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MuLan MuCap MuSun

to the proton's weak interaction... 
and solar hydrogen burning 

to the proton's weak interaction... 
From the Fermi Constant... 

by part-per-million measurements of µ+, µ-H, and  µ-D lifetimes 

to nucleonic weak interaction...
and weak nuclear interaction 

 
pure leptonic weak interactions...



  

Outline

intense, pulsed μ's at PSI

scientific goals

setups  and challenges

results and status



  

        Paul Scherrer Institute.
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MuLan – th
e m

uon life
tim

e 

and Ferm
i co
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knowledge of muon lifetime τ
μ+

 allows precision 
measurements of weak nuclear interactions in muonic 
hydrogen, deuterium atoms.

twenty-fold improvement in knowledge of fundamental 
constant G

F
 of electroweak sector of standard model 

[presently α (±0.7ppb), G
F
 (±10ppm)  M

Z 
(±23ppm)].

knowledge of α, M
Z
, G

F
 allows precision tests of standard 

model via measurements of  Weinberg angle Θ
W
,M

W
, ...

Why we measure τ
μ+

?



  

Relation between muon lifetime  and Fermi constant.
(muon decay is pure leptonic weak decay with lifetime that's 

straightforward to measure)
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Last generation
experiments

New generation
experiments

Relation between muon lifetime  and Fermi 
Constant.

(negligible effect from finite ν-mass)



  

Interpretation of Fermi constant
in Standard Model
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e.g. Contributions from top quark, Higg's particle



  

muon lifetime history, τμ = 2.19703(4) µs

±20ppm

one-by-one exptl limit and one-loop QED limit



  

accumulating µ+'s and measuring e+'s
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roughly 30 μ stops, 20 e detected per cycle



  

accumulating µ+'s and measuring e+'s

beam on beam off

beam monitor

µLan ball



  

MuLan Setup.



  

MuLana tile ....

a house ..

the ball.



  



  

red – recorded pulse
blue – fitted pulse

clock ticks (2.2 ns per tick)



  

2006 - 1012 μ+ decays in magnetized foil
2007 - 1012 μ+e- decays in quartz crystal

1 clock tick = 2.2 ns

N(t) = Ae-t/τ +B



  

data processing using
1000-node NCSA cluster
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blind analyses of 130TB data, 2x1012 decays



  

digitized
double pulse

- most worrisome systematics (1) -
positron pulse pile-up

digitized
single pulse

pileup 
time
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uncorrected
time
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changes early to late



  

- most worrisome systematics (2) -
muon spin rotation

F

B

tgt

μ

diff, F-B sum, F+B

e

magnetized ferromagnetic foil 
(high internal B-field, fast μ+ precession)

single quartz crystal
(moderate external B-field, fast μ+e- precession)

(ii) dephasing(i) geometry



  

- most worrisome systematics (3) -
gain variations



  

MuLan Results

2007:  = 2196981.2 ± 3.7(stat) ± 0.9(sys) ps 

2006:  = 2196979.9 ± 2.5(stat) ± 0.9(sys) ps 

G
F
 = 1.166 378 8(7) x 10-5 GeV-2  (0.6 ppm)



  

MuCap -th
e μ

- p life
tim
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proton weak in
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and Q
CD sy

mmetrie
s.



  

muon capture,
μ-p →νn

beta decay,
p →ne+ν

μ ν

p n

μ-
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Why we measure τ
μp

?

proton's weak couplings 
g

v
, g

a

proton's weak couplings 
g

v
, g

a
, g

m
, g

p

knowing  g
v
,  g

a
,  g

m
 determine g

p
,

the poorly known proton induced pseudoscalar coupling 



  

Why we determine g
p
?

fundamental quantity describing the proton's weak interaction 

the approximate conservation of axial current enforces a rigorous 
relation between the weak couplings g

p
, g

a

g
p
(q2 = -0.88m2

μ
)= (6.47±0.18) g

a
(0)

 
= 8.26±0.23

Its verification represents  an important test of QCD symmetries

and spontaneous, explicit symmetry breaking.

knowledge of g
p
 (and g

v
, g

a
, g

m
) allows precision studies of 

weak nuclear interactions through nuclear muon capture (for 
example our μ-D experiment)



  

How we determine g
p
?
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exp(-t/τμ)exp(-t/τμp)

~10-3  difference

Λ
S
 ≌  1/τμ-p -   1/τμ+ 



  

ΛT ~12s-1

 
pμ↑

↓

singlet
(F=0)

ΛS~710s-1

triplet
(F=1)

μ-

 
μp↑

↑

 ppμ
 

ppμ

para 
(J=0)

ortho
 (J=1)

ΛOM ~540s-1

λOP

 ppμ

ΛOP ~213s-1

μ chemistry, a complication

use ultra-pure (chemically, isotopically)
10 bar H2 (1% liquid hydrogen density)

→ 96% singlet capture



  

Relative populations of 
singlet atoms, ortho molecules, para molecules

in liquid and gas



  

MuCap setup
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MuCap TPC



  

electron time – muon time 
for valid muon stops



  

Validation of μ stops in H
2
 gas
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Z (drift) 

X (wire)

Z (drift) 

Y (strip)

entrance counters

Validation of μ stops in H
2
 gas



  

impurity 
capture

 μ scatter event   μ transfer event

wall
capture

- worrisome systematics  -
muon capture on Z>1 materials

e.g. walls and impurities



  

MuCap Results
2005: Λ

S
 =  725.0 ± 13.7(stat) ±10.7(syst) s-1  

g
p
 (q2 = -0.88m2

μ
) =  7.8±1.1  

      goal for 2006/2007 datasets is Λ
s
 to ±5s-1



  

MuSun -th
e μ

- d life
tim

e,

elementary 
weak n

ucle
ar in

teractio
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and so
lar h

yd
rogen burning.



  

knowing  g
v
,  g

a
,  g

m 
 and g

p
,

the deuteron wavefunction and NN interaction,
measure the poorly known μ-d capture rate and

determine the poorly known two-body weak axial current (L
1A

) 

muon capture,
μ-d →νnn

proton-proton fusion,
pp →de+ν

μ ν

n

μ-

W

μ ν

d
n

μ-

W

ν

p
d

W

e+

Why we measure τ
μd

?

p



  

Why we determine Λ
d
, L

1A
?

elementary weak nuclear interaction where precision 
measurement and precision calculation are possible.

μ-d →νnn reaction related to weak processes of intense interest in 
solar physics (pp fusion) and neutrino physics (νd interactions).

Involve effects of poorly known two-body weak currents

goal of ±1.5% measurement of  capture rate Λ
d
 is five-fold 

improvement over existing measurements of  470±29 s-1 
(Bardin et al.) and 409±40 s-1(Cargnelli et al.) 



  

μ-

μ chemistry, a complication

use ulltra-pure (chemically, isotopically)
30 Kelvin, 5% liquid density D2 gas

μ-d
 ↑↓

μ-d
 ↑↑

dμ-d
 

μ- + 3He + n

μ- + 3H + p

muon recycling

μ-3He + n

μ-3H + p

muon sticking



  

temperature dependence of dμd formation.



  

Relative populations of 
doublet atoms, quadruplet atoms, μ-3He atoms

in warm/cold gas



  

μ

e



  

Cryogenic TPC assembly



  

Cryogenic TPC design



  

Cryogenic TPC  event



  

Conclusions

MuX experiments - precision measurements of positive muon, 
muonic hydrogen, muonic deuterium lifetimes addressing 
fundamental leptonic, nucleonic and nuclear weak interactions.

MuLan experiment - = 2196979.9 ± 2.5(stat) ± 0.9(sys) ps [2006],  = 

2196981.2 ± 3.7(stat) ± 0.9(sys) ps [2007], G
F
= 1.166 3788 (7) x 10-5 GeV-2  

- a thirty-fold improvement over earlier experiments.

MuCap experiment - Λ
S
 =  725.0 ± 13.7(stat) ±10.7(syst) s-1,                 

g
p
(q2 = -0.88m2

μ
) =  7.3±1.1 – with goal of  improvement to ± 5s-1.

MuSun experiment – goal of Λ
S 
to ±1.5% - precision measurement  

of two-nucleon weak interaction of great interest to solar 
physics, neutrino physics and two-body weak currents.



  

Advertisement  
new g-2 expt on muon campus at Fermilab



  

g-2 @ FNAL
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muon storage ring from BNL to FNAL by barge and helicopter

g-2 @ FNAL



  

Extras



  

Relation to Standard Model

4=g g ' / g2g ' 2

GF=2/2

M Z= g2g ' 2

exacting tests of standard model 
by precision measurements of θ

W
, M

W
, ...



  

Aluminum 
shell

Rear neon 
collector

Front neon 
collector

Be window 
flange Be window

Cryogenic TPC design


