Experimental Particle Physics at SLAC

John Jaros

Stanford Graduate Student Orientation

September 17, 2015

The Best of Times

- We've found the Higgs but have just scratched the surface of what a new, fundamental scalar means for particle physics
- **The LHC** is offering us our first glimpse of the highest energy collisions ever made on earth—13 TeV. What new physics is waiting to be discovered?
- Neutrinos have mass and mix! Pinning down masses, mixing angles, and CP violation in the neutrino sector could lead to understanding why baryons dominate anti-baryons in the universe.
- Dark Matter detection could be just around the corner! Will it be Wimps, Axions, Hidden Sector Particles, or something we haven't yet imagined?

Job Security

96% of the Mass and Energy in the Universe has yet to be accounted for.

Particle Physics has just begun!

Big Questions motivate SLAC's Experiments

- What exactly is the Higgs?
- Are there new particles, new forces, hidden sectors?

ATLAS Experiment at the Large Hadron Collider (LHC)

Heavy Photon Search at JLAB

Big Questions motivate SLAC's Experiments

- What is the nature of the neutrino?
- What can neutrino mixing reveal?

Enriched Xenon Observatory (EXO200 and nEXO)

DUNE, MicroBooNE, and ICARUS

ATLAS Experiment at LHC

- World's most powerful particle accelerator
- Explorations at the energy frontier
 - * Understanding the Higgs boson

Does it give neutrinos mass?

Does it couple to Dark Matter?

Are there more Higgses?

- * Searching beyond the Standard Model Are there WIMPS at LHC? High mass SUSY?
- Unprecedented detector capabilities for a hadron collider:
 - * Lives in a hostile radiation environment
 - * Extremely high rate capability
 - * Disentangles ~25 overlapping events

SLAC/ATLAS Physics

Higgs

SUSY Searches

Physics Event Reconstruction

Research opportunities

Detector activities:

- State-of-the-art data acquisition concept for high luminosity upgrade
- Pixel detector upgrade and sensors
- Trigger algorithms and online infrastructure

Physics analysis and development of physics tools:

- Jet substructure techniques
- Higgs > bb and beyond the Standard
 Model Higgs searches
- Super-symmetry searches
- Searches for new phenomena

Collaborate with Prof. Lauren Tompkins on Campus

SLAC ATLAS contact info

Prof. Ariel Schwartzman sch@slac.stanford.edu

Prof. Su Dong sudong@slac.stanford.edu

Dr. Charlie Young young@slac.stanford.edu

Detailed info on ATLAS@SLAC for students:

http://www.slac.stanford.edu/exp/atlas/students/

Heavy Photon Search

- Evidence for Dark Matter is compelling, but there's still no direct evidence for Dark Matter particles.
- The absence of SUSY at the LHC is stimulating non-WIMP explanations for Dark Matter.
- Dark matter may reside in a "hidden sector", carry an analogue of electric charge and couple to a "heavy photon" (A').
- Heavy photons will mix with regular photons, so they can be produced by, and decay into electrons and positrons.
- The Heavy Photon Search looks for a new vector gauge boson (a heavy photon) radiated by electron beams, decaying to e⁺e⁻.

HPS Setup at JLAB

Si Vertex Tracker

PbWO₄ Electromagnetic Calorimeter

The JLAB electron beam is directed onto a W foil target, producing heavy photons. They decay to e⁺e⁻ pairs, which are measured by the Si vertex tracker inside an analyzing magnet. The PbWO₄ ECal provides a fast trigger. https://confluence.slac.stanford.edu/display/hpsg/Heavy+Photon+Search+Experiment

Status and plans

- HPS was installed, commissioned, and took its first data in an "Engineering Run" at JLAB this past Spring.
- Physics Running is planned for 2015-2016 and 2017-2018
- HPS will search a large and unexplored region of the A' mass/coupling plane

Opportunities for students

Opportunities for new students

2015-16 Data taking, analysis, and planning upgrades

2016-17 Build and install HPS upgrades

2017-19 Data taking and analysis

Learn the trade

Data for theses

Small Experiments provide training in <u>all</u> aspects of HEP experimentation

Physics Analysis

Experiment design

State of the art hardware construction

Running experiments

Contact: Prof John Jaros (john@slac.stanford.edu)
Rotation Projects are available on HPS this year:

Enriched Xenon Observatory

$$136 \text{Xe} \rightarrow 136 \text{Ba}^{++} + 2e^{-}(+2\bar{\nu})$$

$$\frac{1}{t_{1/2}^{0\nu}} = G^{0\nu} \left| M^{0\nu} \right|^2 m_{\beta\beta}^2$$
 half life neutrino mass

- Search for neutrino-less double beta decay of Xe-136
- 2 modes of ββdecay:
 - (2νββ): allowed in SM, but extremely rare process (halflife~10²⁰ years)
 - (0vββ): only 2 electrons are emitted
 - Lepton number violation (not allowed in the SM)
 - Only possible if neutrinos have mass and are Majorana particles (neutrino=anti-neutrino)
 - EXO-200 discovered the (2νββ) decay mode in Xe, provides the most precise measurement of any (2νββ) rate and has demonstrated the best sensitivity to the (0νββ) decay mode

EXO-200 Experiment

- 500m underground in New Mexico
- TPC (Time Projection Chamber) measures energy (scintillation light in photo-detectors) and longitudinal position (from drift time)
 - Signal reconstructed as single-cluster events
 - Gamma-ray backgrounds produce multiple clusters

The Next Step: nEXO

R&D for a ton-scale experiment

- 5 tons of enriched ¹³⁶Xe
- Improved charge/light collection,
 → spatial and energy resolution.
- Second phase may employ Ba daughter ion identification.

5-year reach in half life ~100 times EXO-200 performance

130 cm

Opportunities for students

- Design and prototype the nEXO TPC
- Conduct R&D for HV field cage design and LXE purity for nEXO
- Characterize photodetectors for LXe
- **Develop detector electronics** for operations at LXe temperature (165 K) to reduce noise
- Develop Ba⁺⁺ extraction and identification
 - * Mechanical probe development
- EXO-200 event reconstruction/calibration
 - Improve efficiency and background rejection
 - Compare calibration source data with simulation

There are many opportunities for rotation students which could lead into an EXO-200 thesis and provide a strong background in detector R&D

EXO Contact info

Prof. Martin Breidenbach mib@slac.stanford.edu EXO-200

Prof. Giorgio Gratta gratta@stanford.edu EXO-200/nEXO

Dr. Peter Rowson rowson@slac.stanford.edu EXO-200/nEXO

Beam Neutrino Experiments

- Address very fundamental questions
 - What is the nature of the neutrino? Is there 🎮 in the lepton sector?
- SLAC group is working on three experiments, all based on Liquid Argon Time Projection Chambers (LArTPC)
 - Deep Underground Neutrino Experiment (DUNE)
 - Measures neutrino oscillations at long baseline (1300 km)
 - Flagship US Accelerator program, takes data after 2020

MicroBooNE

- Searching for oscillations at short baseline (800 m)
- Currently commissioning detector with cosmic rays
- First beam data expected Fall 2015 (perfect timescale for new students)

o ICARUS

- Pioneered LArTPC technique
- Will be moved to Fermilab to augment MicroBooNE
- First beam data expected in 2018

MicroBooNE Status

Installation finished 2014

Commissioning underway

Very exciting time on MicroBooNE!

First beam events expected 2015

Opportunities for Students

Short-term opportunities

- MicroBooNE commissioning, initial data-taking and physics analysis
- ICARUS transition to Fermilab learn to operate with high rates and high backgrounds
- Learn LArTPC technology from the world's experts

Longer-term opportunities

- o DUNE experiment will be flagship on-shore US experiment in 2020's
- Opportunity to contribute to its design and become an expert in LArTPCs and neutrino physics

Current SLAC roles (on all three experiments)

- High-speed Data Acquisition systems
- Automated event reconstruction
- Studies of SuperNova burst neutrino detection
- 0 ...

Neutrino Contact info

Dr. Mark Convery convery@slac.stanford.edu

Summary

- Current SLAC particle physics experiments address some of the most important questions in physics today:
 - o What is the origin of mass?
 - o What constitutes the Dark Matter?
 - Are there new particles or Hidden Sectors?
 - o What is the nature of the neutrino?
- It's a propitious time for particle physics.

Powerful new experimental tools can fundamentally change our understanding of the universe.

SLAC plays a major role in designing future experiments

SLAC is developing state-of-the-art detector and readout technologies and advanced analysis and computing techniques.