, I that it is finished.

A whole bunch of new semaphores guarantee data integrity in case a link is generated
at runtime. Mind thatlink deletion is not implemented (see also next subsection).

5. b Y b N is defined by VxWorks to be -1.

7 � � � � � 4 6 � È 4 � � �
A common problem with previous releases was that when due to external interfer-
ences the gateway had to be reset (ie turned off and on again) or was disabled for other
reasons, the IOC had to be rebooted also. There is now a mechanism inside the driver
that recognizes a failure of the gateway by probing the bus status every 10 seconds. If
there are severe timeouts the linkTask is shut down and no more requests are queued.
The link structures are, however, not deleted. A special command) W a N Q N J G b t has
been added to be given to ^ S O U F & ` l & ' (, I :
) W a N Q N J G b t Reset this link, reinitialize all communication.

It can be (but does not have to be) called when the driver detected a broken gateway
connection. It can also be called at any other time.� � � � � 1 � � � 1 � � � $ �

7 É Ê ! É Ê � Ê � � � 4 ! ! Three new files are included to support beta11: lanGpib.dbd and lanGpib.LIBOBJS
can be used to include the driver into an application, devCommonGpib.LIBOBJS to
include the GPIB device support library. All three are installed into <top>/dbd; the
makefiles have been changed accordingly. It is recommended to install the package
under the ‘share’ directory.Ë � 	 � 4 6 � 4 � � 	 $ � 4 @ � 	
In previous releases, every registered device was cleared on initialization (with an
SDC). This could lead to problems with some strange devices that weren’t happy at all
about that. I threw it out. Instead there is a new command for̂ S O U F & ` l & ' (, I , called

) W { N w k G N] a If the parameter v is the GPIB address of the controller, then send a
DCL (device clear, all devices). If it is a device address then send a
SDC (selective device clear).

With this command the application can do an SDC at init time or whenever necessary.

	LanGpib Driver Support for HP E2050A - Release 2.4...
	1 Introduction
	Scope of this document
	GPIP
	HP E2050A
	VXI-11
	EPICS
	VxWorks
	General Requirements
	A Remark

	2 Design Concepts
	2.1 History
	Terminology: ‘link’

	2.2 Task Structure
	linkTask
	srqTask

	2.3 Initialization
	2.4 Hardware Link Type
	2.5 Device Support
	Changes to the old version
	Generic header file

	2.6 Module Structure

	3 Interface Description
	3.1 Structures
	ibLink
	dpvtGpibHead
	srqStatus
	drvGpibSet
	drvGpib

	3.2 Constants
	IOCTL commands
	Work Request Priorities
	Device Status values
	Other Constants

	3.3 Functions
	WARNING!
	report
	init
	qGpibReq
	registerSrqCallback
	writeIb
	readIb
	readIbEos
	writeIbCmd
	ioctl
	srqPollInhibit
	resetIb

	3.4 Variables
	Debug Flags
	Other Flags
	Timeouts

	4 Installation
	Files
	VxWorks Startup File
	Old Device Support

	5 Release Notes
	5.1 Release 2.4.a
	5.2 Release 2.4
	5.3 Release 2.3
	Initialization again
	Other Driver Changes
	Device Support Library

	5.4 Release 2.0
	Lazy Initialization
	Re-initialization
	Support for EPICS R3.13.0.beta11
	Miscaleanous Changes

