B Physics and CP Violation

Matthias Neubert - Cornell University

(neubert@mail.lns.cornell.edu)

- I. Introduction
- II. Charmless Hadronic Decays
- III. CP Violation in Mixing
- IV. Looking Ahead... Beyond the Standard Model
- V. Summary

Thanks to my collaborators: M. Beneke, G. Buchalla, Y. Grossman, A. Kagan, C. Sachrajda and J. Rosner

(SLAC Summer Institute - Topical Conference - 23 August 2000)

Part I: Introduction

The Role of Flavor Physics

- * flavor sector contains most of the undetermined parameters of the SM: Yukawa couplings
 - → determine quark masses and mixings, lepton and neutrino masses and mixings, CP violation
- * not as well tested as the gauge sector of the SM
 - quark mixings correctly described by CKM model?
 - CKM phase only source of CP violation?
 - hierarchical patterns caused by new symmetries?
- * CP violation in SM is not sufficient to explain baryon asymmetry in Universe
- * need New Physics, but many possibilities:
 - TeV scale physics? GUT scale physics?
 Physics at an intermediate scale?
 - CP violation in lepton sector?
- * complementarity between new particle searches and measurements of flavor parameters

Lessons from Kaons

- * observation of CP violation in $K-\bar{K}$ mixing (parameter ϵ_K) in 1964 showed that CP is not a symmetry of Nature, but left open the question whether the pattern of CP violation predicted by the Standard Model is correct (e.g., "superweak" interactions?)
- * confirmation of CP violation in $K \to \pi\pi$ decays ("direct CP violation", parameter ϵ') in 1999 proved that CP is violated in flavor-changing charged-current interactions, as predicted by the Standard Model:

complex phase $\delta_{\rm CKM} = \gamma$ in CKM matrix \Rightarrow CP violation in mixing and weak decays

$$\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right) \approx 13 \, \left[(1 - \Omega_{\eta\eta'}) B_6^{(1/2)} - 0.4 B_8^{(3/2)} + \dots \right]$$

hadronic matrix elements

$$\times \underbrace{\mathsf{Im}(V_{td}V_{ts}^*)}_{|V_{ub}||V_{cb}|\sin\gamma}$$

* ideally, would determine $\sin \gamma$...

... if we only knew how to compute the hadronic matrix elements!

* but: order of magnitude is as predicted by the Standard Model!

- * CKM mechanism relates all CP-violating observables to a single parameter $\delta_{\rm CKM}$
 - very predictive!
 - ullet in particular, expect large CP asymmetries in some B decays
- * important: B system is more accessible to a solid theoretical analysis, since $m_b \gg \Lambda_{\rm QCD}$
 - strong-interaction effects can be dealt with using heavy-quark expansions, i.e., expansions in powers of $\alpha_s(m_b) \ll 1$ and $\Lambda_{\rm QCD}/m_b \ll 1$
 - systematic, model-independent framework with controlled theoretical uncertainties

The CKM Paradigm

Cabibbo-Kobayashi-Maskawa matrix:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

 3×3 unitary matrix connecting mass eigenstates of down-type quarks with interaction eigenstates

→ described by 4 real parameters

Wolfenstein parameterization:

$$V_{\mathrm{CKM}} \; = egin{pmatrix} 1 - rac{\lambda^2}{2} & \lambda & A\lambda^3(
ho - i\eta) \ -\lambda & 1 - rac{\lambda^2}{2} & A\lambda^2 \ A\lambda^3(1 -
ho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

- ullet accurately known: $|V_{us}|$ and $|V_{cb}|$ $(\lambda$ and A)
- more uncertain: $|V_{ub}|$ and $|V_{td}|$ (ρ and η)

* in past 15 years, strong combined efforts of several complementary experiments (e^+e^-) at $\Upsilon(4S)$, e^+e^- at Z^0 , hadron colliders), accompanied by significant progress in theory, has led to tremendous advances in our knowledge of the CKM matrix

Example 1: $|V_{cb}|(1990) = 0.043 \pm 0.010$, whereas $|V_{cb}|(1999) = 0.040 \pm 0.002$ has a precision not much worse than that in the Cabibbo angle

Example 2: $|V_{ub}|(1990) \stackrel{?}{=} 0$ still possible since $b \to u$ decays were not yet observed, whereas $|V_{ub}|(1999) = (3.4 \pm 0.7) \cdot 10^{-3}$ is known with 20% accuracy despite its smallness

Example 3: exploring the (ρ, η) -plane

(F. Caravaglios et al., 2000)

Unitarity triangle:

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

* combining the measurements of $|V_{ub}|$ in semi-leptonic decays, $|V_{td}|$ in $B_{d,s}$ - $\bar{B}_{d,s}$ mixing, and ϵ_K in K- \bar{K} mixing, the parameters of the unitarity triangle are determined already with great accuracy:

(F. Caravaglios et al., 2000)

- $\bar{
 ho} = 0.240^{+0.057}_{-0.047}$ and $\bar{\eta} = 0.335 \pm 0.042$
- $\sin 2\beta = 0.750^{+0.058}_{-0.064}$, $\sin 2\alpha = -0.38^{+0.24}_{-0.28}$, and $\gamma = (55.5^{+6.0}_{-8.5})^\circ$

Key feature:

- * in SM, all CP violation results from a single complex phase $\delta_{\rm CKM}=\gamma=\arg(V_{ub}^*)$ in the CKM matrix
 - ightarrow beginning to be tested by confronting measurements of ϵ_K (from $K \bar{K}$ mixing) and $\sin 2\beta$ (from $B \to J/\psi \, K_S$ decays) with information obtained from measurements of CP-conserving quantities ($|V_{ub}|$, Δm_d , Δm_s)

Where Do We Go from Here?

- * precise determination of ρ and η in itself is only one of many goals
- * focus has now shifted towards testing the consistency of the entire CKM picture
 - → 4 parameters, unitarity relations, 1 phase (not just checking "whether the triangle closes")
- st in addition, B factories are now in focus for having a realistic chance of finding deviations from the SM
- * to this end:
 - need many different, independent measurements of the unitarity triangle using B_d , B_s and K decays, and based on CP-conserving and CP-violating processes
 - need many manifestations of CP violation, in mixing ("indirect"), decay ("direct"), and their interference
 - need to test for New Physics in rare processes (penguins and boxes)

The Tools

* several existing and approved facilities, as well as proposed new experiments, will help us to explore the quark sector with unprecedented precision

B factories:

- * Existing e^+e^- colliders at $\Upsilon(4S)$:
 - BaBar (SLAC), Belle (KEK), CLEO-3 (Cornell),
 HERA-B (DESY)
 - → BaBar and Belle plan luminosity upgrades in several stages
 - → PEP-II as an example (similar for KEK-B):

Year	$\mathcal{L}~(cm^{-2}s^{-1})$	$Bar{B}$ (yr $^{-1}$)	Cumulative
Phase 1:			
2000–2002	3×10^{33}	20×10^6	60×10^6
Phase 2:			
2003–2005	1×10^{34}	67×10^6	260×10^6
Phase 3:			
2006–2008	3×10^{34}	200×10^6	860×10^6

- ightarrow will have about $2.5 \times 10^8~B\bar{B}$ pairs per experiment at end of phase 2, and about $10^9~B\bar{B}$ pairs per experiment at end of phase 3
- * Existing hadron collider:
 - CDF and D0 (Fermilab) at Tevatron Run-II
- * Approved hadron colliders:
 - BTeV (Fermilab), LHC-b (CERN)
 - \rightarrow will produce about $4\times 10^{11}~B\bar{B}$ pairs per year at luminosity $\mathcal{L}=2\times 10^{32}\,\rm cm^{-2}\,s^{-1}$
 - → trigger and particle reconstruction are big issues!
- * Future possibilities:
 - High-luminosity e^+e^- collider $(\mathcal{L}\sim 10^{35-36}~{\rm cm}^{-2}~{\rm s}^{-1})$ at $\Upsilon(4S)$
 - ullet High-luminosity e^+e^- collider $(\mathcal{L}\sim 10^{33-34}\,{
 m cm}^{-2}\,{
 m s}^{-1})$ at Z^0 ("Giga-Z")

Rare kaon experiments:

* measurements of $K \to \pi \nu \bar{\nu}$ provide direct information on the Wolfenstein parameters ρ and η , and are theoretically very clean:

$$K^+ o \pi^+
u ar{
u} \quad \Rightarrow \quad |V_{td} V_{ts}^*| \sim |1 -
ho - i\eta|$$
 $K_L^0 o \pi^0
u ar{
u} \quad \Rightarrow \quad {\sf Im}(V_{td} V_{ts}^*) \sim \eta$

Existing and approved experiments:

- E787 (BNL) has reported 1 $K^+ \to \pi^+ \nu \bar{\nu}$ event, corresponding to a branching ratio of $(1.5^{+3.5}_{-1.3}) \times 10^{-10}$ about twice the SM prediction
- modestly upgraded experiment E949 (BNL) expects about 10 $K^+ \to \pi^+ \nu \bar{\nu}$ events in SM

Proposed experiments:

ullet CKM (Fermilab) expects about 100 $K^+ \to \pi^+ \nu \bar{\nu}$ events in SM

• K0PI0 (BNL) and KAMI (Fermilab) expect about 65 $K_L^0 \to \pi^0 \nu \bar{\nu}$ events in SM

[&]quot;Contemplated" experiments:

Part II: Charmless Hadronic B Decays

Reason for Excitement

- st recent experimental data on charmless hadronic B decays from CLEO, BaBar and Belle have caused a lot of excitement in the theory community
 - \rightarrow here focus on $B \rightarrow \pi K$ and $B \rightarrow \pi \pi$ decays, which at present are best understood theoretically
- * in general, sensitivity to CP-violating "weak" phases requires sizable interference of decay topologies which differ in their CKM parameters
- * in charmless hadronic B decays, there is significant interference of tree and penguin topologies!

Tree	Penguin	Ratio
$V_{ub}V_{us}^* \sim \lambda^4 e^{-i\gamma}$	$V_{tb}V_{ts}^* \sim \lambda^2$	$ T/P \sim 0.3$
$V_{ub}V_{ud}^* \sim \lambda^3 e^{-i\gamma}$	$V_{tb}V_{td}^* \sim \lambda^3 e^{i\beta}$	$ P/T \sim 0.3$

* implies potentially large CP asymmetries, e.g.:

$$A_{\rm CP}(B^\pm \to \pi^0 K^\pm) pprox 2 \left| rac{T}{P} \right| rac{\sin \gamma}{\sinh \gamma} \underbrace{\sin \delta_{\rm st}}_{\rm strong~phase}$$

* sensitivity to γ also in CP-averaged rates, e.g.:

$$\frac{\Gamma(B \to \pi^{\mp} K^{\pm})}{\Gamma(B \to \pi^{\pm} K_S)} \approx 1 + 2 \left| \frac{T}{P} \right| \cos \gamma \cos \delta_{\text{st}}$$

- * varying $-1 \le \cos \delta_{\rm st} \le 1$ yields bounds on $\cos \gamma$:
 - → Fleischer-Mannel bound, Neubert-Rosner bound
 - → see lectures by Helen Quinn at last year's SSI
- * in some cases, one can use symmetries (isospin, Fierz relations, SU(3)) to eliminate hadronic uncertainties
- * to do better, need a theory of hadronic B decays
 - → recent progress using the heavy-quark expansion

The Challenge

- theoretical description of hadronic weak decays is difficult due to non-perturbative hadronic dynamics
- st this affects interpretation of B factory data, studies of CP violation, and searches for New Physics
- * the problem:

* hard gluon effects can be calculated and lead to an effective weak Hamiltonian:

$$\mathcal{H}_{ ext{eff}} = rac{G_F}{\sqrt{2}} \sum_i \lambda_i^{ ext{CKM}} \, C_i(\mu) \, O_i(\mu)$$

* difficulty is to calculate hadronic matrix elements of local operators $O_i(\mu)$

"Naive" factorization:

* consider $\bar{B}^0 \to D^+\pi^-$ as an example:

$$\mathcal{A}_{\bar{B}^{0}\to D^{+}\pi^{-}} \sim \left(C_{1} + \frac{C_{2}}{N_{c}}\right) \langle D^{+}\pi^{-}|(\bar{d}u)(\bar{c}b)|\bar{B}^{0}\rangle$$

$$+ 2C_{2} \langle D^{+}\pi^{-}|(\bar{d}t_{a}u)(\bar{c}t_{a}b)|\bar{B}^{0}\rangle$$

$$\stackrel{\text{fact.}}{\to} \left(C_{1} + \frac{C_{2}}{N_{c}}\right) \underbrace{\langle \pi^{-}|(\bar{d}u)|0\rangle}_{\sim f_{\pi}} \underbrace{\langle D^{+}|(\bar{c}b)|\bar{B}^{0}\rangle}_{\sim F_{0}^{B\to D}}$$

hence:

$$\mathcal{A}_{\bar{B}^0 \to D^+\pi^-} \sim G_F V_{cb} V_{ud}^* f_\pi F_0^{B \to D} (m_\pi^2) a_1$$

with

$$a_1 = C_1(\mu) + \frac{C_2(\mu)}{N_c}$$

* similarly, define parameter $a_2=C_2+C_1/N_c$, and further parameters a_3,\ldots,a_{10} for more complicated decays

Problem: a_i are renormalization-scale and -scheme dependent in "naive" factorization!

QCD Factorization Formula

$$\begin{split} \langle M_1 M_2 | O_i | \bar{B} \rangle &= F_j^{B \to M_1} f_{M_2} \, T_{ij}^{\mathrm{I}} \otimes \Phi_{M_2} \\ &+ T_i^{\mathrm{II}} \otimes \Phi_B \otimes \Phi_{M_1} \otimes \Phi_{M_2} \\ &+ \mathsf{power suppressed contributions} \end{split}$$

(M. Beneke et al., 1999-2000)

- st if M_1 is heavy, the second term is power suppressed and should be dropped
- * factorization does not hold if M_2 is a heavy-light meson, but it works for an onium state such as J/ψ
- * validity of factorization formula demonstrated by explicit 1-loop (and 2-loop) calculation; general arguments support factorization to all orders in perturbation theory

Implications:

- * obtain approach that allows for a systematic, model-independent calculation of corrections to "naive" factorization, which emerges as leading term in heavy-quark limit
- * possibility to compute systematically logarithmic corrections to "naive" factorization solves problem of scale and scheme dependences (scale and scheme dependences of hard scattering kernels compensate those of Wilson coefficients)
- * non-factorizable corrections are process dependent and hence non-universal, in contrast with basic assumption of "generalized" factorization models
- * strong FSI and rescattering phases are calculable and are perturbative or power suppressed (soft rescattering vanishes in the heavy-quark limit)

$$\bar{B}^0 o D^{(*)+}L^-$$
 Decays

* useful to define "transition operator":

$$\mathcal{T} = \frac{G_F}{\sqrt{2}} V_{ud}^* V_{cb} \left[\mathbf{a_1^{DL}} \, \bar{c} \gamma_\mu b \otimes \bar{d} \gamma^\mu (1 - \gamma_5) u \right]$$
$$- \mathbf{a_1^{D^*L}} \, \bar{c} \gamma_\mu \gamma_5 b \otimes \bar{d} \gamma^\mu (1 - \gamma_5) u \right]$$

* obtain explicit, renormalization-scheme invariant expression for parameters a_1 at next-to-leading order in α_s and leading power in $\Lambda_{\rm QCD}/m_b$:

$$\begin{split} a_1 &= C_1(\mu) + \frac{C_2(\mu)}{N_c} \\ &+ \frac{C_2(\mu)}{N_c} \frac{C_F \alpha_s}{4\pi} \Bigg[\underbrace{12 \ln \frac{m_b}{\mu} - B}_{\text{cancels scale and scheme dep.}} + \Delta_{D^{(*)}L} \left(\frac{m_c}{m_b} \right) \Bigg] \end{split}$$

with

$$\Delta_{D^{(*)}L}(z) = \int_0^1 \mathrm{d}x \, \Phi_L(x) \, T_{D^{(*)}}(x,z)$$

process-dependent, non-universal correction

* however, for these decays $|a_1^{D^{(*)}L}|=1.05\pm0.02$

Predictions for class-I decay amplitudes:

Model-independent predictions for the branching ratios (in units of 10^{-3}) of $\bar{B}_d \to D^{(*)+}L^-$ decays in the heavy-quark limit. Theory numbers are $\times (|V_{cb}|/0.04)^2 \times (|a_1|/1.05)^2 \times (\tau_{B_d}/1.56\,\mathrm{ps})$.

Decay mode	Theory (HQL)	PDG98
$\bar{B}_d \to D^+\pi^-$	$3.27 \times [F_{+}(0)/0.6]^{2}$	3.0 ± 0.4
$\bar{B}_d \to D^+ K^-$	$0.25 \times [F_{+}(0)/0.6]^{2}$	_
$\bar{B}_d \to D^+ \rho^-$	$7.64 \times [F_{+}(0)/0.6]^{2}$	7.9 ± 1.4
$\bar{B}_d \to D^+ K^{*-}$	$0.39 \times [F_{+}(0)/0.6]^{2}$	
$\bar{B}_d \to D^+ a_1^-$	$7.76 \times [F_{+}(0)/0.6]^{2}$	6.0 ± 3.3
$\bar{B}_d \to D^{*+}\pi^-$	$3.05 \times [A_0(0)/0.6]^2$	2.8 ± 0.2
$\bar{B}_d \to D^{*+}K^-$	$0.22 \times [A_0(0)/0.6]^2$	
$\bar{B}_d \to D^{*+} \rho^-$	$7.59 \times [A_0(0)/0.6]^2$	6.7 ± 3.3
$\bar{B}_d \to D^{*+}K^{*-}$	$0.40 \times [A_0(0)/0.6]^2$	
$\bar{B}_d \to D^{*+} a_1^-$	$8.53 \times [A_0(0)/0.6]^2$	13.0 ± 2.7

- * good agreement may be taken as indication that in these decays there are no unexpectedly large power corrections
 - → confirmed by explicit estimates!

Extraction of $\cos \gamma$ in $B \to \pi K, \pi \pi$

 applying the QCD factorization formula to the present case gives

$$\langle \pi K | \mathcal{H}_{\text{eff}} | B \rangle = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{pb}^* V_{ps} \langle \pi K | \mathcal{T}_p | B \rangle$$

with the "transition "operator":

$$\begin{split} \mathcal{T}_{p} &= a_{1}^{\pi K} \, \delta_{pu} \, (\bar{b}u)_{V-A} \otimes (\bar{u}s)_{V-A} \\ &+ a_{2}^{\pi K} \, \delta_{pu} \, (\bar{b}s)_{V-A} \otimes (\bar{u}u)_{V-A} \\ &+ a_{3}^{\pi K} \, \sum_{q} (\bar{b}s)_{V-A} \otimes (\bar{q}q)_{V-A} \\ &+ a_{4p}^{\pi K} \, \sum_{q} (\bar{b}q)_{V-A} \otimes (\bar{q}s)_{V-A} \\ &+ a_{5}^{\pi K} \, \sum_{q} (\bar{b}s)_{V-A} \otimes (\bar{q}q)_{V+A} \\ &+ a_{5p}^{\pi K} \, \sum_{q} (\bar{b}s)_{V-A} \otimes (\bar{q}q)_{V+A} \\ &+ a_{7p}^{\pi K} \, \sum_{q} (\bar{b}s)_{V-A} \otimes \frac{3}{2} e_{q} (\bar{q}q)_{V+A} \\ &+ a_{8p}^{\pi K} \, (\mu) \, \sum_{q} (-2) (\bar{b}q)_{S-P} \otimes \frac{3}{2} e_{q} (\bar{q}s)_{S+P} \\ &+ a_{9p}^{\pi K} \, (\mu) \, \sum_{q} (-2) (\bar{b}q)_{S-P} \otimes \frac{3}{2} e_{q} (\bar{q}s)_{S+P} \\ &+ a_{9p}^{\pi K} \, \sum_{q} (\bar{b}s)_{V-A} \otimes \frac{3}{2} e_{q} (\bar{q}q)_{V-A} \\ &+ a_{10p}^{\pi K} \, \sum_{q} (\bar{b}q)_{V-A} \otimes \frac{3}{2} e_{q} (\bar{q}s)_{V-A} \end{split}$$

* contributions of $(S - P) \otimes (S + P)$ penguin operators are multiplied by a factor:

$$\frac{2\mu_K}{m_b} = \frac{2m_K^2}{(m_s + m_d)m_b} \sim \frac{\Lambda_{\text{QCD}}}{m_b} \quad [\approx 0.8]$$

- → include all such "chirally enhanced" power corrections, since they are numerically important
- * terms proportional to the same factor also appear at twist-3 order in the collinear expansion
- * these terms involve the logarithmically IR-divergent integral:

$$X = \int_0^1 \frac{du}{1-u}$$

indicating the dominance of soft gluon exchange (violation of factorization at next-to-leading power)

- * set $X = \ln(m_B/\Lambda) + r$ with r a complex random number such that |r| < 3 ("realistic" \rightarrow blue dots) or |r| < 6 ("conservative" \rightarrow green dots)
- st vary all theory parameters over conservative ranges: renormalization scale, quark masses, wave function parameters, X parameters, etc.

* focus on ratios of decay rates, which are independent of semi-leptonic form factors:

(M. Beneke et al., hep-ph/0007256)

* with more data, comparison with these predictions will provide a crucial test of the approach

- * this will determine γ up to a sign ambiguity
- * at present, experimental errors are too large to obtain a meaningful determination:

- * in future, this will be a powerful analysis
- * sign of γ can be determined by comparing direct CP asymmetries with theoretical predictions
 - ightarrow ultimately, will obtain γ without any discrete ambiguities!

Some modes to keep an eye on:

* branching ratios with $\gamma = (60 \pm 20)^\circ$ and $|V_{ub}/V_{cb}| = 0.085$:

$$Br(B \to \pi^+ \pi^-) = (9 \pm 2) \cdot 10^{-6} \times (F_+^{B \to \pi}/0.3)^2$$

$$Br(B \to \pi^0 K^0) = (4.5 \pm 2.5) \cdot 10^{-6} \times (F_+^{B \to \pi}/0.3)^2$$

- * first result is larger than CLEO (4.3 ± 1.6) , but in good agreement with BaBar (9.3 ± 2.8) and Belle (6.3 ± 4.0)
- * second result is smaller than CLEO (14.6 ± 6.2) and Belle (21.0 ± 8.9)

Direct CP Asymmetries

- * generic theoretical prediction: strong phases are suppressed (subleading in the heavy-quark expansion), except for very rare decays such as $B \to \pi^0 \pi^0$
- * implies that direct CP asymmetries will be much below the present CLEO bounds:

* observing these asymmetries is an important long-term goal!

Part III: Mixing-Induced CP Violation

Strong Phases from Quantum Mechanics

* in B decays into a CP eigenstate $f_{\rm CP}$, observable CP asymmetries can arise from interference of weak phases in the amplitudes for $B-\bar{B}$ mixing and decay:

* resulting time-dependent CP asymmetry:

$$A_{\rm CP}(t) = \frac{\Gamma(B^0 \to f_{\rm CP}) - \Gamma(\bar{B}^0 \to f_{\rm CP})}{\Gamma(B^0 \to f_{\rm CP}) + \Gamma(\bar{B}^0 \to f_{\rm CP})}$$
$$= -\frac{2 \operatorname{Im} \lambda}{1 + |\lambda|^2} \sin(\Delta m_B t) + \frac{1 - |\lambda|^2}{1 + |\lambda|^2} \cos(\Delta m_B t)$$

where:

$$\lambda = e^{-2i\beta} \frac{\bar{A}}{A} = \eta_{f_{\mathrm{CP}}} e^{-2i\beta} \frac{\sum_{i} A_{i} e^{i\delta_{i}} e^{-i\phi_{i}}}{\sum_{i} A_{i} e^{i\delta_{i}} e^{i\phi_{i}}}$$

* if the decay amplitude is dominated by a single weak phase ϕ_A , then $|\lambda| \simeq 1$ and

$$\mathsf{Im}(\lambda) \simeq -\eta_{f_{\mathrm{CP}}} \sin 2(eta + \phi_A)$$

Example 1:

 $\sin 2eta$ from $B o J/\psi\,K_S$ decays (b o car cs transitions, $\eta_{J/\psi\,K_S}=-1)$

Tree	Penguin
$V_{cb}V_{cs}^* \sim \lambda^2$	$V_{tb}V_{ts}^* \sim \lambda^2, \lambda^4 e^{-i\gamma}$

hence: $\phi_A \simeq 0 \Rightarrow \operatorname{Im}(\lambda) \simeq \sin 2\beta$

- * above discussion relies on Standard Model
- * it could be upset if there existed a New Physics contribution to $b\to c\bar c s$ transitions with $\phi_{\rm NP}\neq 0$

* but such a contribution would also yield

$$A_{\rm CP}(B^{\pm} \to J/\psi K^{\pm}) \sim \sin \delta_{\rm st} \sin \phi_{\rm NP} \neq 0$$

* unless strong phase $\delta_{\rm st}$ vanishes accidentally, there is not much room given the CLEO result:

$$A_{\rm CP}(B^{\pm} \to J/\psi K^{\pm}) = (1.8 \pm 4.3 \pm 0.4)\%$$

Example 2:

 $\sin 2\alpha$ from $B \to \pi^+\pi^-$ decays $(b \to u\bar{u}d$ transitions, $\eta_{\pi^+\pi^-}=1)$

Tree	Penguin
$V_{ub}V_{ud}^* \sim \lambda^3 e^{-i\gamma}$	$V_{tb}V_{td}^* \sim \lambda^3 e^{i\beta}$

hence: $\phi_A \simeq \gamma$ + "penguin pollution" $\Rightarrow \operatorname{Im}(\lambda) \simeq \sin 2\alpha \times [1 + O(P/T)]$

* conventional way to circumvent this problem is to perform an isospin analysis, using measurements of $B \to \pi^+\pi^-, \pi^+\pi^0, \pi^0\pi^0$ and their CP conjugates (nearly impractical)

Extraction of $\sin 2\alpha$ in $B \to \pi^+\pi^-$

- * QCD factorization approach can be used to calculate the "penguin pollution" in $B \to \pi^+\pi^-$, thereby allowing a determination of α without isospin analysis
- * time-dependent, mixing-induced CP asymmetry in $B_d \to \pi^+\pi^-$ decays:

$$A_{\rm CP}(t) = \frac{\Gamma(B^{0}(t) \to \pi^{+}\pi^{-}) - \Gamma(\bar{B}^{0}(t) \to \pi^{+}\pi^{-})}{\Gamma(B^{0}(t) \to \pi^{+}\pi^{-}) + \Gamma(\bar{B}^{0}(t) \to \pi^{+}\pi^{-})}$$
$$= -S \cdot \sin(\Delta m_{B} t) + C \cdot \cos(\Delta m_{B} t)$$

* without "penguin pollution":

$$S = \sin 2\alpha$$
, $C = 0$

free of hadronic uncertainties

* interference of tree and (subdominant) penguin topologies introduces hadronic uncertainties, which can be controlled by applying the QCD factorization theorem to the $B\to\pi\pi$ decay amplitudes

* we can calculate this effect with small theoretical uncertainty: (M. Beneke et al., hep-ph/0007256)

* consistency check is provided by the calculation of the direct CP asymmetry (= C):

Part IV: Looking Ahead... Beyond the Standard Model

Many Determinations of the UT

* generalize discussion presented by Peskin at LP99, indicating precision that could be achieved 10 years from now:

* pursue different strategies, the most important ones being as follows...

(a) Non-CP triangle:

determine the triangle by measuring the length of the two sides in semi-leptonic B decays ($|V_{ub}|$ from exclusive and inclusive $B \to X_u \ \ell \ \nu$ decays) and $B_{d,s} - \bar{B}_{d,s}$ mixing ($|V_{td}|$ from Δm_d and Δm_s)

- → no CP violation involved
- ightarrow main sensitivity to New Physics via magnitude of $B \bar{B}$ mixing amplitude

(b) B triangle:

determine the angles β , $2\beta+\gamma$, and $\beta+\gamma$ by measuring time-dependent CP violation in $B\to J/\psi\,K_S,\,B\to D^{(*)\pm}\pi^\mp$, and $B\to\pi\rho$

- → CP violation in interference of mixing and decay
- → main sensitivity to New Physics via mixing

Decay mode	Tree	Mix + Tree	e^+e^-	hadron
$B \to J/\psi K_S$	1	e^{2ieta}	P1,P2	\checkmark
(b o car c s,ar b o ar c car s)				
$B \to D^{(*)\pm}\pi^{\mp}$	1	$\lambda^2 e^{i(2\beta+\gamma)}$	P2,P3	\checkmark
($b o car u d$, $ar b o ar u car d$)				
$B \to \pi \rho$	$e^{-i\gamma}$	$e^{i(2\beta+\gamma)}$	P2,P3	$\sqrt{}$
($b o uar ud$, $ar b oar uuar d$)				

(b') B triangle:

determine the angle γ using isospin analysis in $B^\pm \to D K^\pm$ decays

- → only tree amplitudes involved
- → lowest sensitivity to New Physics of all weak phase determinations!

Decay mode	Tree	Tree	e^+e^-	hadron
$B^{\pm} \to DK^{\pm}$	1	$e^{i\gamma}$	P2?,P3	?
(b o car u s, b o uar c s)				

(c) B_s triangle:

determine the angle $\gamma-2\chi$ and the B_s mixing phase $-\chi$ (SM predicts $\chi=O(\lambda^2\eta)$ of order 1%) by measuring CP asymmetries in B_s decays, such as $B_s\to D_s^\pm\,K^\mp$, and $B_s\to J/\psi\,\phi$ or $B_s\to J/\psi\,\eta^{(\prime)}$

- → CP violation in interference of mixing and decay
- → main sensitivity to New Physics via mixing

Decay mode	Tree	Mix + Tree	e^+e^-	hadron
$B_s \to J/\psi \phi { m or} \eta^{(\prime)}$	1	$e^{-2i\chi}$	_	$\sqrt{}$
(b o car c s,ar b o ar c car s)				
$B_s \to D_s^{\pm} K^{\mp}$	1	$e^{i(-2\chi+\gamma)}$	_	
(b o car u s, $ar b o ar u car s)$				

(d) K triangle:

determine the coordinates (ρ,η) from measurements of rare K decays $(K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L^0 \to \pi^0 \nu \bar{\nu})$ and $K - \bar{K}$ mixing (ϵ_K)

- → CP violation in mixing and decay
- → sensitivity to New Physics in mixing and decay
- * performing these measurements is of comparable importance as the B_s physics program at hadron B factories!

Strategy for Exploring New Flavor Physics

- Q: What if $\sin 2\beta_{\psi K}$ is low?
- Q: More generally, what if there is New Physics affecting the particle—antiparticle mixing amplitudes of B_d , B_s and K mesons?

```
(see: A. Kagan and M. Neubert, hep-ph/0007360;J.P. Silva and L. Wolfenstein, hep-ph/0008004;G. Eyal, Y. Nir and G. Perez, hep-ph/0008009)
```

- * then none of the triangle constructions discussed above should really close!
- need a reference triangle constructed independently of any information from mixing
 - B system: extract $|V_{ub}|$ from semi-leptonic B decays, and $\gamma = \arg(V_{ub}^*)$ using a variety of methods (e.g., charmless hadronic decays, $B \to DK$ decays, B_s decays)
 - ullet K system: extract $|V_{td}|$ and ${\sf Im}(V_{td})$ from $K o \pi
 u ar{
 u}$ decays

Reference triangle in the near and long-term future:

- (a) B-decay triangle with two-fold ambiguity, assuming uncertainties of 20% in $|V_{ub}/V_{cb}|$ and $\pm 25^\circ$ in γ (near-term).
- (b) B-decay triangle (pink) with no ambiguity, assuming uncertainties of 10% in $|V_{ub}/V_{cb}|$ and $\pm 10^\circ$ in γ , and K-decay triangle (gold) with four-fold ambiguity, assuming 15% uncertainties in R_t and $|\eta|$ (long-term).

- * once the reference triangle is known, one can explore separately potential New Physics contributions to mixing in the B_d , B_s and K systems
- * knowledge of γ is the key ingredient that makes this strategy feasible and powerful!

New Physics in K– \bar{K} mixing:

New Physics contribution to $|\epsilon_K|$ in units of 10^{-3} , assuming present day uncertainties (region bounded by blue curves, using $B_K=0.86\pm0.10$ and $|V_{ub}/V_{cb}|=0.085\pm0.018$) and future smaller errors (region bounded by green curves, using $B_K=0.86\pm0.05$ and $|V_{ub}/V_{cb}|=0.085\pm0.009$).

New Physics in B_d – \bar{B}_d mixing:

Determination of the B_d - \bar{B}_d mixing amplitude M_{12} with present day (left) and future (right) uncertainties on the input parameters.

- (a) Standard Model contribution $M_{12}^{\rm SM}$ (region bounded by dashed circles) with marks indicating fixed values of γ . The experimentally determined regions for M_{12} are shown for $\sin 2\phi_d = 0.26 \pm 0.29$.
- (b) New Physics contribution $M_{12}^{\rm NP}$ corresponding to the four different solutions for γ and $2\phi_d$.

New Physics in Penguins

* above strategies are sensitive to New Physics mainly via the B_d – \bar{B}_d and B_s – \bar{B}_s mixing amplitudes (box diagrams)

* there is, in addition, a large class of loop-dominated processes sensitive to New Physics in the decay amplitude (penguins)

* consider some examples of how to explore this type of New Physics...

1. determine β from interference of mixing and decay in the penguin-mediated mode $B \to \phi K_S$, and compare with β from $B \to J/\psi \, K_S$

Decay mode	Peng.	Mix + Peng.	e^+e^-	hadron
$B \to \phi K$	1	e^{2ieta}	P2,P3	\checkmark
(b o sar s s,ar b o ar s sar s)				

- certain observables are particularly sensitive to New Physics contributions to chromo-magnetic or chromo-electric dipole operators
 - ightarrow direct CP asymmetry in inclusive radiative decays $B^\pm \to X_s \gamma$ is a clean probe of such effects, with basically no SM background

(A. Kagan and M. Neubert, 1998)

- 3. certain observables are particularly sensitive to isospin-violating New Physics contributions in $b \to s(d) + \bar{q}q$ transitions (with q = u or d)
 - ightarrow potentially large effect on γ determined from $B
 ightarrow \pi K$ decays, which would show up if $\gamma_{\pi K}$ is compared with $\gamma_{\rm tree} = \gamma_{DK}$ or $\gamma_{\pi \rho}$:

(Y. Grossman et al., 1999)

New Physics Model	$ \gamma_{\pi K} - \gamma_{ m tree} $	$ \gamma_{\pi K} - \gamma_{ m tree} $
	isospin-cons.	isospin-viol.
FCNC Z exchange	3°	180°
Extra Z^\prime boson	180°	180°
SUSY without R-parity	180°	180°
SUSY with R-parity:		
max. $ ilde{s}_R$ – $ ilde{b}_R$ mixing	7°	25°
max. $ ilde{s}_L$ – $ ilde{b}_L$ mixing	7°	180°
2-Higgs-doublet model	0°	10°
$(m_{H^+}>100{ m GeV},{ m tan}eta>1)$		
anom. gauge-boson couplings	0°	20°

Instead of a Summary...

Four Reasons Why B Physics is Cooler than String Theory

- B theorists look forward to confronting experiment.
 String theorists look forward to not confronting experiment.
- 2. B theorists make effective theories:
 heavy-quark effective theory, large-energy effective
 theory, non-relativistic effective theory...

String theorists make:

```
A theory (of the Universe) ... K theory ... M theory ... 1-branes ... 5-branes ... d-branes ... p-branes ...
```

- 3. String theorists dream of a Theory of Everything. B theorists have a Theory of Something.
- 4. We know what we are talking about...

