Precision measurements of μ^+ , μ^- H, and μ^- D lifetimes.

Tim Gorringe, Univ. of Kentucky, for the MuLan, MuCap, MuSun Collaborations

SLAC experimental seminars, May 10, 2011.

MuLan

MuCap

MuSun

pure leptonic weak interactions...

to nucleonic weak interaction...

and weak nuclear interaction

From the Fermi Constant...

to the proton's weak interaction...

and solar hydrogen burning

by part-per-million measurements of μ^+ , μ^-H , and μ^-D lifetimes

Outline

intense, pulsed μ's at PSI
scientific goals
setups and challenges
results and status

Paul Scherrer Institute.

2.0 mA, 590 MeV, 1 MWatt, proton cyclotron

time-structured, 5 MeV, 30 MeV/c μ[±] beams

Pulsed Muons and Muon On Request.

MuX

$\pi E3$ beamline

Why we measure τ_{μ^+} ?

knowledge of muon lifetime τ_{μ^+} allows precision measurements of weak nuclear interactions in muonic hydrogen, deuterium atoms.

twenty-fold improvement in knowledge of fundamental constant G_F of electroweak sector of standard model [presently α (±0.7ppb), G_F (±10ppm) M_Z (±23ppm)].

knowledge of α , M_z , G_F allows precision tests of standard model via measurements of Weinberg angle Θ_w , M_w , ...

Relation between muon lifetime and Fermi constant. (muon decay is pure leptonic weak decay with lifetime that's straightforward to measure)

Δq contains electron mass and QED, QCD radiative corrections

1999, von Rittbergen and Stuart, 2-loop QED corrections **2008**, Pak and Czarnecki, higher-order electron mass corrections

Relation between muon lifetime and Fermi Constant.

Interpretation of Fermi constant in Standard Model

 Δr contains electroweak radiative corrections

e.g. Contributions from top quark, Higg's particle

muon lifetime history, $\tau_{\mu} = 2.19703(4) \ \mu s$

accumulating μ^+ 's and measuring e⁺'s **e**⁺ ball kicker off μ⁺ tgt on **e**⁺ μ⁺

roughly 30 μ stops, 20 e detected per cycle

accumulating $\mu^{\text{+}}\text{'s}$ and measuring e^{\text{+}}\text{s}

time

most worrisome systematics (1) positron pulse pile-up

- most worrisome systematics (2) - muon spin rotation

(ii) dephasing

time [µs]

magnetized ferromagnetic foil

(high internal B-field, fast μ^{+} precession)

single quartz crystal (moderate external B-field, fast µ⁺e⁻ precession)

- most worrisome systematics (3) - gain variations

MuLan Results

2006: τ_{μ} = 2196979.9 ± 2.5(stat) ± 0.9(sys) ps 2007: τ_{μ} = 2196981.2 ± 3.7(stat) ± 0.9(sys) ps G_{F} = 1.166 378 8(7) x 10-5 GeV⁻² (0.6 ppm)

TABLE I: Systematic and statistical uncertainties in ppm. Common uncertainties are represented by single number and dataset-dependent uncertainties are are given with one number for each period.

Effect uncertainty in ppm	R06	R07
Kicker stability	0.20	0.07
Spin precession / relaxation	0.10	0.20
Pileup	0.20	
Gain stability	0.25	
Upstream muon stops	0.10	
Timing stability	0.12	
Clock calibration	0.03	
Total systematic	0.42	0.42
Statistical uncertainty	1.14	1.68

Why we measure $\tau_{\mu p}$?

muon capture, μ⁻p →νn

beta decay, p →ne⁺ν

proton's weak couplings g_v, g_a, g_m, g_p

proton's weak couplings g_v, g_a

knowing g_v , g_a , g_m determine g_p , the poorly known proton induced pseudoscalar coupling

Why we determine g_p ?

fundamental quantity describing the proton's weak interaction

the approximate conservation of axial current enforces a rigorous relation between the weak couplings g_p , g_a

 $g_{p}(q^{2} = -0.88m_{u}^{2}) = (6.47 \pm 0.18) g_{a}(0) = 8.26 \pm 0.23$

Its verification represents an important test of QCD symmetries and spontaneous, explicit symmetry breaking.

knowledge of g_p (and g_v , g_a , g_m) allows precision studies of weak nuclear interactions through nuclear muon capture (for example our μ ⁻D experiment)

μ chemistry, a complication

use ultra-pure (chemically, isotopically) 10 bar H₂ (1% liquid hydrogen density) → 96% singlet capture

Relative populations of singlet atoms, ortho molecules, para molecules in liquid and gas

MuCap TPC

Validation of μ stops in H₂ gas

- worrisome systematics muon capture on Z>1 materials e.g. walls and impurities

μ transfer event

MuCap Results 2005: $\Lambda_s = 725.0 \pm 13.7(\text{stat}) \pm 10.7(\text{syst}) \text{ s}^{-1}$ $g_{n} (q^{2} = -0.88m_{\parallel}^{2}) = 7.8 \pm 1.1$

5.0

1.6

0.5

3

3

8.5

goal for 2006/2007 datasets is Λ_{c} to $\pm 5s^{-1}$

Why we measure $\tau_{\mu d}$?

muon capture, μ⁻d →νnn proton-proton fusion, pp $\rightarrow de^+ v$

knowing g_v, g_a, g_m and g_p, the deuteron wavefunction and NN interaction, measure the poorly known μ⁻d capture rate and determine the poorly known two-body weak axial current (L_{1A})

Why we determine Λ_{d} , L_{1A} ?

elementary weak nuclear interaction where precision measurement and precision calculation are possible.

 $\mu^{-}d \rightarrow \nu nn$ reaction related to weak processes of intense interest in solar physics (pp fusion) and neutrino physics (vd interactions).

Involve effects of poorly known two-body weak currents

goal of ±1.5% measurement of capture rate Λ_d is five-fold improvement over existing measurements of 470±29 s⁻¹ (Bardin et al.) and 409±40 s⁻¹(Cargnelli et al.)

µ chemistry, a complication

use ulltra-pure (chemically, isotopically) 30 Kelvin, 5% liquid density D₂ gas

temperature dependence of $d\mu d$ formation.

Relative populations of doublet atoms, quadruplet atoms, μ⁻³He atoms in warm/cold gas

Cryogenic TPC assembly

Cryogenic TPC design

Cryogenic TPC event

Conclusions

MuX experiments - precision measurements of positive muon, muonic hydrogen, muonic deuterium lifetimes addressing fundamental leptonic, nucleonic and nuclear weak interactions.

MuLan experiment - τ_{μ} = 2196979.9 ± 2.5(stat) ± 0.9(sys) ps [2006], τ_{μ} = 2196981.2 ± 3.7(stat) ± 0.9(sys) ps [2007], G_F= 1.166 3788 (7) x 10⁻⁵ GeV⁻² - a thirty-fold improvement over earlier experiments.

MuCap experiment - $\Lambda_s = 725.0 \pm 13.7(\text{stat}) \pm 10.7(\text{syst}) \text{ s}^{-1}$, $g_p(q^2 = -0.88m_p^2) = 7.3 \pm 1.1 - \text{with goal of improvement to } \pm 5\text{ s}^{-1}$.

MuSun experiment – **goal of** Λ_s to ±1.5% - precision measurement of two-nucleon weak interaction of great interest to solar physics, neutrino physics and two-body weak currents.

Advertisement new g-2 expt on muon campus at Fermilab

g-2 @ FNAL

g-2 @ FNAL

muon storage ring from BNL to FNAL by barge and helicopter

Extras

Relation to Standard Model

$$\sqrt{4\pi \alpha} = gg'/\sqrt{g^2} + g'^2$$
$$G_F = \sqrt{2}/\nu^2$$

$$M_z = \sqrt{g^2 + g'^2} v$$

Cryogenic TPC design

