[image: image3.png]1. Lok up the
nstanceJattrbute combination
here. More than one entry i

AIDA Database Schema

may have the same
instanceJattrbute pair

2. Look up the st and
order of sevices that
are required to et -
this identified request

3. Services register their
interface ID's here for each
group in which they
particpate

4. Each nterface stores s
string object reference here.

LI

*Transform String
ol - Sl concatenation of
instance/attrtute
Jpattertepiace/[al... kst of
replscement soecs
Sting -any other sting s
nserted verbatum

[I=l=

[=[=

)
INsTancE
sTTRIBUTE
TRANSFORM
Tvee D
count

NAE_TD
SERvICE D
ORDER

SeRvIcE D
GroLP_D

Instance/attribute
combinations
=Transform String
e e
How many of them _|NAVE
DESCRIPTION
2 |0

NavE
DESCRIPTION

)

nTERFACE 1D nave
pescrrprion
2o
sor
Lo66mG:
‘Al aperatons in al aida tables except
'DIRECTORY andd INTERFACES are
2o automaicaly logged fo the 2 og table by
user_nave use of appropniate trogers
loare Loseen
sueect
action o 2 |D
pata nave

|oescrpTioN

	SLAC
	

AIDA

AIDA Directory Design Documentation

0. Contents

i0.
Contents

11.
Introduction

11.1. AIDA Database System Specification

11.2. AIDA Naming conventions

21.3. AIDA Database Overview

32. AIDA Directory database operation

32.1. Schema

32.2. Fundamentals

42.3. Examples of use

42.3.1. Example tables

72.3.2. Simple discovery of Service Interface

82.3.3. Return a pair of different Service Interfaces

92.3.4. Return a pair of similar Service Interfaces

102.3.5. Return a simple chain of Service Interfaces

123.
Aida Directory database Maintenance

123.1. Add a Service to the AIDA Directory

133.1.1. Add a Name / Service mapping to the AIDA Name Space

143.1.2. Register an Interface in the AIDA Directory

164.
AIDA Database Objects

164.1. Tables

16AIDA_ACTIONS

17AIDA_DIRECTORY

17AIDA_GROUPS

17AIDA_INTERFACES

17AIDA_LOG

17AIDA_NAMES

17AIDA_SERVICE_INTERFACE

17AIDA_SERVICES

17AIDA_TYPES

174.2. Stored Procedures

17AIDA_REGISTER_INTERFACE_SP

184.3. Triggers

18AIDA_ACTIONS_TRIG

18AIDA_GROUPS_TRIG

18AIDA_GROUPS_TRIG2

18AIDA_INTERFACES_TRIG

19AIDA_INTERFACES_TRIG2

19AIDA_LOG_TRIG

19AIDA_NAMES_TRIG

19AIDA_SERVICES_TRIG

19AIDA_SERVICES_TRIG2

19AIDA_TYPES_TRIG

194.4.
Indexes

194.5.
Database Diagrams

19AIDA_DB_SCHEMA

195.
AIDA Database Maintenance

195.1. Copying Contents from One UserId to Another

195.1.1.
Disable Constrains for the Target Tables

205.1.2.
Copy Contents of Source Tables To Target Tables

215.1.3.
Re-enable Constrains for the Target Tables

215.1.4.
Drop and Create Sequence Numbers For the Target Userid

	Chapter
	

	1
	

AIDA

AIDA Directory Design Documentation

This document describes the design of the database that powers the AIDA directory service and outlines the procedures necessary to correctly administer it.

1. Introduction

1.1. AIDA Database System Specification

The AIDA database is implemented as part of the SLAC_TCP instance. Presently there are 2 user ids used: “aidadev” and “aidaprod”. Their schemata are identical, as presented in the rest of this document. Aidadev is for development, whereas aidaprod is intended to be the production userId. Additionally, userid NLCDA includes the same tables as aidadev and aidaprod. NLCDA was the original userId used for the Aida db, but should now be considered obsolete.

The AIDADEV userId contains a “database diagram” describing the schema used by both AIDADEV and AIDAPROD. To use is, use MS Visual C++, open a connection to SLAC_TCP, and open the “Database Diagrams” folder.

1.2. AIDA Naming conventions

· All AIDA specific tables begin with AIDA_
· All primary keys, when not compound keys, are named ID
· All foreign keys are named after the table (with the AIDA_ prefix removed and plurals transformed into singular terms) they reference with _ID appended. For example for a primary key table AIDA_NAMES foreign keys that reference its primary key are called NAME_ID.

· All AIDA Specific triggers start with AIDA_ and end in _TRIG (+ optional identifying number). The names are a sequence of “_” delimited words made up of the table name and optionally some further qualifying verb describing the action of the trigger. For example, AIDA_ACTIONS_TRIG for the table AIDA_ACTIONS.
· All AIDA Specific stored procedures start with AIDA_ and end in _SP. The names are a sequence of “_” delimited words that describe the procedures function. For example, AIDA_REGISTER_INTERFACE_SP.
· All AIDA database diagram names are fully descriptive strings starting with AIDA and ending with Schema with the subsystem that is the subject of the diagram described in between. For example, AIDA DB Schema
· All AIDA database objects are part of the default schema for NLCDA.

1.3. AIDA Database Overview

· Where possible the database is optimized to the Third Normal Form.

· Performance is enhanced by addition of specific additional indexes based on expected application’s use of the database where possible.

· Addition of entries into the database is facilitated by use of automatically generated default values for all ID fields.

· Deletion is facilitated by using triggers that remove references from referencing tables when a key is deleted from a master table.

2. AIDA Directory database operation

2.1. Schema

[image: image1]
2.2. Fundamentals

The database is designed to accomplish three main tasks

· Resolve a single AIDA Instance / Attribute pair into a branch-able chain of fully resolved service references with corresponding respectively modified Instance / Attribute lists

Instance / Attribute pair – The lowest level AIDA namespace string identifier that references a particular service.

Service – A logical service such as CHADS, or CAHIST.

Fully resolved Service – A service with extra information containing the SOR (CORBA String Object Reference) of the AidaObject interface that can service the request for this service.

Chain – A list of fully resolved services that should be called in sequence, each one passing on to the next the reduced (by removing the first element) chain until the leaf of the chain is reached.

Branch-able chain – A chain where each link in the chain may have more than one service reference (possibly referencing the same service) that are to be called in parallel, their results being combined, on return, at that position in the chain. This represents a branch in the chain.

Modified Instance / Attribute pair – Each link in the chain causes the original call to be forwarded to the next service in the chain for processing. At each such forwarding original Instance / Attribute pair can be sent along. However it is possible to modify the Instance / Attribute pair individually and independently at each hop.

· Allow registration of interfaces that can service requests referenced by a particular Instance / Attribute pair

· Provide a place to store mappings of Instance / Attribute pairs to their corresponding logical service names.

Auxiliary functionality

· Log all interaction with the Directory Service. This functionality may be wholly moved off into the standard SLAC logging facility or may be used in conjunction with it.

The database does not

· Inherently understand queries containing pattern matches that reference groups of Instance / Attribute pairs. This functionality is left to the application (Directory Service) to formulate the relevant queries, as interpretation of the results is highly application specific.

· Offer short cuts to storing references to the same service for multiple differing Instance / Attribute pars. Each instance attribute pair must be individually entered into the AIDA_NAMES table.

2.3. Examples of use

2.3.1. Example tables

The following tables are used for the purposes of the examples that will follow.

Note: For the purposes of simplifying the examples the tables AIDA_TYPES, AIDA_GROUPS, AIDA_LOG and AIDA_ACTIONS are not shown. Their function is deemed self evident in the context of the following examples. Consequently all query hints ignore completely the groups, types and counts.

Note: In the following Query Hints is to be used as a reference as the exact syntax and query construction depends upon your exact application needs.

AIDA_NAMES

ID
INSTANCE
ATTRIBUTE
TRANSFORM
TYPE_ID
 COUNT

1
‘TEST1’

‘VAL’

null

null
 null

2
‘TEST2’

‘VAL’

‘/\(.*\VAL)/\1LAST/
null
 null

3
‘TEST3’

‘VAL’

null

null
 null

4
‘TEST3’

‘VAL’

‘/\(.*\)/\1LAST/’
null
 null

5
‘TEST4’

‘VAL’

null

null
 null

6
‘TEST4’

‘VAL’

null

null
 null

AIDA_DIRECTORY

NAME_ID
SERVICE_ID
ORDER

1
101

1

2
101

1

2
102

1

3
101

1

4
101

1

5
101

1

5
102

2

5
103

3

6
104

2

6
105

3

AIDA_SERVICES

ID
NAME

DESCRIPTION

101
‘TESTSERVICE’
‘A test service for the purposes of documentation’

102
‘TESTSERVICE2’
‘A second test service for the purposes of documentation’

103
‘TESTSERVICE3’
‘A third test service for the purposes of documentation’

105
‘TESTSERVICE4’
‘A fourth test service for the purposes of documentation’

105
‘TESTSERVICE5’
‘A fifth test service for the purposes of documentation’

AIDA_SERVICE_INTERFACE

SERVICE_ID
GROUP_ID
INTERFACE_ID

101

null

10

102

null

11

103

null

12

104

null

13

105

null

14

AIDA_INTERFACES

ID
SOR

10
‘IOR:123456…4DS234’

11
‘IOR:234567…4DS234’

12
‘IOR:345678…4DS234’

13
‘IOR:456789…4DS234’

14
‘IOR:567890…4DS234’

2.3.2. Simple discovery of Service Interface

Instance / Attribute pair

TEST1//VAL

Query hints

SELECT
 I.SOR ,
 N.TRANSFORM,
 D.ORDER

FROM
 AIDA_NAMES AS N,
 AIDA_DIRECTORY AS D,
 AIDA_SERVICES AS S,
 AIDA_SERVICE_INTERFACE AS SI,
 AIDA_INTERFACES AS I

WHERE
 D.NAME_ID = N.ID
AND D.SERVICE_ID = S.ID
AND SI.SERVICE_ID = S.ID
AND SI.INTERFACE_ID = I.ID
AND N.INSTANCE = ‘TEST1’
AND N.ATTRIBUTE = ‘VAL’

The following will be returned.

SOR

TRANSFORM
ORDER

‘IOR:123456…4DS234’

null

1

Interpret as

To service the request ‘TEST1//VAL’ call CORBA interface ‘IOR:123456…4DS234’

Pass ‘TEST1//VAL’ as the new Instance / Attribute pair because a TRANSFORM of null means leave the original pair unchanged.

2.3.3. Return a pair of different Service Interfaces

This is a structure that is returned from a single Instant / Attribute pair.

Each of the resulting service interfaces that make up the structure has, in this example, the same modified Instance / Attribute pair and point different Data Provider services.

Instance / Attribute pair

TEST2//VAL

Query hints

SELECT
 I.SOR ,
 N.TRANSFORM,
 D.ORDER

FROM
 AIDA_NAMES AS N,
 AIDA_DIRECTORY AS D,
 AIDA_SERVICES AS S,
 AIDA_SERVICE_INTERFACE AS SI,
 AIDA_INTERFACES AS I

WHERE
 D.NAME_ID = N.ID
AND D.SERVICE_ID = S.ID
AND SI.SERVICE_ID = S.ID
AND SI.INTERFACE_ID = I.ID
AND N.INSTANCE = ‘TEST2’
AND N.ATTRIBUTE = ‘VAL’

The following will be returned.

SOR

TRANSFORM
ORDER

‘IOR:123456…4DS234’

‘/\(.*\VAL)/\1LAST/’
1

‘IOR:234567…4DS234’

‘/\(.*\VAL)/\1LAST/’
1

Interpret as

To service the request ‘TEST2//VAL’ call CORBA interface ‘IOR:123456…4DS234’ and ‘IOR:234567…4DS234’ in parallel and return the results to the caller in a two element structure.

Pass ‘TEST2//VALLAST’ as the new Instance / Attribute pair in both cases because this is what you get after applying the TRANSFORM of ‘/\(.*\VAL)/\1LAST/’ to the combined Instance / Attribute string.

2.3.4. Return a pair of similar Service Interfaces

This is also a structure that is returned from a single Instant / Attribute pair with the following difference.

Each of the resulting service interfaces that make up the structure has a different modified instance attribute pair but point to the same Data Provider service.

Instance / Attribute pair

TEST3//VAL

Query hints

SELECT
 I.SOR ,
 N.TRANSFORM,
 D.ORDER

FROM
 AIDA_NAMES AS N,
 AIDA_DIRECTORY AS D,
 AIDA_SERVICES AS S,
 AIDA_SERVICE_INTERFACE AS SI,
 AIDA_INTERFACES AS I

WHERE
 D.NAME_ID = N.ID
AND D.SERVICE_ID = S.ID
AND SI.SERVICE_ID = S.ID
AND SI.INTERFACE_ID = I.ID
AND N.INSTANCE = ‘TEST3’
AND N.ATTRIBUTE = ‘VAL’

The following will be returned.

SOR

TRANSFORM
ORDER

‘IOR:123456…4DS234’

null

1

‘IOR:123456…4DS234’

‘/\(.*\)/\1LAST/’
1

Interpret as

To service the request ‘TEST2//VAL’ call CORBA interface ‘IOR:123456…4DS234’ twice in parallel and return the results to the caller in a two element structure.

Pass ‘TEST2//VAL’ as the new Instance / Attribute pair in the first case and ‘TEST2//VALLAST’ in the second.

2.3.5. Return a simple chain of Service Interfaces

This returns a structure that is the result of a call specifying a single Instant / Attribute pair.

However, in this case, to satisfy the call each of the returned service interfaces is called in series with the modified Instance / Attribute pair.

The structure is made by combining the two results from the pair of secondary services in the chain.

The resultant call chain looks like this.

[image: image2]
Instance / Attribute pair

TEST4//VAL

Query hints

SELECT
 N.ID AS ID,
 I.SOR ,
 N.TRANSFORM,
 D.ORDER

FROM
 AIDA_NAMES AS N,
 AIDA_DIRECTORY AS D,
 AIDA_SERVICES AS S,
 AIDA_SERVICE_INTERFACE AS SI,
 AIDA_INTERFACES AS I

WHERE
 D.NAME_ID = N.ID
AND D.SERVICE_ID = S.ID
AND SI.SERVICE_ID = S.ID
AND SI.INTERFACE_ID = I.ID
AND N.INSTANCE = ‘TEST3’
AND N.ATTRIBUTE = ‘VAL’

The following will be returned.

ID
SOR

TRANSFORM
ORDER

5
‘IOR:123456…4DS234’
null

1

5
‘IOR:234567…4DS234’
null

2

5
‘IOR:345678…4DS234’
null

3

6
‘IOR:456789…4DS234’
null

2

6
‘IOR:567890…4DS234’
null

3

Interpret as

To service the request ‘TEST2//VAL’ we start with the services with ORDER equal to 1 and therefore call CORBA interface ‘IOR:123456…4DS234’ passing the fully resolved chain (all elements with ORDER greater than 1).

Inside service ‘IOR:123456…4DS234’ the same is done but this time starting from ORDER equals 2. In this case there are two candidates therefore they are called in parallel and the results returned as a structure. This service may know how to modify data returned from each service it calls to standardize the units for example.

Each of the services is called in parallel passing the rest of the chain (those with ORDER greater than 2). Each call sends the chain with matching ID’s only. Therefore to service ‘IOR:234567…4DS234’ the single element chain containing service ‘IOR:345678…4DS234’ is sent.

These service requests are passed on one more time by each of the respective services at this stage before they are finally executed by services ‘IOR:345678…4DS234’ and ‘IOR:567890…4DS234’ respectively

2. Aida Directory database Maintenance

3.1. Add a Service to the AIDA Directory

Services are AIDA data providers that can satisfy requests for one or more nodes in the AIDA name space.

A node does not have to be a leaf node to be referencable and child nodes need not necessarily have any relation to parent nodes. The first job when adding a Service is to correctly and fully understand its scope within the AIDA namespace.

A service is embodied in a Data Provider however more than one Data Provider may satisfy the same nodes in the AIDA namespace. This is OK as long as they register for separate groups.

A Data Provider identifies which service it services by Name at the time it registers with the AIDA Directory service.

When you are sure of the scope carry out the following steps to add the Service to the AIDA directory.

· Insert the NAME and DESCRIPTION into the AIDA_SERVICES table. The ID will be created for you. Eg, INSERT INTO AIDA_SERVICES (NAME, DESCRIPTION) VALUES (‘TestHist’,’Test Server for history data’);

You have now created a new AIDA Service, however no nodes in the name space map to this service so it will never be called until you execute the next step.

3.1.1. Add a Name / Service mapping to the AIDA Name Space

In order for Instance / Attribute pairs to map to service requests a Name / Service mapping needs to be added to the AIDA Directory database.

This involves making an entry in the AIDA_NAMES table which creates the node in the namespace and then linking it to a service by making an entry in the AIDA_DIRECTORY table.

A single node may be linked to more than one service:

· As a list of services that make up a structure to be returned at this node or

· As a list of services that will be called in series like proxy servers to return the results or

· Some combination of the two

Add simple Name / Service mapping

In the simplest case simply: (See entries in example tables for ‘TEST1/VAL’)

1. Add the INSTANCE, ATTRIBUTE, TRANSFORM (see below), optional TYPE_ID (looked up in AIDA_TYPES table) and optional COUNT fields to AIDA_NAMES. The ID will be automatically generated for you.

2. Add the generated ID from the previous step as NAME_ID and the ID from the AIDA_SERVICES table, for the Service to which you want to make a link, as SERVICE_ID to the AIDA_DIRECTORY table. The ID will be auto generated for you. You do not need to set the ORDER field if there is a one to one mapping.

Now you’re done! When a provider registers with the AIDA Directory Service that corresponds to the service that you defined clients will be able to begin making requests for the new node.

The TRANSFORM field is used to hold the instructions of what Instance / Attribute pair to pass on to the Data Provider that will finally treat the request. The contents are interpreted as follows.

Null

the original Instance / Attribute pair is used

String
The Instance / Attribute pair is replaced by the given String

Regex list
A regular expression is a string of the form “/pattern/replacement /”. A Regex list and may contain more than one such regular expression separated by comma (,).

The original Instance / Attribute pair is subjected to each of the replacements in turn to produce the new Instance / Attribute pair.

Add 1 to many Name / Service mapping for structures

If you want the same transformation for the Instance / Attribute pair for each service that will treat this Name then you only have to repeat step 2 above for each service mapping you require.

If you want a different mapping you have to repeat both steps 1 and 2 giving a different TRANSFORM for each entry.

Add 1 to many Name / Service mapping for chained proxy execution

· To create execution chains simply repeat step 2 incrementing the ORDER but keeping the NAME_ID the same.

TEST4 is a complicated example of this that combines chains and structures.

3.1.2. Register an Interface in the AIDA Directory

Registering an interface is handled by API functions in the AIDA NameServer. The Data Provider simply calls the API function passing in the Name, Group and SOR.

Important: You should not do this manually.

What the NameServer does behind the scenes:

· Add the interface’s SOR to the AIDA_INTERFACES table. The ID is generated for you.

· Then, a mapping is made to the referenced service based on the Service Name and Group by adding an entry to the AIDA_SERVICE_INTERFACE table containing the SERVICE_ID from the AIDA_SERVICES table corresponding to the given service name and the INTERFACE_ID from the previous step. The optional GROUP_ID is looked up (if given) in the AIDA_GROUPS table.

3. AIDA Database Objects

4.1. Tables

AIDA_ACTIONS

Columns

ID NUMBER

The primary key that identifies a particular type of action. Default automatically generated by the AIDA_ACTIONS_TRIG

NAME VARCHAR2

The name of the action.

DESCRIPTION VARCHAR2

Full description of the action. This field is text but can contain tokens that are replaced by an application with the corresponding value from the AIDA_LOG or other table.

Valid tokens and their replacements are as follows:

	Token
	Referenced Field

	{user}
	AIDA_LOG.USER_NAME field

	{date]
	AIDA_LOG.DATE_LOGGED

	{subject}
	AIDA_LOG.SUBJECT

	{action}
	AIDA_ACTIONS.NAME (this name)

	{data}
	AIDA_LOG.DATA

Remarks

This table stores the names of the actions that can be performed on the AIDA directory for logging purposes. It contains for example entries like “Create” and “Modify” as the name field with “Created {subject} with identifier {data}” and “Modified {subject} with identifier {data}” respectively for the Description fields.

This table is to be used by an administration program to display historical operational data concerning the Directory Service. It is this program that will interpret and correctly format the descriptions for the actions associated with entries in the AIDA_LOG table.

This table is to be used as a lookup by the aforementioned administration programs, browsing the AIDA_LOG table, to get the text of the actions referenced therein.

AIDA_DIRECTORY

Contains the association for rows in the aida_names table with rows in the aida_services table to determine the data providers used to service a data request for a node in the AIDA name space.
AIDA_GROUPS

List of groups. Development, Production etc.

AIDA_INTERFACES

Contains the collection of registered AIDA Dataprovider’s AidaObject interfaces.

AIDA_LOG

Log information for all parts of the AIDA directory operation. Automatically updated using triggers.

AIDA_NAMES

AIDA namespace repository. This contains the list of Instance / Attribute pairs known to AIDA.

AIDA_SERVICE_INTERFACE

Maps service names to registered Data providers that can service requests for said service by group.

AIDA_SERVICES

Contains collection of all known AIDA services.

AIDA_TYPES

Contains list of valid AIDA types for automatic data typing. This list must match coding in DaValue Object which defined types for the AIDA system, and APIs.

4.2. Stored Procedures

AIDA_REGISTER_INTERFACE_SP

Parameters

thename IN VARCHAR2

This parameter is the name of the service for which the interface referenced by the thesor asserts that it can satisfy requests.

thesor IN VARCHAR2

This parameter is the CORBA String Object Reference of the AIDAObject interface for the data provider requesting registration.

thegroup_id IN number

This optional parameter is the group identifier of the AIDA group for which the data provider asserts that it can satisfy requests. If this parameter is null the default AIDA group is used.

Remarks

This stored procedure is used to register a new interface that can service requests concerning a particular named service for an identified group.

1. thename is looked up in the AIDA_SERVICES table.

2. If (found)

thesor and thegroup_id are added to AIDA_INTERFACES table to register the interface

the SERVICE_ID found in the AIDA_SERVICES table is added or replaced to/in the AIDA_SERVICE_INTERFACE table along with the INTERFACE_ID from the AIDA_INTERFACES table to denote the servant relationship of the interface to the named service.

This stored procedure also contains garbage collection code that will remove dead entries in the AIDA_INTERFACES table that no longer service AIDA services.

Return

None

4.3. Triggers

AIDA_ACTIONS_TRIG

AIDA_GROUPS_TRIG

AIDA_GROUPS_TRIG2

AIDA_INTERFACES_TRIG

AIDA_INTERFACES_TRIG2

AIDA_LOG_TRIG

AIDA_NAMES_TRIG

AIDA_SERVICES_TRIG

AIDA_SERVICES_TRIG2

AIDA_TYPES_TRIG

4.4. Indexes

4.5. Database Diagrams

AIDA_DB_SCHEMA

4. AIDA Database Maintenance

5.1. Copying Contents from One UserId to Another

After the database objects have been created for an new database userId, there may be a need to populate the tables with the contents of the corresponding tables of an existing userId. For example, prior to the first use of the “aidaprod” userId the contents of the “aidadev” tables were used to populate the “aidaprod” userId tables.
The following four subsections describe the steps needed to accomplish this task.
4.1.1. Disable Constrains for the Target Tables

The database constraints for the target userId tables must first be disabled. To determine all of the constraints for a table, the following Oracle database command may be issued:
SELECT
 CONSTRAINT_NAME, TABLE_NAME, STATUS
FROM

 USER_CONSTRAINTS

WHERE

 R_CONSTRAINT_NAME IN (SELECT CONSTRAINT_NAME FROM USER_CONTRAINTS WHERE TABLE_NAME = ‘table_name’);

For the aida_names, aida_types, aida_directory, aida_services, aida_service_interface, aida_groups, and aida_interfaces tables the following constraints exist:
CONTRAINT

TABLE
fk_aida_names_aida_types

aida_names
fk_aida_directory_aida_names

aida_directory
fk_aida_direct_aida_servic

aida_directory

fk_aida_servic_aida_interf

aida_service_interface
fk_aida_servic_aida_groups

aida_service_interface
fk_aida_servic_aida_servic

aida_service_interface
For each (constraint, table) pair in the table above, one needs to issue a command of the following form to disable the constraint:
ALTER TABLE
 table_name DISABLE CONTRAINT constraint_name;
4.1.2. Copy Contents of Source Tables To Target Tables

For each of the tables to tables to copy from the source userId to the target userId (e.g., aida_names, aida_types, aida_directory, aida_services, aida_service_interface, aida_groups, and aida_interfaces), first truncate the contents of the table for the target userId (BE EXTREMELY CAREFULL TO TRUNCATE TABLES UNDER THE TARGET USERID, NOT THE SOURCE USERID):
TRUCATE TABLE
 table_name;
Then for each table to be copied, issue a copy command of the following form:
COPY FROM
 source_userid/source_password@slacprod to target_userid/target_password@slacprod

INSERT

 table_name using select * from table_name;
4.1.3. Re-enable Constrains for the Target Tables

For each constraint for the target tables disabled in the first step above, re-enable the constraint for the target userId:

ALTER TABLE
 table_name ENABLE CONTRAINT constraint_name;
4.1.4. Drop and Create Sequence Numbers For the Target Userid

A database sequence is used to provide the next available id number when inserting a row in a table without specifying the id number explicitly. For each sequence (aida_actions_seq, aida_groups_seq, aida_interfaces_seq, aida_log_seq, aida_names_seq, aida_services_seq, and aidatypes_seq), it is important to set the start value of the sequence to the maximum value of the id for the corresponding table. In order to do this, each of these sequences must first be dropped and then created again specifying the start value. These actions are performed under the target userId.
First, for each sequence’s corresponding table, find the maximum id value:

SELECT
 max(id) from table_name;
Then determine the start value by adding one to the maximum id value. Finally, drop and create the sequence again specifying the start value:
DROP SEQUENCE
 sequence_name;

CREATE SEQUENCE

 sequence_name start with start_value;

AIDA Data Provider

Server

Devices

 Client

DA

AIDA Data Provider

AIDA (Da API)

DS

Server

Devices

 Client

E.g.: INSERT INTO AIDA_NAMES (INSTANCE, ATTRIBUTE, TRANSFORM) VALUES (‘TEST’,’VAL.HIST’,NULL);

E.g.: INSERT INTO AIDA_DIRECTORY (NAME_ID, SERVICE_ID) VALUES (1403601, 41);

2
1

