

Series 9210/9215 Analog Output Board

USER'S MANUAL

ACROMAG INCORPORATED

30765 South Wixom Road P.O. BOX 437 Wixom, MI 48393-7037 U.S.A. Tel: (248) 624-1541 Fax: (248) 624-9234

8500-196-B93J014

Manual No. 8500-196

The information in this manual is subject to change without notice. Acromag, Inc., makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Further, Acromag, Inc., assumes no responsibility for any errors that may appear in this manual and makes no commitment to update, nor keep current, the information contained in this manual.

No part of this manual may be copied or reproduced in any form, or by any means, without the prior written consent of Acromag, Inc.

IMPORTANT SAFETY CONSIDERATIONS

It is very important for the user to consider the possible adverse effects of power, wiring, component, sensor or software failures in designing any type of control or monitoring system. This is especially important where economic property loss or human life is involved. It is important that the user employ redundancy and comprehensive failure analysis to insure a safe and satisfactory overall system design. It is agreed between the Buyer and Acromag, that this is the Buyer's responsibility.

> Copyright 1992 Acromag, Inc. Printed in USA

ACROMAG, INC. 30765 South Wixom Road P.O. Box 437 Wixom, Michigan 48393-7037, U.S.A. Tel: (248) 624-1541 Fax: (248) 624-9234

Data and specifications subject to change without notice.

CHAPTER

1.0 1.1 1.2 1.3	GENERAL INFORMATIONPageINTRODUCTIONTHE AVME9210VOLTAGE OUTPUT BOARDTHE AVME9215CURRENT OUTPUT BOARDCURRENTOUTPUT BOARDCURRENT <t< th=""></t<>
2.0 2.1 2.2 2.3	PREPARATION FOR USEUNPACKING AND INSPECTIONCARD CAGE CONSIDERATIONS2.2.1 Installation2.2.2 Field Wiring2.2.3 LoadingCONFIGURATION INFORMATION
2.5	2.3.1 Address Decode Jumper J5
2.4 2.5 2.6 2.7	Binary/Two's Complement Data Jumper J4 & J9 2.6 OPTIONAL EXTERNAL POWER SUPPLY JUMPER J3 (AVME9215 ONLY) 2.7 VOLTAGE OUTPUT RANGE JUMPER J1 (AVME9210 ONLY)
3.0 3.1 3.2 3.3 3.4 3.5	PROGRAM INFORMATIONMEMORY MAP
4.0 4.1 4.2 4.3 4.4 4.5 4.6	THEORY OF OPERATIONVME BUS INTERFACE4.1BOARD IDENTIFICATION CIRCUITRY4.4STATUS/CONTROL CIRCUITRY4.4DIGITAL TO ANALOG CONVERTER4.4THE VOLTAGE TO CURRENT CONVERTER4.4DC TO DC CONVERTER4.4
5.0 5.1 5.2 5.3 5.4 5.5	SERVICE AND REPAIR INFORMATIONSERVICE AND REPAIR ASSISTANCEPRELIMINARY SERVICE PROCEDURECALIBRATION PROCEDURECALIBRATION PROCEDURESERVICE AND REPAIRSERVICE AND REPAIR ASSISTANCE
6.0 6.1 6.2 6.3	SPECIFICATIONSGENERAL SPECIFICATIONSAVME9210VOLTAGE OUTPUTBOARDSPECIFICATIONAVME9215CURRENTOUTPUTBOARDSPECIFICATIONSPECIFICATIO

CHAPTER

7.0	SCHEMATIC	C AND PART	LOCAT	FION	DRAW	IN	GS													F	Page
7.1	AVME9210	PARTS LOCA	TION	DRAI	NING	•	•		•	•	•	•	•	•	•	•	•	•	•	•	7.2
7.2	AVME9210	SCHEMATIC	• •		• •	•	•		•		•	•	•	•	•	•	•	•	•	•	7.3
7.3	AVME9215	PARTS LOCA	TION	DRAI	VING	•	•		•	•	•	•	•	•	•	•	•	•	•	•	7.5
7.4	AVME9215	SCHEMATIC	• •	• •	• •	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	7.6

TABLES:

ANALOG OUTPUT CONNEC																	
ADDRESS DECODE JUMP																	
DAC DATA JUMPER																	
OPTIONAL EXTERNAL PO																	
VOLTAGE OUTPUT RANGI	E SELECTI	on J	UMPE	R.	•	••	•	••	•	••	•	•	•	•	•	•	2.8
MEMORY MAP																	
BOARD I.D. PROM, VOI																	
BOARD I.D. PROM, CUI	RRENT OUT	PUT	••		•	••	•	••	•	•••	•	•	•	•	•	•	3.3
REPLACEMENT PARTS L	IST	•••	••	• •	•	• •	•	••	•	• •	•	•	•	•	•	•	5.3

FIGURES:

ANALOG	OUTPUT I	BOARD	JUMP	PER LOO	CATIONS	5	•	•	•	• •	•	•	•	•	•		•	•	2.5
AVME921	O VOLTA	GE OUT	TPUT	BOARD	BLOCK	DIAGRAM	•	•		• •	•	•	•	•	•	•	•	•	4.2
AVME921	5 CURREI	NT OUT	TPUT	BOARD	BLOCK	DIAGRAM	•	•	•		•	•	•	•	•	•	•	•	4.3

1.0 GENERAL INFORMATION

1.1 INTRODUCTION

The Series AVME9210/9215 Analog Output Boards provide a means for connecting analog outputs to a VMEbus-based computer. The Analog Output Board is available in two variations.

Each Board has 8 output channels, each with 12 bit resolution. A DAC per channel is used to provide maximum signal accuracy and to minimize output transients. The DACs may be set up to accept either straight binary or two's complement data.

The AVME9210 Voltage Output Board has five jumper-programable output ranges $(\pm 10v, \pm 5v, \pm 2.5v, 0-5v, and 0-10v)$. Each channel can be individually set for a specific range.

The AVME9215 Current Output Board has an output range of 4-20mA and can drive up to a 500 ohm load. By using an external power supply, an output range of 4-20mA with a 1300 ohm load is possible. The external supply is jumper-selectable and is connected from the field via the P2 connector.

The series AVEM9210-9215 Analog Output Boards conform to the standard Euroboard physical and electrical requirements as described in the VME Specification (REV.C).

Power, ground, and all VMEbus signal lines are connected via the P1 connector. Analog output connections and external power connections are made via the P2 connector.

1.2 THE AVME9210 VOLTAGE OUTPUT BOARD

- 12 bit output resolution.
- Individual DAC per channel design approach.
- 8 channels of output.
- Five jumper programmable output voltage ranges.
- Positioned on 1k byte boundaries in the VME short I/O space.
- BYTE or WORD data transfers.
- Jumper selectable straight binary or two's complement.
- Meets all VME physical and electrical requirements.
- Output can withstand a continuous short circuit.
- Board Identification PROM.
- Pass/Fail status indicators on the front panel.
- Power-Up/Reset to O Volts or minus full scale (jumper selectable).
- Compatible with all bus masters (A32,A24,A16) that support A16 slaves.
- Compatible with all bus masters (D32,D16,D08(E0)) that support D16 or D08(E0) slaves.

1.3 THE AVME9215 CURRENT OUTPUT BOARD

- 12 bit output resolution.
- Individual dac per channel approach.
- 8 channels of current output.
- Configurable for a user-provided external supply to drive up to 1300 ohm loads.
- BYTE or WORD data transfers.
- Meets all VME physical and electrical requirements.
- Power-Up/Reset to 4mA output.
- PASS/ FAIL status indicators on the front panel.
- Card Identification PROM.
- Jumper selectable straight binary or two's complement.
- Compatible with all bus masters (A32,A24,A16) that support A16 slaves.
- Compatible with all bus masters (D32,D16,D08(E0)) that support D16 or D08(E0) slaves.

2.0 PREPARATION FOR USE

This Chapter provides information about preparing the Analog Output Board for system operations.

2.1 UNPACKING AND INSPECTION

Inspect the shipping carton immediately upon receipt for evidence of mishandling during transit. If the shipping carton is severely damaged or water stained, request that the carrier's agent be present when the carton is opened. If the carrier's agent is absent when the carton is opened and the contents of the carton are damaged, keep the carton and packing material for the agent's inspection.

For repairs to a product damaged in shipment, refer to the Acromag Service Policy to obtain return instructions. It is suggested that salvageable shipping cartons and packing material be saved for future use in the event the product must be shipped.

The board is physically protected with foam and electrically protected with an antistatic bag during shipment. It is advisable to visually inspect the board for evidence of mishandling prior to applying power.

CAUTION SENSITIVE ELECTRONIC DEVICES USE ANTI-STATIC HANDLING PROCEDURES

2.2 CARD CAGE CONSIDERATIONS

Refer to the specifications for bus loading and power requirements. Be sure that the system power supplies are able to accommodate the additional requirements within the voltage tolerances specified.

Adequate air circulation must be provided to prevent a temperature rise above the maximum operating temperature. Large and continuing fluctuations in ambient air temperature should be avoided. If the installation is in an industrial environment and the board is exposed to environmental air, careful consideration should be given to air filtering.

2.2.1 Installation

NOTE: Always turn off power to the card cage before installing or removing a Board or cables. Also turn power off when moving configuration jumpers. Failure to do so can result in damage to the Board.

2.2.2 Field Wiring

Field wiring is connected to the Analog Output Boards via the P2 connector:

	ANALOG	OUTPUT CO	NNECTOR P	2	
PIN NUMBER	SIGNAL	PIN NUMBER	SIGNAL	PIN NUMBER	SIGNAL
1A		1B		10	
2A		2B		2C	
3A		3B		30	
4A		4B		4C	
5A		5B		5C	
6A		6B		6C	
7A		7B		7C	
8A		8B		80	
9A	EXT SUPPLY GND	9B		90	EXT SUPPLY GND
10A		10B		10C	
11A		11B		11C	
12A	+EXT. SUPPLY	12B		12C	+EXT. SUPPLY
13A		13B		13C	
14A		14B		14C	
15A		15B		15C	
16A		16B		16C	
17A		17B		17C	
18A		18B		180	
19A		19B		190	
20A		20B		20C	
21A		21B		21C	
22A	-CHAN 6	22B		22C	-CHAN 7
23A	+CHAN 6	23B		23C	+CHAN 7
24A		24B		24C	
25A	-CHAN 4	25B		25C	-CHAN 5
26A	+CHAN 4	26B		26C	+CHAN 5
27A		27B		27C	
28A	-CHAN 2	28B		28C	-CHAN 3
29A	+CHAN 2	29B		29C	+CHAN 3
30A		30B		30C	
31A	-CHAN O	31B		31C	-CHAN 1
32A	+CHAN O	32B		32C	+CHAN 1

The Analog Output Board is connected to the Acromag 6935 Field Termination Panel via Acromag Analog Signal Cable Model 9940. The Model 6935 Field Termination Panel has transient protection circuitry to guard the outputs from damage due to the effects of electrostatic discharge.

2.2.3 Loading

The model AVME9210 Voltage Output Board can drive capacitive loads up to O.OluF without any overshoot or ringing in the output voltage. When capacitive loads in excess of O.OluF are present, a slight overshoot occurs when the output changes. With a O.5uF load on the output, the overshoot is less than 100 mV and will settle out within 175 uSec. to provide a clean, stable output. If this brief overshoot cannot be tolerated, place a resistor between the "+" output terminal and the load to decouple the capacitive load from the output circuitry. A minimum value for this resistor is 50 ohms. The output impedance will now be equal to the value of this external resistor.

When using the model AVME9215 Current Output Board to drive inductive loads, it is recommended that a luF capacitor be placed across the load to reduce any ripple or ringing that may occur. Provisions for this capacitor are made on the Model 6935 Field Termination Panel.

2.3 CONFIGURATION INFORMATION

The AVME921X Analog Output Boards are tested and shipped from the factory per the following configuration.

Base Address.....Address 0000H Of The Short I/O Space Address Modifier...Both (2DH) Short Supervisory Access and (29H) Short Non-Privileged Access DAC Data Type....Two's Complement Binary AVME9210 Voltage Output: Voltage Output Range.....<u>+</u>10v

AVME9215 Current Output:	
Current Output Range4 - 2	20MA
Output Power SupplyInternal 15	5V

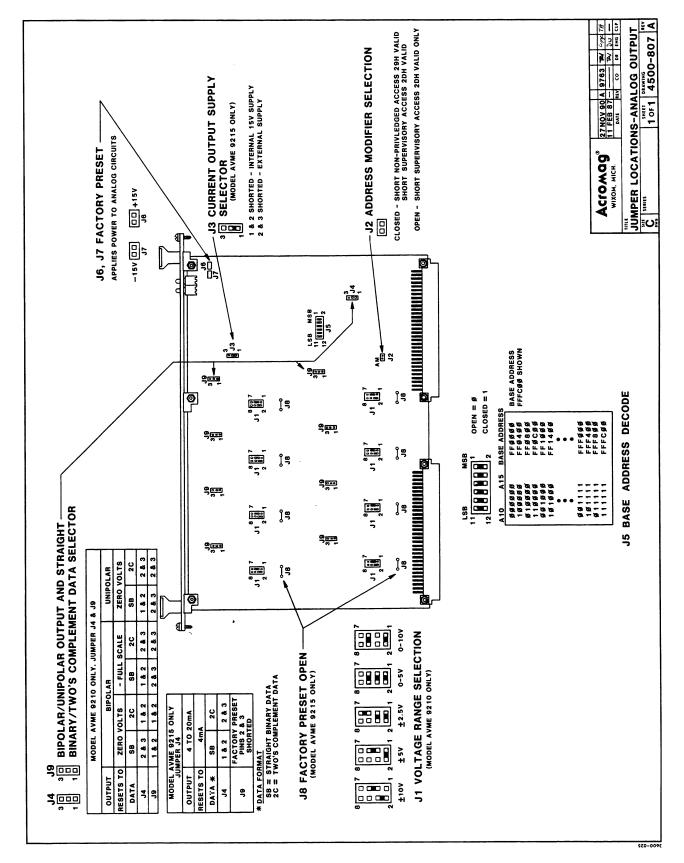
NOTE: Numbers with an H suffix are hexadecimal numbers.

2.3.1 Address Decode Jumper J5

The AVME9215 Analog Output Boards are located in the VME short I/O Memory Map.

From Address 0000H of the Short I/O Space to Address FFFFH of the Short I/O Space, each Output Board occupies a 1k byte segment of memory. The base address of an individual Board is determined by Jumper J5. See Figure 2.1 for the location of J5 on the Analog Output Board.

	ADDRESS DECODE JUMPER J5												
1&2	3&4	5&6	7&8	9&10	11&12	BASE ADDRESS WITHIN THE SHORT I/O SPACE							
OUT OUT OUT OUT OUT OUT	OUT OUT OUT OUT OUT OUT	OUT OUT OUT OUT OUT OUT	OUT OUT OUT IN IN	OUT OUT IN IN OUT OUT	OUT IN OUT IN OUT IN	0000H 0400H 0800H 0C00H 1000H 1400H							
IN IN IN IN IN	IN IN IN IN IN	IN IN IN IN IN	OUT IN IN IN IN	IN OUT OUT IN IN	IN OUT IN OUT IN	ECOOH F000H F400H F800H FC00H							


("In" means that the pins are shorted together with a shorting clip. "Out" indicates that the clip has been removed.)

2.3.2 Address Modifier

The Series AVME921X Analog Output Cards are designed to recognize two address modifier codes, SHORT SUPERVISORY ACCESS (2DH), and SHORT NON-PRIVILEGED ACCESS(29H). Jumper J2 may be programmed as follows...

Jumper IN.....Both SHORT NON-PRIVILEGED ACCESS(29H) and SHORT SUPERVISORY Access(2DH) are valid.

Jumper OUT.....Only SHORT SUPERVISORY ACCESS (2DH) is valid.

2.3.3 Bipolar/unipolar Output and Straight Binary/Two's Complement Data Jumper J4 & J9

Using Jumper J4 & J9, the Analog Output Cards may be programmed such that the Digital to Analog Converters (DACS) will respond to either TWO'S COMPLEMENT OR STRAIGHT BINARY DATA for BIPOLAR or UNIPOLAR OUTPUTS. See Figure 2.1 for jumper location.

MODEL AVME 9210 ONLY, JUMPER J4 & J9												
	BIPOLAR OUTPUT UNIPOLAR OUTPUT											
JUMPER		TS TO VOLTS	RESE MINUS FU	TS TO JLL SCALE	RESETS TO ZERO VOLTS							
	SB 2C SB 2C SB											
J4	J4 2&3 1&2 1&2 2&3 1&2											
J9	1&2	1&2	2&3	2&3	2&3	2&3						

MODEL	AVME 9215 ONLY	JUMPER J4
JUMPER	OUTPUT 4-20mA	RESETS TO 4mA
	SB	20
J4	1&2	2&3
J9	FACTORY PRESI SHORTED	ET PINS 2&3

* DATA FORMAT SB = STRAIGHT BINARY DATA 2C = TWO'S COMPLEMENT DATA

	MODEL AVME 9210										
	DATA BIPOLAR OUTPUT (VOLTS) UNIPOLAR OUTPUT										
STRAIGHT	TWO'S					_TS)					
BINARY	COMPLEMENT	<u>-10 TO +10</u>	<u>-5 TO +5</u>	<u>-2.5 TO +2.5</u>	0-10V	<u>0-5V</u>					
FFFH COOH	7FFH 400H	9.9951 5.0000	4.9976 2.5000	2.4988 1.2500	9.9976 7.5000	4.9988 3.7500					
800H 7FFH	000H FFFH	0.0000 -0.0049	0.0000 -0.0024	0.0000 -0.0012	5.0000 4.9976	2.5000 2.4988					
400H 000H	C00H 800H	-5.0000 -10.0000	-2.5000 -5.0000	-1.2500 -2.5000	2.5000 0.0000	1.2500 0.0000					

MODEL AVME9215 4-20 mA OUTPUT											
DATA STRAIGHT TWO'S BINARY COMPLEMENT	OUTPUT CURRENT (mA)										
FFFH 7FFH	19.996										
COOH 400H	16.000										
800H 000H	12.000										
7FFH C00H	11.996										
400H C00H	8.000										
000H 800H	4.000										

2.4 OPTIONAL EXTERNAL POWER SUPPLY JUMPER J3 (AVME9215 only)

The AVME9215 Current Output Card can support up to 500 ohm loads using the internal power supply to power the output driver. Larger loads can be supported by using a higher voltage external supply to power the output driver. The external supply is provided by the user and is connected via the P2 connector. By configuring Jumper J3, the user may select either INTERNAL or EXTERNAL power supply configurations. See Figure 2.1 for jumper location.

OPTIONAL	EXTERNAL	POWER	SUPPLY	JUMPER J3	
1&2	2&3		POV	VER SUPPLY	
IN OUT	OUT IN			NTERNAL (TERNAL	

("In" means that the pins are shorted together with a shorting clip. "Out" indicates that the clip has been removed.)

NOTE: IF THE CAGE POWER IS TURNED OFF AND THE EXTERNAL SUPPLY IS LEFT ON, ALL THE OUTPUTS GO TO + FULL SCALE.

2.5 VOLTAGE OUTPUT RANGE JUMPER J1 (AVME9210 ONLY)

The AVME9210 Voltage Output Card has eight output channels and each channel may be individually programmed to output a specific voltage range. By using jumper J1 on each channel, the user may select any one of five possible ranges. See Figure 2.1 for jumper location.

Vo	VOLTAGE OUTPUT RANGE SELECTION JUMPER 1						
1&2	2&4	3&4	3&5	5&7	5&6	RANGES	
OUT IN IN IN IN	IN OUT OUT OUT OUT	OUT OUT IN IN OUT	IN IN OUT OUT OUT	OUT OUT IN OUT OUT	OUT OUT OUT IN IN	+-10V +-5V +-2.5V 0-5V 0-10V	

("In" means that the pins are shorted together with a shorting clip. "Out" indicates that the clip has been removed.)

2.6 POWER SUPPLY JUMPERS J6 AND J7

The Analog output cards have two jumpers, J6 and J7, which interconnect power outputs to the analog circuitry. These jumpers are used for testing and are installed at the factory. They should not be removed. See Figure 2.1 for jumper location.

2.7 JUMPER J8

This jumper is preset open at the factory. No further adjustment is necessary.

3.0 PROGRAMMING INFORMATION

This section is intended to provide all of the necessary information for communicating with the VME ANALOG OUTPUT BOARDS.

3.1 MEMORY MAP

The Analog Output Boards connect to the VMEbus via the P1 connector. They respond as a non-intelligent slave and reside in the VME SHORT I/O memory space. All Acromag VMEbus non-intelligent slaves have a standard interface configuration which consists of a 32 byte Board I.D. Prom and a STATUS/CONTROL register. The rest of the 1k byte block contain registers specific to the operation of the board. Both double byte and single byte data transfers are valid, but quad byte transfers are not. The Memory Map is shown in Table 3.1.

Table 3.1 Memory Map				
Address Base +	Even	Odd	Address Base +	
00 3E	Undefined	Module ID Prom	01 3F	
40	l u	NDEFINED	41	
<u>7E</u>				
80	Undefined	STATUS/CONTROL REGISTER	81	
82	CHANNEL	83		
84	CHANNEL	85		
86	CHANNEL	87		
88	CHANNEL	3 DATA REGISTER	89	
8A	CHANNEL	4 DATA REGISTER	8B	
<u>8C</u>	CHANNEL	5 DATA REGISTER	8D	
8E	CHANNEL	6 DATA REGISTER	8F	
90	CHANNEL	7 DATA REGISTER	91	
92		NDEFINED	93	
3FE			3FF	

3.2 BOARD IDENTIFICATION PROM (read only)

The Analog Output Cards are equipped with a PROM that contains information about the Board model number and the manufacturer. The identification information is 32 bytes in length, and is addressed on every odd byte starting at BASE ADDRESS +01H. Tables 3.2 and 3.3 show the ID PROM contents for the AVME9215 Voltage Output Board and the AMVE9215 Current Output Board respectively.

Ta	Table 3.2 VOLTAGE OUTPUT CARD AVME9210 ID INFORMATION						
BASE ADDRESS OFFSET	HEX DATA	ASCII DATA	DESCRIPTION				
01H 03H 05H 07H 09H 0BH 0DH 0FH 11H 13H 15H 17H 19H 18H 1DH 1FH 21H 23H 25H 27H 29H 2BH 2DH 2FH 31H 33H 35H 37H 39H 3BH 3DH 3FH	56H 4DH 45H 49H 44H 41H 43H 52H 39H 32H 31H 20H 20H 20H 31H 20H	V M E I D A C R 9 2 1 0 1	"VMEID" "ACR" ACROMAG MODEL NUMBER SPACE SPACE SPACE KILOBYTES USED SPACE UNDEFINED				

	CURRENT (.3 AVME9215 DUTPUT BOAR FORMATION	
BASE ADDRESS OFFSET	HEX DATA	ASCII DATA	DESCRIPTION
01H 03H 05H 07H 09H 0BH 0DH 0FH 11H 13H 15H 17H 19H 1BH 1DH 1FH 21H 23H 25H 27H 29H 2BH 2DH 2FH 31H 33H 35H 37H 39H 3BH 3CH 3FH	56H 4DH 45H 49H 44H 41H 43H 52H 39H 32H 31H 20H 20H 20H 20H 20H	V M E I D A C R 9 2 1 5 1	"VMEID" "ACR" ACROMAG MODEL NUMBER SPACE SPACE SPACE KILOBYTES USED SPACE UNDEFINED

3.3 STATUS/CONTROL REGISTER

The Analog Output Cards reserve a memory location for Board status indicator flags and reset control. This memory location is one byte in length and is located at BASE ADDRESS +81H. The STATUS/CONTROL Register controls the front panel status indicators, and provides a means to perform a local reset under software control. Reset responses described below also apply to a system reset from the VMEbus. Figure 3.4 describes the Board STATUS/CONTROL Register.

Figure 3.4 ANALOG OUTPUT BOARD STATUS/CONTROL REGISTER BASE ADDRESS +81H								
7	6	5	4	3	2	1	0	
UDF	UDF	UDF	SOFTWARE RESET	UDF	UDF	GREEN LED	RED LED	

D7, D6, D5, D3, D2

UDF= Undefined, reserved for future use, always reads 0.

D4: Software reset.

Writing a 1 to this bit causes a local reset on the Analog Output Board. Writing 0 or reading this bit has no effect. This bit always reads 0. A software reset, resets all DACS according to jumper selection J4 & J9 (See section 2.3.3) and resets status/control register.

D1: Green LED.

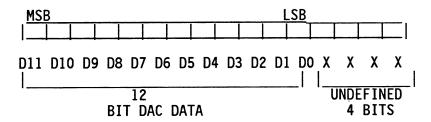
This bit when written to will control the state of the green LED on the front panel. Writing a 1 will turn it on and writing a 0 will turn it off. Reading it reflects the present state. Upon application of a software or system reset, D1 is set to 0 and the GREEN LED is off.

DO: Red LED.

This bit when written to will control the state of the red LED on the front panel and drives the SYSFAIL line. Writing a 1 turns the red LED off and disables the SYSFAIL line. Writing a 0 turns the red LED on and enables the SYSFAIL line. Reading will reflect its current state. Upon application of a software or system reset, D0 is set to 0 and the RED LED is on.

3.4 DAC DATA REGISTER (write only)

The Analog Output Cards have 8 channels of output. Each channel has one 12 bit digital to analog converter. A two byte address location is reserved for each channels' data register. Every card has eight two-byte data registers.


DATA REGISTER

BASE ADDRESS OFFSET

CHANNEL	0+82H	
CHANNEL	1+84H	
CHANNEL	2+86H	
CHANNEL	3+88H	
CHANNEL	4+8AH	
CHANNEL	5+8CH	
CHANNEL	6+8EH	
CHANNEL	7+90H	

Each of the 8, two byte data registers is set up as:

DAC DATA REGISTER

Note that the least significant 4 bits in the DAC DATA REGISTER are ignored when writing to the DAC. Only the upper twelve bits are used.

Note that both double byte and single byte writes are valid when writing to this register. However, one should consider that when using two single byte writes, the DAC output may be briefly set to an unintended value between data transfers.

3.5 GENERAL PROGRAMMING CONSIDERATIONS

3.5.1 Board Diagnostics

The Analog Output Board is a non-intelligent slave and does not perform self diagnostics. It does, however, provide a standard interface architecture which includes a Board Status Register useful in system diagnostics. Refer to Paragraph 3.3: Board Status Register.

Status bits, control of front panel LEDs, and control of the SYSFAIL* signal are provided through the Board Status Register. Bits 0 and 1 may be used as follows:

Regis	l Status ster bit O	LED Green		SYSFAIL* Signal	Condition
		ureen	neu	orginar	
0	0	Off	On	On	Board failed test or has not been tested
1	0	On	On	On	Board is being tested
i	1	On	Off	Off	Board has passed test
Ō	ī	Off	Off	Off	Board is inactive
	-				

At power up, the system diagnostic software can test each non-intelligent slave, sequencing the status bits to indicate "undergoing test" and then to "passed" or "failed".

After testing each board the system software records which boards have failed and sets their status to indicate "inactive". By setting the boards status to inactive, the SYSFAIL* signal is released and may then be useful for an on-line indication of failure by other boards.

Alternatively the system software could simply set the bits and therefore front panel LEDs, to "passed test" as a visual indication that the presence of the board is recognized.

3.5.2 Treatment of Data

The input and output data is 12 bit left justified. When working with bipolar signals, the user may find it advantageous to treat the data as 16 bit two's complement numbers. In that way future products with higher resolution D/A converters may use the same software drivers. Similarly, unipolar data may best be treated as 16 bit unsigned numbers.

 \sim

4.0 THEORY OF OPERATION

This section provides a functional description of the Analog Output Board. This board contains six functional blocks.

- VME bus interface
- STATUS/CONTROL circuitry
- Card identification circuitry
- Digital to Analog converter
- Voltage to current conversion blocks (AVME9215 only)
- DC to DC converter circuitry

Block diagrams are shown in figure 4.1 and 4.2. Refer to the schematic and parts location diagrams in Chapter 7 for other items referenced in this section.

4.1 VME BUS INTERFACE

The Analog Output Boards interface to the VMEbus as a 1 kilobyte block of contiguous address locations in the VMEbus I/O address space. The starting address of this block is determined by jumpers on pins 1 through 12 of J5. Integrated circuit U16 compares the Jumper J5 with the VMEbus address lines to produce a valid address enable EN* signal for the programmable logic device U7.

The Analog Output Boards respond to two address modifier codes. They are 29H SHORT NON-PRIVILEGED ACCESS and 2DH SHORT SUPERVISORY ACCESS. The address modifier code selected is determined by the jumper on pins 1&2 of J2. Programmable logic device U7 compares the VMEbus address modifier lines with Jumper J2 and the result is gated with the valid address enable EN* signal from U16 to produce a valid address signal VCD. When valid, the board is then free to communicate on the bus.

Once the board has been addressed correctly, device U7 initiates BDTACK on the falling edge of either DSO or DS1. The rising edge of BDTACK starts counter U14. After a specified delay, U14 enables RDDLY and WRTDLY. WRTDLY latches in data from the bus on the rising edge. It is delayed to allow the local data bus to settle. After additional delay, counter U14 enables the DTACK data transfer acknowledge signal. On a write cycle, DTACK tells the host that data has been received. On a read cycle, DTACK tells the host that data on the bus is valid and may be read at this time. DTACK is connected to the bus via U18.

Programmable logic devices U8,U9, and U17 perform the local address decode and produce all the necessary logic for data transfer timing.

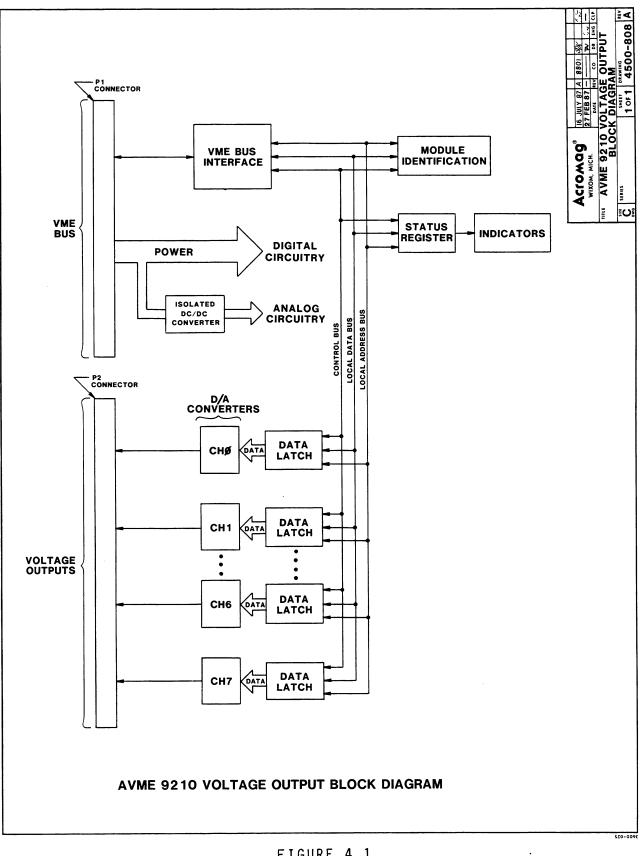


FIGURE 4.1

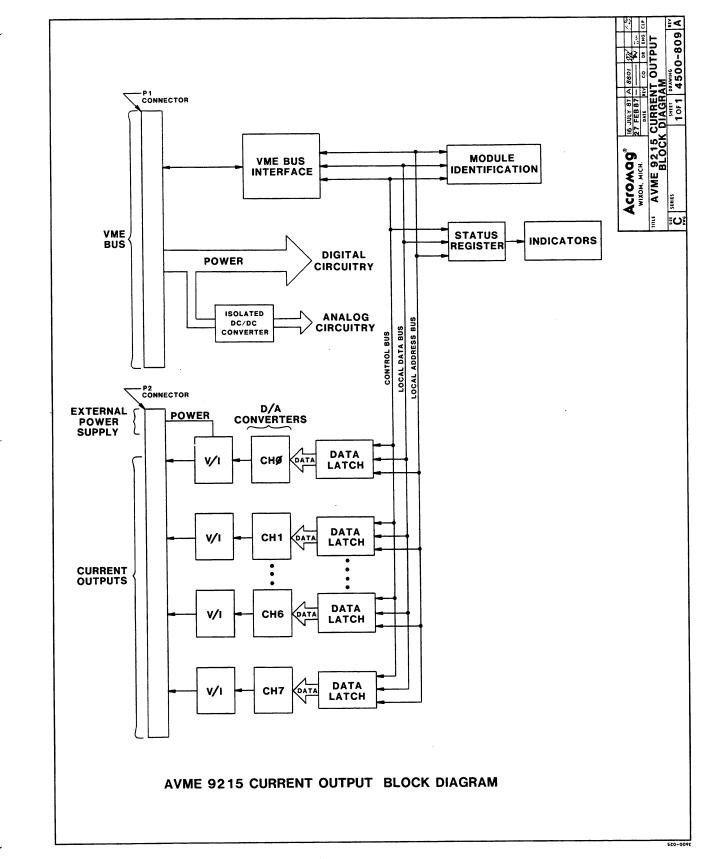


FIGURE 4.2

4.2 BOARD IDENTIFICATION CIRCUITRY

The Board identification prom U15 is a read only device. It stays in a high impedance output state until it receives a low signal on chip select pin 15. At that point, it drives the lower eight bits of the local data bus.

4.3 STATUS/CONTROL CIRCUITRY

The Status/Control circuitry is made up of ICs U12 and U13. On a write cycle to the status register, delay flip flop U12 clocks in new data from the local data bus. On a read cycle, the tri-state buffer U13 drives the local data bus with the output of U12. Delay flip flop U12 also provides control lines for the red and green LEDS via programmable logic device U17.

4.4 DIGITAL TO ANALOG CONVERTER

Every analog output board has eight channels of output. Each channel has a D/A converter U2 and three 4 bit data latches U3,U4,U5. the data latches clock in Data from the local data bus on a rising edge on pin 9 and are cleared on a low level on pin 1. The D/A converter uses an internal resistor ladder network to control the voltage output level on pin 15. Pins 1 through 8 of jumper J1 select the output voltage range for the AVME9210 Voltage Output Board. On the Current Output Board AVME9215, J1 is preset for the 0-10v range and this output is used to drive the voltage-to-current converter.

4.5 THE VOLTAGE TO CURRENT CONVERTER

The voltage to current converter is made up of a level shifter and an output driver stage. The level shifter is a voltage follower which produces a constant current through transistor Q3 proportional to the output voltage from the DAC. The current is sensed by resistor R5. The output driver is a voltage follower which produces a constant current through transistors Q1 and Q2.

4.6 DC TO DC CONVERTER

The DC to DC converter changes the 5V digital supply into dual $\pm 15V$ outputs and provides power for the analog output circuitry. Astable multivibrator U20 provides drive signals for transistors Q4 and Q5. Transistors Q4 and Q5 are turned on and off alternately providing current switching through the windings of transformer T1. The secondary signals are then rectified by diode bridge D17-D20 and regulated via regulators U22 and U23. Inductor L1 makes up an input pi-filter to protect the cage supply from switching transients.

5.0 SERVICE AND REPAIR INFORMATION

The Chapter provides calibration procedures, service diagrams, and instructions on how to obtain service and repair assistance.

5.1 SERVICE AND REPAIR ASSISTANCE

It is highly recommended that a non-functioning board be returned to Acromag for repair. Acromag uses tested and burned-in parts, and in some cases, parts that have been selected for characteristics beyond that specified by the manufacturer. Acromag has automated test equipment that thoroughly checks the performance of each board. When a board is first produced and when any repair is made, it is tested, placed in a burn-in room at elevated temperature, and retested before shipment.

Please refer to Acromag's Service Policy Bulletin, or contact Acromag for complete details on how to obtain parts and repair information.

5.2 PRELIMINARY SERVICE PROCEDURE

Before beginning calibration or repair, be sure that all of the procedures in Chapter 2, Preparation For Use, have been followed. The procedures are necessary since the board has jumpers that must be properly configured.

CAUTION POWER MUST BE OFF BEFORE REMOVING OR INSERTING BOARDS

Note: It has been observed that on occasion, a "boot" program for a disk operating system will "hang" waiting for the VMEbus SYSFAIL* signal to be released by an intelligent disk controller board. Acromag's non-intelligent slave boards assert the SYSFAIL* signal as described to the VMEbus Specification Rev. C.1 and therefore, the disk operating system will remain "hung". The best solution to this problem is to correct the boot program so that it is no longer dependent upon the SYSFAIL* signal. When this solution is not practical, it is possible to disconnect the SYSFAIL* from the circuitry on the Acromag board by cutting pin 8 of U18 on the component side. Discard pin. Caution should be exercised so as not to cut any other foils nor damage the board in any other way. Call Acromag's Applications Engineering Department for assistance.

5.3 CALIBRATION PROCEDURE

The Analog Output Board is calibrated at the factory and, under normal circumstances, additional adjustment in the field should not be required, reasonable care should be taken to insure the quality and integrity of the adjustments.

The following equipment is required to perform the calibration procedures.

A. Precision Digital Voltmeter B. Precision 500 ohm (<u>+</u>.012%) resistor

For calibrating a AVME9215 Current Output Board, a 500 ohm load resistor should be placed across the output and the voltage across the load should be measured with a precision digital voltmeter.

For calibrating a AVME9210 Voltage Output Board, no load resistor is required. Simply connect the digital voltmeter across the output of the channel to be calibrated. The voltage output Board comes calibrated from the factory in the bipolar, $\pm 10v$, range. Some users may wish to operate in one of the four other output ranges. Set the range select jumper in the range desired before calibration.

Configure the Analog Output Board for straight binary. Write 0000H to the DAC and, using the table below, adjust the offset potentiometer until the correct OFFSET value is obtained. Write FFFH to the DAC and, using the table below, adjust the span potentiometer until the correct SPAN value is obtained. Repeat both adjustments until the correct values are obtained.

RANGE	OFFSET	SPAN	TOLERANCE
+-10V	-10.0V	9.9951V	0.00244V
+-5V	-5.0V	4.9976V	0.00122V
+-2.5V	-2.5V	2.4988V	0.00061V
0-10V	0.0V	9.9976V	0.00122V
0-5V	0.0V	4.9988V	0.00061V
4-20MA	4mA	19.9961MA	1.95uA

5.4 REPLACEMENT PARTS

The replacement parts list is provided as an aid to the user in troubleshooting the board. Replacement parts and repair services are available from Acromag. If parts are replaced in the analog circuitry, recalibration may be required. If repair is necessary in this circuitry, it is highly recommended that the board be returned to Acromag for repair and recalibration.

Changes are sometimes made to improve the product, to facilitate delivery or to control cost. It is therefore important to include the reference number, the card model number, the Acromag part number, and the card serial number when providing information to order parts. Table 5.1 is a Replacement Parts list for both Analog Output Board models. Table 5.2 covers only those parts specific to the AVME9210 Voltage Output Board and Table 5.3 covers only those parts specific to the AVME9215 Current Output Board.

TABLE 5.1 REPLACEMENT PARTS LIST (BOTH MODELS)					
REFERENCE NUMBER	ACROMAG PART NO.	DESCRIPTION			
R12 R14 R15 R16,17 R20,22 R21 R23,24 R25,26 R27,28 R29,30 R31 R32	1006-518 1006-943 1000-869 1100-145 1000-839 1100-490 1100-493 1100-492 1006-051 1000-802 1006-765 1000-811	15 OHM 402K OHM 1.5M OHM 10K OHM 4.7K OHM 1K NETWORK 68 OHM NETWORK 33 OHM NETWORK 33.2 OHM 3.9 OHM 5.62K OHM 22 OHM			
C4 C5 C6,51,52 C9-18,24-39, 48,49,55-59 C19,20 C22 C47 C50 C53,54 C60	1002-442 1002-428 1002-319 1002-530 1002-430 1002-313 1002-438 1002-312 1002-321 1002-321	0.01uF 100pF 3.3uF 0.1uF 220pF 68uF 0.001uF 22uF 10uF 1uF			

CHAPTER 5 SERVICE AND REPAIR INFORMATION

SERIES AVME9210/9215 ANALOG OUTPUT BOARDS

REPLACE	CONTINUED TABLE 5.1 REPLACEMENT PARTS LIST (BOTH MODELS)					
U2	1033-656	DAC80-CBI-V				
U3,4,5,12	1033-657	74LS175				
U7	5016-247	PROGRAMMED PART				
U8	5016-248	PROGRAMMED PART				
U9	5016-249	PROGRAMMED PART				
U10	1033-297	74LS645				
U11,13	1033-273	74LS244				
U14	1033-658	74LS164				
U16	1033-626	25LS2521				
U17	5016-250	PROGRAMMED PART				
U18	1033-623	74F38				
U19	1033-670	74LS174				
U20	1033-323	4047				
U21	1033-146	4069				
U22	1033-222	78M15				
U23	1033-234	79M15				
D11	1001-165	GREEN LED				
D12	1001-166	RED LED				
D15,16	1001-091	1N4744				
D17-20	1001-167	FAST RECOVERY DIODE				
Q4,5	1023-116	BUZ71A				
Q6	1023-094	TIP30				
Q7	1023-087	TIP31				
F1	1030-471	10 AMP				
L1 T1	1016-061	luH POWER XFMR				

- 5.4 -

17

TABLE 5.2 AVME9210 VOLTAGE OUTPUT BOARD SPECIAL PARTS					
REFERENCE NUMBER	ACROMAG PART NO.	DESCRIPTION			
R11 C7	1100-334 1002-428	ZERO OHM 100pF			

TABLE 5.3 AVME9215 CURRENT OUTPUT SPECIAL PARTS					
REFERENCE NUMBER	ACROMAG PART NO.	DESCRIPTION			
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R13 R18 R19 R33	1100-338 1006-693 1006-722 1006-769 1110-271 1008-831 1100-446 1006-760 1110-585 1006-896 1006-909 1100-105 1006-701 1000-831	50 OHM 1K OHM 2K OHM 6.19K OHM 232 OHM 27.4K OHM 2.8K OHM 4.99K OHM 130K OHM 130K OHM 130 OHM 1.21K OHM 1K OHM			
C1	1002-430	220pF			
C2,3	1002-428	100pF			
C41,42,45,46	1002-530	0.1uF			
C8,43	1002-319	3.3uF			
C23	1002-297	4.7uF			
C40	1002-438	0.001uF			
C61,62	1002-442	0.01uF			
U1	1033-519	LF412			
U6	1033-512	LM329			
U15	5016-246	PROGRAMMED PART			
Q1	1023-046	2N4036			
Q2	1023-089	MPS6534			
Q3	1023-109	VN10KM			
D1,6	1001-113	1N914B			
D2-5	1001-116	RED LED			
D9	1001-083	1N823			

5.5 SERVICE AND REPAIR ASSISTANCE

If it is determined that parts need to be replaced, it is highly recommended that the card be returned to Acromag for repair. Acromag uses tested and burned-in parts, and in some instances, parts have been selected for characteristics beyond that specified by the manufacturer. Acromag has automated test equipment that thoroughly checks the performance of each card. When a card is first produced and when any repair is made , it is tested, placed in a burn-in room at elevated temperatures , and retested before shipment.

Please refer to Acromag's Service Policy Bulletin or contact the factory for complete details on how to obtain parts and service.

6.0 <u>SPECIFICATIONS</u>

The following specifications are for 25C ambient temperature and nominal power supply levels unless otherwise noted.

6.1 GENERAL SPECIFICATIONS

Physical Characteristics

Length	• •	•	•	•	•	•	•	•	•	•	•	•	•	9.187in.(223.3mm)
Width		•	•	•	•	•	•	•	•	•	•	•	•	6.299in.(160mm)
Board Thickness	• •	•	•	•	•	•	•	•	•	•	•	•	•	0.062in.(1.59mm)
Component height	• •	•	•	•	•	•	•	•	•	•	•	•	•	0.55in. (13.97mm)
Recommended Board Spac														

Mating Connectors

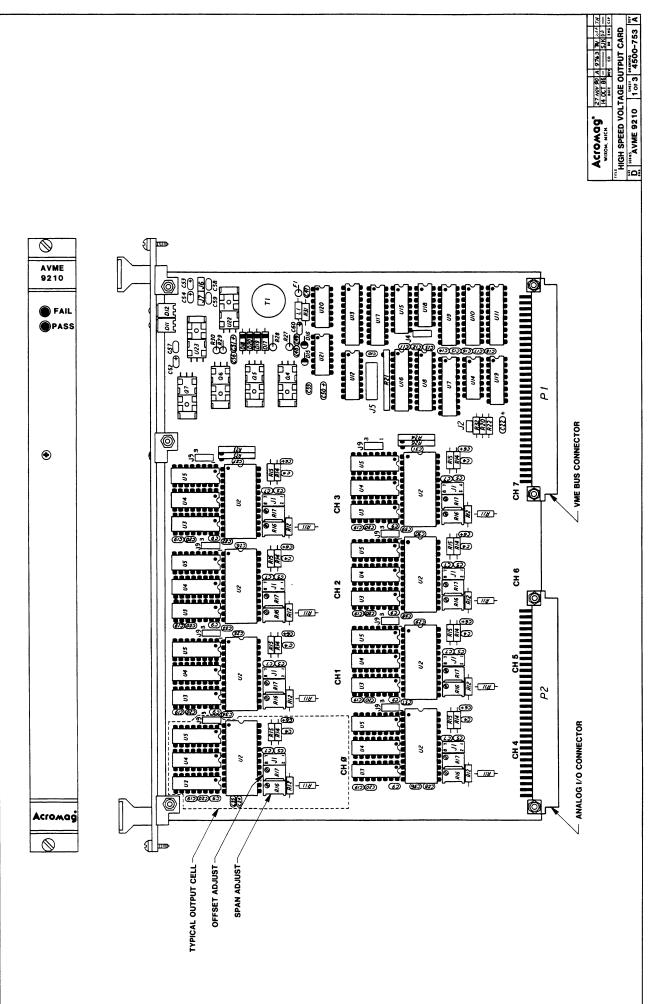
P1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IEC type 603-2
																			-6096mx-xxx or equiv.
P2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-6064mx-xxx or equiv.

VME BUS LOADING

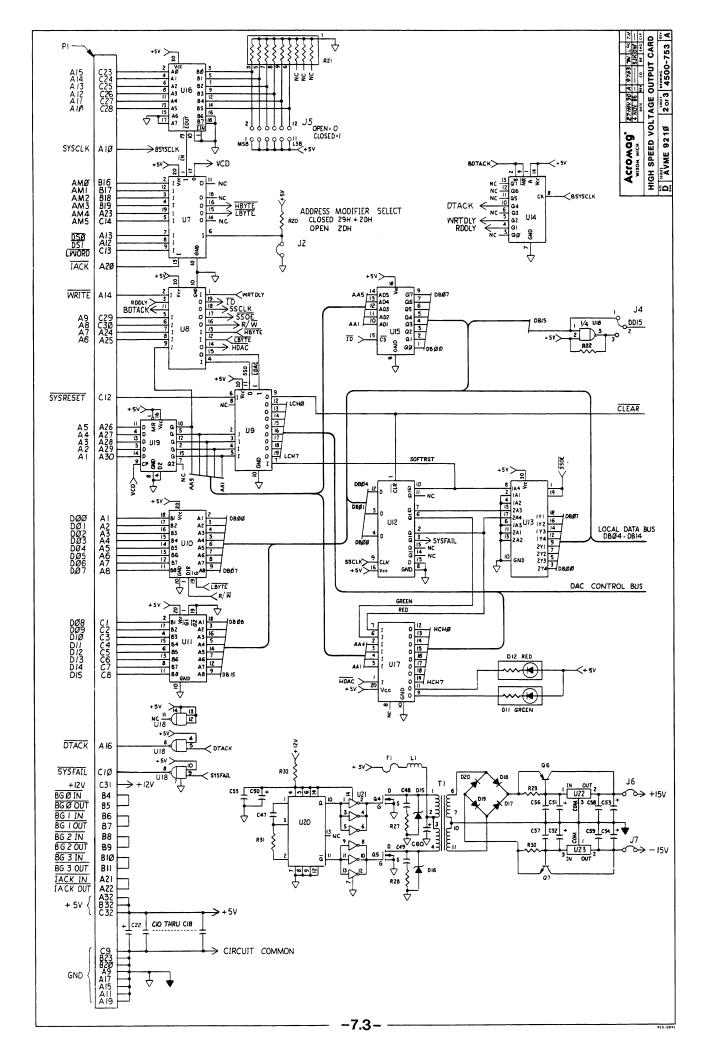
input	low	output	low
A10-A15	••		20uA 20uA
IACK*,DSO*,DS1*,WRITE ³ SYSRESET*	•••	4mA	40uA 20uA 20uA
VME BUS DRIVE			
DTACK*,SYSFAIL* DO-D7	•••	64mA(MAX) 48mA	 -15mA
$\ensuremath{WE}\xspace$ bus access time .	•••		390nS typical

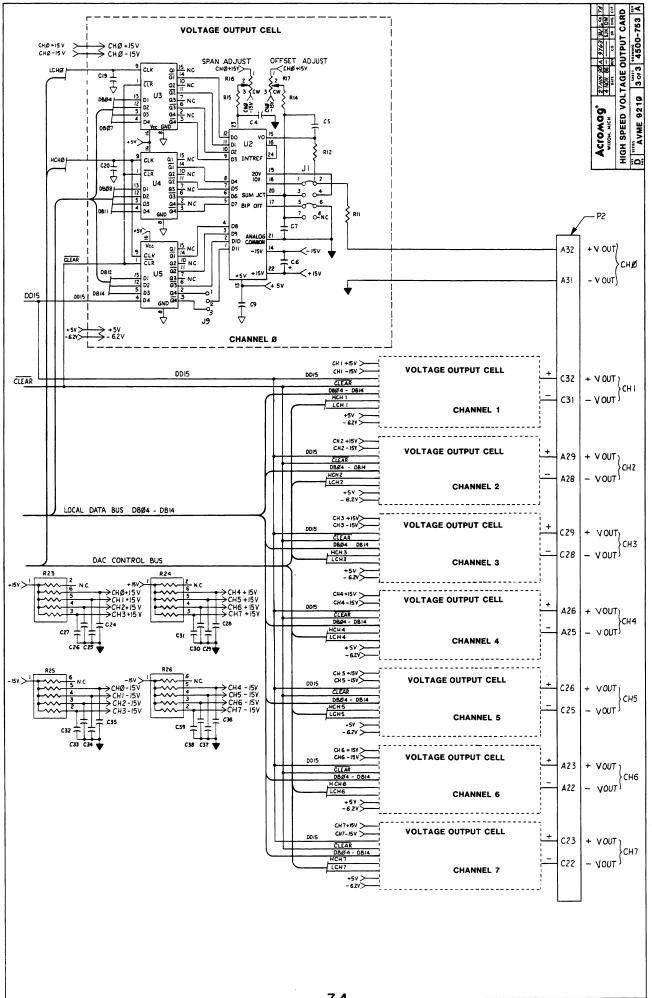
(Measured from the falling edge of $\overline{\text{DSx}}$ to the falling edge of $\overline{\text{DTACK}}$.)

6.2 AVME9210 VOLTAGE OUTPUT BOARD SPECIFICATIONS

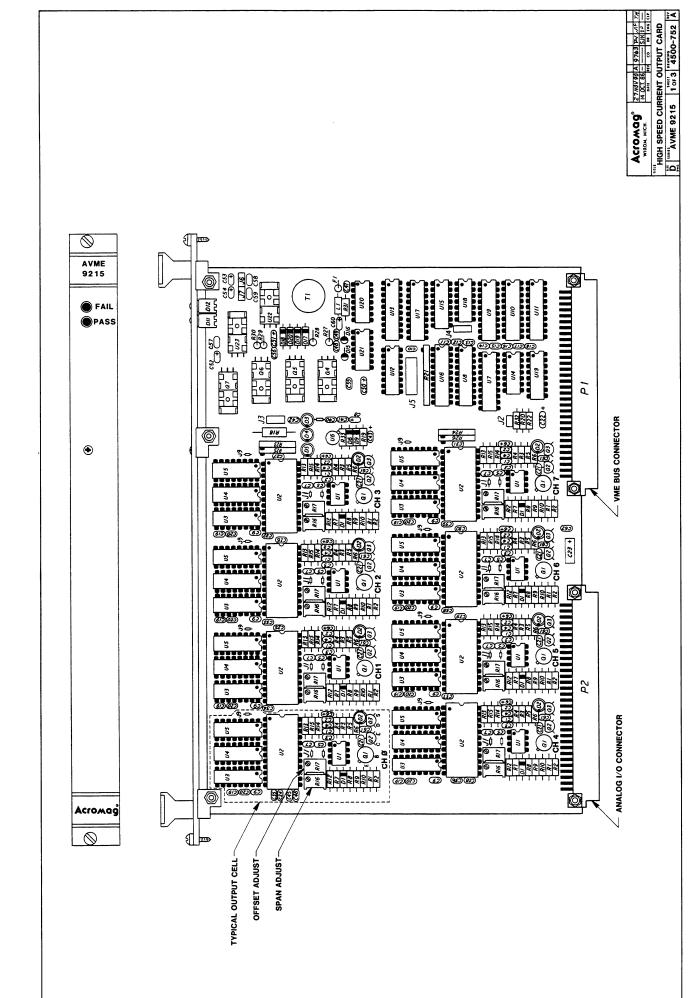

OUTPUT TYPE NON-ISOLATED OUTPUT RANGES $\pm 10V$, $\pm 5V$, $\pm 2.5V$, 0-10, 0-5VMONOTONICITY OVER TEMP. 12 BITS NON-LINEARITY ACCURACY (+10V RANGE) . . 0.025% OF SPAN (max) (OTHER RANGES) . . . 0.45% OF SPAN (max)** OUTPUT DRIVE CURRENT +5mA OUTPUT IMPEDENCE <1 OHM CAPACITIVE DRIVE CAPABILITY . . < 0.01uF without overshoot or ringing POWER SUPPLY REJECTION DC 0.0002% FSR/%Vcc 60hz 0.0005% FSR/%Vcc CHANNEL TO CHANNEL REJECTION . 93db SETTLING TIME TO 1/2 LSB (20V STEP) 6.0uS (5V STEP) 1.2uS (AT 10V/M FIELD INTENSITY) DEFAULT ON RESET (bipolar) OV or minus full scale POWER REQUIREMENTS 0.6mÅ +12V -12V NO LOAD GAIN TEMPERATURE COEF. 30PPM/C max 15PPM/C typ. OFFSET TEMPERATURE COEF . . . 10PPM/C max 5 PPM/C typ. ** NOTE: THIS ERROR IS ADJUSTABLE TO 0.025% OF SPAN (see calibration section)

6.3 AVME9215 CURRENT OUTPUT BOARD SPECIFICATION

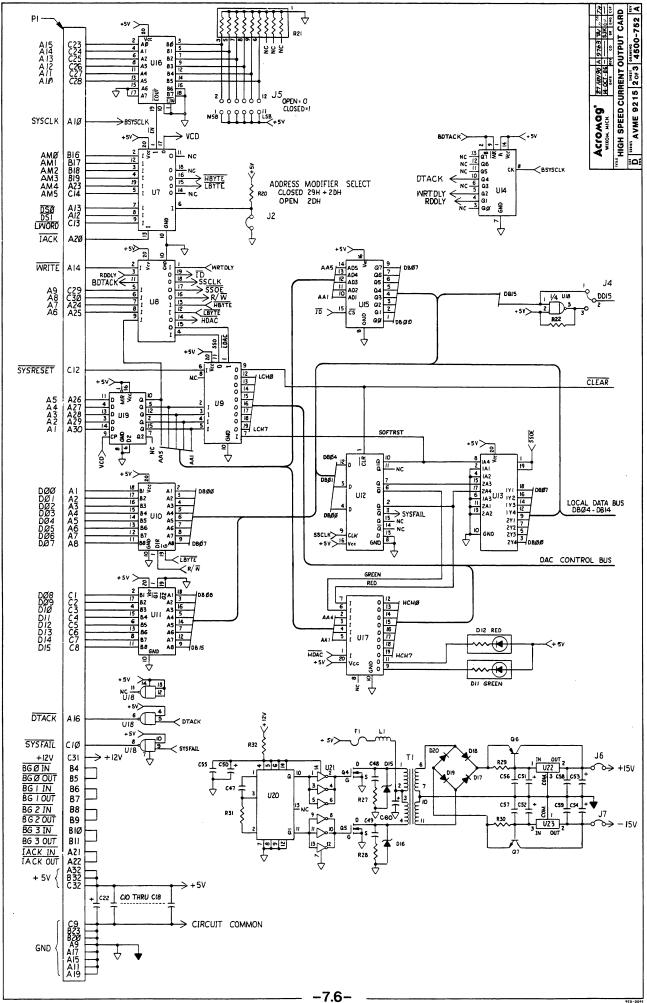

OUTPUT TYPE NON-ISOLATED NUMBER OF CHANNELS 8 CHANNELS NON-LINEARITY 0.013% of SPAN ACCURACY 0.025% of SPAN SETTLING TIME TO 1/2 LSB (FULL SCALE STEP, 250 OHM LOAD) 25uS INTERNAL DC SUPPLY LOAD VOLTAGE COMPLIANCE 10.5 Volts LOAD RESISTANCE RANGE 0 TO 525 OHM EXTERNAL DC SUPPLY (user provided) 15V to 30V SUPPLY RANGE LOAD VOLTAGE COMPLIANCE(SUPPLY=30V) . . . 26V max. LOAD RESISTANCE RANGE(SUPPLY=30V) . . . 0 TO 1300 OHMS EXTERNAL POWER SUPPLY REJECTION 0.0018% FSR/%Vcc ZERO OHM LOAD PROTECTION CONTINUOUS DEFAULT ON RESET 4mA POWER SUPPLY REJECTION DC 0.00064% FSR/%Vcc 60Hz 0.00074% FSR/%Vcc CHANNEL TO CHANNEL REJECTION 81DB (500 ohm load) POWER REQUIREMENTS +12V 0.6mA EXTERNAL SUPPLY POWER REQUIREMENTS MAX 420mA (with cage power off) MAX 250mA (with cage power on) (at 10V/m field intensity)

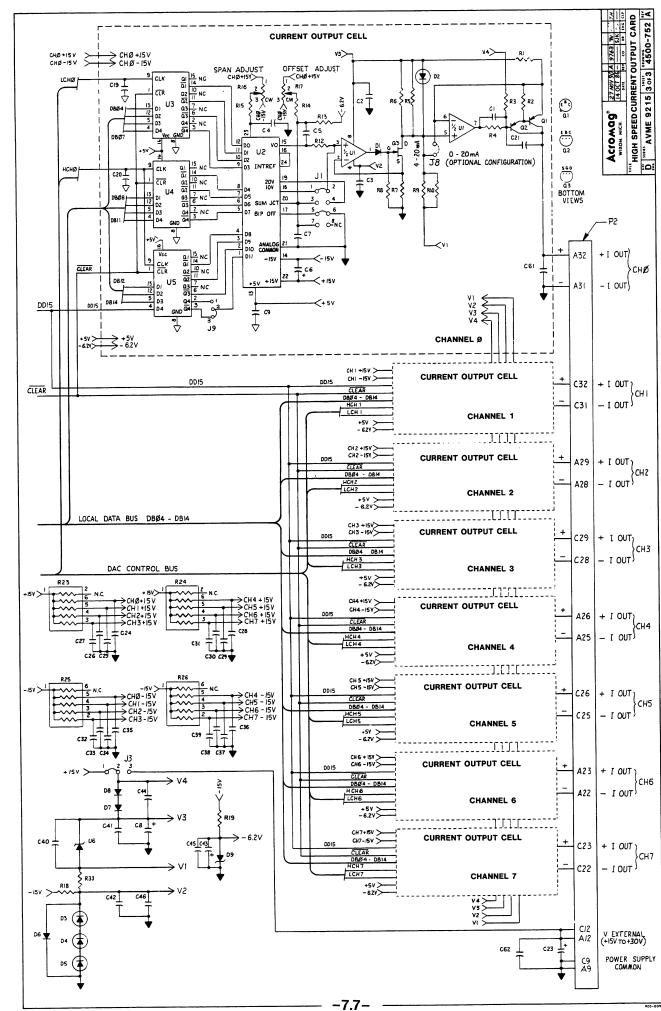

7.0 SCHEMATIC AND PART LOCATION DRAWINGS

The following sheets contain the schematic and part location drawings for both the 9210 and 9215.



-7.2-





-7.4- -

- -7.5- -

