


   

plasma accelerator field is the construction a linear accelerator (linac) based
on plasma acceleration which can be used for real applications, and thus we
must examine the possible performance in rigorous and understandable terms.

Radio-frequency (rf) linacs have a history of roughly 50 years. Their perfor-
mance estimation and design procedures are well established and described in
textbooks[2]. This paper aims to apply the design criteria and terminology of
the rf linacs to plasma accelerators. This will enable us to import procedures
developed in the field of rf linacs into the design of laser-plasma accelerators,
and will also be useful for rf accelerator physicists as a guide to understanding
plasma accelerators.

This paper consists of 8 sections. The next section (section 2) itemizes the dif-
ferences between plasma accelerators and conventional rf linacs. To clarify the
discussion, parameters of a laser wake-field accelerator (LWA) and a plasma
wake-field accelerator (PWA) are given in section 3. A physical picture of the
plasma wave propagation is then given in section 4. We then move the topic
to the decay of the plasma wave, which limits the number of bunches one
may accelerate. Section 5 describes the decay of plasma waves due to mod-
ulational instability and the collisions. The dependence of these phenomena
on the plasma temperature and plasma density is given. Section 6 describes
beam loading.

Based on these descriptions, we attempt to usefully import some notions fa-
miliar to accelerator physicists, i.e. the quality factor, the shunt impedance,
filling time, transit time factor, etc. in Section 7. The final section contains
some remarks on the preceding results.

2 Differences between Plasma Accelerators and RF Linacs

In this paper, we will regard plasma accelerators as a type of traveling wave,
constant-impedance linacs. It is useful to begin by considering where the dif-
ferences exist between plasma accelerators and conventional rf linacs.

The first difference is that the plasma accelerators have their driver inside the
accelerating structure, while in an rf linac, electromagnetic waves are fed from
outside of an accelerating structure. The drivers of the plasma accelerators
are either particle beams (PWA) or pump laser beams (LWA and BWA). The
notion of the filling time, the time necessary for drive waves to fill the acceler-
ating structure, is not applicable in wake-field accelerators (PWA and LWA),
which are impulsively excited in a time short compared to the wave period.
On the other hand, a resonantly excited system such as the BWA takes many
periods of the wave to excite to saturation. In this sense the BWA is closer
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Fig. 1. (a)Processes in an LWA. (b)Processes in a PWA.
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to conventional rf linacs than wake-field accelerators. It is useful to consider
whether this saturation time corresponds to a filling time of conventional rf
linacs.

In order to illuminate this point, it is useful to note that in all cases we are con-
sidering, the power being supplied to the accelerating plasma wave is, unlike
that of the rf linac, initially of a different form - it is purely electromagnetic,
whereas the plasma wave may be dominated by electrostatic components, and
is of a different wavelength. Furthermore, this power source is different for
the beam-driven acceleration (PWA) and the laser-driven acceleration (LWA
and BWA). In the laser-driven accelerations, optical energy is converted into
particle-beam energy, a form of wave mode conversion. On the contrary, a
PWA excites the plasma wave by a radiative process (plasma wake-fields are
referred to in the Russian literature as Cerenkov emission of plasmons[4]).

In conventional rf linacs, we have only to consider decay of the rf waves by
power absorption to the walls, as the power loss in the wave-guide system is
generally negligible. Also, the rf linac phase velocity can be carefully chosen
to be synchronous with the beam. Processes involved in plasma acceleration
pump transport and wave decay, shown in Fig. 1, are more complicated, how-
ever. Fig. 1(a) shows the physical processes involved in an LWA. First, unless
the pump laser is guided, it is diffracted, and the diffracting photons can excite
plasma waves only weakly. Additionally, an excited plasma wave in turn mod-
ulates the laser pulse waveform in self-modulation instability. In the present
paper we assume that these effects are avoided in the accelerator design, and
proceed to neglect these two processes. After wave excitation, we must con-
sider how much of the wave stored energy can be transferred to the acceler-
ating beam. The relevant processes here are beam loading (accelerating beam
wake-field excitation, shown by the second feedback loop in the figure), wave
decay, and wave breaking. Moreover, the accelerated driven beam overruns
the plasma wave in laser-driven accelerators. This phase slippage dictates the
maximum acceleration length of a module, and can be considered as analogous
to the transit time factor in an individual rf cavity.

Consideration of the rf cavity brings up one complication that the plasma
accelerator does not have but the rf linac does possess - the existence of
higher spatial harmonics, or nonsynchronous phase velocity waves, as well
as higher order longitudinal modes. Nonsynchronous spatial harmonics do not
contribute to the average acceleration of the particle, yet form a portion of
the stored energy in the linac. Also, both nonsynchronous spatial harmonics
and higher order modes contribute to the beam impedance, or the coupling of
the beam charge to its self-wakes.

A further difference between plasma accelerators and traveling wave rf linacs
is that the group velocity vg of the plasma waves left after wake excitation
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is near zero. This means that the energy needed to set up the wave can be
considered as ”lost” by the driver to the plasma. This resulting power loss
could be used to aid in defining, in analogy to the rf linac, a shunt impedance
for the drive.

Fig. 1(b) shows the case of a PWA, which is much simpler than Fig. 1(a). Nei-
ther diffraction nor phase slippage is typically involved, and the mechanisms
of pump energy loss listed on the left of Fig. 1(a) can be safely neglected if
proper design work is done, just as in the case of an rf waveguide distribution
system. Though tunneling ionization using drive beams is possible under cer-
tain conditions[5], it is generally believed that we have to prepare plasmas by
some other means in a PWA. The power associated with this process may be
important in considering a PWA linac efficiency.

3 Parameters of Plasma Accelerators

We now discuss specific plasma accelerator parameter sets to make the dis-
cussion concrete, an LWA and a PWA design summarized in Table 1. This
table also contains some parameters derived in later sections. In the LWA
case, we assume ideal optical guiding, so that the acceleration length is not
limited by the laser diffraction. In the parameters of the table, the acceleration
length is limited not by the pump depletion but by the phase slippage between
the electrons and plasma waves. This is typical of laser-based accelerators in
high-density plasmas, but stands in contrast to most rf linacs.

The acceleration gradient of the LWA in the table is based on the linear
model[1];

eEz0 =
2π1/2mc2a0

σzL exp(1)
. (1)

Table 1 assumes a nonlinear PWA scheme in a blow-out regime, whose param-
eters are scaled from those close to those given by simulation as discussed in
[3]; nb/np = 4 and kpσr = 0.51 are able to excite a wake-field eEz0/meωpc ∼ 1.
The following expression based on a generalized Cerenkov radiation model[4]
also gives another good estimation of this wake-field amplitude,

eEz0 = 4πr2
emec

2Nbnp =
e2Nbk

2
p

4πε0
. (2)

This equation, together with the parameters in Table 1, gives eEz0 = 2.85GeV/m,
which is nearly identical to the linear wave-breaking amplitude 3.01GeV/m,
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Table 1
Test parameters of an LWA and a PWA.

driver parameters LWA PWA unit

Laser wavelength λL 1 µm

Driver energy/pulse WD 1 27 J

FWHM pulse duration 2.35σzL/c 83.2 fs

Drive beam bunch length σzb 360 µm

Laser channel radius rL = 2σrL 33.4 µm

Drive beam radius rb = 2σrb 110 µm

Laser pulse power PL 12 TW

Laser Intensity IL 3.4× 1017 Wcm−2

Laser strength parameter a0 0.5

Drive beam charge eNb 9 nC

Drive beam energy 3 GeV

Acceleration gradient Ez0 15.5 2.25 GeVm−1

plasma parameters

Density np 1018 1015 cm−3

Plasma frequency ωp 5.6× 1013 1.8× 1012 s−1

Plasma temperature Te 100 1 eV

accelerator parameters

Pump depletion length Lpmp 0.55 2.6 m

Dephasing length Ldphs 18.6 mm

and close to the PIC simulation value of 2.25 GeV/m. The overestimation of
the field given by eq. (2) is due to the effective plasma density being lowered
in the process of beam channel rarefaction.

Table 1 has an asymmtery in driver energy per pulse between LWA and
PWA. As these paramter sets represent the reasonable design work already
made[3],[7], we have not tried to make them symmetrical. This asymmetry is
as much due to working with larger dimensions in the PWA case as it does
anything else. The linac for this PWA is easily buildable

In the case of the PWA, the driving beam and thus the plasma wave phase ve-
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Fig. 2. A plasma wave before (right) and after (left) propagation of certain distance.
Amplitude decrease occurs due to (a) pump depletion, (b) dephasing and (c) decay
of plasma wave occurs.

locity are ultra-relativistic, as is the accelerating beam. The accelerating phase
distribution does not change much and may be chosen to provide a desired
combination of high gradient, efficiency, and small energy spread, subject to
well-known constraints arising from beam-loading considerations.

The laser energy in the table is already commercially available. Though ideal
optical guiding is assumed, this paper clarifies that the optimum acceleration
length lies around 20 mm, which is not very far from the experimental results
obtained so far[8]. This is the reason why the plasma density assumed in the
table is 1018cm−3. Certainly a less dense plasma eases the pump depletion
length and dephasing length, but it instead lowers the acceleration gradient
and increases the acceleration length or the guiding length. Reliable techniques
for guiding the pump laser pulse a long distance are still under development,
but some show considerable promise[9].

Use of hydrogen is assumed in the table. It is assumed that tunnel-ionization
creates plasmas in the LWA. Though some data of the plasma temperature
created by tunneling are available[10], the conditions are different from those
assumed here. The numerical values of plasma temperature in the table have
ambiguity.

4 Propagation of Plasma Waves

This section summarizes the evolution of the plasma wave, with an initial
concentration on the more complicated case of an LWA. Fig.2 shows an LWA
plasma wave before and after propagation of certain distance. The ampli-
tude of the wavefront decreases (”a” of Fig.2), because ionization and wave-
excitation consume the laser energy as it proceeds. If the bunches are acceler-
ated to a speed greater than the plasma wave phase velocity, they slip forward
from the optimum phase. The effective acceleration rate they obtain decreases,
by an amount that is indicated as ”b” in Fig.2. The amplitude of the plasma
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wave following the wavefront also decays in time, which is shown as ”c” in
Fig.2. The effects of this process are discussed in section 5.

To begin with a simple model for energy and power use in an LWA, we assume
that the laser or beam energy of the driver is converted to the plasma wave
without loss. Also assuming a constant fractional rate of amplitude loss by
the driving laser pulse, we have Ez(z) = Ez0 exp[−z/Lpmp]. To derive the
relationship between the amplitude of the the excited wave and this decay, we
use an energy balance argument. We begin by writing the wave energy per
unit length as

W (z) =
1

2
ε0Ez(z)

2πr2
w =

1

2
ε0E

2
z0πr

2
w exp

[
− 2z

Lpmp

]
, (3)

where rw is the effective wave radius. In the case that the beam is narrower
than the plasma skin-depth k−1

p , it is approximately given by rw ' k−1
p . If the

laser radius in an LWA rL > k−1
p or beam radius in a PWA rb > k−1

p , then
the effective wave radius rw takes on this larger value. In this case, however,
the accelerating beam, which is usually radially smaller than the driver, may
not efficiently load the wave, as energy can only be extracted from the wave
over a region r < k−1

p . For the PWA we do not have to even consider this case
in the present study, as we are restricting ourselves to the nonlinear blow-out
regime, in which case we must have rb < k−1

p .

Equating

WD =

∞∫
0

W (z)dz,

we have

Lpmp =
2WD

πε0r2
wE

2
z0

.(LWA) (4)

The parameters given in Table 1 yield Lpmp =0.546 m in the LWA case. For
the PWA, energy balance arguments give a depletion length straightforwardly,
since the peak deceleration in the driver is ∼ eEz0/2,

Lpmp =
2γmec

2

eEz0
.(PWA) (5)

For our PWA example, the pump depletion length is 2.6m.

The phase velocity of the plasma wave in an LWA and a BWA is equal to the

8



   

group velocity of the laser, which is given by

vp
c

=

1− (λL
λp

)2
1/2

. (6)

The LWA parameters in Table 1 gives vp/c = 0.999552. Because electrons
are easily accelerated to nearly the speed of light c, they outrun an LWA
plasma wave, as shown in Fig. 2. If we assume that the plasma frequency is
not changed to provide phase adjustment, the effective acceleration gradient
decreases gradually as the particles slip from the optimum phase for acceler-
ation. Though the mechanism is quite different, it causes an effect similar to
pump depletion, in that the average acceleration is smaller.

The effective strength of the plasma wave on which an accelerating particle
surfs is given by cos(ωpt − kpz), where ωp/kp = z/t = vp. The accelerated
particles, on the other hand, approximately satisfy the relation z = ct, and
the phase slippage is constant. The phase of the wave then becomes

ωpt− kpz =

(
1

c
− 1

vp

)
ωpz = −1

2

(
ωp
ωL

)2 ωpz

c
.

Effective electric field the particle feels is

Ezeff (z) =Ez(z) cos

[
−1

2

(
ωp
ωL

)2 ωpz

c

]
(7)

=Ez0 exp

[
− z

Lpmp

]
cos

[
1

2

(
ωp
ωL

)2 ωpz

c

]

=Ez0 exp

[
− z

Lpmp

]
cos

(λL
λp

)2
πz

λp

 .

The gradient becomes zero at the phase (λL/λp)
2(πz/λp) = π/2. If we define

the dephasing length Ldphs from this relation, it is

Ldphs =
λp
2

(
λp
λL

)2

. (8)

This limit is 18.6 mm in our LWA parameters. In the case of the ”full” surf (a
half wave of slippage, and ignoring pump depletion), the average acceleration
in a section of LWA is merely 2/π times the peak acceleration.

The energy gain is shown as a function of acceleration length for various
Lpmp values in Fig. 3. It is maximum at (λp/2)(λp/λL)2, the dephasing length
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Fig. 3. Energy gain of an LWA as a function of acceleration length for various Lpmp
values.

defined above. The parameters in Table 1 gives the energy gain of 183MeV at
Ldphs = 18.6 mm for the LWA. It should be noted that in the LWA we must
take into account the depletion of the pump in calculating the acceleration
gradient along the wave axis, while in the nonlinear PWA we do not, as the
gradient is strongly dependent only on the charge in the beam, not the energy
of the beam, until the energy is nearly fully depleted.

Our view of phase slippage also ignores possible dynamical changes in the
driving laser beam, in which the pulse changes its spatio-temporal character-
istics by self-focusing, erosion, or other higher order effects. These effects, like
the emittance-driven erosion of the driving electron beam head in the PWA,
must also be considered in the final analysis of a plasma accelerator design.

5 Plasma Wave Decay

The decay of the plasma wave has as yet been neglected in this treatment. We
can identify at least three decay processes: collisional damping, modulational
instability and Landau damping. Among them, the Landau damping occurrs
when the plasma electrons have drift velocities near the plasma wave velocity.
This can be serious when the plasma electrons are trapped and accelerated to
near wave-breaking, as is the case in the experiments using lasers with powers
exceeding 20TW[11]. The LILAC, Laser-Injection Laser Accelerator, may also
display this behavior[12]. In this regard, if we change our point of view, it
is possible to consider the plasma wave decay due to the beam loading as a
generalized the Landau damping[13]. It will be discussed in section 7, and thus
unnecessary to discuss further this damping here.

The modulational instability has been studied by French group both theoret-
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ically[14] and experimentally[15]. In the strong field vL/vte > (ωpe/ωpi)
1/3 as

in our case, the decay constant is given by[14]

γmod =
(

3

2

)1/4

ωpi

(
ωpevte
ωpivL

)1/2

, (9)

where

ωpi =

(
Z2nie

2

miε0

)1/2

, vte =

(
kBTe
me

)1/2

, vL =
eEzc

meωpe
.

We employ the practical expression of F. Chen[16] in order to derive the
collisional decay constant. It is given by γcol = (νie+νee)/2, where νie ∼ νeeZ/2,
and

νee[s
−1] = 5.0× 10−6n[cm−3] ln Λ

Te[eV]1.5
. (10)

Fig.4 shows the plasma density dependence of these two decay constants under
the assumption ln Λ = 20 and vL = 0.2c for the cases of three plasma tem-
peratures. The decay constant due to modulational instability is an increasing
function of the electron temperature, while the collisional decay constant is a
decreasing function. Which decay mechanism is dominant depends on plasma
density and temperature.

The analyses above apply only to linear waves. It is, howeve,r likely that the
wave decay in an LWA is more serious than in a PWA which is operated in a
low-temperature, low-density plasma. If the temperature exceeds 10 eV in an
LWA, the decay due to the modulation instability is dominant. The calculated
decay constant due to the modulational instability is γmod = 2.00 × 1012s−1

at Te =10eV and γmod = 3.56 × 1012s−1 at Te =100eV in a plasma with
np = 1018cm−3 of table 1. These are 149µm and 84µm in length, respectively,
and 500 fs and 280 fs in time, respectively, while the plasma oscillation period
is 111 fs in our parameters. In some LWA experiments, however, the plasma
wave decay constant is much longer than the theoretical prediction in this
section[8]. This is almost certainly because the velocity of the electron quiver
in the laser and wake-field regions is larger than the thermal velocity in the
plasma[17]. This condition, which must lower the collision frequency, violates
the assumptions[16] made in deriving γcol. More study of this issue is necessary.

Because of the plasma wave decay, it is difficult for an LWA to produce multiple
bunches with homogeneous bunch energies, even if the beam loading is absent.
A BWA, which is essentially a forced oscillator akin to an rf cavity is free
from this problem. The possible solution for this problem in the wake-field
accelerator case is then the use of multiple drivers, albeit only for linear wave
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Fig. 4. Decay constant of plasma wave due to the modulational instability (solid
lines) and collisions (dashed lines) as a function of plasma density and plasma
temperature.

amplitudes. Optimization of the driver waveforms and amplitudes of these
multiple drivers in the wake-field accelerators have been discussed[18],[19].

6 Beam Loading

Taking the beam loading into account, we write the electric field of an rf
linac as Ezeff (z) = (Ez − IZs)(1− exp[−z/Lpmp]). The term IZs on the right
of this expression gives the beam loading. In plasma accelerators, we have
not yet clarified the definition of the shunt impedance Zs, so we will not use
this parameter in this section. This problem of defining the shunt impedance
will be discussed in the next section, after the mechanism of beam loading is
examined.
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phase of laser wakefield/π 

Fig. 5. Wake-field amplitude in the LWA as a function of the phase of the laser
wake-field. Dashed line: amplitude in the absence of beam loading, dotted line:
wake-field excited by driven beams and solid line: total wake-field.

Fig. 5 shows wake-fields in an LWA; the fields caused by the laser, and that
caused by driven bunches and their total resultant longitudinal field. Because
the driven beam has the light velocity, the plasma wave excited by the beam
also has the light velocity, which is faster than the phase velocity of the plasma
wave excited by the laser, in spite of the fact that the plasma frequencies are
same in two waves. The negative wake-fields of preceding bunches build up
in-phase on the following bunches. One-dimensional simulation of the beam
loading taking account of this fact is found in ref.[7]. This effect has no ana-
logue in rf linacs, where the excitation due to the beams is of a single phase
velocity at a given location in the device. Likewise, in a PWA, since both the
driver and accelerating beam are ultra-relativisitic, the fields of driver and
driven beams are in phase.

Beam loading calculations have been already given by Katsouleas[20] in the
case of linear plasma waves, and Rosenzweig[6] in the case of nonlinear plasma
waves. The linear theory predicts that amplitude of the decelerating field
caused by the beam loading of N particles should be equal to the plasma
wake-fields induced by the N particles in its absolute value;

eEz0 =
8remec

2N

r2
b

[
1− 4

k2
pr

2
b

+ 2K2(kprb)

]
cos(ωpt− cz), (11)

where rb denotes the beam radius. This equation ignores the functional depen-
dence of the beam-loading field on the radial position, an effect which is strong
in linear-regime plasma accelerators, and nearly non-existent in rf linacs.

In the nonlinear blowout regime, which is much more analogous to the rf linac
from the view-point of the form of the fields, the beam-loading longitudinal
fields are in fact independent of r inside of the plasma electron rarefaction
volume. In this case, the beam loading amplitude is given by eq. (11), by
substitution of rb = 2−3/2k−1

p , as suggested by eq. (2).

These wake-fields should be much weaker than that excited by the driver,
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and are added by linearly superposition to these main accelerating fields. This
calculation has been performed to find optimum phases for accelerating, with
maximum average gradient and minimum energy spread, analytically for the
linear regime[20] and computational for the more complicated case of the non-
linear regime[6]. In the case of linear waves, as well one-dimensional nonlinear
waves[22], a useful relationship has been deduced between the efficiency η of
wave energy extraction for a single monoenergetic bunch and the fraction of
the maximum available field η as η = 1− ε2. Thus for 20 % energy extraction,
the beam can load at 96% of the maximum acceleration available.

In rf linacs with continuous rf excitation (filling), it is common to use a pulse
train to effectively load the structure, in that total power due to wall losses
can be made small (especially in the case of superconducting linacs) compared
to the accelerated beam power. For wake-field accelerators with impulsive
excitation, this is not possible. For bunch trains spaced at integer multiples
of the plasma wavelength, the average energy gain and energy spread would
differ from bunch to bunch. It is possible, however, to accelerate bunches of
equal energy gain if the bunch spacing is chosen to be slightly different than
this, to choose the phase with a higher fraction of the maximum acceleration
in the wave[20]. In this case it is only possible to make the relative energy
spread of the bunches the same if the bunch charge is also varied along the
train.

7 Analogies to Linac Parameters

7.1 Quality factor

There are many equivalent possible ways of defining the Q, the quality factor
of a resonant system: through the width of resonance, consideration of stored
energy and power loss, the transient approach to equilibrium, and the tran-
sient decay of the excitation. As we are interested in non-steady state systems
in the time domain, we concentrate here on the decay-based definition. What-
ever the linear plasma acceleration scheme is, the evolution of the electric
field associated with the linear plasma wave is expressed by the second-order
differential equation;

d2Ez
dt2

+ γw
dEz
dt

+ Ezω
2
p = f(t), (12)

where γw is the sum of all of the wave decay constants. The driving term
f(t) on the right hand side of this expression generally describes the wave
excitation mechanism, which may be PWA, LWA and BWA.
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In the absence of the driving term, the solution of the equation is a decaying
exponential with a decay constant, which defines Q

Q =
ωp
2γw

, (13)

from the coefficients of eq.(12). This is independent of the exciter. The Q
value of a plasma with Te=100eV and np = 1018cm−3, the parameters for the
LWA in table 1, is only 7.89. This value is surprisingly smaller than those of
standard S-band rf linacs, where Q ∼ 13, 000[21], but we must recall that our
estimate of the decay constant errors is on the high side, by perhaps a large
factor.

The definition of Q given in eq. (13) has a factor of 1/2 in it which is due to
consideration of the wave amplitude decay. If one considers the stored energy U
(proportional to the amplitude squared), then the decay constant for governing
power loss P is ωp/γw, and we obtain the usual stored energy-based definition,
Q = ωpU/P .

In the case of the PWA given in Table 1, blowout is assumed. Therefore the
wave breaks after one-half of an oscillation, thus rendering the definition of Q,
which assumes slow decay, meaningless. A vivid analogy may be drawn to a
pathological mode of running an rf linac - the cavity suffering a catastrophic
breakdown after every rf fill.

Wave decay, analogous to the wall losses in rf cavities, is not the only one
source of wave power loss, however. There is also the problem of beam loading
losses, which as we have already noted is also a familiar effect in multi-bunch
train operation of rf linacs. Often these two losses are lumped, and the Q
values defined by each loss mechanism, Qw and QBL, added in reciprocal to
give a quality factor in the beam-loaded case,

1

Q
=

1

Qw

+
1

QBL

. (14)

The ”filling” is the inverse process of wave decay. However, we cannot ob-
serve ”filling” in wake-field accelerators consisting of a single driver and driven
beams. In the case of an LWA with multiple drivers (or driver train), the ac-
celeration gradient is decided by balance between plasma wave decay and
excitation by drivers. The finite time which is necessary for the plasma wave
to reach its equilibrium (by assumption, not nonlinear saturation) is indenti-
cal to the decay time. In the case of a BWA, one must look more carefully at
the dynamics of resonant excitation, which are also analogous to the standing
wave accelerator cavity behavior, but differ in that they entail mode conver-
sion. This subject is outside of the scope of the present paper.
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where I(τ) = cλ(τ) is the current flow. The total loss factor is defined by

k` =
∆U

q2
. (20)

In an rf structure, the energy extracted from the leading bunch goes into a set
of resonant modes of the structure and is not fully available for acceleration of
the trailing bunch. To the contrary, one expects that only a single mode, the
oscillation of the plasma frequency ωp, will be excited in a cold plasma acceler-
ator and the wake function of eq.(15) is simply given by W (τ) = W0 cos(ωpτ).
If we consider a bunch distribution of the simple uniform rectangular shape
with width T , the loss factor of eq.(20) becomes

k` =
W0

2

(
sin(ωpT )

ωpT

)2

, (21)

which reduces to

k0 = lim
T→o

k` = W0/2,

in the limit of zero pulse width. This is a standard result - the average bunch
energy loss for a beam short compared to the relevant mode wavelength is a
factor of 2 smaller than the amplitude of the wake-field behind the bunch.

In a standard rf cavity the total loss factor is related to the impedance (Z/Q)n
of the n-th resonant modes of the frequency ωn by the relation k` =

∑
n k`n =∑

n(ωn/4)(Z/Q)n. For any loading (accelerating beam) in a plasma wave, the
total loss factor definition reduces to a single mode and allows the computation
of the plasma impedance (or the beam impedance from the accelerator physics
viewpoint) from the wake potential of the drive beam as

Zb =
Z0[1− (vg/c)]

2Qw

' 2k0

ωp
=
W0

ωp
=
Ez0L

qωp
. (22)

The factor [1− (vg/c)] in this numerator of the right hand side, which is near
unity in plasma waves, is due to the possibility that wave energy may be
partially catching up to the the beam as it traverses the plasma. The beam
gives up less energy per unit length to set up its wake-field in this case, and
the impedance goes down accordingly.

Combining Eqs. (22) and (13), we have the impedance

Z0 = 2QwZb =
Ez0L

qγw
, (23)

17



   

which is called shunt impedance in linac textbooks. This expression is of gen-
eral validity, but is not useful because we have not specified the dependence
of Ez0 on plasma parameters. In this regard, it should be noted that beam
wake-fields in the wide-beam regime, kprb > 1, depend explicitly on the trans-
verse dimensions of the beam. Because of this, one cannot rigorously use the
definition of the structure (shunt or beam) impedance. It is in fact simpler
to define the impedance in the blow-out regime, or any case where kprb < 1,
because the wake-fields are independent of rb, and depend only on the plasma
parameters.

For the blow-out regime, there is one complication in this argument, that
the wave response is nonlinear, and so the effective plasma parameters are
dependent on the amplitude driving beam current. This amplitude dependence
is fairly weak, however, as was discussed in relation of eq. (2). Making use of
eq. (2) to relate Ez0 to the plasma frequency, we have an expression for the
acceleration gradient (voltage per unit length) left by a beam short and narrow
compared to plasma skin-depth to be proportional to the current I = qωp =
eNbωp. Thus the impedance per unit length that an electron beam beam sees
in a plasma is

Z ′b =
Ez0
eNbωp

∼ kp
4πε0c

. (24)

The parameters of the PWA in table 1 give Z ′b = 138 kΩ/m. Of course, use of
the term ”beam impedance” in this case is much more relevant than ”shunt
impedance”, because the blow-out wave exists for only half of an oscillation in
the nonlinear PWA. It should also be noted that these results can be approx-
imately applied to the case where kprb > 1, if one substitutes kp = 23/2/rb, to
obtain the nonstandard shunt impedance which depends on beam radius.

The discussion of the shunt impedance in the case of the LWA is not relevant,
unless a pulse train is used to excite the plasma (which is basically the physical
situation of the BWA) as purpose of the shunt impedance is to allow calcula-
tion of the equilibrium field due to resonant excitation. Wake-field accelerators
by the shock excitation of the system, which is never in equilibrium!

7.3 Phase slippage and transit-time factor

If the velocity of the plasma wave is different from the velocity of driven
bunches, as is the case of laser-driven accelerators, the bunches slip in phase
with respect to the plasma wave. The total phase slip in length Lac for an
electron bunch with velocity ∼ c is described by the parameter[24]

δ = ωpLac(1/vp − 1/c). (25)
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If we can approximate that the acceleration gradient Ez0 is constant and if
δ ¿ 1, we expect the acceleration field as

Ez = Ez0
sin(δ/2)

δ/2
= ET, (26)

where T = sin(δ/2)/(δ/2) has a similar form of the transit-time factor in
an Alvarez linac. Using this parameter, we can define the effective transit-
time factor Zeff = T 2Z0. In the simple, uniform slippage case of the LWA,
the square of the transit time factor is obviously the average of cos 2 over a
have period, T 2 = 0.5. This is the identical result as is obtained in the case
of a pure fundamental spatial harmonic rf cavity system. For shorter LWA
sections, the transit time factor will be generally larger, as less time is spent
in low acceleration phases. Note that this definition will yield a transit time
factor which is typically close to unity in the PWA case, and in the case where
the density is varied to match the phase of the wave to the accelerated particles
in the LWA.

8 Remarks

The introduction of linac terminology in the previous section has some utility,
not the least of which is to conceptually link the traditional approach to
accelerators to the new technology of plasma-based devices. There are a few
final points worth discussing in regards to the success of this exercise. The first
is that the shunt impedance is of limited use in discussing plasma wake-field
accelerators, for the many reasons listed above. The BWA could be usefully
described in this way in principle, but in practice, the beatwave is a driven
oscillator system in which saturated equilibrium is not determined by losses,
but by nonlinear detuning of the resonance. Analogous effects in rf linacs are
more rarely encountered, but we could include in this category the phenomena
of Lorentz force detuning in superconducting cavities, and dark-current beam
loading. It should be reemphasized that the shunt impedance definition is
dependent in turn on an accurate determination of the Q of the system, which
for the large amplitude plasma motion considered here is not yet possible.

The concept of the beam impedance, on the other hand, was readily gen-
eralizable to the case of plasma accelerators. This impedance allows quick
comparison of plasma to rf structures, as well as determination of wave ampli-
tudes driven by PWA drivers, beam loading and efficiency of energy extraction
by accelerating beams from the plasma wave, which are related to the num-
ber of driven bunches acceleratable. The excitation of plasma waves by the
drive beam in the PWA causes energy loss (self-beam loading), with analogous
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mechanism in the LWA being pump depletion. Because the LWA is neither
resonant, nor based on current, this excitation is not described well by ei-
ther beam or shunt impedance concepts. Despite this, pump depletion is well
understood, so that the accelerating field excited in an LWA can easily be
predicted for design purposes.

Single drive pulse wake-field accelerators are very efficient (near unity) at
exciting waves, with losses coming into consideration only in the discussion
of multibunch train acceleration. While acceleration of bunch trains may be
desirable from the point of view of mitigating the beam-beam interaction in
linear colliders, in this type of accelerator the efficiency is not enhanced. Thus
a major motivation for bunch train acceleration in rf linear colliders is lost.
Nevertheless, single bunch beam-loading efficiencies are not too small, with
at least 20% easily contemplated. These are not the only efficiency factor one
needs to consider in collider design, however[25]. There is also the efficiency
from wall-plug electric power to either laser pulses (in a BWA and an LWA)
or drive beams (in a PWA).

The wall plug efficiency of T3 lasers used in an LWA is less than 10−4 at
present. This is small enough to discourage LWA collider design, but may be
significantly improved in the future. The PWA has a much higher efficiency
than laser accelerators at the present, because of the possibility of obtaining
wall-plug efficiencies in the 40% range using a heavily beam-loaded multi-
bunch drive rf linac([3]).

The present paper is the first to attempt discussion of the plasma wave decay
from the viewpoint of the accelerator design, which is serious to obtain multiple
bunches with homogeneous energy. Although use of the multi-pulse drivers
has hitherto been proposed only from the viewpoint to get high acceleration
gradient, it is also rather useful to get the homogeneous beam energy.

Previous experiment have attained 300MeV energy gain in less than 20 mm
using a 2TW laser[8]. The discussion in Section 6 of this paper indicates a
calculated acceleration length of less than 20 mm, but, also predicts, even us-
ing a laser with power exceeding 10 TW, an optimum energy gain of around
170MeV. Thus we have a mixed performance in our ability to perform accu-
rate predictions in the proof-of-principle experiments[8]. Improvement of the
calculations and terminology given in this paper will clearly be dependent
on a careful understanding of experiments, as well as analytical theory and
simulations.
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