CAPILLARY WAVEGUIDE FOR LASER ACCELERATION
IN VACUUM, GASES, AND PLASMAS

MING XIE, Lawrence Berkeley National Laboratory, Berkeley, USA

Abstract

I propose a new method for laser acceleration of relativistic electrons using the leaky modes of a hollow dielectric waveguide. The hollow core of the waveguide can be either in vacuum or filled with uniform gases or plasmas. In case of vacuum and gases, TM_{01} mode is used for direct acceleration. In case of plasmas, EH_{11} mode is used to drive longitudinal plasma wave for acceleration. Structure damage by high power laser is avoided by choosing a core radius much larger than laser wavelength.

1 EIGENMODE PROPERTIES

The capillary waveguide considered here is made of a hollow core with an index of refraction ν_1 and radius R, embedded in a dielectric medium with an index of refraction ν_2. We are interested in the regime with $\lambda_1/R \ll 1$, where $\lambda_1 = \lambda/\nu_1$ and λ is the wavelength in vacuum. As a result, the EM wave in the core is dominantly transverse. Assuming $\sqrt{\nu^2 - 1} \ll \lambda_1/R$, where $\nu = \nu_2/\nu_1$, the eigenmodes of the waveguide can be solved following the same procedure by Marcatili and Schmeltzer [1].

Expressing the eigenmodes in the following form

$$\begin{align*}
\vec{E} & = \begin{cases} E_{im}(r, \phi) & \text{for transverse} \\
H_{im}(r, \phi) & \text{for longitudinal} \end{cases} e^{i(\beta_{im}z - \omega t - \alpha_{lm}z)},
\end{align*}$$

the eigenvalues are given by

$$\beta_{im} = \frac{2\pi}{\lambda_1} \left(1 - 2\frac{\gamma_g^2}{\nu^2}\right), \quad \alpha_{lm} = \frac{\gamma_g^2 R}{\nu},$$

where $\gamma_g = 2\pi R/U_{lm}\lambda_1 \gg 1$, and U_{lm} is the mth root of the equation, $J_{l-1}(U_{lm}) = 0$. There are three types of modes, corresponding to

$$\chi = \begin{cases}
\frac{1}{\sqrt{\nu^2 - 1}} & : TE_{lm} \ (l = 0) \\
\frac{\nu}{\sqrt{\nu^2 - 1}} & : TM_{lm} \ (l = 0) \\
\frac{\nu^2 + 1}{2\sqrt{\nu^2 - 1}} & : EH_{lm} \ (l \neq 0).
\end{cases}$$

For laser acceleration, we are interested primarily in two modes: TM_{01} mode for acceleration in vacuum and in gases, and EH_{11} mode for acceleration in plasmas. Correspondingly, we consider three cases: $\delta \nu_1 = 0$ when the core is in vacuum, $\delta \nu_1 > 0$ and $\delta \nu_1 < 0$ when the core is filled with gases and plasmas, respectively, where $\delta \nu_1 = \nu_1 - 1$ and $|\delta \nu_1| \ll 1$. It is noted that EH_{11} mode is often designated as HE_{11} mode elsewhere in literature, in this paper we follow the notation in reference [1].

The TM_{01} mode is given to the leading order by

$$\left(r \leq R\right): \begin{cases}
E_z = E_0 J_0(k_r r) \\
E_r = -i\gamma_g E_0 J_1(k_r r) \\
H_{\varphi} = E_r/Z_0,
\end{cases}$$

where E_0 is the peak acceleration field, E_0 the peak transverse field, Z_0 the vacuum impedance, and $k_r = (U_{m} - i\gamma_g)/R$. Only the dominant transverse components are specified for EH_{11} mode. For $r \geq R$, all fields have the radial dependence $\exp(ik_r r)/\sqrt{r}$, where leading order $k_r = k_1 \sqrt{\nu^2 - 1}$. A non-vanishing imaginary part of ν due to slightly lossy dielectric medium will give rise to exponential decay of fields in radial direction.

Notice EH_{11} mode is linearly polarized, while TM_{01} mode is radially polarized. However, when necessary, linearly polarized mode can be formed by a proper mixing of TM_{01} with another hybrid mode, EH_{21} mode, while preserving E_z of TM_{01} mode on the axis. For the three modes we have $U_{11} = 2.405$, and $U_{01} = U_{21} = 3.832$.

An important concern for using a waveguide for laser acceleration is power damage on the structure. To evaluate surface field, we expand the dominant transverse field at $r = R$ using the expression for k_r and obtain

$$\frac{E_s}{E_a} = \frac{\chi}{\gamma_g} |J_0(U_{01})| : TM_{01},$$

$$\frac{E_s}{E_0} = \frac{\chi}{\gamma_g} |J_1(U_{11})| : EH_{11}.$$

For TM_{01} mode, surface field is of the same order as the peak acceleration field. For both modes surface fields are much smaller than the peak transverse field.

Coupling between the waveguide modes to free space Gauss-Laguerre modes is very efficient. When focused at the waveguide input cross section, power coupling from TEM_{01} to TM_{01} reaches a maximum of 97% at $w_0/R = 0.56$, and from TEM_{00} to EH_{11} is 98% at $w_0/R = 0.64$, where w_0 is the Gaussian beam waist. Despite the fact that the modes are leaky the guiding can be quite effective with rather long $1/e$ power attenuation length $L_{\text{attm}} = \gamma_g^2 R/2\chi$.

2 ACCELERATION IN VACUUM

According to Eq.(2), phase velocity of the TM_{01} mode is larger than the speed of light, c

$$v_p = \frac{w}{\beta_{01}} = \frac{c}{1 - 1/2\gamma_g^2}.$$

We define an acceleration phase slippage length over which a relativistic electron, while gaining energy, slips a full π phase with respect to the acceleration wave

$$L_a = \frac{\lambda}{1/\gamma_g^2 + 1/\gamma^2}.$$
Over this distance, energy gain of the electron on-axis is
\[\Delta W_a = eE_a \int_0^{L_a} \sin(\pi z/L_a) dz = eE_a L_a T_a, \tag{10} \]
where \(T_a = 2/\pi \) is a reduction factor due to a \(\pi \) phase slippage during acceleration. Here we have neglected the small attenuation of the acceleration field over a distance \(L_a \). In parallel, let’s also define a deceleration length, \(L_d \), over which the electron slips another \(\pi \) phase while losing energy \(\Delta W_d = eE_a L_d T_d \), where \(T_d \) can be different from \(T_a \) if \(L_d/L_a \neq 1 \). The average acceleration gradient during a period of \(2\pi \) phase slippage is then given by
\[G = \frac{\Delta W_a - \Delta W_d}{L_a + L_d} = G_a \frac{1 - (L_d/L_a)(T_d/T_a)}{1 + L_d/L_a}, \tag{11} \]
where \(G_a = \Delta W_a/L_a = eE_a T_a \). To have net acceleration, the ratio \(L_d/L_a \) should be made small. This can be done by introducing a magnetic field during the half period of deceleration. The effect of magnetic field is to reduce longitudinal velocity of the electron such that it slips faster, thus taking less time or shorter distance, \(L_d \).

For simplicity, we assume the field is sinusoidal with a period \(\lambda_w \), \(B_0 = B_0 \cos(2\pi z/\lambda_w) \). The length \(L_d \) for a \(\pi \) phase slippage is then defined by
\[\sin(4\pi L_d/\lambda_w) = \pi, \tag{12} \]
where \(a_w = eB_0 \lambda_w/(2\pi \sqrt{2} mc) \). If we set \(\lambda_w = L_d \) then
\[L_d = \frac{\lambda}{1/\gamma_g^2 + 1/\gamma^2 + a_w^2/\gamma^2}, \tag{13} \]
and \(a_w \) is now determined by
\[a_w^2 = \sqrt{Q_1 + \sqrt{Q_1^2 + Q_2^2} + \sqrt{Q_1 - \sqrt{Q_1^2 + Q_2^2}}}, \tag{14} \]
with \(Q_1 = eB_0 \lambda^2/(4\pi \sqrt{2} mc) \) and \(Q_2 = (1 + (\gamma/\gamma_g)^2)/3 \). Due to longitudinal oscillation, \(T_d \) is different from \(T_a \)
\[T_d = \frac{1}{\pi} \int_0^\pi \sin[\theta - \kappa \sin(4\theta)] d\theta, \tag{15} \]
where \(\kappa = (1 - L_d/L_a)/4 \). The value of \(T_d \) varies in the range \(\{1.84 - 2\}/\pi \) for \(L_d/L_a \) in the range \(\{0 - 1\} \).

We have assumed the electron is decelerated on the on-axis value of \(E_a \), but as the electron is deflected off-axis, it will see a weaker field. The maximum transverse orbital offset in the wiggler field is \(\Delta X_{\text{max}} = \sqrt{2a_w \lambda_w/\pi \gamma} \).

Due to magnetic deflection, electron will radiate and lose energy. Energy loss per wiggler period is
\[\Delta W_s = \frac{8\pi^2 \alpha^2 c^2}{3} \left(\frac{r_e}{\lambda_w} \right) \frac{a_w^2 \gamma^2}{\gamma}, \tag{16} \]
where \(r_e \) is the classical radius of electron. The maximum possible energy that can be accelerated with this method can be determined by the condition: \(\Delta W_a > \Delta W_d + \Delta W_s \).

Transverse forces due to EM wave do not cancel to order of \(1/\gamma^2 \) in a waveguide mode, thus giving rise to either focusing or defocusing depending on acceleration phase, \(\phi_0 \), which varies constantly due to slippage. The corresponding beta function is
\[\beta_t = \gamma_g \lambda \sqrt{(\gamma mc^2/\pi e \lambda E_a \sin \phi_0)/(1 - (\gamma/\gamma_g)^2)}, \tag{17} \]
the term grouped in the first bracket on the right is the ratio of electron energy to its energy gain per wavelength.

3 ACCELERATION IN GASES

The phase velocity of the \(TM_{01} \) mode in gases is given by
\[v_p = \frac{\omega}{\beta_{01}} = \frac{c}{1 - 1/2 \gamma_g^2 + \delta \nu_1}. \tag{18} \]
The corresponding phase slippage length is then
\[L_{\text{slip}} = \frac{\lambda}{1/\gamma_g^2 + 1/\gamma^2 - 2\delta \nu_1}. \tag{19} \]

The phase matching condition is obtained by making the denominator zero, thus \(\delta \nu_1 = 1/2 \gamma_g^2 + 1/2 \gamma^2 \). This condition suggests an alternative way to maintain phase matching as \(\gamma \) increases during acceleration: instead of varying \(\delta \nu_1 \), one may change \(\gamma_g \) by tapering waveguide radius. The beta function in gases is smaller than that in vacuum by a factor of \(\sqrt{2} \) in the limit \(\gamma_g/\gamma \ll 1 \).

4 ACCELERATION IN PLASMAS

Wave equation for laser field propagation in weakly relativistic plasmas under cold fluid condition is given by
\[\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \Phi = \omega_p^2 \left[1 + \frac{\delta n}{n_0} - \frac{a^2}{2} \right] \Phi. \tag{20} \]
The plasma density modulation, \(\delta n/n_0 \), driven by the ponderomotive potential of a laser pulse, \(a^2 = |eE_0/mc^2| \), will generate a wakefield, \(E_w = -\nabla \Phi \), where the wave potential, \(\Phi \), is determined by
\[\frac{\partial^2}{\partial t^2} + \omega_p^2 \Phi = \omega_p^2 \frac{mc^2}{e} \frac{a^2}{2}. \tag{21} \]
To close the loop, \(\delta n/n_0 \) is given by Poisson’s equation:
\[\nabla^2 \Phi = (e/\varepsilon_0) \delta n/n_0, \]
where \(\nu_p \equiv \sqrt{\varepsilon_0 n_0/\varepsilon_0 m} \) and \(\varepsilon_0 = 1/\varepsilon_0 c \). The approach here parallels to that in reference [2].

Under the condition \(a^2 \ll 1 \), we will have \(\delta n/n_0 \ll 1 \). As a result, the second and third term on the right of Eq.(20) can be dropped and the wave equation is then decoupled from the plasma equations. The only effect of plasma on laser propagation is through an index of refraction \(\nu_1 = 1 - \omega_p^2/2a^2 \). Consider a capillary tube filled with a uniform plasma of density \(n_0 \), a laser pulse propagating through the waveguide will excite a wakefield with phase velocity...
equals the group velocity of the pulse. For EH_{11} mode, the group velocity is given by

$$v_g = \frac{d\omega}{d\beta_{11}} = \frac{c}{1 + 1/2\gamma_p^2 + 1/2\gamma_p^2},$$

(22)

where $\gamma_p = \omega / \omega_p \gg 1$. Introducing a variable $\zeta = z - v_g t$, Eq.(21) can be solved as

$$\Phi = -\left(k_p mc^2/e\right) \int_{\zeta}^{\infty} d\zeta' \sin[k_p (\zeta - \zeta')] \frac{a_0^2}{2},$$

(23)

where $k_p = \omega_p / v_g$. For a Gaussian pulse of EH_{11} mode

$$a^2(\rho, \zeta) = \frac{a_0^2}{2} J_0^2(U_{11}\rho) e^{-\zeta^2/2a_0^2 z/L_{attn}},$$

(24)

where $\rho = r/R$, the wake potential behind the pulse is

$$\Phi = -\Phi_0 J_0^2(U_{11}\rho) e^{-\zeta^2/2a_0^2 z/L_{attn}} \sin (k_p z - \omega_p t),$$

(25)

$$\Phi_0 = (\sqrt{2\pi} mc^2/4e) a_0^2 k_p \sigma_z e^{-\left(k_p \sigma_z\right)^2/2}.$$

(26)

Longitudinal wakefield is then given by

$$E_{wz} = E_{a} J_0^2(U_{11}\rho) e^{-\zeta^2/2a_0^2 z/L_{attn}} \cos (k_p z - \omega_p t),$$

(27)

and transverse wakefield by

$$E_{wr} = -2(\gamma_p/\gamma_g) E_{a} J_0(U_{11}\rho) J_1(U_{11}\rho) e^{-\zeta^2/2a_0^2 z/L_{attn}} \sin (k_p z - \omega_p t),$$

(28)

where the peak acceleration field, $E_a = \Phi_0 k_p$, is maximized if the laser pulse length is chosen according to the condition $k_p \sigma_z = 1$. From here on, we will use this optimal condition wherever it is relevant.

There are several characteristic length parameters for laser wakefield acceleration. First, the slippage length is

$$L_{slip} = \frac{\lambda_p}{1/\gamma_p^2 + \gamma_p^2 - 1/\gamma_p^2}.$$

(29)

Next, the pump depletion length, L_{pump}, is defined by the condition $W_l = W_w$, where W_l is the initial energy of the laser pulse given by

$$W_l = \frac{\sqrt{2\pi} J_1^2(U_{11}) R^2 \lambda_p E_0^2}{4Z_0c},$$

(30)

and W_w is the energy in the wakefield the laser pulse left behind as it propagates a distance L_{pump} given by

$$W_w = (\pi mc^2/4e)^2 \left[|a_0^2 \exp(1)| \right] a_0^4 \omega_p^2 R^2 L_{pump} [I_z + (\gamma_p/\gamma_g)^2 I_t].$$

(31)

The two terms above correspond to energy in the longitudinal and transverse wakefield, respectively, and the defined integrals have the value $I_z = \int_0^1 d\rho J_1^2(U_{11}\rho) = 0.0762$, $I_t = \frac{1}{2} \int_0^1 d\rho J_1^2(U_{11}\rho) J_1^2(U_{11}\rho) = 0.00635$. We then have

$$L_{pump} = \frac{4\sqrt{2\pi} J_1^2(U_{11}) \exp(1)/\pi^2}{a_0^2 (I_z/\gamma_p^2 + I_t/\gamma_p^2)}.$$

(32)

In calculating W_w we have left out the attenuation factor $\exp(-z/L_{attn})$ since it is characterized by a separate quantity, L_{attn}. Given group velocity dispersion, Eq.(22), a pulse will double its length over a propagation distance

$$L_{disp} = \frac{\sqrt{3} \gamma_p^2 \lambda}{\pi (1/\gamma_p^2 + 1/\gamma_p^2)}. \tag{33}$$

Finally, the beta function due to the transverse wakefield is

$$\beta_t = \frac{2(U_{11}) \exp(1/2\pi)^{1/4}}{\sqrt{\sin \phi_a a_0}}.$$

(34)

5 EXAMPLES

In the following examples we will use $\lambda = 1\mu m, \nu_2 = 1.5$, assume an initial electron energy of 1 GeV, set $\sin \phi_a = 1$, and neglect the small difference between T_a and T_d.

<table>
<thead>
<tr>
<th>Table 1. Laser Acceleration in Vacuum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P [TW]</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>R/λ</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>γ_g</td>
</tr>
<tr>
<td>410</td>
</tr>
<tr>
<td>B_0 [T]</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>a_w</td>
</tr>
<tr>
<td>6.2</td>
</tr>
<tr>
<td>L_{attn} [m]</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>β_t [cm]</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>$\Delta X_{\max}/R$</td>
</tr>
<tr>
<td>0.35</td>
</tr>
</tbody>
</table>

Acceleration in gases requires $\delta T_1 = 3.1 \times 10^{-6}$. Energy gain in plasmas is defined by $\Delta W_a = eE_a L_{slip} T_a$.

<table>
<thead>
<tr>
<th>Table 2. Laser Acceleration in Plasmas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P [TW]</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>W_l [J]</td>
</tr>
<tr>
<td>2.7</td>
</tr>
<tr>
<td>σ_z [μm]</td>
</tr>
<tr>
<td>0.28</td>
</tr>
<tr>
<td>λ_p</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>n_0 [10^{17}/cm^3]</td>
</tr>
<tr>
<td>1.1</td>
</tr>
<tr>
<td>R/λ</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>γ_g</td>
</tr>
<tr>
<td>392</td>
</tr>
<tr>
<td>β_t [cm]</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

6 CONCLUSIONS

I have introduced the concepts and techniques that will significantly advance the development of laser acceleration. This work was supported by the U.S. Department of Energy under contract No.DE-AC03-76SF00098.

7 REFERENCES
