Linux PCIL/FECC Driver User’s Guide

March 7, 2006
Revised RCS 14-Mar-2006

Added Eric’s info. DFECPU -> GFECPU.
Revised 7-Apr-2006

Add section on file descriptors, processes & threads.

Update appmsg example and parameter passed to read.

1.0 Introduction

The PCIL2/FECC3 driver for Linux provides the interface for application programs to the I/O functions provided by the hardware/software. The PCIL2 is a 64 bit PCI interface with which the driver interacts. It communicates with a FECC3 via a fiber-optic interface.

2.0 Functional Overview.

In the standard Linux/Unix manner, all interactions with the driver take place via psuedo file operations. All of these operations are synchronous i.e. the application doesn't get control back until the operation is complete. While the general Linux interface provides additional functions to those listed below such as llseek, fsync etc., there is no driver code behind them and they will just return success if executed. The following are the operations implemented by the driver:

· open. Any device operation must be preceded by an open which returns a device handle used in all subsequent operations.

· read. Reads data from the device.

· write. Writes data to the device.

· ioctl. Provide special device control functions.

· close. The driver doesn't do anything here but it's necessary for Linux to release resources allocated on the open.

A few functions require a structure and some parameters to be shared between the driver and the application code. These parameters and structures are found in the include file "pcil_usr.h".
2.1 File Descriptors, Processes & Threads.
Linux/Unix and the driver internal mechanisms are process oriented. That is, for a given file descriptor, multiple processes can have outstanding I/O and each will complete correctly. However the soft-IOC under EPICS runs as multiple threads in a single process. Though I have not yet performed the tests (update this doc when I do!) I think that having multiple threads with outstanding I/O on a single file descriptor will not function correctly. For now, the minimum requirement is that each thread must have its own file descriptor for a given function.

3.0 A Note on Errors

At the present time only Linux standard error codes are returned to the user and there is no routine to translate them into VMS style error messages. More detailed information is entered into the kernel error log that can be viewed with the DMESG command. The driver cannot do error sends directly so some mechanism may need to be developed to enable this.

4.0 Startup

Sometime after Linux boots and before the Virtual IOC is started the driver must be loaded. Right now it's loaded by hand from my directory but later it should reside in an official place and be started automatically after the system boots. The command used is:

#Can only be executed in root

insmod ./pcil.o

When the driver is loaded, its initialization function is called. This function first finds and enables the PCI device, checks that it's a PCIL2, maps its registers, gets the interrupt level and sets up the ISR, saves the hardware & software version numbers and registers the device to the system. If any step fails a flag is set indicating that the device failed to load and ENODEV "no device" is returned to the system. The DMESG command can be used to inspect the kernel error log for specific failure information.

The initialization executed on driver load is insufficient for full PCIL2/FECC3 functionality. An explicit ioctl function IOCTL_PCIL_INIT must be executed, probably in micromain, before any application can actually use the device. This function completes a second stage initialization and allows for the optional loading of the PCIL2 and FECC3 code memories. See details in the description of the ioctl functions below.

4.1 Physical Memory Page Locking
For DMA operations the PCIL must have all pages locked in physical memory. For maximum performance and to avoid the driver overhead of locking the pages of each transfer into memory we assume that before driver DMA functions are used the application has locked all of the process pages in memory. Because the virtual IOC operates with many threads under a single process we can use the mlockall system service to effect this.

#include <sys/mman.h> /* mlockall, munlockall */

 int lockflags = MCL_CURRENT | MCL_FUTURE; /* Lock all for this process */

 /*------------------- code ----------------*/

 if ((stat = mlockall (lockflags)) < 0) goto egress;

This locks all current and future pages for this process into memory. Unfortunately it requires root privileges which means that the IOC must be started from root. Perhaps we can find a way to execute this one service as superuser without having to run the entire virtual IOC from root.

5.0 Open

The Linux driver architecture provides major and minor device codes. There is a single major code for the PCIL2 that is defined in the driver. Each minor code is associated with a different device file and each file is associated with a single driver function. Thus in order for the application to perform a specific function, it must open the device file for that function. This was done because the read and write functions only provide arguments for a file handle (from the open) data buffer and size plus a file position which we don't use. The minor code feature allows the driver to discriminate all of the different read and write operations and minimize the use of shared structures necessary to explicitly pass in the desired function. The driver ioctl functions don't check the minor code and can thus be performed on any opened PCIL file. Time for specifics.

Here's the enum list of the PCIL2 device files, the minor code, (you don't need to know this) the operation that they perform and whether they are a read, write or read/write function:

 /*

 ** Runtime functions

 */

 MBCDLO = 1, /* PCILnMBCDLO Write low priority MBCD message */

 MBCDHI = 2, /* PCILnMBCDHI Write hi priority MBCD message */

 BBUSLO = 3, /* PCILnBBUSLO Write low priority BITbus message */

 BBUSHI = 4, /* PCILnBBUSHI Write hi priority BITbus message */

 BBUSRD = 5, /* PCILnBBUSRD Read BITbus message as hi priority */

 AMFELO = 6, /* PCILnA2FELO Write/Read low priority application msg to/from FECC */

 AMFEHI = 7, /* PCILnA2FEHI Write/Read high priority application msg to/from FECC */

 SNDPAT = 8, /* PCILnSNDPAT Write (Send) pattern */

 /*

 ** Diagnostic functions

 */

 GFGCNT = 9, /* PCILnGETCNT Read (get) fine granularity timer count from PCIL */

 LDFECR = 10, /* PCILnLDFECR Write (load) FECC command register */

 LDLLIR = 11, /* PCILnLDLLIR Write (load) local link initialization register */

 LDRLIR = 12, /* PCILnLDRLIR Write (load) remote link initialization register */

 DPCMEM = 13, /* PCILnDPCMEM Read (dump) PCIL memory */

 GPCVER = 14, /* PCILnGPCVER Read (get) PCIL hardware/software version */

 GPCCPU = 15, /* PCILnGPCCPU Read (get) PCIL CPU use statistics */

 GPCLMC = 16, /* PCILnGPCLMC Read (get) PCIL2 link maintenance counters */

 DFEMEM = 17, /* PCILnDFEMEM Read (dump) FECC memory */

 LFEMEM = 18, /* PCILnLFEMEM Write (load) FECC memory */

 GFEVER = 19, /* PCILnGFEVER Read (get) FECC hardware/software version */

 GFECPU = 20, /* PCILnGFECPU Read (get) FECC CPU use statistics */

 GFELMC = 21, /* PCILnGFELMC Read (get) FECC3 link maintenance counters */

 LFECCM = 22, /* PCILnLFECMP Write (load) FECC CAMAC crate map */

 LFECSR = 23, /* PCILnLFECSR Write (load) FECC3 CAMAC standard register */

Each of these has a corresponding file whose name is preceded by pcilN where N is the number of the PCIL interface on this PC. Note that at this time the driver only supports a single PCIL device on a given PC so all files have the form pcil0xxxxxx. There is a plain pcilN file for ioctl functions though the ioctl functions can be performed on any open device. As previously indicated, the driver doesn't check the minor code for these. The files are all in the /dev directory and here's what an open looks like:

#include <fcntl.h> /* O_RDWR */
#include <errno.h>

extern int errno;

 int dhmbcdlo; /* Device handle */

 int flags = O_RDWR; /* Open for read and write */

 /*------------------- code ----------------*/

 if ((dhmbcdlo = open ("/dev/pcil0mbcdlo", flags)) < 0) goto egress;

 write mbcd packages...

 close (dhmbcdlo);

 exit;

egress:

 printf ("Error on open errno = %d\n",errno);

The device handle returned is a simple int. By convention, if the value of the handle returned is < 0 an error occurred and the code is stored in the errno variable. The flags argument can always be O_RDWR which specifies that the device is opened for read and write. Also note that the file names are all lowercase. We can make them anything we want but I just chose lower case for consistency. For the open function, the driver just checks that the PCIL has been successfully found and completely initialized. The only error code returned by the driver is ENODEV "no device". This could result from any one of the following:

· The driver was not loaded.

· When the driver was loaded the PCIL2 device could not be found.

· The PCIL2 returned a bad self-test status.

· the ioctl function IOCTL_PCIL_INIT was not executed or failed to complete successfully.

If you're curious, here are the commands used to create the files. Note that this only needs to be done once as they survive a reboot like any ordinary file. "c" means character device, 253 is the major device code and the second digit is the minor code. All files are created read/write.

#

Make a device file with minor code for each function

#

mknod -m="rw" /dev/pcil0 c 253 0

mknod -m="rw" /dev/pcil0mbcdlo c 253 1

mknod -m="rw" /dev/pcil0mbcdhi c 253 2

mknod -m="rw" /dev/pcil0bbuslo c 253 3

mknod -m="rw" /dev/pcil0bbushi c 253 4

mknod -m="rw" /dev/pcil0bbusrd c 253 5

mknod -m="rw" /dev/pcil0amfelo c 253 6

mknod -m="rw" /dev/pcil0amfehi c 253 7

mknod -m="rw" /dev/pcil0sndpat c 253 8

mknod -m="rw" /dev/pcil0gfgcnt c 253 9

mknod -m="rw" /dev/pcil0ldfecr c 253 10

mknod -m="rw" /dev/pcil0ldllir c 253 11

mknod -m="rw" /dev/pcil0ldrlir c 253 12

mknod -m="rw" /dev/pcil0dpcmem c 253 13

mknod -m="rw" /dev/pcil0gpcver c 253 14

mknod -m="rw" /dev/pcil0gpccpu c 253 15

mknod -m="rw" /dev/pcil0gpclmc c 253 16

mknod -m="rw" /dev/pcil0dfemem c 253 17

mknod -m="rw" /dev/pcil0lfemem c 253 18

mknod -m="rw" /dev/pcil0gfever c 253 19

mknod -m="rw" /dev/pcil0gfecpu c 253 20

mknod -m="rw" /dev/pcil0gfelmc c 253 21

mknod -m="rw" /dev/pcil0lfeccm c 253 22

mknod -m="rw" /dev/pcil0lfecsr c 253 23

6.0 ioctl

ioctl provides a mechanism for a grab-bag of miscellaneous driver functions to manipulate the device in a way not explicitly provided by read/write. The device must of course first be opened. As indicated previously, "/dev/pcil0" is available for ioctl functions though since it doesn't check any minor code, any of the pcilNxxxxxx devices can be used if that's more convenient for the application. All ioctl functions take 3 arguments:

1) A device handle returned by open.

2) A function code.

3) A pointer to a user-defined structure.

As stated before, our function codes and driver/user interface structures are defined in "pcil_usr.h" which is included in both the driver and application code that needs it.

Here are the functions:
6.1 IOCTL_PCIL_INIT

This function must be executed after the driver is loaded and before any application starts to use the PCIL2/FECC3 functions. It completes the second stage of initialization and allows optional loading of the PCIL2 and FECC3 memories. A pointer to the shared structure ioctl_pcil_init_ts defined in "pcil_usr.h" allows for conditional loading of the memories. The code looks like:

 int dh0:

 int flags = O_RDWR;

 /*------------------- code ----------------*/

 if ((dh0 = open ("/dev/pcil0", flags)) < 0) goto egress;

 if ((stat = ioctl(dh0, IOCTL_PCIL_INIT, NULL)) < 0) goto egress;

 ...

I have not yet tested the optional loading of PCIL & FECC memories so the argument pointer is NULL. Eric has routines to read the files and put them in local buffers suitable for downloading.

Using this function is still necessary for full PCIL2/FECC3 functioning even without the optional loading of new code.

6.2 IOCTL_PCIL_GETADDR/IOCTL_PCIL_RELADDR

This is a pair of functions to handle the user virtual to physical/psuedo-virtual address translation for Camac operations. For all other DMA operations the driver does the translation internally. For Camac operations (pcil0mbcdlo & pcil0mbcdhi) the driver assumes that all package and status/data addresses have been properly translated and feeds them directly to the PCIL for execution. The shared structure pcil_addr_ts in "pcil_usr.h" is passed as the argument to these functions. Here's a simple but fairly complete example that performs a Camac operation. I didn't compile all of this so there may be typos!

 /*

 ** From "pcil_usr.h" Struct for GETADDR/RELADDR

 */

 typedef struct

 {

 void *virtaddr_p; /* Virtual address to map */

 int len; /* Bytes to map */

 int4u physaddr; /* physical addr; returned by get, used by rel */

 int mapn; /* Returned # registers for GETADDR; Passed to RELADDR */

 }pcil_addr_ts;

 /*

 ** My own camac packet struct

 */

 typedef struct

 {

 int4u cctlw;

 void *stad_p; /* Stat/data pointer */

 int2u wcmax; /* Max wordcount */

 int2u cic; /* MBZ */

 } mbcd_pkt_ts;

 pcil_addr_ts addrstadp_s; /* physical addr for status/data pointer */

 pcil_addr_ts addrpkt_s; /* physical addr for packet */

 int4u outdata[2] = {0, 0x0012ABCD}; /* Stat/Data to write */

 mbcd_pkt_ts oneword_s =

 {0x84141080, &outdata, 1,0}; /* Packet to write */

 int dhmbcdlo; /* Open the mbcdlo device */

 int dh0; /* Open generic pcil device */

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 /* Note we could use just the dhmbcdlo handle for all operations */

 if ((dh0 = open ("/dev/pcil0", flags)) < 0) goto egress;

 if ((dhmbcdlo = open ("/dev/pcil0mbcdlo", flags)) < 0) goto egress;

 /* Fill in status/data physical address & length */

 addrstadp_s.virtaddr_p = &outdata;

 addrstadp_s.len = sizeof(outdata);

 if ((stat = ioctl (dh0, IOCTL_PCIL_GETADDR, &addrstadp_s)) < 0) goto egress;

 oneword_s.stad_p = (void *)addrstadp_s.physaddr; /* To status/data pointer */

 /* Packet physical address */

 addrpkt_s.virtaddr_p = &oneword_s;

 addrpkt_s.len = sizeof(oneword_s);

 if ((stat = ioctl (dh0, IOCTL_PCIL_GETADDR, &addrpkt_s)) < 0) goto egress;

 /* Write the packet */

 if ((stat = write (dhmbcdlo, &addrpkt_s.physaddr, addrpkt_s.len)) < 0) goto egress;

 /* Release the virtual->physical mapping */

 if ((stat = ioctl (dh0, IOCTL_PCIL_RELADDR, &addrstadp_s)) < 0) goto egress;

 if ((stat = ioctl (dh0, IOCTL_PCIL_RELADDR, &addrpkt_s)) < 0) goto egress;

When getting a physical address, the application must provide the user virtual address and length of the data in the pcil_addr_ts structure. If successful the IOCTL_PCIL_GETADDR function returns physaddr and mapn. The returned

physaddr may be a real physical address or a psuedo-virtual address that the PCIL can interpret. If the address returned is a real physical address then mapn = 0; If it's a psuedo-virtual address then mapn is the number of psuedo mapping registers allocated. Regardless, the application uses physaddr for the status/data pointer or as the package pointer. If the address is ever to be released then this entire structure is passed back to the IOCTL_PCIL_RELADDR function as it was received from IOCTL_PCIL_GETADDR.

In principle, if the address returned is physical then no ioctl call using IOCTL_PCIL_RELADDR is necessary since there are no map register to release. If it is psuedo-virtual then this structure must be passed back to the ioctl IOCTL_PCIL_RELADDR function to release the registers. The application can blindly save the structure and always use the IOCTL_PCIL_RELADDR function which will be a NOP if the returned address is physical. If the address is not physical, IOCTL_PCIL_RELADDR uses virtaddr_p and mapn to release the mapping registers.

6.6 IOCTL_PCIL_NEWFECCMBX

When sending application messages to the FECC (amfelo, amfelhi), 0 or more messages may be returned to the PC depending on the message. The PC needs a way to wait on an arbitrary number of messages that may be returned by the FECC in response to a particular application message. Since the driver cannot directly access user semaphores or messages, this function provides a way to return a pointer to a kernel synchronization entity (mailbox-like) to the application code for association with a given application message.

There are two 32 bit words in the application message sent to the FECC that go out with the message and simply returned by the FECC with the data for that particular message. The interrupt tasklet (think RMX interrupt task) scheduled by the ISR then uses one of these 32 bit words to notify the waiting driver that a message has arrived. First verbally and then in code the sequence of events.

If the application expects one or more responses back from a particular message it sends to the FECC, then it must first use IOCTL_PCIL_NEWFECCMBX to acquire the pointer to a kernel synchronization entity. We call it a mailbox for continuity with the earlier RMX code. This pointer is a kernel logical address and is unusable by application code so it should just be considered some 32 bit handle returned by the function. This handle is then inserted into the outgoing message structure appmsgbuf_ps->rpyparms.host_mbxdesc. The application posts a read with this handle

in the read buffer to identify this particular request. Note that the data are transferred via DMA so the read buffer in this case is just read by the driver to get the kernel pointer and wait on it.
The read of application message data needs to provide both a timeout value and the mailbox pointer returned by the IOCTL_PCIL_NEWFECCMBX function. Several other functions also require an additional parameter in addition to just a buffer pointer. To support this pcil_usr.h contains a structure parm_buf_len_ts that allows the caller to specify a parameter as well as a buffer and a length. The read of an appmsg uses that structure to pass a timeout in addition to the mailbox pointer.

Here's some sample test code if one or more replies are expected:

 /*

 ** Several read and write functions require a parameter in addition to a buffer

 ** and data length. For those we use the following structure.

 */

 typedef struct

 {

 int4u parm; /* User parameter */

 void *buf_p; /* Pointer to users buffer */

 int4u len; /* buffer length in bytes */

 }parm_buf_len_ts;

 int dh0amfelo, dh0amfehi; /* Handles for function */

 int stat;

 /*

 ** appmsg to/from fecc

 */

#define WORDCOUNT0 2000

 typedef struct

 {

 tofecc_appmsg_hdr_ts header;

 int4u data[WORDCOUNT0];

 } send_message_ts;

 typedef struct

 {

 fromfecc_appmsg_hdr_ts header;

 int4u data[WORDCOUNT0];

 } read_message_ts;

 send_message_ts *send_message_ps = NULL;

 read_message_ts *read_message_ps = NULL;

 int mbx = 0; /* "Mailbox associated with this readback */

 parm_buf_len_ts pbl_s = {1000, NULL, sizeof(mbx)}; /* Timeout, mbxptr passed to read */

 pcil_addr_ts reply_addr_s; /* For physical address of reply buffer */

 int index; /* Olde loop index */

 /*------------------- code ----------------*/

 printf ("\nTest appmsg.\n");

 if ((stat = dh0amfelo = open ("/dev/pcil0amfelo", flags, 0)) < 0) goto egress;

 if ((stat = dh0amfehi = open ("/dev/pcil0amfehi", flags, 0)) < 0) goto egress;

 send_message_ps = calloc (1, sizeof(send_message_ts));

 read_message_ps = calloc (1, sizeof(read_message_ts));

 /*

 ** Get reply "mailbox" and physical address of reply buffer.

 */

 if ((stat = ioctl (dh0amfelo, IOCTL_PCIL_NEWFECCMBX, &mbx)) < 0) goto egress;

 reply_addr_s.virtaddr_p = read_message_ps;

 reply_addr_s.len = sizeof(read_message_ts);

 if ((stat = ioctl (dh0amfehi, IOCTL_PCIL_GETADDR, &reply_addr_s)) < 0) goto egress;

 /*

 ** Put physical address of reply and synchronization "mailbox" in send message.

 */

 send_message_ps->header.rpyparms.host_memaddr = reply_addr_s.physaddr;

 send_message_ps->header.rpyparms.host_mbxdesc = mbx;

 send_message_ps->header.feccfunc = 0; /* Echo the send message? */

 send_message_ps->header.reqmsg_lwc = sizeof(send_message_ts);

 read_message_ps->header.rpymsg_lwc = 0xdeadbeef; /* Garbage. Should come back good */

 for (index = 0; index < WORDCOUNT0; index++)

 {

 send_message_ps->data[index] = index;

 read_message_ps->data[index] = 0;

 }

 /*

 ** Send the message, wait for the reply and see that the returned data is the

 ** same as that sent.

 */

 if ((stat = write(dh0amfelo, send_message_ps, sizeof(send_message_ts))) < 0) goto egress;

 pbl_s.buf_p = (void *)mbx; /* Insert mbx pointer */

 if ((stat = read (dh0amfelo, &pbl_s, sizeof(pbl_s))) < 0) goto egress;

 if (read_message_ps->header.rpymsg_lwc != (sizeof(read_message_ts)/sizeof(int4u)))

 printf ("Low priority header length response = %x \n", read_message_ps->header.rpymsg_lwc);
 for (index = 0; index < WORDCOUNT0; index++)

 {

 if (read_message_ps->data[index] != send_message_ps->data[index])

 printf ("low priority read data[%x] = %x while write data = %x.\n",

 index, read_message_ps->data[index], send_message_ps->data[index]);

 }

 /*

 ** Clear the read data and do the same on the high priority device.

 */

 for (index = 0; index < WORDCOUNT0; index++)

 read_message_ps->data[index] = 0;

 read_message_ps->header.rpymsg_lwc = 0xdeadbeef; /* Garbage. Should come back good */

 if ((stat = write(dh0amfehi, send_message_ps, sizeof(send_message_ts))) < 0) goto egress;

 if ((stat = read (dh0amfehi, &pbl_s, sizeof(pbl_s))) < 0) goto egress;

 if (read_message_ps->header.rpymsg_lwc != (sizeof(read_message_ts)/sizeof(int4u)))

 printf ("High priority header length response = %x \n",

 read_message_ps->header.rpymsg_lwc);

 for (index = 0; index < WORDCOUNT0; index++)

 {

 if (read_message_ps->data[index] != send_message_ps->data[index])

 printf ("high priority read data[%x] = %x while write data = %x.\n",

 index, read_message_ps->data[index], send_message_ps->data[index]);

 }

 free (send_message_ps);

 free (read_message_ps);

 close (dh0amfelo);

 close (dh0amfehi);

egress:

 printf ("A bad thing happened in test_appmsg.\n");

 printf ("Errno = %d\n", errno);

 free (send_message_ps);

 free (read_message_ps);

 close (dh0amfelo);

 close (dh0amfehi);

 return stat;

}
The driver can determine if > 1 message has arrived since the last read was posted. In this case it will return error EXFULL (exchange full).
Of course if no reply is expected then it's unnecessary to fill in the rpyparms values and no read is necessary. In this case memaddr and friends should be set to NULL or 0 so the driver can issue an error if an unexpected message returns instead of crashing the system.

7.0 Write Functions

7.1 MBCDLO and MBCDHI Write MBCD Message

Examples were given in previous sections. These are DMA functions and the package address and all status/data pointers in each packet are assumed to be in physical address form and are passed directly to the PCIL for execution.

7.2 BBUSLO and BBUSHI Write Bitbus Message

This function also requires a parameter in addition to a write buffer pointer and length. For this purpose a pointer to a structure of type parm_buf_len_ts as defined in "pcil_usr.h" is passed to this write function. In this case the parameter is the master number to write.

 /*

 ** Several read and write functions require a parameter in addition to a buffer ** and data length. For those we use the following structure.

 */

 typedef struct

 {

 int4u parm; /* User parameter */

 void *buf_p; /* Pointer to users buffer */

 int4u len; /* buffer length in bytes */

 }parm_buf_len_ts;

#define MASTER 1

 int dhbbuslo; /* Device handle */

 int outbuf[3] = {1,2,3}; /* Some bitbus data */

 parm_buf_len_ts pbl_s = {MASTER, &outbuf, ,sizeof(outbuf)};

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhbbuslo = open ("/dev/pcil0bbuslo", flags)) < 0) goto egress;

 if ((stat = write (dhbbuslo, &pbl_s, sizeof(pbl_s))) < 0) goto egress;

Unike the mbcd functions, this is not a DMA operation so the driver performs a copy from the

user virtual address into the message buffer sent to the PCIL.

7.3 AMFELO and AMFEHI Write/Read Application Message

These are write and read functions that do DMA operations but the driver calls the internal GETADDR and RELADDR functions to fill in the physical address for the write transfer. However the application must use the ioctl IOCTL_PCIL_GETADDR function to fill in the reply physical address into rpyparms.host_memaddr before sending the appmsg.

A detailed code example was given in the IOCTL_PCIL_NEWFECCMBX section above.

7.4 SNDPAT Write Pattern

The user pattern data is copied directly into the PCIL memory and a doorbell register written to for transfer to the FECC. Nothing else is required of the application other than the initial open of device "/dev/pcil0sndpat" and then writes of the pattern data.

 int dhsndpat; /* Device handle */

 int4u outbuf[16]; /* Pattern to send */

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhsndpat = open ("/dev/pcil0sndpat", flags)) < 0) goto egress;

 if ((stat = write (dhsndpat, &outbuf, sizeof(outbuf))) < 0) goto egress;

7.5 LDFECR Write (Load) FECC Command Register

This loads the FECC int4u command register. No special operations are required by the application.

 int dhldfecr; /* Device handle */

 int4u outbuf; /* Command */

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhldfecr = open ("/dev/pcil0ldfecr", flags)) < 0) goto egress;

 if ((stat = write (dhldfecr, &outbuf, sizeof(outbuf))) < 0) goto egress;

 close (dhldfecr);

7.6 LDLLIR Write Local Link Init Register

This loads the int4u local link initialization register. No special operations are required by the application.

7.7 LDRLIR Write Remote Link Init Register

This loads int4u remote link initialization register. No special operations are required by the application.

 int dhldrlir; /* Device handle */

 int4u outbuf; /* Link register */

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhldrlir = open ("/dev/pcil0ldrlir", flags)) < 0) goto egress;

 if ((stat = write (dhldrlir, &outbuf, sizeof(outbuf))) < 0) goto egress;

 close (dhldrlir);

7.8 LFEMEM Write (Load) FECC Memory

This operation does a DMA transfer and also requires an extra parameter which is the FECC address where to load the data. This function uses the parm_buf_len_ts struct defined in "pcil_usr.h" to pass the parameter, data pointer and data length to the write function. The driver internally does the physical memory translation. Here's a code snippet example:

#define FECCADDR 0x1234

 int dhlfemem; /* Device handle */

 int outbuf[3] = {1,2,3}; /* Some FECC memory data */

 parm_buf_len_ts pbl_s = {FECCADDR, &outbuf, sizeof(outbuf)};

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhlfemem = open ("/dev/pcil0lfemem", flags)) < 0) goto egress;

 if ((stat = write (dhlfemem, &pbl_s, sizeof(pbl_s))) < 0) goto egress;

 close (dhlfemem);

7.9 LFECCM Write FECC Camac Crate Map

This function loads the crate map. Only a pointer to the map and length are required for the write. The driver handles the rest.

 int dhlfeccm; /* Device handle */

 int4u outbuf[3]; /* Crate map */

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhlfeccm = open ("/dev/pcil0lfeccm", flags)) < 0) goto egress;

 if ((stat = write (dhlfeccm, &outbuf, sizeof(outbuf))) < 0) goto egress;

 close (dhlfeccm);

7.10 LFECSR Write FECC3 Camac Standard Register

This loads int4u Camac standard register. No special operations are

required by the application.

 int dhlfecsr; /* Device handle */

 int4u outbuf; /* Camac register */

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhlfecsr = open ("/dev/pcil0lfecsr", flags)) < 0) goto egress;

 if ((stat = write (dhlfecsr, &outbuf, sizeof(outbuf))) < 0) goto egress;

 close (dhlfecsr);

8.0 Read Functions

8.1 BBUSRD Bitbus Read

This function reads from the specified Bitbus master. Because it requires an extra parameter, the master number, the parm_buf_len_ts struct is used for this function.

#define MASTER 0x1

 int dhbbusrd;

 int inbuf[3]; /* Where to read Bitbus data */

 parm_buf_len_ts pbl_s = {MASTER, &inbuf, sizeof(inbuf)};

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhbbusrd = open ("/dev/pcil0bbusrd", flags)) < 0) goto egress;

 if ((stat = read (dhbbusrd, &pbl_s, sizeof(pbl_s))) < 0) goto egress;

8.2 AMFELO and AMFEHI

See write section for details as these functions are both read and write.

8.3 GFGCNT Read Fine Granularity Count

This function reads the current contents of the 32 bit counter clocked by PCI bus clock into

a user's int4u buffer. No special operations are required by the application.

 int dhgfgcnt;

 int2u inbuf; /* Where to read granularity count */

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhgfgcnt = open ("/dev/pcil0gfgcnt", flags)) < 0) goto egress;

 if ((stat = read (dhgfgcnt, &inbuf, sizeof(inbuf))) < 0) goto egress;

 close (dhgfgcnt);

8.4 DPCMEM Read (Dump) PCIL Memory

This function reads (dumps) the PCIL memory at the specified starting address. Because it requires an extra parameter, the PCIL memory address, the parm_buf_len_ts struct is used for this function.
The following is a description of this memory from Eric.

For the PCIL2, there is a block of SHARC on-chip data memory that starts at 0x00030000 and extends for 64k 32-bit words (i.e. 256 kilobytes). Because of the way that the code works, it is possible (though I'm not entirely sure) that you can hang the processor if you try to dump the last 32-bit word in that memory. As far as I can see, only the first 0x1188 bytes of this region are actually used by the current code. The remainder comes up in random states at power-on. If you ever get to download code into the PCIL2, the download program runs a memory diagnostic on the entire 256 kilobytes and then zeroes it all before downloading the code (which includes the initialization of some, if not all of those 0x1188 bytes).

#define PCILADDR 0x30000
 int dhdpcmem;

 int inbuf[3]; /* Where to dump PCIL memory */

 parm_buf_len_ts pbl_s = {PCILADDR, &inbuf, sizeof(inbuf)};

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhdpcmem = open ("/dev/pcil0dpcmem", flags)) < 0) goto egress;

 if ((stat = read (dhdpcmem, &pbl_s, sizeof(pbl_s))) < 0) goto egress;

 close (dhdpcmem);

8.5 GPCVER Read (Dump) PCIL Hardware/Software Version

Reads the int4u version into the user specified buffer. This is a DMA operation but the driver handles the physical address translation so no special operations are required by the application.

 int dhgpcver;

 int2u inbuf; /* Where to dump version */

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhgpcver = open ("/dev/pcil0gpcver", flags)) < 0) goto egress;

 if ((stat = read (dhgpcver, &inbuf, sizeof(inbuf))) < 0) goto egress;

 close (dhgpcver);

8.6 GPCCPU Read (Get) PCIL CPU Statistics

This function reads (dumps) the PCIL CPU usage statistics. Because it requires an extra parameter, the PCIL monitor mode the parm_buf_len_ts struct is used for this function. The following is a description from Eric.
The CPU performance functions PCIL and FECC CPU statistics) return a structure consisting of the following:

typedef struct

{

 int4u time;

 int4u ticks[32];

 int4u dummy;

} cpustats_ts;

where the dummy word at the end is intended to keep the length an integral number of 64-bit words.

The time is measured in half seconds(!), and the ticks are accumulated for all tasks whose priority falls in each slice of ranges at the rate of 100 Hz. All tasks have a 9-bit priority. At each tick of the 100 Hz clock, the priority of the currently running task is located, and one element of the "ticks" array is incremented. The selection of which element to increment is made by the 5 MSB of the priority of the currently running task (with the 4 LSB of the priority ignored).

The "mode" argument to the function which reads the CPU statistics specifies additional processing:

1) If the mode is positive (and non-zero), the target system will reset its time and ticks counters at the next 100 Hz tick.

2) If the mode is negative (usually 0x80000000, but the values of all bits except the MSB are ignored) then no additional action is taken.

3) If the mode is zero, the target system will disable updating the time and ticks counters.

#define PCILMODE 1

 int dhgpccpu;

 int inbuf[3]; /* Where to dump PCIL CPU stats */

 parm_buf_len_ts pbl_s = {PCILMODE, &inbuf, sizeof(inbuf)};

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhgpccpu = open ("/dev/pcil0gpccpu", flags)) < 0) goto egress;

 if ((stat = read (dhgpccpu, &pbl_s, sizeof(pbl_s))) < 0) goto egress;

 close (dhgpccpu);

8.7 GPCLMC Read (Get) PCIL2 Link Maintenance Counters

This is a DMA operation but the driver handles the physical address translation so no special operations are required by the application. The following is again from Eric’s description.
There are 8 16-bit counters at each end of the link. However, each side sends the current contents of its 8 counters across the link to the other side in the header of each cell, i.e. once per 4.864 microseconds. Thus, each side has access to the contents of all 16 counters (with reasonable latency). When you read the maintenance counters on either side of the link, you receive first the 8 "local" counters and then the 8 "remote" counters. You can perform the read at either end of the link, by reading either the "PCIL2" or "FECC3" maintenance counters. Each side's local counters are the other sides remote counters (marginal time delays). The 8 counters are:

1) Next outgoing transmit cell sequence number.

2) Next expected incoming receive cell sequence number.

3) Number of transmit sequence number errors.

4) Number of receive sequence number errors.

5) Number of transmit acknowledgement timeout errors.

6) Number of 8B/10B decoder errors.

7) Number of correctable Reed-Solomon ECC errors.

8) Number of Reed-Solomon error correction failures.

The receive sequence number errors are generated when an incoming cell does not have the expected cell sequence number. This shouldn't happen unless a cell was corrupted.

The transmit sequence number errors are generated when the value of "next expected incoming receive cell sequence number" increments by more than one in successive incoming cells. This takes some explaining. If a transmitter includes a value "N" in the "next expected incoming receive CSN" field of an outgoing cell, this means that it has acknowledged receipt of all cells up to "N-1," and thus the other end of the link can release the stored context necessary to time out and subsequently retransmit all of its outgoing cells through N-1. You would naively expect this value to increment by one in each successive outgoing cell. However, at any given time the clock at one end of the link is running a little faster than the one at the opposite end. It is just barely possible that the logic at the end with the slower clock can process the headers of two incoming cells during the interval between its transmission of two successive outgoing cells. Thus this field can sometimes increment by two between successive outgoing cells, even in the absence of corruption of cell contents. (Of course, the opposite is true - the end with the faster clock can process no incoming cell headers between transmission of two successive outgoing cells.) At the receiving end, when this field does not increment at all between successive incoming cells, no action is taken. However, when the field increments by more than one, all of the intervening cells are acknowledged and this error counter increments by the number of cells acknowledged minus the expected one. The real intent of the circuitry was to avoid having to retransmit a dropped cell solely because its reverse direction acknowledgment didn't make it across the link. The acknowledgment is implicitly carried by the next cell, which would then normally acknowledge the cell whose acknowledgment was dropped. The interesting thing is that the clock frequencies "breathe." In general, although one side or the other has an average clock frequency that is greater than that on the other side, there is enough frequency variation that you can't predict which clock will be faster in any given cell length. In other words, there are always transmit sequence number errors detected at both ends of the link, but one side or the other will record more such errors (typically by a factor of 2-3).

 int dhgpclmc;

 int2u inbuf[16]; /* Where to dump PCIL2 maintenance counters */

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhgpclmc = open ("/dev/pcil0gpclmc", flags)) < 0) goto egress;

 if ((stat = read (dhgpclmc, &inbuf, sizeof(inbuf))) < 0) goto egress;

 close (dhgpclmc);

8.8 DFEMEM Read (Dump) FECC Memory
This function reads (dumps) the FECC memory. Because it requires an extra parameter, the FECC memory address to dump, the parm_buf_len_ts struct is used for this function. From Eric we have the following.
For the FECC3, there is a bunch of on-chip data memory that starts at address 0. However, the "peek" function for the FECC3 is limited to the maximum length of the payload portion of one message on the fiber optic link. This is 0x21a0 bytes. For practical purposes I usually limit this to 8 kilobytes.

When you dump PCIL2 memory, the PCIL2 code actually buffers the dump data through the payload portion of the message buffer that it received the "dump" command in. So that probably has about the same 0x21a0 limit on byte count. However, if the size of the requested dump is longer than that, it just keeps on copying and dumping another 0x21a0 until it finishes with the request data volume.

#define FECCADDR 0
 int dhdfemem;

 int inbuf[1000]; /* Where to dump FECc memory */

 parm_buf_len_ts pbl_s = {FECCADDR, &inbuf, sizeof(inbuf)};

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhdfemem = open ("/dev/pcil0dfemem", flags)) < 0) goto egress;

 if ((stat = read (dhdfemem, &pbl_s, sizeof(pbl_s))) < 0) goto egress;

 close (dhdfemem);

8.9 GFEVER Read (Get) FECC Hardware/Software Version

Reads the int4u version into the user specified buffer. This is a DMA operation but the driver handles the physical address translation so no special operations are required by the application.

 int dhgfever;

 int inbuf; /* Where to dump FECC versions */

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhgpclmc = open ("/dev/pcil0gfever", flags)) < 0) goto egress;

 if ((stat = read (dhgfever, &inbuf, sizeof(inbuf))) < 0) goto egress;

 close (dhgfever);

8.10 GFECPU Read (Get) FECC CPU use statistics

This function reads (dumps) the FECC CPU usage statistics. Because it requires an extra parameter, the FECC monitor mode (see Read (Get) PCIL CPU Statistics for a definition of these modes), the parm_buf_len_ts struct is used for this function.

#define FECCMODE 1

 int dhgfecpu;

 int inbuf[3]; /* Where to dump FECC CPU stats */

 parm_buf_len_ts pbl_s = {FECCMODE, &inbuf, sizeof(inbuf)};

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhgfecpu = open ("/dev/pcil0gfecpu", flags)) < 0) goto egress;

 if ((stat = read (dhgfecpu, &inbuf, sizeof(inbuf))) < 0) goto egress;

 close (dhgfecpu);

8.11 GFELMC Read (Get) FECC3 Link Maintenance Counters

This is a DMA operation but the driver handles the physical address translation so no special operations are required by the application. See GPCLMC Read (Get) PCIL2 Link Maintenance Counters for counter details.
 int dhgfelmc;

 int2u inbuf[16]; /* Where to dump PCIL2 maintenance counters */

 int flags = O_RDWR; /* Open for read/write */

 /*------------------- code ----------------*/

 if ((dhgfelmc = open ("/dev/pcil0gpclmc", flags)) < 0) goto egress;

 if ((stat = read (dhgfelmc, &inbuf, sizeof(inbuf))) < 0) goto egress;

 close (dhgfelmc);

