Symmetry-Induced Modal Characteristics of Uniform Waveguides—I: Summary of Results

PAUL R. MoISAAC, MEMBER, IEEE

Abstract—The application of symmetry analysis to uniform waveguides is discussed. Symmetry analysis provides exact information concerning mode classification, mode degeneracy, modal electromagnetic-field symmetries, and the minimum waveguide sectors which completely determine the modes in each mode class. Tables are presented which list the possible mode classes and their degeneracies for the two general symmetry families, \(C_s \) and \(C_{sn} \), of uniform waveguides. Tables showing the azimuthal dependence of the longitudinal components of the electric and magnetic fields for each mode class are given. Based on this azimuthal dependence, figures showing the minimum waveguide sectors which are necessary and sufficient to completely determine the modes of the various mode classes are presented. The application of symmetry analysis is illustrated by considering uniform waveguides with \(C_i \) and \(C_{0s} \) symmetry.

I. INTRODUCTION

In recent years, the development of microwave, millimeter, and optical devices and systems has promoted interest in more complex waveguide structures. In order to understand these structures, and to optimize their properties for particular applications, powerful analysis techniques are necessary. As a consequence, high-speed digital computers are now often used for the numerical analysis of such structures. However, the numerical solution of the partial differential equations associated with distributed structures requires extensive computer time if moderate or high accuracy is desired. Therefore, there is a need for analytical techniques which can supplement computer calculations, providing information about the general characteristics of a waveguide, and suggesting possible strategies to minimize the computer time required when particular modes are investigated. In addition, analytical techniques are often preferable to numerical calculations when a general understanding of the propagation characteristics of a waveguide is sought. Symmetry analysis is one analytical technique which can provide basic information concerning the modal characteristics and suggest possible strategies to optimize computer studies of particular structures.

The symmetry of a waveguide controls several of the important characteristics of the modes of the waveguide. A determination of the symmetry type of a particular waveguide enables one to classify the possible modes into mode classes, predict the mode degeneracies between mode classes, and determine the azimuthal symmetries of the modal electromagnetic fields in each mode class. Further, one can specify minimum waveguide sectors for each mode class which completely determine the modes of that mode class. All of this can be accomplished from a knowledge of the waveguide symmetry without having to solve the boundary value problem for the particular waveguide structure.

In this paper, attention is restricted to uniform waveguides which may be transversely inhomogeneous, but whose media are isotropic and piecewise homogeneous. This restricted class of waveguides includes most structures of current interest, except for those waveguides containing gyrotropic media such as ferrites (uniform waveguides with gyrotropic media will be discussed in a future paper). This restriction enables us to provide tables of the mode classes, mode degeneracies, azimuthal modal field symmetries, and minimum waveguide sectors for any waveguide of this type. These waveguides may be lossy or lossless, and have either a closed or open boundary.

This discussion of the symmetry-induced modal characteristics of uniform waveguides is presented in two parts: "I: Summary of Results" and "II: Theory." The symmetry analysis of waveguides is based on group theory, and, in particular, on the theory of group representations. However, at least for the waveguides in the restricted class considered here, it is not necessary to have a knowledge of group theory in order to apply the results of symmetry analysis to specific waveguides of interest. It is only necessary to be able to identify the symmetry operations belonging to the structure under study. In order to make these results of symmetry analysis as widely accessible to microwave engineers as possible, the "Summary of Results" is presented first, and no group theoretical development is included in this paper. For those interested in how these results are obtained, the theory leading to them is discussed briefly in the accompanying paper, "II: Theory."

Throughout this paper it is assumed that the waveguides under discussion are inhomogeneous. Therefore, the waveguide modes are, in general, hybrid modes with longitudinal components of both the electric and magnetic fields. Homogeneous waveguides are a special case, and the results listed here apply to them with some obvious simplifications in the modal field representations.

It is well known that the transverse electric and magnetic fields in a uniform waveguide can be expressed in terms of the longitudinal components. For simplicity, only the longitudinal components of the electric and mag-
matic fields will be included in the discussion of the azimuthal symmetry of the modal fields. For any particular structure the azimuthal symmetry of the transverse components of the fields can be readily inferred from the azimuthal symmetry of the longitudinal components.

II. SYMMETRY OF A UNIFORM WAVEGUIDE

Taking the waveguide axis as the z axis, a uniform waveguide of infinite length is invariant to translations parallel to the z axis. For an exp (jωt) time dependence, this leads to a set of modes which vary as exp (−γz). Here γ is the propagation constant which is a function of ω and, in general, a complex number. A waveguide with a closed boundary (opaque to electromagnetic fields) has a discrete mode spectrum with an infinite number of discrete values of γ for each ω. If no opaque transverse boundary is present, the waveguide is said to have an open boundary, and for a given value of ω the mode spectrum consists of a finite number of discrete modes plus a continuous spectrum. The discussion to follow applies to waveguides with either type of boundary.

The solution for the modal electromagnetic fields of a waveguide at a particular frequency entails solving an eigenvalue problem where the eigenvalues are the values of γ(ω). For any mode of a uniform waveguide, the transverse electric and magnetic fields can be expressed in terms of the longitudinal components, \(E_z \) and \(H_z \) \[1\]. Therefore, pairs of \(E_z \) and \(H_z \) form the eigenfunctions for the problem. For a uniform waveguide the partial differential equations and boundary conditions for \(E_z \) and \(H_z \) involve only the transverse coordinates (see the following paper, Section II; hereafter, such references will be given as [II–II]). As a consequence, only the symmetry of the waveguide cross section need be considered. This restricts the relevant waveguide symmetry types to just two general families.

A symmetry operation for a figure is a spatial operation which leaves the figure unchanged in appearance. For a two-dimensional figure, only two types of spatial symmetry operations can exist; rotations about a symmetry axis oriented normal to the plane of the figure, and reflections in planes oriented normal to the plane of the figure.

In general, for a plane figure, if the smallest angle of rotation which causes the pattern to appear unchanged is \(2\pi/n \) rad, then all the possible inequivalent rotational symmetry operations of the figure are included in the set of \(n \) operations: \(C_n, C_n^2, C_n^3, \ldots, C_n^{n-1}, C_n^n = E \). Here \(C_n \) denotes rotation by \(2\pi/n \) rad and \(E \) denotes the identity operation. A pattern which possesses only rotational symmetry (no reflection symmetry), and for which \(2\pi/n \) is the smallest angle associated with a symmetry operation, is said to possess the symmetry group \(C_n \) of order \(n \). The symbol \(C_n \) stands for both a particular symmetry operation and the collection of all symmetry operations based on it.

Fig. 1 shows the cross sections of several waveguides with \(C_n \) symmetry.

A plane figure may also possess reflection symmetries. If a plane figure has \(n \)-fold rotation symmetry and also possesses at least one plane of reflection symmetry, then there are precisely \(n \) planes of reflection symmetry. These planes all intersect along the axis of rotational symmetry and are spaced azimuthally at \(\pi/n \) rad. The total number of symmetry operations is \(n \) rotations plus \(n \) reflections, or \(2n \) symmetry operations. The symmetry group for such a figure is designated as \(C_{nn} \) (of order \(2n \)). Fig. 2 shows the cross sections of several waveguides with \(C_{nn} \) symmetry.

These two families of symmetry groups, \(C_n \) and \(C_{nn} \), exhaust the possibilities for uniform inhomogeneous waveguides with isotropic media. Note that \(n \) may be any integer from one to infinity. Fig. 2(d) shows an example of a waveguide with \(C_{nn} \) symmetry. An example of a uniform waveguide with \(C_{nn} \) symmetry is a sheath helix \[2\]. A sheath helix must be either right- or left-handed, and a reflection transforms one helix type into the other. Therefore, reflection is not a symmetry operation for a sheath helix.

III. MODE CLASSIFICATION AND DEGENERACY

Every uniform waveguide has a mode spectrum containing an infinite number of modes. However, the number of distinct azimuthal symmetries of the modal electromagnetic-field patterns for a structure of a given sym-
and their degeneracies for waveguides with C_n symmetry, respectively.

A comment about the possible degeneracies of a uniform waveguide should be made. The degeneracies cataloged here are those produced by the waveguide symmetry and will occur for all values of ω. For some inhomogeneous waveguides, however, the curves of $\gamma(\omega)$ versus ω for two or more different modes may happen to cross at a particular value of ω, producing a degeneracy at a discrete frequency which is not related to the symmetry of the waveguide. This is termed an "accidental" degeneracy, and symmetry analysis cannot predict such isolated degeneracies.

At this point an alert reader may be suspicious of the validity of Table II, because it apparently incorrectly predicts the mode degeneracies of the most commonly analyzed waveguides; homogeneous rectangular, square, and circular waveguides with perfectly conducting walls. However, symmetry analysis can correctly predict the mode degeneracies of a waveguide only if all the symmetry operations of the structure are accounted for. Not all symmetry operations involve spatial rotations and reflections. These three waveguides are special in that they include an additional "hidden" symmetry which increases the number of mode degeneracies. This "hidden" symmetry will be discussed in Section VI, together with a non-spatial symmetry common to all the waveguides considered in this paper.

Here it is sufficient to state that Tables I and II apply to all inhomogeneous waveguides of the general class considered, and to all homogeneous waveguides with the exception of the three special cases of homogeneous rectangular, square, and circular waveguides with closed boundaries. For example, Table II correctly predicts the mode characteristics of a homogeneous waveguide of elliptical cross section with a perfectly conducting wall, whose modes have been tabulated [3]. The elliptical waveguide has the same symmetry group, $C_{\infty v}$, as a rectangular waveguide.

IV. MODAL ELECTROMAGNETIC-FIELD SYMMETRIES

The characteristic that physically distinguishes the mode classes of a particular waveguide is the azimuthal symmetry of the electromagnetic fields. One way to display analytically the azimuthal symmetry of the longitudinal components of the electric and magnetic fields is to express them in terms of Fourier series in the azimuthal angle θ. For example, $E_{\alpha\ell}(r, \theta)$ and $H_{\alpha\ell}(r, \theta)$ can be written as

$$E_{\alpha\ell}(r, \theta) = \sum_{m=-\infty}^{\infty} A_{\alpha\ell m}(r) \exp(jm\theta)$$

$$H_{\alpha\ell}(r, \theta) = \sum_{m=-\infty}^{\infty} B_{\alpha\ell m}(r) \exp(jm\theta).$$

Here, the subscripts indicate that this is the qth mode of
TABLE III
FOURIER SERIES REPRESENTATIONS OF THE LONGITUDINAL ELECTRIC AND MAGNETIC FIELDS FOR UNIFORM WAVEGUIDES WITH C_m SYMMETRY

<table>
<thead>
<tr>
<th>n</th>
<th>Mode class p</th>
<th>E_{zpq}</th>
<th>H_{zpq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>even, odd</td>
<td>1</td>
<td>$A_{1q}(r) e^{j\nu_0} B_{1q}(r) e^{j\nu_0}$</td>
<td></td>
</tr>
<tr>
<td>even, odd</td>
<td>k</td>
<td>$A_{kq}(r) e^{j(n\nu+k/2)\theta} B_{kq}(r) e^{j(n\nu+k/2)\theta}$</td>
<td></td>
</tr>
<tr>
<td>even, odd</td>
<td>$k+1$</td>
<td>$A_{(k+1)q}(r) e^{j(n\nu-k/2)\theta} B_{(k+1)q}(r) e^{j(n\nu-k/2)\theta}$</td>
<td></td>
</tr>
<tr>
<td>even</td>
<td>n</td>
<td>$A_{nq}(r) e^{jn(\nu-1/2)\theta} B_{nq}(r) e^{jn(\nu-1/2)\theta}$</td>
<td></td>
</tr>
</tbody>
</table>

Note: Mode classes $k, k+1$ are a degenerate pair; k is even.

the first mode class. Note that in the Fourier series, only one-third of the possible terms that would occur in a general Fourier series are present for this mode class. This result for this mode class is a consequence of the symmetry of the waveguide [II–IV]. Symmetry analysis gives no information, however, about the magnitudes of the coefficients $A_{kp}(r)$ and $B_{kp}(r)$. To determine these coefficients one must solve the partial differential equations for the system subject to the appropriate boundary conditions. One can conclude, however, from the Fourier series in (1) that the electromagnetic fields for modes in this mode class must be periodic in θ with period $2\pi/3$ rad. Thus, in any numerical analysis of the nondegenerate modes of this waveguide, all of which belong to this mode class (see Table I), only a sector of angle $2\pi/3$ rad need be considered (with the boundary conditions that the electromagnetic fields must be identical at the two azimuthal boundaries of the sector).

Although the azimuthal symmetry of the longitudinal electric and magnetic fields for the various mode classes will be presented by writing these field components in terms of Fourier series, it is not suggested that this is a preferred form for making a detailed numerical analysis. Other representations may well be preferable for a computer study of a particular waveguide. The purpose in using the Fourier series representation here is to be able to extract information easily concerning the azimuthal symmetry of the modal electromagnetic fields.

Table III presents the general form of the Fourier series for the longitudinal components of the electric and magnetic fields for waveguides with C_m symmetry. Referring to Table I, waveguides with C_m symmetry have either two (n odd) or four (n even) mode classes containing nondegenerate modes. It is convenient to label the two mode classes containing nondegenerate modes which occur for n either even or odd as the first and second mode classes ($p = 1, 2$). The two mode classes containing nondegenerate modes which occur only for n even as the last mode class ($p = n$). The mode-class pairs which combine to give the twofold degenerate modes are listed from $p = 2$ to $p = n$ (n odd), or to $p = n - 1$ (n even). Thus mode classes $p = 2$ and 3, 4, and 5, etc., are pairs with mutually degenerate modes. The results for the limiting case C_m are also given; only a single mode class with nondegenerate modes occurs in this case. Note that Table III gives the explicit azimuthal dependence of E_z and H_z for the mode classes of waveguides with C_m symmetry.

Table IV presents the general form of the Fourier series for the longitudinal components of the electric and magnetic fields for waveguides with C_m symmetry. Referring to Table II, waveguides with C_m symmetry have either two (n odd) or four (n even) mode classes containing nondegenerate modes. It is convenient to label the two mode classes containing nondegenerate modes which occur for n either even or odd as the first and second mode classes ($p = 1, 2$). The two mode classes containing nondegenerate modes which occur only for n even as the last mode class ($p = n$). The two mode classes containing nondegenerate modes which occur only for n even as the last mode class ($p = n$). The mode-class pairs which combine to give two-fold degenerate modes are listed from $p = 3$ to $p = n + 1$ (n odd), or to $p = n$ (n even). The results for the limiting case C_m are also given; only two mode classes with nondegenerate modes occur in this case. Again Table IV gives the explicit azimuthal dependence for the mode classes of waveguides with C_m symmetry. It is important to note that the Fourier series as written in Table IV assume that $\theta = 0$ is chosen to coincide with one of the planes of reflection symmetry of the structure under consideration.

V. MINIMUM WAVEGUIDE SECTORS

For a given waveguide, the information presented in Tables III and IV enable one to specify for each mode class of the waveguide a minimum sector of the waveguide cross section which is sufficient, and necessary, to com-
TABLE IV
FOURIER SERIES REPRESENTATIONS OF THE LONGITUDINAL ELECTRIC AND MAGNETIC FIELDS FOR UNIFORM WAVEGUIDES WITH \(C_{n_0} \) SYMMETRY

<table>
<thead>
<tr>
<th>(n)</th>
<th>Mode class</th>
<th>(E_{zpq})</th>
<th>(H_{zpq})</th>
</tr>
</thead>
<tbody>
<tr>
<td>even, odd 1</td>
<td>[\sum_{\nu=0}^{\infty} \sum_{q=-p}^{p} A_{\nu q}(r) \cos(\nu \theta)]</td>
<td>[\sum_{\nu=0}^{\infty} \sum_{q=-p}^{p} B_{\nu q}(r) \sin(\nu \theta)]</td>
<td></td>
</tr>
<tr>
<td>even, odd 2</td>
<td>[\sum_{\nu=0}^{\infty} \sum_{q=-p}^{p} A_{\nu q}(r) \sin(\nu \theta)]</td>
<td>[\sum_{\nu=0}^{\infty} \sum_{q=-p}^{p} B_{\nu q}(r) \cos(\nu \theta)]</td>
<td></td>
</tr>
<tr>
<td>even, odd (k)</td>
<td>[\sum_{\nu=0}^{\infty} \sum_{q=-p}^{p} A_{\nu q}(r) \cos(\nu \theta)]</td>
<td>[\sum_{\nu=0}^{\infty} \sum_{q=-p}^{p} B_{\nu q}(r) \sin(\nu \theta)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[+ C_{\nu q}(r) \cos(\nu \theta)]</td>
<td>[+ D_{\nu q}(r) \sin(\nu \theta)]</td>
<td></td>
</tr>
<tr>
<td>even, odd (k+1)</td>
<td>[\sum_{\nu=0}^{\infty} \sum_{q=-p}^{p} A_{\nu q}(r) \sin(\nu \theta)]</td>
<td>[\sum_{\nu=0}^{\infty} \sum_{q=-p}^{p} B_{\nu q}(r) \cos(\nu \theta)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[+ C_{\nu q}(r) \cos(\nu \theta)]</td>
<td>[+ D_{\nu q}(r) \sin(\nu \theta)]</td>
<td></td>
</tr>
<tr>
<td>even (n+1)</td>
<td>[\sum_{\nu=0}^{\infty} \sum_{q=-p}^{p} A_{\nu q}(r) \cos((n+1) \theta)]</td>
<td>[\sum_{\nu=0}^{\infty} \sum_{q=-p}^{p} B_{\nu q}(r) \sin((n+1) \theta)]</td>
<td></td>
</tr>
<tr>
<td>even (n+2)</td>
<td>[\sum_{\nu=0}^{\infty} \sum_{q=-p}^{p} A_{\nu q}(r) \sin((n+1) \theta)]</td>
<td>[\sum_{\nu=0}^{\infty} \sum_{q=-p}^{p} B_{\nu q}(r) \cos((n+1) \theta)]</td>
<td></td>
</tr>
<tr>
<td>(k)</td>
<td>[A_{k q}(r) \cos((k-1) \theta/2)]</td>
<td>[B_{k q}(r) \sin((k-1) \theta/2)]</td>
<td></td>
</tr>
<tr>
<td>(k+1)</td>
<td>[A_{(k+1) q}(r) \sin((k-1) \theta/2)]</td>
<td>[B_{(k+1) q}(r) \cos((k-1) \theta/2)]</td>
<td></td>
</tr>
</tbody>
</table>

Note: Mode classes \(k, k+1 \) are a degenerate pair; \(k \) is odd.

completely determine the modal eigenvalues and electromagnetic fields for all of the modes of that mode class. Figs. 3 and 4 show the minimum sectors for the mode classes of waveguides with \(C_n \) and \(C_{n_0} \) symmetry, respectively. In each case, the minimum subregion of the waveguide cross section is a sector with the vertex of the sector angle located at the waveguide axis. These figures give the magnitude in radians of the azimuthal angle of the minimum sector and specify the boundary conditions for the electromagnetic fields on the two straight lines bounding the sector. It is not necessary to present figures for the two limiting cases of waveguides with \(C_n \) or \(C_{n_0} \) symmetry, because Tables III and IV give the explicit azimuthal dependence of the longitudinal components of the electric and magnetic fields for the various mode classes in these cases.

In Fig. 3 the boundary lines of the minimum waveguide sectors are shown either as dotted lines, or as dot–dash lines. Dotted lines indicate periodic boundary conditions; that is, the electromagnetic fields on the two dotted lines must be identical. Dot-dash lines indicate “quasi-periodic” boundary conditions; that is, the electromagnetic fields on these two lines are identical except that the sign of the fields along one line is reversed relative to the fields along the other line. In Fig. 4 the boundary lines are shown either solid or dashed. Solid lines indicate a short-circuit boundary condition (tangential electric field is zero), and dashed lines indicate an open-circuit boundary condition (tangential magnetic field is zero). For waveguides with \(C_n \) symmetry there is no particular relationship between the boundary lines of the sectors shown in Fig. 3 and a physical characteristic of the waveguide; that is, any sector of the specified angle could be used. In the case of waveguides with \(C_{n_0} \) symmetry, however, the boundary lines of the minimum waveguide sectors shown in Fig. 4 must always coincide with two of the planes of reflection symmetry of the waveguide structure.

In determining the minimum waveguide sectors of the degenerate mode class pairs one finds that there are a number of special cases possible, particularly as \(n \) increases. Therefore, in order to facilitate the use of Figs. 3 and 4, Tables V and VI are presented. To use these tables together with Figs. 3 and 4 for a particular waveguide, three steps should be followed.

1) Determine the symmetry type of the waveguide.
2) Determine the number of nondegenerate and degenerate mode classes (see Tables I and II).
3) For the particular mode class of interest enter Table V (for \(C_n \) symmetry) or Table VI (for \(C_{n_0} \) symmetry) at the appropriate row. The various columns give the minimum sector angles, the boundary conditions, and refer to the relevant portions of Figs. 3 or 4.

There are several different cases possible for degenerate mode-class pairs for waveguides with \(C_n \) symmetry. In each of these, however, the minimum waveguide sector angle and boundary conditions are the same for both
mode classes of the pair \(k \) and \(k + 1 \). The cases are distinguished by whether \(k/2 \) is an integer divisor of \(n \) \((k/2 = n/m, \text{ with } m < n)\), an integer multiple of an integer divisor of \(n \) \((k = uk', k'/2 = n/m, \text{ with } m < n)\), or neither. The various possibilities, and their consequences, are displayed in Table V and Fig. 3. In those cases where \(k = uk' \) with \(k'/2 = n/m \), and there is a choice of several possible values of \(k' \), one should always select the largest of the possible values of \(k' \) (smallest possible value of \(m \)).

There are also several different cases possible for degenerate mode-class pairs for waveguides with \(C_{n\pi} \) symmetry. The cases are distinguished by whether \((k - 1)/2 \) is an integer divisor of \(n \) \(((k - 1)/2 = n/m, \text{ with } m < n)\), an integer multiple of an integer divisor of \(n \) \(((k - 1) = u(k' - 1), (k' - 1)/2 = n/m, \text{ with } m < n)\), or neither. The various possibilities, and their consequences, are displayed in Table VI and Fig. 4. In those cases where \((k - 1) = u(k' - 1) \) with \((k' - 1)/2 = n/m \), and there...
TABLE VI

MINIMUM SECTORS FOR WAVEGUIDES WITH C_n SYMMETRY

<table>
<thead>
<tr>
<th>n</th>
<th>Mode class</th>
<th>Degenerate</th>
<th>If Degenerate</th>
<th>Minimum sector angle, radians</th>
<th>Boundary conditions</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>even, odd</td>
<td>1</td>
<td>No</td>
<td>$k-1 = n$</td>
<td>π</td>
<td>open circuit</td>
<td>4a</td>
</tr>
<tr>
<td>even, odd</td>
<td>2</td>
<td>No</td>
<td>$k-1 = n$</td>
<td>π</td>
<td>open circuit</td>
<td>4b</td>
</tr>
<tr>
<td>odd</td>
<td>$k, k+1$</td>
<td>Yes</td>
<td>Yes</td>
<td>$2\pi/(k+1)$</td>
<td>short circuit</td>
<td>4c</td>
</tr>
<tr>
<td>odd</td>
<td>$k, k+1$</td>
<td>Yes</td>
<td>No</td>
<td>$2\pi/(k+1)$</td>
<td>short circuit</td>
<td>4d</td>
</tr>
<tr>
<td>even</td>
<td>$k, k+1$</td>
<td>Yes</td>
<td>m odd</td>
<td>$n/(k+1)$</td>
<td>open circuit</td>
<td>4e</td>
</tr>
<tr>
<td>even</td>
<td>$k, k+1$</td>
<td>Yes</td>
<td>m even</td>
<td>$n/(k+1)$</td>
<td>open circuit</td>
<td>4f</td>
</tr>
<tr>
<td>even</td>
<td>$k, k+1$</td>
<td>Yes</td>
<td>No</td>
<td>$n/(k+1)$</td>
<td>open circuit</td>
<td>4g</td>
</tr>
<tr>
<td>even</td>
<td>$k, k+1$</td>
<td>Yes</td>
<td>m odd</td>
<td>$n/(k+1)$</td>
<td>open circuit</td>
<td>4h</td>
</tr>
<tr>
<td>even</td>
<td>$k, k+1$</td>
<td>Yes</td>
<td>m even</td>
<td>$n/(k+1)$</td>
<td>open circuit</td>
<td>4i</td>
</tr>
<tr>
<td>even</td>
<td>$n+1$</td>
<td>No</td>
<td>No</td>
<td>$\pi/2$</td>
<td>short and open circuit</td>
<td>4j</td>
</tr>
<tr>
<td>even</td>
<td>$n+2$</td>
<td>No</td>
<td>No</td>
<td>π/n</td>
<td>short and open circuit</td>
<td>4k</td>
</tr>
</tbody>
</table>

Note that while the minimum waveguide-sector angle is the same for both mode classes of a degenerate pair, the boundary conditions are different for each mode class of the pair. This result for the degenerate mode classes of waveguides with C_n symmetry contrasts with that for waveguides with C_s symmetry, where both mode classes of a degenerate pair have the same sector boundary conditions. Thus, in the case of waveguides with C_n symmetry, the use of the minimum waveguide sector for analyzing the modes in a degenerate mode class leads to an important benefit in addition to minimizing the waveguide area that is necessary to be included in the analysis. By using the minimum waveguide sector with its appropriate boundary conditions, the degeneracy of the modes is lifted; therefore, in any numerical calculations each mode can be treated as a nondegenerate mode.

Two examples will be examined briefly to illustrate the application of symmetry analysis to specific structures. First, consider the hollow conducting pipe of square cross section with four dielectric slabs located so as to produce a structure with C_4 symmetry, Fig. 5(a). From Table I, this waveguide has a total of four mode classes. Mode classes 1 and 4 have nondegenerate modes, while mode classes 2 and 3 form a pair with mutually degenerate modes. Using Table V and Fig. 3, one finds that the minimum waveguide sectors which are necessary and sufficient to determine the modal electromagnetic fields are those shown in Fig. 5. Fig. 5(b) and 5(d) show the minimum sectors for mode classes 1 and 4, respectively, while Fig. 5(c) shows the minimum sector for the pair of degenerate mode classes (2 and 3). The particular sectors shown are not unique; other sectors with the same angle and boundary conditions could have been chosen instead.

The open-boundary waveguide of Fig. 6(a) has seven dielectric rods (or fibers) of equal diameter arranged in a close-packed structure with C_{7v} symmetry. From Table II, this waveguide has a total of eight mode classes. Mode classes 1, 2, 7, and 8 are nondegenerate, while mode classes 3 and 4, 5 and 6, are two pairs, with each pair having mutually degenerate modes. Using Table VI and Fig. 4, one finds that the minimum sectors which are necessary and sufficient to determine the modal electromagnetic fields of these mode classes are those shown in Fig. 6. Fig. 6(b), (c), (f), and (g) show the minimum sec-
which occurs only for homogeneous waveguides with per-
waveguides with C_∞ symmetry in the previous sections in-
waveguides depends on the presence of the frequency-
reversal symmetry operation. All of the results given for
perfectly conducting boundaries which are either square,
rectangular, or circular (see Section III). In this case the
include its influence.

occurrence of degenerate pairs of mode classes for these
This symmetry operation, all of the mode classes of wave-
play an important role in the modal characteristics of
these waveguides (note that homogeneous waveguides
with rectangular and elliptical boundaries belong to the
additional symmetry depends on the special geometry of
spatial symmetry for waveguides is "frequency-reversal"
including the following characteristics of the modes of uniform
waveguides: the classification of the modes into mode
classes; the possible degeneracies of the modes; the azi-
muthal symmetries of the modal electromagnetic fields
for each mode class; and the minimum waveguide sectors
which are necessary and sufficient to completely determine
the modes in each mode class. The results obtained here
are applicable to waveguides which may be transversely
inhomogeneous, but whose media are isotropic and piece-
wise homogeneous. The waveguide may be lossy or loss-
less and have either an open or closed boundary. Because
all of the uniform waveguides considered in this paper are
included in the two general symmetry families, C_∞ and
$C_{2\pi}$, it has been possible to tabulate the results for all
possible cases.

It should be clear that symmetry analysis cannot pro-
vide complete information concerning all of the modal
characteristics of uniform waveguides. For example, it
can provide no direct information concerning the ordering
of the waveguide modes based on the cutoff frequencies.
In addition, the results are exact. That means, for example,
that symmetry analysis states that modes are either non-
degenerate or are degenerate. It cannot indicate when
modes are "almost" degenerate.

Fig. 6. Minimum waveguide sectors for a waveguide with C_∞ symmetry. (a) Waveguide with C_∞ symmetry. (b) First mode
class (nondegenerate). (c) Second mode class (nondegenerate).
(d) Third and fourth mode classes (degenerate pair). (e) Fifth and
sixth mode classes (degenerate pair). (f) Seventh mode class (non-
degenerate). (g) Eighth mode class (nondegenerate). Solid lines
indicate short-circuit boundary conditions; dashed lines indicate
open-circuit boundary conditions.

VI. NONSPATIAL SYMMETRY

In Section III there was a brief reference to nonspatial
symmetries which may influence the modal characteristics
of a waveguide. An important example of such a non-
spatial symmetry for waveguides is "frequency-reversal" symmetry [II–V]. This symmetry is a consequence of the
requirement that $\epsilon^*(\omega) = \epsilon(\omega)$ and $\mu^*(\omega) = \mu(\omega)$
for real ω. This additional symmetry operation has no
effect on the modal characteristics of waveguides with
C_∞ symmetry. However, this symmetry operation does
play an important role in the modal characteristics of
waveguides with C_∞ symmetry. Without the inclusion
of this symmetry operation, all of the mode classes of wave-
guides with C_∞ symmetry would be nondegenerate; the
occurrence of degenerate pairs of mode classes for these
waveguides depends on the presence of the frequency-
reversal symmetry operation. All of the results given for
waveguides with C_∞ symmetry in the previous sections
include its influence.

A second example of a nonspatial symmetry is one
which occurs only for homogeneous waveguides with per-
factly conducting boundaries which are either square,
rectangular, or circular (see Section III). In this case the
additional symmetry depends on the special geometry of
these waveguides (note that homogeneous waveguides
with rectangular and elliptical boundaries belong to the
same symmetry group, $C_{2\pi}$, but their geometries are dif-
ferent). For homogeneous waveguides with square or
rectangular walls, the transverse dependence of the axial
electric field for the E modes can be written as the product
of two trigonometric functions; for example,

$$E_1(x,y) = A_m \sin(m \pi x/a) \sin(n \pi y/b)$$

with $m,n \geq 1$, if the waveguide width and height are a
and b, respectively. By applying the differential operator
$\partial/\partial x \partial/\partial y$ to this field, one obtains a function B_{mn}
$\cos(m \pi x/a) \cos(n \pi y/b)$, which is characteristic of the
axial magnetic field of the H modes of the waveguide.
This operator reflects a geometric symmetry of these wave-
guides which produces degeneracies between the E and H
modes in addition to those tabulated in Table II. A
similar geometry-induced symmetry occurs for homo-
genous waveguides with perfectly conducting circular
walls. In this case, additional degeneracies are produced
between the E_{1m} and H_{2m} modes; this result applies to
hollow circular waveguides and coaxial circular wave-
guides.

It is believed that these three cases of homogeneous
waveguides with square, rectangular, or circular walls
which are perfectly conducting, are the only ones of prac-
tical interest which show additional geometry-induced
mode degeneracies. Homogeneous waveguides with per-
fectly conducting walls whose cross sections are other than
square, rectangular, or circular will not show geometry-
induced mode degeneracies, nor will any inhomogeneous
waveguide, regardless of the boundary geometry. Since
the modal characteristics of homogeneous waveguides with
square, rectangular, and circular walls are well established
and discussed in many textbooks, there is no point in
applying the symmetry analysis described in this paper
to such waveguides. Therefore, their exclusion here is not
a significant restriction on this symmetry analysis.

VII. DISCUSSION

Symmetry analysis provides exact information concern-
ing the following characteristics of the modes of uniform
waveguides: the classification of the modes into mode
classes; the possible degeneracies of the modes; the azi-
muthal symmetries of the modal electromagnetic fields
for each mode class; and the minimum waveguide sectors
which are necessary and sufficient to completely determine
the modes in each mode class. The results obtained here
are applicable to waveguides which may be transversely
inhomogeneous, but whose media are isotropic and piece-
wise homogeneous. The waveguide may be lossy or loss-
less and have either an open or closed boundary. Because
all of the uniform waveguides considered in this paper are
included in the two general symmetry families, C_∞ and
$C_{2\pi}$, it has been possible to tabulate the results for all
possible cases.

It should be clear that symmetry analysis cannot pro-
vide complete information concerning all of the modal
characteristics of uniform waveguides. For example, it
can provide no direct information concerning the ordering
of the waveguide modes based on the cutoff frequencies.
In addition, the results are exact. That means, for example,
that symmetry analysis states that modes are either non-
degenerate or are degenerate. It cannot indicate when
modes are “almost” degenerate.
In order to exploit symmetry analysis fully, one must use “common sense” in applying it to particular structures. For example, suppose the waveguide under consideration has a particular symmetry type, but its cross section is such that it “almost” has a higher symmetry type. This waveguide may well have mode classes which are nearly degenerate, and one would be advised to study the implications of both symmetry types to predict the modal characteristics the structure would exhibit. Actually, a deeper exploration of symmetry analysis can indicate how the degeneracies of modes are split when the symmetry is “lowered;” this would require some knowledge of group representation theory and is not considered here.

REFERENCES

Symmetry-Induced Modal Characteristics of Uniform Waveguides – II: Theory

PAUL R. McISAAC, MEMBER, IEEE

Abstract—The application of symmetry analysis to uniform waveguides is discussed. Symmetry analysis provides exact information concerning mode classification, mode degeneracy, modal electromagnetic-field symmetries, and the minimum waveguide sectors which completely determine the modes in each mode class. This paper provides a summary of the development that leads to the results concerning symmetry-induced modal characteristics of uniform waveguides discussed in the previous paper. Some of the concepts of group theory are introduced, including the irreducible representations of symmetry groups. The use of the irreducible representations to determine the mode classes and their degeneracies is described. The projection operators belonging to the irreducible representations are introduced and their application to determining the azimuthal symmetry of the modal fields is explained. The minimum waveguide sectors for the mode classes are obtained from the azimuthal symmetry of the modal fields.

I. INTRODUCTION

The purpose of this paper is to provide a summary of the development that leads to the results concerning the symmetry-induced modal characteristics of uniform waveguides discussed in the previous paper. These results are based on group theory and, in particular, on the theory of group representations. There have been many applications of group theory to various branches of physics and chemistry, and the literature describing these applications is copious. However, there have been few applications of group theory to the field of microwaves. One exception is symmetrical waveguide junctions which have been investigated by Montgomery et al. [1], Kerns [2], and Auld [3]. A few papers have been published which explored the consequences of symmetry in periodic waveguides. Two recent publications are [4] and [5]; the second paper employs group-theoretic methods. There has been little attention given, however, to exploiting the role symmetry plays in determining the modal characteristics of uniform waveguides.

A coherent exposition of the development of the complete theory required for the symmetry analysis of uniform waveguides starting from the basic concepts of group theory is not feasible in the few pages appropriate to a journal paper, and this is not attempted here. Instead, the relevant results from group theory will be cited, and a brief indication given how these lead to the results presented for uniform waveguides in the previous paper (hereafter referred to as [1]). This paper is not intended to enable a reader unfamiliar with group theory to attain a working knowledge of it as a technique for application to microwave analysis. However, it is hoped that these papers may provide a glimpse of the power of this technique and motivate some readers to explore it. Three of the many excellent books on the application of group theory to various branches of physics and chemistry are [6]–[8]. To provide the maximum assistance to any interested
II. UNIFORM-WAVEGUIDE EQUATIONS

In these papers attention is restricted to uniform waveguides which may be transversely inhomogeneous, but whose media are isotropic and piecewise homogeneous. For a uniform waveguide of infinite length, and assuming an exp(jωt) time dependence, the possible electromagnetic fields can be classified into a set of modes, each of which varies as exp(−γz), where the propagation constant γ is characteristic of the mode and a function of ω. For waveguides with a closed boundary, the mode spectrum is discrete, and there are an infinite set of discrete values for each ω. For open boundary waveguides, the mode spectrum consists of a finite set of discrete modes plus a continuous spectrum.

The transverse components of the electromagnetic fields of any mode can be expressed in terms of the longitudinal components [9]. In the i-th medium of an inhomogeneous waveguide the transverse components can be written as

\[
E_{ti} = -\frac{1}{\gamma_0^2 + k_i^2} \{ \gamma \nabla_T E_{si} - jk_i Z_i (a_x \times \nabla_T H_{si}) \}
\]

\[
H_{ti} = -\frac{1}{\gamma_0^2 + k_i^2} \{ \gamma \nabla_T H_{si} + jk_i Z_i (a_x \times \nabla_T E_{si}) \}.
\]

Here, \(k_i = \omega (\mu_i \epsilon_i)^{1/2} \) and \(Z_i = (\mu_i / \epsilon_i)^{1/2} \) are parameters characteristic of the i-th medium, \(\nabla_T \) is the transverse \(\nabla \) operator, and \(a_x \) is a unit vector in the z direction.

The partial differential equations for the longitudinal components of the electric and magnetic fields in the i-th medium are

\[
(\nabla^2 + k_i^2)E_{si} = -\gamma_0^2 E_{si}.
\]

\[
(\nabla^2 + k_i^2)H_{si} = -\gamma_0^2 H_{si}.
\]

The boundary conditions at the interfaces between the different media must also be considered. These boundary conditions are based on the continuity of the tangential components of the electric and magnetic fields at the interfaces. The boundary conditions at the surrounding waveguide wall (if any is present) must also be included. If the waveguide has an open boundary, then the modal fields must fall off at least as fast as \(1/r^{1/2} \), for large values of the radius r.

The set of partial differential equations for \(E_s \) and \(H_s \) for all regions of the waveguide, together with the set of boundary conditions, form an eigenvalue problem. For a given value of the frequency \(\omega \), the set of allowed values of \(\gamma \) are the eigenvalues, and the corresponding pairs of \(E_s, H_s \) are the eigenfunctions.

For the purposes of symmetry analysis, it is not necessary to find explicit solutions to the eigenvalue problem summarized here. Several of the modal characteristics can be deduced from the symmetry of the waveguide cross section alone. The modes of inhomogeneous waveguides are, in general, hybrid modes with longitudinal components of both the electric and magnetic fields. Homogeneous waveguides are a special case of the more general inhomogeneous waveguides, and the discussion applies to homogeneous waveguides with some obvious simplifications.

III. ELEMENTARY GROUP THEORY

By a group \(G \) is meant a set of distinct elements for which a combining operation is defined and which satisfies four group postulates [8, pp. 6–7]. The combining operation is called “group multiplication” and associates a third element of the set with any ordered pair of elements. The four group postulates are as follows.

1) The product of any two elements of \(G \) is itself a member of \(G \).

2) The associative law holds so that for any three elements \(A, B, C \) of \(G \); \((AB)C = A(BC) = ABC \).

3) \(G \) contains an element \(E \), called the identity element, such that for any element \(A \) of \(G \); \(AE = EA = A \).

4) For any element \(A \) of \(G \), there exists an element of \(G \) called the inverse of \(A \), and denoted by \(A^{-1} \), such that \(AA^{-1} = A^{-1}A = E \).

The number of distinct elements of \(G \) is called the order of the group and denoted by \(g \). For any particular group one can write a group multiplication table which displays the results of multiplying any two elements of the group. Note that group multiplication is not required to be commutative; that is, in general, \(AB \neq BA \).

Examples of groups are provided by the sets of spatial symmetry operations discussed in the previous paper. It is easy to see that the set of \(n \) distinct rotations about an axis which was labeled \(C_n \) in [1] satisfies the group postulates. Likewise, the set of \(n \) distinct rotations about an axis and \(n \) mirror reflections in planes containing the axis which was labeled \(C_\infty \) in [1] also satisfies the group postulates. Sets of spatial symmetry operations which satisfy the group postulates are called symmetry groups; for a discussion of uniform waveguides, only the \(C_n \) and \(C_\infty \) symmetry groups need be considered.

The relationship of the group of spatial symmetry operations belonging to a particular symmetry group possessed by a particular waveguide and the modal electromagnetic fields of the waveguide can be expressed in either of two ways. Consider some symmetry operation \(R \) belonging to the symmetry group \(G \). One can apply the symmetry operation \(R \) to the waveguide structure, leaving the modal fields fixed in space; or one can apply the symmetry operation \(R \) to the modal fields, leaving the waveguide structure fixed in space. In either case, after the symmetry opera-

1 The results listed in paper [1] actually hold for more general waveguides. For example, they hold for homogeneous waveguides with uniaxial, piecewise-homogeneous media when the optical axis is parallel to the z axis, and also for waveguides with isotropic media where the media may be transversely inhomogeneous. For these more general cases, the analysis must be modified somewhat, but the results are the same as those cited in [1].
tion is applied, the modal fields must again be a solution to the boundary value problem for the waveguide. For clarity, we distinguish between symmetry operations on the structure and on the electromagnetic fields by defining \(P(R) \) to be that symmetry operation acting on the electromagnetic fields which is equivalent to a spatial symmetry operation \(R \) on the structure. In order for the resulting electromagnetic-field–waveguide-structure relationship to be the same after operation by either \(R \) (on the structure) or \(P(R) \) (on the electromagnetic fields), one must have

\[
P(R)E(r) = E(R^{-1}r)
\]

where \(E(r) \) is the electric field and \(R^{-1} \) is the symmetry-operation inverse to \(R \); a similar relation holds for the magnetic field [8, p. 32].

In addition to symmetry groups there are many other sets of elements which satisfy the requirements for a group. Particularly important examples for symmetry analysis are sets of square matrices which satisfy all the group postulates with matrix multiplication as the group multiplication operation. Such a set of matrices is called a group representation, and certain group representations are central to symmetry analysis.

Given any symmetry group \(G \) of order \(g \), one can always devise a set of \(g \) matrices which satisfy the same multiplication table as the symmetry group, after making a correspondence between each element of the symmetry group and one of the matrices. In fact, the number of possible group representations (sets of matrices) corresponding to any symmetry group is infinite. The simplest group representation for any symmetry group is a set of one-dimensional matrices of unit amplitude.

Although an infinite number of group representations can be written for any symmetry group, it is found that all of these can be written as the sum of a few group representations whose matrices have a dimension of one, two, or at most, three [8, pp. 19–20]. These few group representations are called the irreducible representations associated with the symmetry group. For the symmetry groups of current interest, the associated irreducible representations are known and tabulated (see, for example, the tables in [6], [7], or [8]).

The boundary value problems associated with waveguides can usually be formulated in terms of an eigenvalue problem. Typically,

\[
L\psi = \lambda\psi
\]

where \(L \) is an operator, \(\lambda \) is an eigenvalue, and \(\psi \) is the associated eigenfunction. Suppose the waveguide has the symmetry group \(G \). If \(R \) is one of the symmetry operations of the group, then the operator \(P(R) \) must commute with the operator \(L \). Therefore,

\[
P(R)L\psi = P(R)L\psi = P(L(R))\psi = P(R)\lambda\psi
\]

\[
L(P(R)\psi) = \lambda P(R)\psi.
\]

Thus if \(\psi \) is an eigenfunction with eigenvalue \(\lambda \), then \(P(R)\psi \) must also be an eigenfunction with eigenvalue \(\lambda \).

If the eigenvalue \(\lambda \) has \(p \) degenerate eigenfunctions, \(\psi_i \) \((i = 1, 2, \ldots, p) \), then \(P(R)\psi_i \), where \(\psi_i \) is one of these \(p \) eigenfunctions, can always be expressed as a sum over the \(p \) degenerate eigenfunctions. The effect of \(P(R) \) is completely characterized by its effect on each of the basis functions \(\psi_i \). For example

\[
P(R)\psi_i = \psi_1\Gamma(R)_{ij} + \psi_2\Gamma(R)_{ij} + \cdots + \psi_p\Gamma(R)_{ij}.
\]

The coefficients \(\Gamma(R)_{ij} \) in these equations can be considered to be the elements of a \(p \times p \) square matrix \(\Gamma(R) \).

If the \(\psi_i \) are collected into a row matrix

\[
\psi = (\psi_1\psi_2\psi_3\cdots\psi_p)
\]

then (1) can be written as

\[
P(R)\psi = \psi\Gamma(R).
\]

Any solution of the eigenvalue problem with eigenvalue \(\lambda \) must be expressible as a linear combination of the \(p \) independent solutions \(\psi_1, \psi_2, \ldots, \psi_p \). Thus there is an equation analogous to (2) for every member of the symmetry group \(G \). The complete set of matrices \(\Gamma(R) \) for all \(g \) members of the symmetry group forms a representation. The basic assumption of symmetry analysis is the Irreducibility Postulate ([7, pp. 183–184] or [8, p. 34]):

Provided there are no accidental degeneracies, every degenerate group of eigenfunctions of an operator \(L \) provides an irreducible representation of the group of symmetry operations which leaves \(L \) invariant.

Thus the \(\Gamma(R) \) in (2) form an irreducible representation. An alternative form of this postulate is the one which is used as the basis for the symmetry analysis here.

For every \(p \)-dimensional irreducible representation of the symmetry group under which an operator \(L \) is invariant, we can find \(p \)-fold degenerate sets of eigenfunctions. Any further degeneracy would be accidental and expected to occur only rarely.

As a consequence, any eigenfunction of the operator \(L \) can be associated with a row of one of the irreducible representations of the symmetry group \(G \). For those irreducible representations which are one-dimensional, each of the associated eigenfunctions is nondegenerate. For those irreducible representations which are two-dimensional, the associated eigenfunctions must occur in degenerate pairs, with one member of each pair associated with the first row and the second member with the second row of the irreducible representation. A similar statement applies to higher dimensional irreducible representations, but for uniform waveguides only one- or two-dimensional irreducible representations are encountered.

Suppose one finds a function \(\phi \) which is a solution of the

\[\text{MCISAAC: UNIFORM WAVEGUIDES—II: THEORY}\]

\[\text{431}\]

\[\text{[8, p. 32]}\]

\[\text{[6, 7, or 8]}\]

\[\text{[7, pp. 183–184] or [8, p. 34]}\]

\[\text{Provided there are no accidental degeneracies, every degenerate group of eigenfunctions of an operator } L \text{ provides an irreducible representation of the group of symmetry operations which leaves } L \text{ invariant.}\]

\[\text{Thus the } \Gamma(R) \text{ in (2) form an irreducible representation. An alternative form of this postulate is the one which is used as the basis for the symmetry analysis here.}\]

\[\text{For every } p \text{-dimensional irreducible representation of the symmetry group under which an operator } L \text{ is invariant, we can find } p \text{-fold degenerate sets of eigenfunctions. Any further degeneracy would be accidental and expected to occur only rarely.}\]

\[\text{As a consequence, any eigenfunction of the operator } L \text{ can be associated with a row of one of the irreducible representations of the symmetry group } G. \text{ For those irreducible representations which are one-dimensional, each of the associated eigenfunctions is nondegenerate. For those irreducible representations which are two-dimensional, the associated eigenfunctions must occur in degenerate pairs, with one member of each pair associated with the first row and the second member with the second row of the irreducible representation. A similar statement applies to higher dimensional irreducible representations, but for uniform waveguides only one- or two-dimensional irreducible representations are encountered.}\]

\[\text{Suppose one finds a function } \phi \text{ which is a solution of the}\]

\[\text{\[\text{The fundamental assumption is adopted that the basic cause of mode degeneracy is (almost) always symmetry related. If a degeneracy is found which appears not to be symmetry related, it is termed an "accidental" degeneracy. In most cases, however, a deeper analysis reveals a subtle symmetry which produces the "accidental" degeneracy.}\]"
eigenvalue problem; \(\phi \) may be a single eigenfunction or some sum of eigenfunctions. The function \(\phi \) can be decomposed into a sum of functions, each of which belongs to one row of one of the irreducible representations of the symmetry group \(G \) by using the projection operators' of the symmetry group [8, pp. 39-41]. When the projection operator \(\rho_{jk}^{(l)} \) for the \(l \)th irreducible representation is applied to the function \(\phi \), it selects out that part of \(\phi \) which belongs to the \(k \)th row of the \(j \)th irreducible representation.

For example, suppose
\[
\phi = \sum_{i=1}^{N} \sum_{j=1}^{d_j} \psi_{m}^{(i)}
\]
where the sum on \(j \) is over the \(N \) irreducible representations of the symmetry group, \(d_j \) is the dimension of the \(j \)th irreducible representation, and \(\psi_{m}^{(i)} \) is an eigenfunction belonging to the \(m \)th row of the \(j \)th irreducible representation. Then
\[
\rho_{jk}^{(l)} \phi = \psi_{l}^{(k)}.
\]
For irreducible representations with \(d_j \geq 2 \), the eigenfunctions belonging to the several rows of the same irreducible representation will be degenerate with each other.

IV. APPLICATIONS TO UNIFORM WAVEGUIDES

In the brief discussion of Section III, it was stated that each eigenfunction of an operator can be associated with a row of one of the irreducible representations of the symmetry group to which the operator belongs. For uniform waveguides, the operator is \((\nabla^2 + k_r^2)\), and the symmetry group is either \(C_n \) or \(C_n^\prime \). The eigenfunctions are the \(E_z, H_z \) pairs for each mode of the waveguide. Thus each mode of a uniform waveguide can be identified with a row of one of the irreducible representations of the symmetry group of the waveguide. The mode classes of the uniform waveguide are defined on this basis. All of the modes belonging to the same row of the same irreducible representation are placed in the same mode class.

Thus the total number of mode classes for a uniform waveguide is equal to the total number of rows of all of the irreducible representations of the symmetry group of the waveguide. Further, every irreducible representation which has a dimension of two will have two mode classes associated with it whose modes are mutually degenerate. Since the symmetry groups \(C_n \) and \(C_n^\prime \) have no irreducible representations with dimension higher than two, there will be no symmetry-induced modal degeneracies higher than two. This discussion is the basis for [1, tables I and 2].

In [1, sec. V] waveguides with \(C_4 \) and \(C_6 \) symmetries were discussed as examples (see [1, figs. 5(a) and 6(a)]. Reference to tables of irreducible representations of the symmetry groups (see [6], [7], or [8], for example) reveals that symmetry group \(C_4 \) has two one-dimensional and one two-dimensional irreducible representations, and symmetry group \(C_6 \) has four one-dimensional and two two-dimensional irreducible representations. Therefore, waveguides with \(C_n \) symmetry have two nondegenerate mode classes and a pair of mutually degenerate mode classes, and waveguides with \(C_n^\prime \) symmetry have four nondegenerate mode classes and two pairs of mutually degenerate mode classes.

Using the projection operators introduced above, the azimuthal symmetry of the modes in any mode class can be determined. The azimuthal symmetry for each mode class is the characteristic that physically distinguishes the various mode classes. To exploit the projection operators of the symmetry group of the waveguide, one starts with a general representation for the longitudinal electric and magnetic fields in the waveguide and projects out that portion belonging to a particular row of a particular irreducible representation. The resulting expression is a representation of the modal field for the mode class associated with that row of that irreducible representation.

For waveguides with \(C_n \) symmetry, the exponential form of Fourier series is most convenient.

\[
E_z(\theta, r) = \sum_{m=-\infty}^{\infty} A_m(r) \exp (jm\theta)
\]
\[
H_z(\theta, r) = \sum_{m=-\infty}^{\infty} B_m(r) \exp (jm\theta).
\]

By applying the projection operators for each irreducible representation of a symmetry group \(C_n \), the general form for the longitudinal electric and magnetic fields for the modes in each mode class can be obtained. This process was followed to determine the Fourier series representations of [1, table III] and the waveguide sectors shown in [1, fig. 5 and table V].

For waveguides with \(C_n^\prime \) symmetry it is most convenient to write the Fourier series for the longitudinal electric and magnetic fields in the form

\[
E_z(r, \theta) = \sum_{m=-\infty}^{\infty} (A_m(r) \cos (m\theta) + C_m(r) \sin (m\theta))
\]
\[
H_z(r, \theta) = \sum_{m=-\infty}^{\infty} (B_m(r) \cos (m\theta) + D_m(r) \sin (m\theta)).
\]

By applying the projection operators for each irreducible representation of a symmetry group \(C_n^\prime \), the general form for the longitudinal electric and magnetic fields for the modes in each mode class can be obtained. This process was followed to determine the Fourier series representations of [1, table IV] and the waveguide sectors shown in [1, fig. 6 and table VI].

V. NONSPATIAL SYMMETRY

In [1, sec. VI], nonspatial symmetries were mentioned. The case of frequency-reversal symmetry will be briefly discussed here. This symmetry is based on the real-time-
function postulate (Carlin and Giordano [10]) which states that the response of a system to an excitation which is a real function of real time must also be a real function of real time. Landau and Lifshitz [11] have shown that for exp (jωt) time dependence this postulate requires that
\[e^* (−ω) = e (ω) \]
\[μ^* (−ω) = μ (ω) \]
for real ω.

The frequency-reversal operator \(P(ω) \) is defined by
\[P(ω)F(ω) = F^*(−ω). \]

Note that this is an antilinear operator, since
\[P(ω)[aF(ω)] = a^*P(ω)[F(ω)]. \]

The full symmetry group of any uniform waveguide of the type considered in these papers includes, in addition to the spatial symmetry operations, the frequency-reversal operation plus the product of this operation with each of the spatial operations. Thus the total number of symmetry operations of the group is twice the number of purely spatial symmetry operations; and half of the total number of symmetry operations are antilinear. Because of the antilinear nature of these operations, it is not possible to find matrix representations of the complete symmetry group that satisfy the desired combining rules. It is possible, however, to find a set of matrix representations which satisfy a different set of combining rules; this set of matrices is called a corepresentation [8, p. 144].

A discussion of corepresentations is not feasible here, and only the results of interest will be mentioned. It can be shown that for most purposes [8, p. 145], only the usual irreducible representations associated with the subgroup of the complete symmetry group containing the spatial symmetry operations need be considered, with a few restrictions. For those symmetry groups of spatial operations whose irreducible representations are real (this includes all the \(C_n \) groups), the inclusion of the frequency-reversal operation has no effect. For these cases the conclusions reached previously (ignoring the frequency-reversal operation) are all valid.

For those symmetry groups of spatial operations whose irreducible representations are complex, and where pairs of these irreducible representations are complex conjugates; then with regard to mode degeneracies, pairs of one-dimensional complex-conjugate irreducible representations act as two-dimensional irreducible representations. This applies to all of the \(C_n \) groups for \(n > 2 \), where irreducible representations with complex elements appear. Use of this artifice gives all of the results of interest to these papers without having to resort to the theory of corepresentations.

VI. CONCLUSIONS

The application of symmetry analysis to uniform waveguides enables one to: classify the modes of the waveguide into mode classes based on the azimuthal symmetry of the modal fields, predict the degeneracies of the various mode classes, describe the azimuthal symmetry of all the modes in a mode class, and determine the minimum waveguide sectors, and their associated boundary conditions, which are necessary and sufficient to completely determine the modes in a mode class. These results follow from a knowledge of the symmetry type of the waveguide under consideration, and they do not require a solution of a boundary-value problem.

The results obtained here are based on the theory of group representations, and in particular, on the set of irreducible representations associated with each symmetry group. Since a mode class can be associated with each row of each irreducible representation belonging to the symmetry group of the waveguide, the total number of mode classes is equal to the total number of rows of all of these irreducible representations. Further, the number of nondegenerate mode classes is equal to the number of irreducible representations with only a single row (that is, these representations are matrices of order one). The number of degenerate mode-class pairs is equal to the number of irreducible representations with two rows. Since no irreducible representations with more than two rows can occur for symmetry groups \(C_n \) and \(C_{2n} \), there can be no symmetry-induced mode degeneracies of higher order than two.

The use of the projection operators obtained from the irreducible representations enables one to project out from a general function of the azimuthal coordinate the specific azimuthal variation characteristic of all of the modes in a particular mode class. From this, one can find the azimuthal symmetry possessed by the modal electromagnetic fields of all the modes in the particular mode class. This, in turn, leads to the determination of the minimum waveguide sector, and its associated boundary conditions, which is necessary and sufficient to completely determine all the modes in that mode class.

REFERENCES