# CP Violation in the Heaviest Leptons, Quarks, and Bosons

# Keith Riles University of Michigan

# XXVII SLAC Summer Institute on Particle Physics July 7-16, 1999

K. Riles

- 1. CP Violation will be addressed in more general framework of anomalous gauge Boson and Fermion couplings
- 2. Lectures will <u>not</u> form comprehensive review:
  - Subject too vast for detailed coverage
  - Instead, will focus pedagogically on particular approaches & signatures
  - Will touch on other topics you can pursue on your own

### Gauge Boson Couplings

- Standard Model
  - Lagrangian terms  $\implies$  Expected triple- and quadruple-Boson couplings
- Beyond the Standard Model
  - More general  $WW\gamma$  and WWZ Lagrangian terms
    - $\implies$  Many possible couplings, including  $\mathcal{CP}$
  - Possible treatments of anomalous couplings
    - \* Effective Lagrangian with light Higgs (linear)
    - \* Chiral Lagrangian with strong coupling (non-linear)
- Experimental signatures for  $WW\gamma$ , WWZ couplings
  - Low-energy experiments
  - $-e^+e^-$  colliders
  - Hadron colliders
- Other gauge Boson couplings ( $\ensuremath{\not CP}$ )
  - Sampling of couplings & signatures

### **Top Quark Couplings**

- Standard Model
- Possible sources of non-SM couplings
- Experimental signatures

### Tau Lepton Couplings

- Standard Model
- Possible sources of non-SM couplings
- Experimental signatures

### **Standard Model**

S.M. Electroweak Lagrangian – Bosonic interactions: (following notation/convention of Renton text)

Unbroken  $\mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$ :

$$egin{aligned} \pounds_{ ext{Bosons}} &= & -rac{1}{4}\,B_{\mu
u}B^{\mu
u}\,-\,rac{1}{4}ec{W}_{\mu
u_{(NA)}}\cdotec{W}_{(NA)}^{\mu
u} \ &+ [D_{\mu}\phi]^{\dagger}[D^{\mu}\phi]\,-\,\mu^{2}\phi^{\dagger}\phi\,-\,\lambda[\phi^{\dagger}\phi]^{2} \end{aligned}$$

where

$$D^{\mu} \equiv \partial^{\mu} + i\frac{g}{2}\vec{\tau} \cdot \vec{W}^{\mu} + i\frac{g'}{2}yB^{\mu}$$
$$B^{\mu\nu} \equiv \partial^{\mu}B^{\nu} - \partial^{\nu}B^{\mu}$$
$$\vec{W}^{\mu\nu}_{(NA)} \equiv \partial^{\mu}\vec{W}^{\nu}_{(NA)} - \partial^{\nu}\vec{W}^{\mu}_{(NA)} - g\vec{W}^{\mu}_{(NA)} \times \vec{W}^{\nu}_{(NA)}$$

where

| $\phi$    | $\equiv$ | Complex scalar doublet            |  |  |
|-----------|----------|-----------------------------------|--|--|
| $\vec{W}$ | ≡        | Unbroken $\mathrm{SU}(2)_L$ field |  |  |
| B         | $\equiv$ | Unbroken $U(1)_Y$ field           |  |  |

Physical fields:

$$\begin{aligned} A^{\mu} &= c_W B^{\mu} + s_W W_3^{\mu} & \text{(Electromagnetic)} \\ Z^{\mu} &= -s_W B^{\mu} + c_W W_3^{\mu} & \text{(Weak neutral)} \\ W^{\pm \mu} &= \frac{1}{\sqrt{2}} (W_1^{\mu} \pm i W_2^{\mu}) & \text{(Weak charged)} \end{aligned}$$

where

$$s_W \equiv \sin \theta_W \quad c_W \equiv \cos \theta_W$$

Consider Gauge Boson self interactions (ignore Higgs terms):

- Invert relations to obtain  $B^{\mu}$ ,  $W_1^{\mu}$ ,  $W_2^{\mu}$  and  $W_3^{\mu}$ in terms of physical fields  $A^{\mu}$ ,  $Z^{\mu}$  and  $W^{\pm \mu}$
- Substitute into first two terms of unbroken Lagrangian

$$\pounds_{\text{Gauge}} = \pounds_{\text{Abelian}} + \pounds_{\text{TGC}} + \pounds_{\text{QGC}}$$

where

$$\begin{split} \pounds_{\text{Abelian}} &= -\frac{1}{4} {}^{(\gamma)} F_{\mu\nu} {}^{(\gamma)} F^{\mu\nu} - \frac{1}{4} {}^{(z)} F_{\mu\nu} {}^{(z)} F^{\mu\nu} - \frac{1}{2} {}^{(w)} F^{\dagger}_{\mu\nu} {}^{(w)} F^{\mu\nu} \\ &\Longrightarrow \text{Abelian kinetic energy} \\ \pounds_{\text{TGC}} &= i g \left( \partial_{\mu} W_{\nu}^{+} - \partial_{\nu} W_{\mu}^{+} \right) W^{-\nu} \left( c_{W} Z^{\mu} + s_{W} A^{\mu} \right) \\ &+ i g \left( \partial_{\mu} W_{\nu}^{-} - \partial_{\nu} W_{\mu}^{-} \right) W^{+\mu} \left( c_{W} Z^{\nu} + s_{W} A^{\nu} \right) \\ &+ i g \left( W^{-\mu} W^{+\nu} - W^{+\mu} W^{-\nu} \right) \partial_{\mu} \left( c_{W} Z_{\nu} + s_{W} A_{\nu} \right) \\ &\Longrightarrow \text{Non-Abelian Triple-Gauge-Couplings:} \\ WW\gamma, WWZ \\ \\ \pounds_{\text{QGC}} &= -g^{2} W_{\mu}^{+} W^{-\mu} \left( c_{W} Z_{\nu} + s_{W} A_{\nu} \right) \left( c_{W} Z^{\nu} + s_{W} A^{\nu} \right) \\ &+ g^{2} W^{+\nu} W^{-\mu} \left( c_{W} Z_{\mu} + s_{W} A_{\mu} \right) \left( c_{W} Z_{\nu} + s_{W} A_{\nu} \right) \\ &+ \frac{1}{2} g^{2} W_{\nu}^{-} W_{\mu}^{+} \left( W^{-\nu} W^{+\mu} - W^{-\mu} W^{+\nu} \right) \\ &\Longrightarrow \text{Non-Abelian Quadruple-Gauge-Couplings:} \\ WW\gamma\gamma, WWZZ, WW\gammaZ, WWWW \end{split}$$

where

 ${}^{(\gamma)}\!F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}, \quad {}^{(z)}\!F^{\mu\nu} \equiv \partial^{\mu}Z^{\nu} - \partial^{\nu}Z^{\mu}, \quad {}^{(w)}\!F^{\mu\nu} \equiv \partial^{\mu}W^{-\nu} - \partial^{\nu}W^{-\mu}$ 

Focus on Triple Gauge Couplings (TGC):  $WW\gamma, WWZ$ 

Rewrite  $\mathcal{L}_{TGC}$ :

 $\pounds_{\mathrm{TGC}} = \sum_{V=\gamma,Z} i \, g_{WWV} [\,^{(w)}F^{\dagger}_{\mu\nu} \, W^{-\mu} \, V^{\nu} - W^{-\dagger}_{\mu} \, V^{\nu}_{\nu} \,^{(w)}F^{\mu\nu} + W^{-\dagger}_{\mu} \, W^{-}_{\nu} \,^{(v)}F^{\mu\nu}]$ 

where

 $g_{WW\gamma} = -g \sin \theta_W = -e$  $g_{WWZ} = -g \cos \theta_W = -e \cot \theta_W$ 

Remarks:

- Gauge invariance explicitly retained
- TGC (and QGC) strengths predicted by Standard Model from measured e and  $\sin^2 \theta_W$
- All S.M. terms contain one derivative (momentum)

Three diagrams contribute to  $e^+e^- \rightarrow W^+W^-$ :



Each diverges with increasing  $\sqrt{s}$ 

But the sum is finite (in Standard Model):



 $\implies \sigma_{\rm tot}$  sensitive to tiny deviations in WWV couplings

Generic Lagrangian form for triple Boson vertex (Hagiwara, Peccei, Zeppenfeld, Hikasa, NPB 282: 253 (1987))

$$\begin{aligned} \pounds_{WWV}/g_{WWV} &= i g_{1}^{V} ({}^{(w)}F_{\mu\nu}{}^{\dagger}W^{-\mu}V^{\nu} - W_{\mu}^{-\dagger}V_{\nu}{}^{(w)}F^{\mu\nu}) \\ &+ i \kappa_{V}W_{\mu}^{-\dagger}W_{\nu}^{-}{}^{(v)}F^{\mu\nu} \\ &+ \frac{i \lambda_{V}}{M_{W}^{2}}{}^{(w)}F_{\lambda\mu}^{\dagger}W_{\nu}^{-}{}^{(v)}F^{\nu\lambda} \\ &- g_{4}^{V}W_{\mu}^{-\dagger}W_{\nu}^{-}(\partial^{\mu}V^{\nu} + \partial^{\nu}V^{\mu}) \\ &+ g_{5}^{V}\epsilon^{\mu\nu\rho\sigma}(W_{\mu}^{-\dagger}\overleftarrow{\partial}W_{\nu}^{-})V_{\sigma} \\ &+ \kappa_{V}W_{\mu}^{-\dagger}W_{\nu}^{-}{}^{(v)}F^{\mu\nu} \\ &+ \frac{i \lambda_{V}}{M_{W}^{2}}{}^{(w)}F_{\lambda\mu}^{\dagger}W_{\nu}^{-}{}^{(v)}F^{\nu\lambda}\tilde{V}^{\nu\lambda} \end{aligned}$$

where

$$\begin{array}{ccc} (A\partial_{\mu}^{\leftrightarrow}B) & \equiv & A(\partial_{\mu}B) - (\partial_{\mu}A)B \\ & & \overset{(v)}{}\tilde{F}_{\mu\nu} & \equiv & \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} \, \overset{(v)}{}F^{\rho\sigma} \end{array}$$

Seven  $\times$  two independent couplings

with

 $g_4^V, \, ilde{\kappa}_V, \, ilde{\lambda}_V$  terms CP-violating  $g_5^V$  term C, P violating

(these terms often ignored in studies)

Standard Model:

$$g_1^V = \kappa_V = 1$$
  $\lambda_V = g_4^V = g_5^V = \tilde{\kappa}_V = \tilde{\lambda}_V = 0$ 

Higher order operators with additional derivatives equivalent to momentum-dependent couplings:

 $\kappa_V = \kappa_V(q^2/\Lambda^2)$  Form factor couplings

 $\Rightarrow$  Important at hadron colliders

In more familiar terminology ...

W magnetic dipole moment:

$$\mu_W \equiv \frac{e}{2 M_W} (1 + \kappa_\gamma + \lambda_\gamma)$$

W electric quadrupole moment:

$$Q_W \equiv \Leftrightarrow \frac{e}{M_W^2} (\kappa_\gamma \Leftrightarrow \lambda_\gamma)$$

W electric dipole moment:

$$d_W \equiv \frac{e}{2 M_W} (\tilde{\kappa}_\gamma + \tilde{\lambda}_\gamma)$$

W magnetic quadrupole moment:

$$\tilde{Q}_W \equiv \Leftrightarrow \frac{e}{M_W^2} (\tilde{\kappa}_\gamma \Leftrightarrow \tilde{\lambda}_\gamma)$$

Deviations from SM:

 $\Delta g_1^Z \equiv g_1^Z \Leftrightarrow 1 \qquad \Delta \kappa_V \equiv \kappa_V \Leftrightarrow 1$ 

$$g_1^{\gamma}(q^2 \to 0) \equiv 1 - W$$
 electric charge

Many possibilities!

But what is reasonable?

Two common model types:

- Effective Lagrangian with light Higgs (linear model)
- Chiral Lagrangian with strong coupling (non-linear model)

Model parameters can be mapped to generic set:

 $\Delta \kappa_{\gamma}, \lambda_{\gamma}, etc.$ 

Effective Lagrangian:

 $L_{eff} = L_{SM} + L_{NR}$ 

 $(NR \equiv Non-Renormalizable in finite order)$ 

where (Einhorn / Wudka notation)

 $L_{NR} \equiv \frac{1}{\Lambda} \sum_{i} \alpha_{i}^{(5)} O_{i}^{(5)} + \frac{1}{\Lambda^{2}} \sum_{i} \alpha_{i}^{(6)} O_{i}^{(6)} + \dots$ 

and



 $O_i^{(5)}$  not physical

 $\implies$  Dimension 6 operators next in line

Keep terms to this order ( $\Lambda$  large)

Example

(Hagiwara, Ishihara, Szalapski, Zeppenfeld)

Use only known light fields (gauge Bosons plus Higgs) and covariant derivatives:

(only C, P conserving operators listed)

$$L_{NR} = \sum_{i=1}^{7} \frac{f_i}{\Lambda^2} O_i = \frac{1}{\Lambda^2} \times (f_{\Phi,1} (D_\mu \Phi)^{\dagger} \Phi \Phi^{\dagger} (D^\mu \Phi) + f_{BW} \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi + f_{DW} Tr([D_\mu, \hat{W}_{\nu\rho}][D^\mu, \hat{W}^{\nu\rho}]) \\ \Leftrightarrow f_{DB} \frac{g'^2}{2} (\partial_\mu B_{\nu\rho}) (\partial^\mu B^{\nu\rho}) + f_B (D_\mu \Phi)^{\dagger} \hat{B}_{\mu\nu} (D_\nu \Phi) + f_W (D_\mu \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_\nu \Phi) + f_{WWW} Tr[\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}_{\rho}^{\mu}])$$

where

$$[D_{\mu}, D_{\nu}] = \hat{B}_{\mu\nu} + \hat{W}_{\mu\nu} \equiv i rac{g'}{2} B_{\mu\nu} + i g rac{\sigma^a}{2} W^a_{\mu
u}$$

First four operators  $(O_{\Phi,1}, O_{BW}, O_{DW}, O_{DB})$  affect 2-point boson functions at tree level

 $\Rightarrow$  Severely constrained by LEP and other data

(c.f. S, T, U parameters of Peskin / Takeuchi)

Remaining operators  $(O_B, O_W, O_{WWW})$  contribute to anomalous triple boson couplings

"Relaxed" HISZ Scenario:

$$\Delta \kappa_{\gamma} = (f_B + f_W) \frac{M_W^2}{2\Lambda^2}$$
  

$$\Delta \kappa_Z = (f_W \Leftrightarrow s_W^2 (f_B + f_W)) \frac{M_Z^2}{2\Lambda^2}$$
  

$$\Delta g_1^Z = f_W \frac{M_Z^2}{2\Lambda^2} = \Delta \kappa_Z + \frac{s_W^2}{c_W^2} \Delta \kappa_{\gamma}$$
  

$$\lambda_{\gamma} = f_{WWW} \frac{3M_W^2 g^2}{2\Lambda^2} = \lambda_Z$$

"Full" H.I.S.Z. Scenario adds the constraint:

$$f_B = f_W$$

<u>Remarks on Full HISZ scenario:</u>

• Only two free parameters:

$$\kappa_\gamma, \qquad \lambda_\gamma$$

• Anomalous couplings are of order  $f_i \frac{M_W^2}{\Lambda^2}$ 

$$\Rightarrow$$
 If  $f_i \approx O(1)$ , then

$$\Delta \kappa_V \approx O(\frac{M_W^2}{\Lambda^2})$$
$$\approx 10^{-1} \quad \text{for } \Lambda \approx 250 \text{ GeV}$$
$$\approx 10^{-2} \quad \text{for } \Lambda \approx 1 \text{ TeV}$$

• It gets worse...

No renormalizable underlying theory for this effective Lagrangian can generate non-vanishing  $O_W$ ,  $O_B$ ,  $O_{WWW}$ at tree level (Artz / Einhorn / Wudka)

 $\Rightarrow$  Loop diagrams needed

 $\Rightarrow$  Further large suppression  $[O(\frac{1}{16 \pi^2})]$ 

Alternative model to go beyond Standard Model: Chiral Lagrangian with strong coupling

What exactly is strong coupling?

Useful to consider earlier  $e^+e^- \rightarrow W^+W^-$  example:

- I claimed that  $\sigma_{tot}$  is well behaved at large s because diagrams cancel
- But that was a lie...

Previous calculation neglected electron mass  $(m_e)!$ 

Residual axial vector term gives:



- $\Rightarrow$  Divergence at very high S
- $\Rightarrow$  Not a practical problem in our lifetimes
- $\Rightarrow$  But suggests eventual need for Higgs cancellation:



More pressing divergence:



Again, need something Higgs-like for cancellation:





What if  $m_H > 1$  TeV?

Or if no fundamental Higgs exists?

Use <u>Equivalence Theorem</u> to relate  $W_L W_L$  scattering to Goldstone Boson scattering:

 $W_L W_L$  scattering  $\Leftrightarrow \phi \phi$  scattering

One can go further...

Exploit similarity between Goldstone Boson scattering and low-energy pion scattering:

| $W_L W_L$ scattering | $\Leftrightarrow$ | $\pi\pi$ scattering |
|----------------------|-------------------|---------------------|
| v (250 GeV)          | $\Leftrightarrow$ | $f_{\pi}$ (90 MeV)  |

 $\Rightarrow$  Just scale everything up by

$$\frac{250}{0.09}$$
  $\approx$  2800 !

Easy to imagine a " $\rho$ " resonance:



#### This is not guaranteed

But a resonance would probably indicate higher-mass states occuring in loops:



### TECHNICOLOR

(QCD all over again...)

Take the  $\pi\pi$  analogy to logical extreme:

Longitudinal boson = techi-fermion condensate

| $W_L$     | $\Leftrightarrow$ | $``\pi"$ | $\Leftrightarrow$ | " $q\bar{q}$ " (techni-pion)    |
|-----------|-------------------|----------|-------------------|---------------------------------|
| $W_L W_I$ | -, resona         | ance     | $\Leftrightarrow$ | " $(q\bar{q})_V$ " (techni-rho) |

In general, techicolor models have many difficulties (theoretical and experimental)

But variants still cling to life

Chiral Lagrangian Approach

(only C, P conserving terms shown here)

- No Standard Model Higgs But retain would-be-Goldstone-Boson fields  $w_i$
- Define non-linear  $2 \times 2$  matrix:

$$\Sigma \equiv e^{i\vec{w}\cdot\vec{\sigma}/v}$$

with covariant derivative:

$$D_{\mu}\Sigma = \partial_{\mu}\Sigma + rac{i}{2}gW^{a}_{\mu}\sigma^{a}\Sigma - rac{i}{2}g'B_{\mu}\Sigma\sigma_{3}$$

• Construct effective Lagrangian from the fields and covariant derivatives

Dimension 6 terms giving anomalous WWV couplings:

$$\begin{array}{l} -ig \frac{v^2}{\Lambda^2} \hspace{0.1cm} L_{9L} \hspace{0.1cm} Tr[W^{\mu\nu}D_{\mu}\Sigma D_{\nu}\Sigma^{\dagger}] \\ -ig' \frac{v^2}{\Lambda^2} \hspace{0.1cm} L_{9R} \hspace{0.1cm} Tr[B^{\mu\nu}D_{\mu}\Sigma^{\dagger}D_{\nu}\Sigma] \end{array}$$

Coupling parameters  $L_{9L}$ ,  $L_{9R}$  can be mapped onto generic set:

$$\Delta g_1^Z = \frac{e^2}{2 c_W^2 s_W^2} \frac{v^2}{\Lambda^2} L_{9L}$$

$$\Delta \kappa_\gamma = \frac{e^2}{2 s_W^2} \frac{v^2}{\Lambda^2} (L_{9L} + L_{9R})$$

$$\Delta \kappa_Z = \frac{e^2}{2 c_W^2 s_W^2} \frac{v^2}{\Lambda^2} (L_{9L} c_W^2 + L_{9R} s_W^2)$$

No  $\lambda_V$  terms in dimension 6

Parametrizing a  $W_L W_L$  Vector Resonance

Alternative parametrization of techni-rho resonance via complex form factor (Peskin)

Multiply Standard Model  $e^+e^- \to W^+W^-$  amplitude by

$$F_T = \exp\left[\frac{1}{\pi} \int_0^\infty ds' \delta(s', M_{\rho}, \rho) \left\{\frac{1}{s' \Leftrightarrow s \Leftrightarrow i\epsilon} \Leftrightarrow \frac{1}{s'}\right\}\right]$$

where

$$\delta(s) = \frac{1}{96\pi v^2} + \frac{3\pi}{8} \left[ \tanh\left(\frac{s \Leftrightarrow M_{\rho}^2}{M_{\rho}, \rho}\right) + 1 \right]$$

and

$$M_{
ho}$$
, ,  $_{
ho}$  = techni-rho mass, width

Note:

As 
$$M_{\rho} \to \infty$$
,  $\delta(s) \to \frac{1}{96\pi v^2}$  (L.E.T.)]

Extract  $\operatorname{Re}(F_T)$ ,  $\operatorname{Im}(F_T)$  from data

 $\Rightarrow$  Limits / evidence for techni-rho

What do we expect for  $F_T$  in this model?



Low-Energy Experimentss

(Indirect – based on loop corrections)

CP-Conserving Couplings:

- Limits from  $b \to s\gamma \implies O(1)$
- Limits from  $(g \Leftrightarrow 2)_{\mu} \Rightarrow O(10^{-1}) O(1)$ (will improve soon to  $O(10^{-2}) - O(10^{-1})$
- Limits from "oblique" corrections to  $W/\gamma/Z$ propagators  $\Rightarrow O(10^{-2})$

**CP-Violating Couplings:** 

• Limits from neutron EDM  $\Rightarrow O(10^{-4})$ 

Remarks:

- Indirect constraints from loop processes can be
  - Powerful within a given model
  - Persuasive under "naturalness"
  - Irrelevant in general case
  - $\implies$  Above limits are model dependent

Return to  $e^+e^- \rightarrow W^+W^-$ 

- Total cross section sensitive to anomalous couplings
- Additional information in angular distributions of four-Fermion final state
- Seven possible  $W^-W^+$  helicity states  $(\lambda_-, \lambda_+)$ for *s* channel production via  $\gamma$ , *Z*:  $(+,0) (+,+) (0,+) (0,0) (0, \Leftrightarrow) (\Leftrightarrow, 0) (\Leftrightarrow, \Leftrightarrow)$
- Note: five states involve longitudinal W's
- Two additional helicity combinations allowed by t-channel  $\nu_e$  exchange diagram:

 $(+, \Leftrightarrow) (\Leftrightarrow, +)$ 

(forbidden by  $\vec{J}$  conservation in s channel)

- Total of nine helicity combinations (3×3) in matrix element amplitude
- But we don't detect W's; we detect Fermion daughters  $\implies$  Interference possible  $\Rightarrow 0 \times 0$  81 second possible
  - $\implies$  9×9 = 81 components in production tensor:

$$d\sigma \quad \propto \quad P^{\lambda_-\lambda_+}_{\lambda'_-\lambda'_+} \, D^{\lambda_-}_{\lambda'_-} \, D^{\lambda_+}_{\lambda'_+}$$

where

$$P^{\lambda_-\lambda_+}_{\lambda'_-\lambda'_+} = ext{Production tensor}$$
  
 $D^{\lambda_-}_{\lambda'_-} = ext{Decay tensor}$ 

(see Hagiwara *et al.* for explicit expressions)

- In principle, can measure all components from 81 different angular distributions defined by projection operators
- In practice, one chooses smaller set of parameters and angular distributions

Example: Polar production angle of  $W^-$ :



### Single $d\sigma/d \cos \Theta_W$ distribution hides complex structure:



Use five production / decay angles to extract helicity amplitudes:



## **Experimental Signatures**

Which WW decay channel is most useful?

- $WW \rightarrow q_1 \bar{q}_2 q_3 \bar{q}_4$  (4-jet final state)
  - Branching ratio product  $\approx (\frac{2}{3})^2$  (SM = 46%)
  - -3-fold ambiguity in jet assignment
  - 2-fold ambiguity in  $\theta_W$
  - 2-fold ambiguity in  $\theta_1$ ,  $\phi_1$
  - -2-fold ambiguity in  $\theta_2, \phi_2$ 
    - (jet charge tagging helps resolve angle ambiguities)
  - 6-C kinematic fit improves experimental resolution (E,  $\vec{p}$  conservation + two  $M_W$  constraints)
- - Branching ratio product  $\approx 2 \times (\frac{2}{3}) \times (\frac{1}{3})$  (SM = 44%)
  - 2-fold ambiguity in  $\theta_1$ ,  $\phi_1$
  - 3-C (2-C) kinematic fit improves resolution for  $e/\mu$   $(\tau)$
- - Branching ratio product  $\approx (\frac{2}{3})^2$  (SM = 10%)
  - $-\,WW$  reconstruction possible only for  $\ell=e,\mu$
  - 0-C "fit" leaves 2-fold global angular ambiguity, no improvement in experimental resolution

## **Experimental Signatures**

Examples of analysis methods for extracting couplings or testing Standard Model

- Fits to 1-D angular distributions  $(\Theta_W, \theta_1, \phi_1, \theta_2, \phi_2)$
- Fits to 2-D (and higher) angular distributions (statistics limited requires great care)
- Optimal observables:

$$d\sigma(\Omega, \vec{\alpha}) = s^{(0)}(\Omega) + \sum_{i} \alpha_{i} \cdot s_{i}^{(1)}(\Omega) + \sum_{i,j} \alpha_{i} \alpha_{j} \cdot s_{ij}^{(2)}(\Omega)$$

where  $\vec{\alpha} \equiv$  set of coupling parameters and  $s^{(0)}$ ,  $s^{(1)}$  and  $s^{(2)}$  are known functions. All available information contained in observables:

$$o_i^{(1)}(\Omega) = s_i^{(1)}(\Omega)/s^{(0)}(\Omega)$$
  $o_{ij}^{(2)}(\Omega) = s_{ij}^{(2)}(\Omega)/s^{(0)}(\Omega)$ 

Can look at distributions or moments of observables

### **Experimental Signatures**

• Decay spin density matrix: Reduce 81-component WWproduction tensor to 9-component  $W^- \rightarrow \ell^- \bar{\nu}$ Single-W spin density matrix:

$$\rho_{\lambda\lambda'}(\Omega) \equiv \frac{\sum_{\lambda_+,\lambda'_+} P_{\lambda'_-\lambda'_+}^{\lambda_-\lambda_+} D_{\lambda'_-}^{\lambda_-} D_{\lambda'_+}^{\lambda_+}}{\sum_{\lambda_-,\lambda_+,\lambda'_-\lambda'_+} P_{\lambda'_-\lambda'_+}^{\lambda_-\lambda_+} D_{\lambda'_-}^{\lambda_-} D_{\lambda'_+}^{\lambda_+}}$$

Measured experimentally from projection operators:

$$\rho_{\lambda\lambda'}(\Omega) = \frac{1}{N} \sum_{i=1}^{N} \Lambda_{\lambda\lambda'}(\cos\theta_1, \phi_1)$$

(see Gounaris *et al.* for explicit  $\Lambda_{\lambda\lambda'}$  expressions)

#### Remarks

- First three methods used to extract coupling parameters
- Spin density matrix is model independent
   ⇒ Test of Standard Model
- Off-diagonal spin matrix elements complex in general  $\implies$  CP violation gives non-zero imaginary components

So what anomalous couplings do we try to fit?

Many free parameters to determine...

 $\implies$  Tempting / customary to allow only

one / two parameter(s) to vary at a time

Example:

Fit for  $\Delta \kappa_{\gamma}$  with all other couplings fixed by SM

Complications:

- Convenient but not well motivated theoretically
- $\kappa_V, \lambda_V, g_1^V$  strongly correlated in observables
- Unnatural to vary only  $\gamma$  or only Z couplings
- Hard to separate  $\gamma, Z$  couplings in  $e^+e^- \to W^+W^-$  without polarized beams

(bad for LEP II, okay for Linear Collider)

Common choices – Full (relaxed) HISZ scenario

 $\Rightarrow$  Two (three) free parameters to fit:

$$\kappa_\gamma, \quad \lambda_\gamma \quad (g_1^Z)$$

LEP Ring:

- Electron-positron synchrotron
- 27-km circumference (see figure)
- Four major detectors: ALEPH, DELPHI, L3, OPAL
- Ring magnets permit  $\sqrt{s} \approx 240 \text{ GeV}$
- RF cavities / power (\$) = real limitations


LEP Running History:

- Turned on in 1989
- Ran at  $91 \pm 3 \text{ GeV} 1989-1995$
- Provided millions of Z's / experiment Standard Model confirmed with depressingly high precision
- Short run at 130-140 GeV in November 1995 ("LEP 1.5")
- LEP II began in summer 1996 with 25  $pb^{-1}$  at 161 GeV
- Subsequent runs at 172, 183, 189 GeV (1996-1998)
- $\bullet$  Started 1999 at 192 GeV, now running at 196 GeV
- LEP II integrated luminosity / experiment >  $350 \text{ pb}^{-1}$

LEP Running Plans:

• Collect data through 2000 with

 $-\sqrt{s} > 200 \text{ GeV}$ 

- Total LEP II luminosity > 500 pb<sup>-1</sup>
- Shut down for 2001 LHC tunnel construction
- If dramatic new physics seen by end of 2000, running in 2002 possible

Measurement from ALEPH of  $\cos \Theta_W$  distribution:



Page 38

#### Measurement from L3 of several 1-D distributions:



K. Riles

OPAL angular distributions & optimal observables (prelim) (curves for  $\Delta g_1^Z = \Leftrightarrow 0.5$ (dotted), 0(solid), +0.5(dashed))



OPAL spin density matrix measurements:



**OPAL Preliminary** 

Page 41

Results for HISZ coupling parameters:





(Fits courtesy of LEP Electroweak Working Group)

#### Correlations cannot be neglected:



(Fits courtesy of LEP Electroweak Working Group)

A Next Linear Collider

Who will build it?

- Germany? TESLA or SBLC
- Japan? JLC (S, C, or X)
- Russia? VLEPP
- Europe? CLIC
- U.S.A.? NLC

 $\Rightarrow$  World-wide, collaborative R & D effort

U.S. R & D effort centered at SLAC

- Three-stage concept:
  - Turn on with  $\sqrt{s} = 500 \text{ GeV}$
  - Increase  $\sqrt{s}$  "adiabatically" to 1 TeV (more/better klystrons)
  - Lengthen machine to achieve 1.5 TeV

#### Layout of NLC



#### Some NLC machine parameters:

| $\sqrt{s}$                                  | $500 \mathrm{GeV}$ | 1 TeV                |
|---------------------------------------------|--------------------|----------------------|
| Length (km)                                 | 16                 | 18                   |
| RF Frequency (GHz)                          | 11                 | 11                   |
| Klystron Power (MW)                         | 50                 | 72                   |
| # Klystrons                                 | 3900               | 9200                 |
| Gradient $(MV/m)$                           | 50                 | 85                   |
| Wall Plug Power (MW)                        | 105                | 200                  |
| Beam spot $\sigma_x$ (nm)                   | 320                | 250                  |
| Beam spot $\sigma_y$ (nm)                   | 5.5                | 4.3                  |
| $\pounds$ (cm <sup>-2</sup> s <sup>-1</sup> | $5 \times 10^{33}$ | $1.4 \times 10^{34}$ |

 $\Rightarrow \approx 6$  years construction

- "Zero-order" Design Report (ZDR) completed 1996
- Detailed engineering work has begun at SLAC

Other Accelerator Options:

- $e^-e^-$  Collider (Get for "free")
- $e^-\gamma$  Collider
- $\gamma\gamma$  Collider

```
\gamma colliders based on backscattered laser photons (Ginzburg et al., Akerlof 1981)
```

Some advantages:

- Opens up new Physics channels (Spin, Isospin, Charge)
- Isolation of  $\gamma$  from Z contributions
- Look for  $\gamma \gamma \to H$
- Look for Majorana neutrinos  $(e^-e^- \to \nu\nu W^-W^-)$

Potential pitfall:

• Making  $\gamma$  beams with competitive luminosity

Early studies by Barklow of  $q\bar{q}\ell\bar{\nu}$  channel

Use:

Measured energy of lepton

Angles of lepton, jets (require  $|\cos \Theta_W| < 0.8$ )

<u>Velocities</u> of jets  $(\beta_i = p_i/E_i)$ 

Kinematic constraint to  $\ell \bar{\nu} j_1 j_2$ 

Require:

$$\chi^2 \equiv \frac{(M_{\ell\bar{\nu}}^{fit} \Leftrightarrow M_W)^2}{, \frac{2}{W}} + \frac{(M_{j_1j_2}^{fit} \Leftrightarrow M_W)^2}{, \frac{2}{W}} < 2$$

Perform unbinned maximum likelihood fit in five reconstructed angles to extract coupling parameters

- No detector smearing<sup>\*</sup>
- But realistic efficiencies used
- Following exclusion contours defined by covariance matrix elements

\*Studies for Snowmass 96 (KR) confirmed that planned detector resolutions cause no serious degradation

NLC studies (Barklow)

With and without  $e^-$  beam polarization

80 fb<sup>-1</sup> at  $\sqrt{s} = 500 \text{ GeV}$ 

Assumes HISZ scenario



Same plots with 190 fb<sup>-1</sup> at  $\sqrt{s} = 1.5$  TeV



#### Conclusion:

Beam polarization useful even in HISZ Scenario

### **Experimental Signatures**

In more general model, however, beam polarization critical in disentangling  $\gamma, Z$  couplings



K. Riles

Can one start to see a techni-rho at NLC?

Preceding helicity analysis (Barklow) of  $e^+e^- \rightarrow W^+W^$ extended to fit for real/imaginary components of complex form factor:

(S.M.  $W_L W_L$  amplitude multiplied by  $F_T$ )



#### $\Rightarrow$ At 500 GeV:

- Exclude techni-rho with  $M_{\rho} < 2.5 \text{ TeV} (95\% \text{ CL})$
- Discover techni-rho with  $M_{\rho} < 1.5 \text{ TeV} (5 \sigma)$

At higher  $\sqrt{s}$ , expected deviations of  $F_T$  from (1,0) become larger for given  $M_{\rho}$ , ,  $_{\rho}$ :



 $\Rightarrow$  At 1.5 TeV:

- Exclude <u>any</u> techni-rho in this model
- Discovery potential:
  - 4.5  $\sigma$  for L.E.T.
  - 4.8  $\sigma$  for  $M_{\rho} = 6$  TeV
  - 6.5  $\sigma$  for  $M_{\rho} = 4$  TeV
- Distinguish L.E.T. from  $M_{\rho} < 4$  TeV

What about  $W_L W_L$  fusion?

Analysis by Barger / Cheung / Han / Phillips uses  $e^+e^- \rightarrow \nu \bar{\nu} W^+ W^-$ ,  $e^+e^- \rightarrow \nu \bar{\nu} Z Z$  channels at 1.5 TeV to measure ratio

$$R_{W/Z} \equiv \frac{\sigma(W_L^+ W_L^- \to W^+ W^-)}{\sigma(W_L^+ W_L^- \to ZZ)}$$

Ratio varies with strong coupling model

- S.M. with  $M_H = 1$  TeV: expect  $R_{W/Z} \approx 2$
- L.E.T.  $(M_H \to \infty)$ : expect  $R_{W/Z} \approx 2/3$
- Technicolor: expect  $R_{W/Z}$  very large (no resonance for  $Z_L Z_L$ )

 $e^+e^-$  clean liness allows selection of hadronic decays with modest backgrounds

 $W^+W^-$  and ZZ separated statistically by dijet mass:

 $68 \text{ Gev} < M_W < 86 \text{ GeV}$   $86 < M_Z < 105 \text{ GeV}$ 

## **Experimental Signatures**



Following figure assumes 200  $\text{fb}^{-1}$  at 1.5 TeV

Page 55

## **Experimental Signatures**

Other Coupling Measurements at  $e^+e^-$  Collider:

| Process                                                                     | Couplings probed                    |  |
|-----------------------------------------------------------------------------|-------------------------------------|--|
| $e^+e^- \rightarrow Z\gamma$                                                | $ZZ\gamma,Z\gamma\gamma$            |  |
| $e^+e^- \rightarrow WW\gamma$                                               | $WW\gamma,WWZ\gamma,WW\gamma\gamma$ |  |
| $e^+e^- \rightarrow WWZ$                                                    | $WWZ, WWZZ, WWZ\gamma$              |  |
| $e^+e^- \rightarrow e\bar{\nu}W$                                            | $WWZ,WW\gamma$                      |  |
| $e^+e^- \rightarrow \nu \bar{\nu} \gamma$                                   | $WW\gamma$                          |  |
| $e^+e^- \rightarrow \nu \bar{\nu} Z$                                        | WWZ                                 |  |
| Coupling Measurements at $e^-e^-$ , $\gamma\gamma$ , $e^-\gamma$ Colliders: |                                     |  |
| Process                                                                     | Couplings probed                    |  |
| $e^-e^-  ightarrow e^- \nu W^-$                                             | $WW\gamma, WWZ$                     |  |
| $e^-e^-  ightarrow e^-e^-Z$                                                 | $ZZ\gamma,Z\gamma\gamma$            |  |
| — — · — TTZ—                                                                |                                     |  |

| $e \ e \  ightarrow e \  u \ VV \ \gamma$ | VV VV $\gamma,$ VV VV Z |
|-------------------------------------------|-------------------------|
| $e^-e^- \rightarrow \nu \nu W^- W^-$      | WWWW (Isospin 2 poss.)  |
| $\gamma \gamma \rightarrow W^+ W^-$       | $\overline{WW\gamma}$   |

|   | $\gamma\gamma \to W^+W^-Z$        | $WWZ,WW\gamma$           |
|---|-----------------------------------|--------------------------|
|   | $\gamma\gamma \to ZZ$             | $ZZ\gamma,Z\gamma\gamma$ |
|   | $\gamma\gamma \to W^+W^-W^+W^-$   | WWWW (Isospin 2 poss.)   |
|   | $\gamma\gamma \to W^+W^-ZZ$       | WWZZ                     |
| _ | $e^-\gamma \to W^-\nu$            | $WW\gamma$               |
|   | $e^-\gamma \to e^-Z$              | $ZZ\gamma,Z\gamma\gamma$ |
|   | $e^-\gamma \rightarrow W^+W^-e^-$ | $WWZ,WW\gamma,WWZ\gamma$ |
|   |                                   |                          |

Note: can polarize <u>both</u> beams in  $e^-e^-$ 

### WHAT CAN HADRON COLLIDERS TELL US?

Sampling of accessible couplings / processes:

| Coupling       | Processes                                          |
|----------------|----------------------------------------------------|
| $WW\gamma$     | $q\bar{q}' \rightarrow W^* \rightarrow W\gamma$    |
| $WW\gamma/WWZ$ | $q\bar{q} \rightarrow \gamma^*/Z^* \rightarrow WW$ |
| WWZ            | $q\bar{q}' \to W^* \to WZ$                         |

Complications:

- Parton initial state energies / longitudinal momenta unknown a priori
- Parton collisions have poorly defined maximum  $\sqrt{s'}$  (unlike at  $e^+e^-$ ,  $e^-e^-$ ,  $\gamma\gamma$  colliders)
- Form-factor dependence critical in setting sensible limits Example:

$$\Delta \kappa_V(s') = \frac{\Delta \kappa_{\gamma}^0}{(1 + \frac{s'}{\Lambda_{FF}^2})^2}$$

where  $\Lambda_{FF} \approx$  scale of new physics

Quoted limits must specify assumed  $\Lambda_{FF}$ 

Typical choices: 1.0, 1.5, 2.0 TeV

## **Experimental Signatures**

#### The Tevatron Collider

Two Detectors: CDF D0

Run 1 (1992-95)

- >100 pb<sup>-1</sup> at  $\sqrt{s_{p\bar{p}}} = 1.8 \text{ TeV}$
- Many TGC results now final & published

Run 2 (2000-200?)

- >2 fb<sup>-1</sup> at  $\sqrt{s_{p\bar{p}}} = 2.0$  TeV
- Extension to  $\geq 10-30 \text{ fb}^{-1} \text{ (TEV33)}$

#### Measurement of $W\gamma$ production from D0:



K. Riles





Remarks:

- Better sensitivity to  $\lambda_V$  than to  $\Delta \kappa_V$  (like LEP)
- $WW\gamma$  cleanly isolated from WWZ (unlike LEP)
- Assumes  $\Lambda_{FF} = 1.5 \text{ TeV}$

CDF limits from WW, WZ production:



FIG. 2. Limits on anomalous couplings: (a) Assuming  $\kappa_{\gamma} = \kappa_Z = \kappa$  and  $\lambda_{\gamma} = \lambda_Z = \lambda$ . (b) The HISZ scenario where  $\kappa_{\gamma}$  and  $\lambda_{\gamma}$  are used as independent parameters. The standard model value is located at the center. The outer (inner) contour is the 95% CL limits with the energy scale  $\Lambda = 1$  TeV (2 TeV).

Tevatron – Run 2

Expect 1-10 fb<sup>-1</sup> at  $\sqrt{s} = 1.8/2.0$  TeV

Analysis by Errede

Assumes full HISZ scenario

For 1 fb<sup>-1</sup>:

$$\Leftrightarrow 0.31 < \Delta \kappa_{\gamma} < 0.41 \ (\lambda_{\gamma} = 0)$$
  
$$\Leftrightarrow 0.19 < \lambda_{\gamma} < 0.19 \ (\Delta \kappa_{\gamma} = 0)$$

For 10 fb<sup>-1</sup>:

$$\Leftrightarrow 0.17 < \Delta \kappa_{\gamma} < 0.24 \ (\lambda_{\gamma} = 0) \\ \Leftrightarrow 0.10 < \lambda_{\gamma} < 0.11 \ (\Delta \kappa_{\gamma} = 0)$$



### **Experimental Signatures**

What about the LHC?

Assume 100 fb<sup>-1</sup> at  $\sqrt{s} = 14$  TeV

Analysis for ATLAS TDR

Assumes HISZ scenario

For 100  $fb^{-1}$ :



Summary of CP-conserving WWV measurement prospects

 $\rm NLC$  should improve dramatically upon LEP II / Tevatron and substantially upon LHC

Figure from Barklow/Dawson/Haber/Siegrist:



What about CP violation? (!)

Remarks

- Total cross section less sensitive to small  $\ensuremath{\mathcal{CP}}$  couplings
- Why?

$$\sigma ~~ \propto ~~ |M_{
m tot}|^2$$

where

$$M_{\rm tot} = M_{\rm S.M.} + M_{CP}$$

At tree level,

$$\Im\{M_{\mathrm{S.M.}}\} = 0 \qquad \Re\{M_{\mathcal{CP}}\} = 0$$

 $\implies \sigma_{\rm tot} = \sigma_{\rm S.M.} + \sigma_{CP}$ 

- $\implies$  No interference
- Contrast with CP-even anomalous couplings which disturb large destructive interference in S.M.
- Similar problem occurs in simple angular distributions
- Better sensitivity from
  - Correlations between  $W^+$  and  $W^-$  decay distributions
  - Manifestly CP-odd observables

Examples in  $e^+e^- \rightarrow W^+W^-$ :

- Multi-dimensional maximum likelihood fitting
- Look at following 1-D distributions (Hagiwara et al.)
  - $\sin \theta_1 \sin \theta_2$
  - $\sin(\phi_1 \Leftrightarrow 2\phi_2) \Leftrightarrow \sin(2\phi_1 \Leftrightarrow \phi_2)$
  - $\sin(\phi_1 \Leftrightarrow \phi_2)$
- Look at imaginary components of off-diagonal single-W spin density matrix elements (Gounaris *et al.*)

• 
$$\Im\{\rho_{+-}^{W^+}\} + \Im\{\rho_{+-}^{W^-}\}$$

• 
$$\Im\{\rho_{+0}^{W^+}\} \Leftrightarrow \Im\{\rho_{-0}^{W^-}\}$$

• 
$$\Im\{\rho_{-0}^{W^+}\} \Leftrightarrow \Im\{\rho_{+0}^{W^-}\}$$

Present *direct* limits on  $\mathcal{CP} WW\gamma$  couplings:

• D0 used  $p\bar{p} \rightarrow W\gamma + X$  to derive

 $\Leftrightarrow 0.92 < \tilde{\kappa}_{\gamma} < 0.92 \qquad \Leftrightarrow 0.31 < \tilde{\lambda}_{\gamma} < 0.30$ 

from the  $p_t^{\gamma}$  spectrum

• DELPHI used  $e^+e^- \to W^+W^-$  and  $e^+e^- \to e\bar{\nu}W$  events to derive

 $\tilde{\kappa}_{\gamma} = 0.11^{+0.71}_{-0.88} \pm 0.09$   $\tilde{\lambda}_{\gamma} = 0.19^{+0.28}_{-0.41} \pm 0.11$ 

(based on small 161-172 GeV data sample)

• OPAL verified imaginary components of off-diagonal single-W spin density matrix consistent with zero, but no explicit limit on  $\ensuremath{\mathcal{CP}}$  couplings derived

Remarks:

- More stringent limits possible from present LEP II data
- Many experimentalists regard such limits are artificial, since they require setting other anomalous couplings to zero
- Indirect neutron EDM limits on  $\tilde{\kappa}_{\gamma}$  and  $\tilde{\lambda}_{\gamma}$  encourage confidence (complacency?) in considering only CP conserving couplings

## Other Gauge Boson Couplings (CP)

Anomalous  $ZZ\gamma$ ,  $Z\gamma\gamma$  Couplings

- Couplings vanish at tree-level in SM
- Bose symmetry / gauge invariance forbid non-zero values when all bosons on mass shell
- Parametrization of  $Z\gamma V$  vertex function:  $(V \equiv Z\gamma)$

$$\begin{array}{ll} , \, {}^{\alpha\beta\mu}_{Z\gamma V}(q_1, q_2, P) &\equiv & \displaystyle \frac{P^2 \, \Leftrightarrow m_V^2}{m_Z^2} \times \\ & \left[ {h_1^V(q_2^\mu g^{\alpha\beta} \Leftrightarrow q_2^\alpha g^{\mu\beta}) \, + \, \frac{h_2}{m_Z^2} P^\alpha (P \cdot q_2 g^{\mu\beta} \Leftrightarrow q_2^\mu P^\beta) \right. \\ & \left. + {h_3^V \epsilon^{\mu\alpha\beta\rho} q_{2\rho} \, + \, \frac{h_4^V}{m_Z^2} P^\alpha \epsilon^{\mu\beta\rho\sigma} P_\rho q_{2\sigma} \right] \end{array}$$



## Other Gauge Boson Couplings (CP)

Anomalous  $Z\gamma V$  couplings:

- CP-odd couplings:  $h_1^V, h_2^V$
- CP-even couplings:  $h_3^V$ ,  $h_4^V$
- The  $h_i^V$  couplings are really form factors:

$$h_i^v(P^2) \equiv rac{h_{i0}^V}{(1+rac{P^2}{\Lambda_V^2})^{n_i^V}}$$

- Unitarity requires  $n_1^V, n_3^V, \ge 3, \qquad n_2^V, n_4^V \ge 4$
- Signatures at  $e^+e^-$  collider:  $\gamma\gamma$ ,  $Z\gamma$ , ZZ production
- Standard Model background:



Example from L3:

Probe all eight  $h_i^V$  couplings via  $Z\gamma$  production

- Look at final state  $q\bar{q}\gamma$  (2 jets + hard photon)
- Look at final state  $\nu \bar{\nu} \gamma$  (single hard photon)
- Couplings determined by matrix element reweighting of Monte Carlo events to match data
- Five kinematic variables used in  $q\bar{q}\gamma$  analysis  $(E_{\gamma}, \theta_{\gamma}, \phi_{\gamma}, \theta_{q}^{*}, \phi_{q}^{*})$
- The three photon variables used in  $\nu \bar{\nu} \gamma$  analysis

Preliminary Results:

| $95\%~{ m CL}~{ m Limits}$            |        |  |  |
|---------------------------------------|--------|--|--|
| $\Leftrightarrow 0.09 < h_1^Z$        | < 0.20 |  |  |
| $\Leftrightarrow 0.12 < h_2^Z$        | < 0.06 |  |  |
| $\Leftrightarrow 0.16 < h_3^Z$        | < 0.15 |  |  |
| $\Leftrightarrow 0.09 < h_4^Z$        | < 0.10 |  |  |
| $\Leftrightarrow 0.09 < h_1^{\gamma}$ | < 0.08 |  |  |
| $\Leftrightarrow 0.05 < h_2^{\gamma}$ | < 0.07 |  |  |
| $\Leftrightarrow 0.09 < h_3^{\gamma}$ | < 0.07 |  |  |
| $\Leftrightarrow 0.05 < h_4^{\gamma}$ | < 0.06 |  |  |

# Other Gauge Boson Couplings (CP)

#### 2-Dimensional contour limits on $\mathcal{CP}$ couplings: (preliminary)





## Other Gauge Boson Couplings (CP)

2-Dimensional contour limits on CP conserving couplings from D0 and L3 (L3 limits preliminary)


Anomalous  $ZZ\gamma$ , ZZZ Couplings (ZZ production)

- Bose symmetry permits two couplings
- Parametrization of ZZV vertex function:

$$\begin{array}{ll} , \ ^{\alpha\beta\mu}_{ZZV}(q_1,q_2,P) & \equiv & \displaystyle \frac{P^2 - m_V^2}{m_Z^2} \times \\ & [i \ f_4^{ZZV}(P^{\alpha}g^{\mu\beta} + P^{\beta}g^{\mu\alpha}) \ + \ i \ f_5^{ZZV}\epsilon^{\mu\alpha\beta\rho}(q_1 - q_2)_{\rho}] \end{array}$$

- CP-Violating:  $f_4^{ZZV}$
- CP-Conserving:  $f_5^{ZZV}$

Preliminary analysis from OPAL:

- Examines total cross section and  $d\sigma/d\cos\theta_Z$  distribution
- Probes both real & imaginary  $f_i^{ZZV}$  components
- Severely limited by ZZ statistics ( $\sqrt{s} \le 189 \text{ GeV}$ )

#### Other Gauge Boson Couplings (CP)



Resulting limits on  $f_i^{ZZV}$ :

$$\begin{array}{l} 95\% \ {\rm CL} \ {\rm Limits} \\ \Leftrightarrow & 2.0 < \Re\{f_4^{ZZZ}\} < 2.0 \\ \Leftrightarrow & 2.0 < \Im\{f_4^{ZZZ}\} < 1.9 \\ \Leftrightarrow & 5.1 < \Re\{f_5^{ZZZ}\} < 3.6 \\ \Leftrightarrow & 5.2 < \Im\{f_5^{ZZZ}\} < 3.6 \\ \Leftrightarrow & 5.2 < \Im\{f_5^{ZZZ}\} < 5.4 \\ \Leftrightarrow & 1.2 < \Re\{f_4^{ZZ\gamma}\} < 1.2 \\ \Leftrightarrow & 1.2 < \Im\{f_4^{ZZ\gamma}\} < 1.2 \\ \Leftrightarrow & 3.2 < \Re\{f_5^{ZZ\gamma}\} < 3.0 \\ \Leftrightarrow & 3.2 < \Im\{f_5^{ZZ\gamma}\} < 3.2 \end{array}$$

#### Summary

- Anomalous TGC and QGC probed most directly at  $e^+e^-$  and hadron colliders
- Best sensitivity: High energy  $e^+e^-$ ,  $e^-e^-$ ,  $\gamma\gamma$ ,  $e^-\gamma$  colliders
- LEP I and low-energy measurements suggest anomalous couplings will not be observed soon

Especially  $\mathcal{QP} \ WW\gamma$  couplings

- LEP II measurements confirm analysis techniques, but do not challenge Standard Model
- Optimistic perspective:

If non-zero anomalous couplings measured, Then dramatic New Physics imminent

Standard Model: (see Nir lectures):

Expect  $\mathcal{OP}$  in only charged-current quark interactions Cabibbo-Kobayashi-Maskawa Matrix:

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Standard parametrization:

$$egin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{ ext{KM}}}\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{ ext{KM}}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{ ext{KM}}} & s_{23}c_{13}\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{ ext{KM}}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{ ext{KM}}} & c_{23}c_{13} \end{pmatrix}$$

 $\implies$  Explicit  $\mathcal{OP}$  phase in  $V_{td}$ ,  $V_{ts}$  elements

 $\implies$  Easy to see CP violation in top decay?

#### Nope...

Obstacles:

- $\operatorname{Max}(|V_{td}|, |V_{ts}|) < \approx 0.01$
- $t \text{ decays} (, \approx 1.8 \text{ GeV})$  before neutral  $t\bar{c}, t\bar{u}$  states can form  $\implies$  No time for mixing effects
- Any identifiable exclusive decay is "rare"
- Interference possible between tree + loop diagrams Example:



(exploit imaginary term from on-shell W in tree diagram)

• Can look for Partial Rate Asymmetry (PRA):

PRA 
$$\equiv \frac{, (t \to X_i) \Leftrightarrow, (\bar{t} \to \bar{X}_i)}{, (t \to X_i) +, (\bar{t} \to \bar{X}_i)}$$

for some  $X_i$  final state

- But loop contribution suppressed by off-diagonal CKM elements and by GIM mechanism
- Result:  $(PRA)^2 \times B(t \to X_i) < \approx 10^{-15}$  $\implies \mathcal{CP}$  not visible in S.M. top decay / production  $\implies$  If  $\mathcal{CP}$  seen in top sector, new physics at work

Beyond the Standard Model

 $\ensuremath{\mathcal{CP}}$  in the top sector:

- Charged current processes:
  - Add charged Higgs to decay route



Remarks:

- Non-SM Higgs gives large effects because  $m_t$  large
- Fast t decay has important advantage:
  - Spin of t undiluted by hadronization
    - $\implies$  Polarimetry feasible via  $V \Leftrightarrow A$  coupling in decay

 $\mathcal{CP}$  in the top sector:

- Neutral current processes:
  - Electric dipole moment (SM prediction  $\approx 10^{-30}$  e-cm)
  - Weak and Chromo analogs
  - Much larger moments can arise from
    - \*  $\mathcal{CP}$  in neutral Higgs sector (multi-Higgs models)
    - \*  $\mathcal{OP}$  in charged Higgs sector ("""""
    - \*  $\mathcal{CP}$  in MSSM:  $\tilde{t}_L$ ,  $\tilde{t}_R$  mixing
    - \* Scalar leptoquarks

Example:



(figure from Poulose & Rindani)

Comparing single t decay to single  $\overline{t}$  decay... (correlations in  $t\overline{t}$  production discussed below)

PRA enhanced in many non-SM scenarios, but still tiny One can go beyond partial decay widths:

• Energy asymmetry in  $t \to b \bar{\ell} \nu \ vs \ \bar{t} \to \bar{b} \ell \bar{\nu}$ 

$$A_E \equiv \frac{\langle E_\ell \rangle \Leftrightarrow \langle E_{\bar{\ell}} \rangle}{\langle E_\ell \rangle + \langle E_{\bar{\ell}} \rangle}$$

 $-\ell = e \text{ (Schmidt \& Peskin, 1992)}$  $-\ell = \tau \text{ (Atwood et al., 1993)}$  $\text{(enhanced over } \ell = e \text{ if Higgs-induced)}$ 

- T-odd W polarization asymmetry in  $t \to bW$  ( $t \ vs \ \bar{t}$ ) (Ma and Brandenburg, 1992)
- Partially Integrated Rate Asymmetry (PIRA) (partial phase space integration, Atwood *et al.*, 1993)
- Tau transverse polarization asymmetry in  $t \rightarrow b \bar{\tau} \nu$ (Atwood, Eilam & Soni, 1993)

Example – Tau transverse polarization in  $t \rightarrow b \bar{\tau} \nu_{\tau}$ (Atwood, Eilam & Soni, 1993)



Lab frame



Look for difference between  $\langle P_{\tau(\text{para})}^{\text{Tran}} \rangle$ ,  $\langle P_{\tau(\text{perp})}^{\text{Tran}} \rangle$ for  $t \ vs \ \bar{t}$  decays

Quoted precision on asymmetry for 500 GeV NLC:

$$3\sigma$$
 for  $A_{pol} \approx 6\%$ 

For charged Higgs of  $m_{H^+} = 400$  GeV, "might" expect  $A_{pol} \approx 5-20\%$ 

Can reach  $\approx 50\%$  for  $m_{H^+} = 200 \text{ GeV}$ 

CP easier to see in  $t\bar{t}$  production

Especially at lepton, photon colliders

As with gauge bosons,  $\mathcal{CP}$  couplings fall under more general category of anomalous couplings

 $\implies$  Parametrized as multipole moments

Electroweak neutral current: (notation of Frey et al., 1996)

$$, {}^{\mu}_{tt(\gamma/Z)} = e \, \bar{t} \left\{ \gamma^{\mu} \left[ Q_{V}^{\gamma,Z} F_{1V}^{\gamma,Z} + Q_{A}^{\gamma,Z} F_{1A}^{\gamma,Z} \gamma_{5} \right] \right. \\ \left. + \frac{i \, e}{2 \, m_{t}} \, \sigma^{\mu\nu} k_{\nu} \left[ Q_{V}^{\gamma,Z} F_{2V}^{\gamma,Z} + Q_{A}^{\gamma,Z} F_{2A}^{\gamma,Z} \gamma_{5} \right] \right\} t$$

where in the S.M.  $F_{1V}^{\gamma} = F_{2V}^{Z} = F_{2A}^{Z} = 1$ and all other form factors are zero

Normalization:

$$Q_V^{\gamma} = Q_A^{\gamma} = \frac{2}{3}$$

$$Q_V^Z = (1 \Leftrightarrow \frac{8}{3} \sin^2 \theta_W) / (4 \sin \theta_W \cos \theta_W)$$

$$Q_A^Z = \Leftrightarrow 1 / (4 \sin \theta_W \cos \theta_W)$$

 $F_{2V}^{\gamma,Z}, F_{2A}^{\gamma,Z} = E.W.$  magnetic, electric dipole form factors

Weak charged current: (neglecting flavor violation)

$$egin{array}{rcl} , {}^{\mu}_{tbW} &= \displaystyle rac{g}{\sqrt{2}} ar{b} \left\{ \gamma^{\mu} \left[ P_L F^W_{1L} \,+\, P_R F^W_{1R} 
ight] \ &+ \displaystyle rac{i}{2m_t} \sigma^{\mu
u} k_
u [P_L F^W_{2L} \,+\, P_R F^W_{2R}] 
ight\} t \end{array}$$

where  $P_L$ ,  $P_R = \text{left}$ , right projection operators and where in the Standard Model  $F_{1L}^W = 1$  and all other form factors are zero. ( $F_{1R}$  describes V+A coupling)

SU(3) current: (notation of Rizzo, 1996)

$$\pounds_{ttg} = g_s \, ar{t} \, T_lpha(\gamma^\mu \, + \, rac{i}{2m_t} \sigma^{\mu
u}(\kappa - i \, ilde{\kappa} \gamma_5) \, q_
u) \, t \; G^\mu_lpha$$

where  $g_s = \text{strong coupling constant},$   $T_{\alpha} = \text{color generators},$  $G^{\mu}_{\alpha} = \text{gluon field}$ 

 $\kappa, \, \tilde{\kappa} =$  chromo-magnetic, chromo-electric dipole moments (form factors in general)

Looking for  $\mathcal{OP}$  in top production (a sampling) (some techniques automatically probe  $\mathcal{OP}$  in top decay too)

- Top polarization asymmetry in  $e^+e^- \rightarrow t\bar{t}$  and  $gg \rightarrow t\bar{t}$ (from W kinematics, Kane, Ladinsky, & Yuan, 1992)
- Azimuthal W correlations in  $e^+e^- \rightarrow t\bar{t}$ (Kane, Ladinsky, & Yuan, 1992)
- Energy asymmetry  $A_E$  (Schmidt & Peskin, 1992)
- Manifestly CP-odd observables in  $e^+e^- \rightarrow t\bar{t}$ Correlation Tensor:

$$\hat{T}_{ij} \equiv (\hat{q}_{-} \Leftrightarrow \hat{q}_{+})_{i} \frac{(\hat{q}_{-} \times \hat{q}_{+})_{j}}{|\hat{q}_{-} \times \hat{q}_{+}|} + (i \Leftrightarrow j)$$

where  $\hat{q}_{-}$ ,  $\hat{q}_{+}$  = unit vectors along, e.g., b,  $\bar{b}$  directions (Bernreuther, Schröder & Pham, 1992)

K. Riles

• Optimal observables in  $e^+e^- \to t\bar{t} \to b\bar{b}\bar{\ell}\ell'\nu_\ell\bar{\nu}_{\ell'}$ Analogous to TGC observables discussed earlier, but with terms projecting out  $\Re\{d_t^{\gamma,Z}\}, \Im\{d_t^{\gamma,Z}\}$  where

$$d_t^{\gamma,Z} = \text{Electric, weak electric dipole moment}$$
  
 $\equiv \frac{e}{2 m_t} F_{2A}^{\gamma,Z}$ 

(Atwood & Soni, 1992)

- Decay lepton up/down asymmetry in gg → tt̄ → bℓνX (Grzadkowski & Gunion, 1992) (Up/down refers to pe in W rest frame w.r.t. t⇔b plane)
- Manifestly CP-odd observables in  $e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}X\bar{X}$ with polarized beams (Cuypers & Rindani, 1994)

$$\begin{array}{rcl} O_1 & \equiv & (\vec{p}_b \times \vec{p}_{\bar{b}}) \cdot \hat{p}_{e^+} \\ O_2 & \equiv & (\vec{p}_b + \vec{p}_{\bar{b}}) \cdot \hat{p}_{e^+} \end{array}$$

 Multi-distribution fitting with matrix element reweighting (reweighting by one or more form factor parameters) (Frey *et al.*, 1996)

More exotic possibilities: (sampling)

• CP-odd observables in  $e^+e^- \rightarrow t\bar{t}H$ ,  $e^+e^- \rightarrow t\bar{t}Z$ – need hefty  $\sqrt{s}$  for this! (Bar-Shalom *et al.*, 1996; Bar-Shalom, Atwood & Soni, 1998)

$$O \quad \equiv \quad \vec{p}_{e^-} \cdot (\vec{p}_t \times \vec{p}_{\bar{t}})$$

• Charge and forward/backward asymmetries of  $\ell^+ \ell'^-$  in  $\gamma \gamma \to t \bar{t} \to b \bar{b} \, \ell^+ \ell'^- \, \nu_\ell \bar{\nu}_{\ell'}$  (Poulose & Rindani, 1998)

What about chromo-magnetic/electric dipole moments?

- Gluon energy spectrum in  $e^+e^- \rightarrow t\bar{t}g$  (NLC) (Rizzo, 1996)
- Top quark polarization & polarization asymmetry in  $e^+e^- \rightarrow t\bar{t}$  (NLC) (Rindani & Tung, 1999)
- $M_{t\bar{t}}, p_t^{t,\bar{t}}$  distributions in  $gg \to t\bar{t}$ (Sensitive to anomalous couplings at LHC, sensitive to low-scale gravity theory at Tevatron Run II) (Review by Rizzo, 1999)

Example (Rizzo, 1996)

Chromo-magnetic( $\kappa$ ), Chromo-electric( $\tilde{\kappa}$ ) dipole moments

Measure gluon energy distributions at a  $e^+e^-$  linear collider

 $E_g$  shapes at 500 GeV NLC for  $\kappa = 0, \pm 1, \pm 2, \pm 3$ 



where  $z \equiv E_g/E_{\text{beam}}$ 

Resulting limits at a 500 GeV NLC ( $\int \mathcal{L} dt = 50, 100 \text{ fb}^{-1}$ )



and at a 1 TeV NLC (  $\int \pounds dt = 100, 200 \text{ fb}^{-1}$ )



Can any Tevatron Run I data be used?

Not really...too few events

Interesting proof-of-principle analyses from CDF & D0:

- W polarization from top decay
- Spin-spin correlations from t and  $\overline{t}$  decay products

Example – CDF result on W long. polarization (SM = 70%)



Standard Model: (see Nir lectures):

If neutrinos massless, then no  $\not \! C \not \! P$ 

But much evidence for  $\nu$  oscillation  $\implies m_{\nu_i} \neq 0$  $\implies$  Possible (likely)  $\mathcal{CP}$  phase in leptonic CKM matrix

Can we therefore detect "S.M."  $\mathcal{CP}$  in  $\tau$  decay?

Probably not

(cannot use the  $\Im{W \Leftrightarrow \text{ree}} \times \Re{\text{loop}}$  trick because intermediate W far off resonance)

In principle, one can measure  $\delta_{\rm KM}^{\ell}$  from high-statistics  $\nu$  oscillation asymmetries, but not anytime soon...

 $\implies$  As for top decay, any measured  $\mathcal{CP}$  means New Physics

Beyond the Standard Model

 $\mathcal{CP}$  in the tau sector:

- Charged current processes:
  - As for top quark, add charged Higgs to decay route: (Tsai, 1989)



Or add a scalar leptoquark:
 (Choi, Hagiwara & Tanabashi, 1994)



- Can enhance the  $\ensuremath{\mathcal{CP}}$  interference with final state containing possible non-zero CP-conserving phase
  - "Stage Two Spin Correlation" in  $\tau^- \rightarrow \rho^- \rightarrow \pi^- \pi^0 \nu_{\tau}$ (interference of two allowed  $\rho$  helicity states)\* (Nelson, 1994)
  - Double resonance in  $\tau^- \rightarrow (3\pi)^- \nu_{\tau}$ (interference of  $a_1$  (J<sup>P</sup>=1<sup>+</sup>) and  $\pi'$  (J<sup>P</sup>=0<sup>-</sup>) states) (Choi, Hagiwara & Tanabashi, 1994)
  - Double resonance in  $\tau^- \rightarrow (K\pi)^- \nu_{\tau}$ (interference of  $K^*(892)$  (J<sup>P</sup>=1<sup>-</sup>) and  $K_0^*(1430)$ (J<sup>P</sup>=0<sup>+</sup>) states) (Kühn & Mirkes, 1996)

Remark:

Cabibbo suppression of strange channels offset by mass-dependent coupling for multi-Higgs models

\*Requires CPT violation – shown by Tsai, 1996B

 $\mathcal{CP}$  in the tau sector:

- Neutral current processes:
  - Two-Higgs-Doublet models with explicit *CP* phase (Bernreuther, Schröder & Pham)



 Tau-Stau coupling or scalar leptoquarks (Bernreuther, Brandenburg & Overmann, 1997)

Example – Leptoquark loop:



Comparing single  $\tau^-$  decay to single  $\tau^+$  decay... (correlations in  $\tau^-\tau^+$  production discussed below)

- Forward-backward asymmetries and optimal observable in  $\tau^- \rightarrow \pi^- \pi^+ \pi^-$ (Choi, Hagiwara & Tanabashi, 1994)
- Partial rate asymmetry of  $\tau^- \to \pi^- \pi^0 \nu_{\tau}, \tau^- \to K \Leftrightarrow \pi^0 \nu_{\tau}$ (Tsai, 1995)
- $\mu$  polarization in  $\tau$  decay with polarized  $e^+e^-$  beams (Tsai, 1995) Look at

 $(ec{w}_{ ext{beam}} imes ec{p}_{\mu}) \cdot ec{w}_{\mu}$ 

where  $\vec{w}_{\text{beam}/\mu}$  = polarization of beam / muon Not easy to measure!

• Similar T-odd terms in  $\tau \rightarrow \nu_{\tau} + (\geq 2hadrons)$ with polarized  $e^+e^-$  beams (requires  $\geq 2$  final spin states) (Tsai, 1996A)

- CP-odd kinematic asymmetries in  $\tau^- \to (K\pi)^- \nu_{\tau}$ (with and without full  $\tau$  kinematic reconstruction) (Kühn & Mirkes, 1996)
- Enhance  $\mathcal{OP}$  signal in  $\tau^- \to (3\pi)^- \nu_{\tau}$ with  $\tau$  polarization (Tsai, 1996A/1998)

Example –  $\tau^- \rightarrow (K\pi)^- \nu_{\tau}$ (Tsai, 1996B; based on Kühn & Mirkes, 1996)

Kinematics in  $K-\pi$  rest frame:



where  $\vec{p}_3$ ,  $\vec{p}_4 = K$ ,  $\pi$  momenta and  $\psi_r$  is known even if  $\vec{p}_{\text{Tau}}$  not reconstructed

Define following observable:

$$O_{\tau^-} \equiv \cos\beta\cos\psi_r$$

Non-KM  $\mathcal{CP}$  indicated by differing  $O_{\tau^-}$ ,  $O_{\tau^+}$  distributions

Observable  $O_{\tau}$  used in search for  $\mathcal{CP}$  by CLEO (1998) ( $e^+e^-$  collisions at  $\sqrt{s} = 10.6$  GeV,  $4.4 \times 10^6 \tau^-\tau^+$  events)

- Examined  $\tau^{\pm} \to K_s^0 \pi^{\pm} \nu_{\tau}$  events with  $K_s^0 \to \pi^+ \pi^-$
- Defined following asymmetry in bins of  $O_{\tau}$ :

$$A \equiv \frac{N^+(\cos\beta\cos\psi_r) \Leftrightarrow N^-(\cos\beta\cos\psi_r)}{N^+(\cos\beta\cos\psi_r) + N^-(\cos\beta\cos\psi_r)}$$

with  $N^{\pm} =$  Number of  $\tau^{\pm}$  decays in  $\cos \beta \cos \psi_r$  bin

• Ideally,

 $A \propto [\cos \beta \cos \psi_r] (g \sin \theta_{CP})$ where  $g e^{i \theta_{CP}} = \text{scalar/vector coupling strength ratio}$  $(e.g., \text{ from } \tau - \nu_{\tau} - H^+ \text{ vertex})$ 

K. Riles

- In practice, detector displays "C asymmetry" in  $\pi^{\pm}$  reconstruction efficiencies
- To remove fake  $\ensuremath{\mathcal{CP}}$  due to detector imperfection, carry out sideband subtraction from  $K_s^0$  mass spectrum:



• Raw asymmetries for two bins of  $\cos\beta\cos\psi_r$ :

|          | $A_{observed}(\cos\beta\cos\psi<0)$ | $A_{observed}(\cos\beta\cos\psi>0)$ |
|----------|-------------------------------------|-------------------------------------|
| Signal   | $0.058 \pm 0.023$                   | $0.024 \pm 0.021$                   |
| Sideband | $0.049 \pm 0.030$                   | $0.034 \pm 0.033$                   |

Result:

$$g \sin \theta_{CP} < 1.7$$
 at 90% C.L.

 $\ensuremath{\mathcal{CP}}$  easier to see in  $\tau^+\tau^-$  production

Again, parametrize as multipole moment form factors

Focus on electromagnetic and neutral weak dipole moments: (parametrization & notation used by LEP experiments)

- Anomalous magnetic moment  $a_{\tau}^{\gamma,Z}$ (dimensionless, CP-even;  $SM(\gamma,Z)$ :  $O(10^{-3}), O(10^{-6})$ )
- Electric dipole moment  $d_{\tau}^{\gamma,Z}$ (dimensional,  $\mathcal{CP}$ ; SM:  $O(10^{-37} \text{ e-cm})$ )

Effective Lagrangian terms:

$$\mathcal{L}_{\tau\tau V}^{eff} = \sum_{V} \left[ -\frac{i}{2} d_{\tau}^{V} \bar{\tau} \sigma^{\mu\nu} \gamma_{5} \tau^{(v)} F_{\mu\nu} \right. \\ \left. + \frac{1}{2} \frac{e a_{\tau}^{V}}{2 m_{\tau}} \bar{\tau} \sigma^{\mu\nu} \tau^{(v)} F_{\mu\nu} \right]$$

Looking for  $\mathcal{CP}$  in  $\tau^-\tau^+$  production (a sampling) (some techniques automatically probe  $\mathcal{CP}$  in  $\tau$  decay too)

- Deviation from S.M. in ,  $_{Z \to \tau^+ \tau^-}$ (Bernreuther & Nachtmann, 1989)
- Manifestly CP-odd observables Correlation Tensor:

$$\hat{T}_{ij} \equiv (\hat{q}_{+} \Leftrightarrow \hat{q}_{-})_{i} \frac{(\hat{q}_{+} \times \hat{q}_{-})_{j}}{|\hat{q}_{+} \times \hat{q}_{-}|} + (i \Leftrightarrow j)$$

where  $\hat{q}_+, \hat{q}_-$  = unit vectors along  $\tau$  daughter momenta (e.g.,  $\pi^+, e^-$  in  $e^+e^- \rightarrow \tau^+\tau^- \rightarrow \pi^+\bar{\nu}_{\tau}e^-\bar{\nu}_e\nu_{\tau}$ ) (Bernreuther & Nachtmann, 1989)

• Optimal observables (Atwood & Soni, 1992, see also review by Wermes, 1996)

$$O^{\Re} \equiv \frac{M_{CP}^{\Re}}{M_{SM}}; \qquad O^{\Im} \equiv \frac{M_{CP}^{\Im}}{M_{SM}};$$

• Photon kinematics in  $e^+e^- \rightarrow \tau^+\tau^-\gamma$ (probes  $d^{\gamma}_{\tau}$ ,  $a^{\gamma}_{\tau}$  at  $q^2 = 0$ ) Example from OPAL (1994):

- Looked at optimal observables derived from  $\tau^+\tau^-$  daughter momenta from variety of decay topologies
- Must worry about "CP symmetry" of detector
  - Biggest worry: twisted tracking chamber
  - Nailed down with  $e^+e^- \rightarrow \mu^+\mu^-$  events
  - Other detector asymmetries checked with event mixing

Sample of CP-odd observable distributions:



 $\swarrow$  results from full LEP data samples

Deviation in ,  $_{Z \to \tau^+ \tau^-}$ :

- $|d_{\tau}^{Z}| < 1.8 \times 10^{-17}$  e-cm Wermes review, 1996
- $|d_{\tau}^{\gamma}| < 1.1 \times 10^{-17}$  e-cm Escribano & Massó, 1996

Analyses of optimal observables in  $e^+e^- \rightarrow \tau^+\tau^-$  events:

- $\Re\{d_{\tau}^Z\} = (\Leftrightarrow 0.29 \pm 2.59 \pm 0.88) \times 10^{-18} \text{ e-cm}$  ALEPH
- $\Re\{d_{\tau}^{Z}\} = (\Leftrightarrow 1.48 \pm 2.64 \pm 0.27) \times 10^{-18} \text{ e-cm}$  $\Im\{d_{\tau}^{Z}\} = (\Leftrightarrow 0.44 \pm 0.77 \pm 0.13) \times 10^{-17} \text{ e-cm}$  DELPHI
- $\Re\{d_{\tau}^{Z}\} = (0.72 \pm 2.46 \pm 0.24) \times 10^{-18} \text{ e-cm}$  $\Im\{d_{\tau}^{Z}\} = (0.35 \pm 0.57 \pm 0.08) \times 10^{-17} \text{ e-cm}$  OPAL
- $|\Re\{d_{\tau}^{Z}\}| < 3.6 \times 10^{-18} \text{ e-cm}$  $|\Im\{d_{\tau}^{Z}\}| < 1.1 \times 10^{-17} \text{ e-cm}$  Wermes review, 1996

Analysis of  $e^+e^- \rightarrow \tau^+\tau^-\gamma$  events:

•  $|d_{\tau}^{\gamma}| < 3.1 \times 10^{-16} \text{ e-cm}$  L3 1998

Other determinations of anomalous  $\tau$  couplings

• Analysis of azimuthal angular asymmetries in  $e^+e^- \rightarrow \tau^+\tau^- \rightarrow h^-h^+\nu_\tau\bar{\nu}_\tau$  L3, 1998

 $|\Re\{a_{\tau}^{Z}\}| < 4.5 \times 10^{-3} \qquad |\Im\{a_{\tau}^{Z}\}| < 9.9 \times 10^{-3}$ 

(same analysis gives weak limits on  $|\Re\{d_{\tau}^{Z}\}|$ )

- Measurements of Michel parameters and  $\nu_{\tau}$  helicity from LEP, SLD and CLEO
- Limits on charged-current magnetic / electric dipole moment form factors from
  - $-\tau$  lifetime and lepton energy spectrum  $E_{\ell}$  in  $\tau \to \ell \nu \bar{\nu}$  (Rizzo, 1997)
  - Apparent  $\tau$  polarization in  $\tau \to \pi \pi^0 \nu_{\tau}$ and  $B(\tau \to \pi \pi^0 \nu_{\tau})$  (Dova *et al.*, 1999)

Summary on top and tau  $\swarrow$  couplings

- Third generation fermions especially interesting because of possible anomalous couplings from Higgs
- Detecting direct  $\ensuremath{\mathcal{CP}}$  in top, tau decays difficult
- Detecting  $\ensuremath{\mathcal{CP}}$  in neutral couplings easier, especially at  $e^+e^-$  colliders
- Much work already carried out in  $\tau$  physics with no hint of signal (LEP, SLD & CLEO)
- Verifying "Standard Model" leptonic  $\mathcal{CP}$ not likely in forseeable future

My prejudice:

will be seen in top couplings at LHC or NLC before gauge boson or tau effects are seen