More about
IP Beam sizes...
Lattice Functions & Beam Emittances

- IP
 - (Aug-07):
 - $\beta_y, H \approx 10.8$ mm, $\beta_y, L = 10.9$ mm,
 - $\beta_x, H = 35$ cm, $\beta_x, L = 23$ cm
 - Aug-06
 - HER: $\beta^* x \approx 74$ cm, $\beta^* y \approx 11$ mm
 - LER: $\beta^* x \approx 21$ cm, $\beta^* y \approx 10$ mm

- **Beam emittances:**
 - MIA
 - HER $\epsilon_y = 0.3$ nmr, $\epsilon_x = 60$ nmr
 - LER $\epsilon_y = 0.8$ nmr, $\epsilon_x = 40$ nmr
X Beam sizes

- HER emittance and HER β_x^* are larger than LER's (usually) => HER size > LER size
 - MIA emittances:
 - HER σ_x: 145 μm, LER σ_x: 96 μm (at low beam current)
 - Add dynamic β_x: β_x^* down, ε_x up. Net effect is σ_x down.
 - "Scenario 2": HER σ_x: 205 μm (@low current).
 - At high current (1910 on 2600 mA):
 \[\sigma_{x,\text{HER}}: 147 \mu m, \sigma_{x,\text{LER}}: 71 \mu m, \sigma_{x,\text{lum}} = 64 \mu m \]
 \[\varepsilon_{x,\text{HER}}: 221 \text{ nmr}, \varepsilon_{x,\text{LER}}: 49 \text{ nmr} \]
 - linear dynamic β only!
 - The x size mismatch was as large or larger in Aug-06!

\[\sigma_{x,L} = \frac{\sigma_{x,+} \sigma_{x,-}}{\sqrt{\sigma_{x,+}^2 + \sigma_{x,-}^2}} \]
Dyn. β Formulae

- **Dynamic β:**
 \[\beta = \beta_0 \frac{\sin \mu_0}{\sin(\mu_0 + \delta \mu)} \]

- **Dynamic ε:**
 \[\varepsilon = \varepsilon_0 \frac{1 + 2\pi \xi_0 \cot \mu_0}{\sqrt{1 + 4\pi \xi_0 \cot \mu_0 - 4\pi^2 \xi_0^2}} \]

Hirata & Ruggiero,

CERN
Y beam sizes

- MIA-derived models usually give HER ≤ LER \(y \) emittance.
- SLM and SXM data tend to be inconsistent with observed luminosity behaviour and the MIA-model prediction of emittance.
 - Finite resolution (pedestal, add in quadrature)
 - most likely present in HER Interferometer
 - Calibration (scale factor) (should not be!)
 - Local coupling (rotation of beam planes)
 - We can try to compare \(1/\Sigma_y \) to \(L_{\text{spec}} \) & make them agree…
The trend in L_{sp} is now reflected in the trend of $1/\Sigma_y$!
Y Beam sizes adjusted, @ Monitor

Scale LER SXM by 0.4
(LER Y change too large for L_{sp} change)

Subtract 0.17 mm resolution from HER SLM
(HER size change too small for L_{sp} change)
• With these “adjustments”, we get
 – HER: $\varepsilon_y \approx 1.6 \ldots 1.9$ nmr, LER: $\varepsilon_y = 0.8 \rightarrow 1.5$ nmr
• @ IP:
 – HER: $\sigma_y \approx 4.1 \ldots 4.6$ μm, LER: $\sigma_y \approx 3 \rightarrow 4$ μm
 – … somewhat small compared to Σ_y scans.
Raw SXM Data for Expt.