Diquark-antidiquark Mesons : a new spectroscopy?
 Report on work done with F. Piccinini, A. Polosa, V. Riquer SLAC, Feb. 25, 2005

Luciano MAIANI,

Univ. di Romal. Italia; INFN, Roma. Italia

Tetraquark Mesons

An idea which got momentum in the 70s (R. Jaffe, H. Lipkin...);
QCD encourages the speculation that such states are indeed possible; As we shall see, the light scalar mesons $\mathrm{a}(980), \mathrm{f}(980)$ really look like

$$
[q q]_{\text {col }=\overline{3}}[\bar{q} \bar{q}]_{\text {col }=3}
$$

In alternative: $\mathrm{a}(980), \mathrm{f}(980)$ could be K-Kbar "molecules", bound by one- π exchange, i.e. in the configuration:

$$
(q \bar{q})_{c o l=1}(q \bar{q})_{c o l=1}
$$

The existence of lighter partners, σ and κ is crucial;
Recent expts, at FNAL(E791), Frascati (KLOE) and BES, have seen again σ and κ : this would be against "molecules";
... and there are states with hidden/open charm that do not look like charmonium states: X(3872), X(3940), (Belle, Babar in B decays), X(2632) (SELEX).

o(600) ad E791

PRL 86, 770 (2001)

hep-ex/0307008 (2003)

$$
\begin{aligned}
& \mathrm{M}=478 \pm 23 \pm 17 \mathrm{MeV} \\
& \Gamma=324 \pm 40 \pm 21 \mathrm{MeV}
\end{aligned}
$$

$\sigma(600)^{\text {a }}$ BES II

- BES II: σ in $\mathrm{J} / \psi \rightarrow \omega \pi^{+} \pi^{-}$.

- Partial wave analysis: pole position

$$
(541 \pm 39)-i(252 \pm 42) \mathrm{MeV}
$$

$\kappa(800)$
 © 791

PRL 89, 12801 (2002)

No k needed in Dalitz plot fit of $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{0}$ e $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}} \pi^{+} \pi^{-}$ (CLEO)

No k needed in Dalitz plot fit of $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{0} \mathrm{~K}^{-} \pi^{+}$e $\mathrm{D}^{0} \rightarrow \mathrm{~K} \mathrm{~K}^{+} \pi^{-}$ (BABAR)
$\mathrm{M}=797 \pm 19 \pm 43 \mathrm{MeV}$
$\Gamma=410 \pm 43 \pm 87 \mathrm{MeV}$
Non Res. Bkg. :90\% (no k) $\rightarrow 13 \%$ (k)

$\kappa(800)$ @ BES II

- BES II: K in $\mathrm{J} / \psi \rightarrow \mathrm{K}^{*} \mathrm{~K} \pi \rightarrow \mathrm{~K} \pi \mathrm{~K} \pi$.
(760~840) $-i(310 \sim 420) \mathrm{MeV}$

The present work (1)

Recent evidence for σ at low energy led us to reconsider the case of sub- GeV scalar mesons.
Many previous investigations (Joffe, Close\&Tornqvist, Schecter and coll...).
We propose:

- all scalars below 1 GeV are diquark-antidiquark bound states (1 nonet),
- the q-qbar scalar nonet $(L=1, S=1, J=0)$ has to be above.

Results:

- Low energy states show inverted mass spectrum, consistent with "perfect mixing";
- Strong decays are reasonably accounted for;
- Relations with ealier proposal by Rossi\&Veneziano suggests connection to baryon-antibaryon, rather than meson-meson states (or molecule)

PRL 93, 212002 (2004), hep-ph/0407017

The present work (2)

PR D70 054009 (2004), hep-ph/0407028; hep-ph/0412098 (PR D71, 014028,2005$)$

- Heavy quark interactions are spin independent: new spin states?
- We propose that $\mathrm{X}(3872)$ observed by Belle and by Babar is a diquarkantidiquark bound state and estimate the spectrum of states of the spin multiplet with the same flavors:
- $\mathrm{X}(3872)=\left(\mathrm{J}=1^{++}\right)=(c q)_{c o l=\overline{3}, S=1}(\bar{c} \bar{q})_{c o l=3, S=1}$
- with the same parameters, we can accommodate the X(2632) observed by SELEX:
- $\mathrm{X}(2632)=\left(\mathrm{J}=2^{++}\right)=(c q)_{c o l=\overline{3}, S=1}(\bar{s} \bar{q})_{c o l=3, S=1}$
_ we predict $X(3872)$ is made by two states with $\Delta m=(5-8) M e V \approx 2\left(m_{d}-m_{u}\right)$
- if one state only in the decay: $B^{+} \rightarrow K^{+} X(3872)$, the other must appear in $B^{0} \rightarrow K_{S} X(3872)$
- a charged partners must exist: $\boldsymbol{X}^{+}=(c u)_{c o l=\overline{3}, S=1}(\bar{s} \bar{d})_{c o l=3, S=1}$
- bounds to the production of X^{+}are close but not in contradiction with BaBar.

Summary

- Attractive and repulsive channels in QCD
- String structures: the "baryonium" model (Rossi \& Veneziano, 1977)
- The light scalar mesons;
- Two-meson decays;
- Surprising charmonium states seen by Belle, Babar and Selex;
- S-wave Tetraquarks, the X(3872) and spectrum of related states;
- Selex particle, X(2632), and associated spectrum;
- Alignment to quark masses, isospin breaking;
- Conclusions

Attractive \& repulsive channels in QCD

Interaction of two colored objects:

$$
\propto g^{2}<\vec{T}_{1} \cdot \vec{T}_{2}>_{R}=\frac{g^{2}}{2}\left[<\left(\vec{T}_{1}+\vec{T}_{2}\right)^{2}>_{R}-<\vec{T}^{2}>_{1}-<\vec{T}^{2}>_{2}\right]=
$$

R

Spin-spin interaction
R
Baryons in the octet:

$$
\Lambda=\left([\mathrm{ud}]_{\mathrm{J}=0} \mathrm{~s}\right) ; \Sigma^{0}=\left(\{\mathrm{ud}\}_{\mathrm{J}=1} \mathrm{~s}\right) \rightarrow \Lambda \text { is lighter than } \Sigma
$$

SLAC. 25/02/05

With antisymmetry in color and spin and a common spatial configuration, Fermi statisti्ץs
\Rightarrow
Good diquarks: $[q q]_{\overline{\mathbf{c}}_{c}, \mathbf{1}_{s}, \overline{3}_{\mathrm{F}}}$
Bad diquarks: $(q q) \overline{\overline{3}}_{\mathrm{c}}, 3_{s}, \boldsymbol{6}_{\mathrm{r}}$
Since spin interaction is a relativistic effect we might expect stronger for the lightest quarks....

$$
\text { Splitting : }(u d)-[u d]>(u s)-[u s]>\frac{(u c)-[u c] \approx 0}{\text { HQ Spin Symmetry }}
$$

Diquark: [qq] in color = 3bar, spin=0, SU3 flavour = 3bar makes a simple unit to form color singlets (Jaffe..more recently Jaffe\&Wilcezck, Karliner \& Lipkin for penta-quark)

 a new topology, related to B-B bar.

meson-meson molecules are in different color configuration. But: do "residual" forces bind?

Duality in Meson-Baryon scattering

G.C. Rossi and G. Veneziano, Nucl. Phys. B123 (1977) 507

M

SLAC. 25/02/05

L.MAIANI. Scalar Mesons \& 4-quarks

What about Baryon-Antibaryon scattering ?

[qq][qbar qbar] mesons are dual to q qbar mesons in B-Bbar scattering. The relation to B-Bar persists in decays!!

Quantum numbers and mass formula

4 parameters, 4 masses +1 mixing, one overall relation:

$$
\begin{aligned}
& f_{\circ}(I=0)=\frac{1}{\sqrt{2}}([s u][\bar{s} \bar{u}]+[s d][\bar{s} \bar{d}]) \\
& \sigma_{\circ}(I=0)=[u d][\bar{u} \bar{d}] \\
& |f\rangle=\cos \phi\left|f_{\circ}\right\rangle+\sin \phi\left|\sigma_{\circ}\right\rangle \\
& |\sigma\rangle=-\sin \phi\left|f_{\circ}\right\rangle+\cos \phi\left|\sigma_{\circ}\right\rangle .
\end{aligned}
$$

-Two solutions (see also Schecter et al.):
First: almost "ideal mixing"
Second: $\sigma \sim u-u b a r+d-d b a r$.
But: how to explain mass pattern in q-model? unfavoured by decays

- Linear mass formula gives very similar results
- With Linear m.f., parameters related to diquark masses: $\alpha=480 \mathrm{MeV}, \beta=250 \mathrm{MeV}$
- Note: $\alpha-\beta=230 \mathrm{MeV}$ vs $\mathrm{m}_{\mathrm{s}}=150 \mathrm{MeV}$.

Strong Decays

FIG. 1: The decay of a scalar meson S made up of a diquarkantidiquark pair in two mesons $M_{1} M_{2}$ made up of standard $(q \bar{q})$ pairs.

$$
\begin{equation*}
\Gamma(S \rightarrow i)=\frac{A^{2}}{8 \pi} \frac{p}{M_{s}^{2}} x_{s \rightarrow i} \tag{13}
\end{equation*}
$$

where p is the decay momentum, M the mass of the scalar meson and $x_{s \rightarrow i}$ a factor which includes numerical coefficients in the individual amplitudes and isospin multiplicities.

	Theory	Experiment	Theory	Experiment
	$\pi \pi$		KK	
8	345 MeV	$324 \pm 50 \mathrm{DeV}$		-
f	< $4<0.02$	$g_{\pi}=0.19 \pm 0.05$	$و_{K}=0.28$	$g_{K}=0.40 \pm 9.6$
$\eta \pi$				
a	43 MeV	$60 \pm 13 \mathrm{Mey}$	23 MeV	$12 \pm 3 \mathrm{MeV}$
$K \pi$				
	138 MeV	$410 \pm 100 \mathrm{HeV}$		-

TABLE II: Fit with a single parameter $A=2.6 \mathrm{GeV}$. For g_{π} we have reported the upper limit to the decay rate obtained from the $f-\sigma$ mixing considered previously, see text.

Maybe $\mathrm{f} \pi \pi$ comes from "one-loop": $f \rightarrow K \bar{K} \rightarrow \pi \pi$, or perhaps (!!) $f \rightarrow B \bar{B} \rightarrow \pi \pi \quad$ (Baryonium ?, see later)

> All in all we get quite a consistent picture, reconciles the large o width with narrow a and f widths and reinforces [qq][qbar qbar] assignement

Observation of a narrow charmonium-like state in exclusive $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-} J / \psi$ decays

SLAC. 25/02/05
L.MAIANI. Scalar Mesons \& 4-quarks19

By the way...

-Events selected within $2 \sigma\left(12 \mathrm{MeV} / \mathrm{c}^{2}\right)$ of $3872 \mathrm{MeV} / \mathrm{c}^{2}$ show hints of a B signal.

- After cutting at $m\left(\pi^{+} \pi \pi^{0}\right)>750 \mathrm{MeV} / c^{2}$, a cleaner signal is present over a low background. Fit yields 10.0 ± 3.6 events (5.8σ)

\square Assuming all signal is ω (and $X(3872)!$):
$\frac{\Gamma(X \rightarrow J / \psi \omega)}{\Gamma\left(X \rightarrow J / \psi \pi^{+} \pi^{-}\right)}=0.8 \pm 0.3 \pm 0.1$

A new peak in J / ψ recoil $\quad e^{+} e^{-} \rightarrow \mathrm{J} / \psi^{+}+\mathrm{X}$

-At ICHEP '04 Belle presented an update with full statistics, extending the mass range again to the high part of the spectrum ($3.8-4.5 \mathrm{GeV} / \mathrm{c}^{2}$)

- No evidence for $X(3872)$ on the recoil

\square New peak observed at higher mass:
$-m_{Y}=(3940 \pm 11) \mathrm{MeV} / \mathrm{c}^{2}$;
$-N_{Y}=148 \pm 33$ (4.5 σ);
- width consistent with
experimental resolution

New status decaying to $J / \psi \omega$?

-Plot $m(J / \psi \omega)$ distribution after combinatorial bkg. subtraction:

- enhancement just above threshold, not compatible with phase-space $\mathrm{B} \rightarrow \mathrm{J} / \psi \omega K$;
- Fit to S-wave B-W yields: $N_{Y}=61 \pm 11(>8 \sigma)$; $m_{Y}=(3491 \pm 11) \mathrm{MeV} / \mathrm{c}^{2} ; \Gamma_{Y}=(92 \pm 24) \mathrm{MeV}$ region $\mathrm{B} \rightarrow J / \psi K^{* *}$
ion after
\square Select events in $m\left(\pi^{+} \pi \pi^{0}\right) \sim m_{\omega}$
\square Dalitz plot $m^{2}(J / \psi \omega)$ vs. $m^{2}(K \omega)$:
- concentration at low $m^{2}(K \omega)$;
- select events with $m^{2}(K \omega)$ to exclude

SELEX-Fermilab

hep-ex/0406045

'SELEX reports these peaks as the first observation of yet another high mass Ds state decaying strongly to a ground state charm plus a pseudoscalar meson.The mechanism which keeps this state narrow is unclear[...] The Ds η decay rate dominates the DOK+ by a factor of ~ 6 despite having half the phase space.'

Dsj(2632) (?)

Tetraquarks with open and hidden charm (Phys.Rev. D70, 054009 (2004); hep-ph/0412098)

- The spin-spin interaction between heavy quarks is $\mathrm{O}(1 / \mathrm{M})$
- If $S=0$ diquarks are bound, $S=1$ diquarks do
- All states in the composition $(S=0 \oplus S=1) \otimes(S=0 \oplus S=1)$ must exist
- not natural spin-parity only!
- a large multiplet with composition:

$$
2\left(\mathrm{~J}^{\mathrm{PC}}=0^{++}\right)+\left(\mathrm{J}=1^{++}\right)+2\left(\mathrm{~J}=1^{+-}\right)+\left(\mathrm{J}=2^{++}\right) .
$$

- Mass spectrum determined by:
- constituent diquark massess
- spin-spin interactions
- the latter: from meson and baryon spectrum or from one gluon exchange

$$
M=\sum_{i} m_{i}+\sum_{i<j} 2 \kappa_{i j}\left(S_{i} \cdot S_{j}\right)
$$

Spin-spin interactions: what do we know?

	q	s	c
constituent mass (MeV)	305	490	1670
	362	546	1721

TABLE I: Constituent quark masses derived from the $L=0$ mesons (first row) or from the $L=0$ baryons (second row).

	$q \bar{q}$	$s \bar{q}$	$s \bar{s}$	$c \bar{q}$	$c \bar{s}$	$c \bar{c}$
$\left(\kappa_{i j}\right)_{0}(\mathrm{MeV})$	315	195	121^{*}	70	72	59
$\left(\kappa_{i j}\right)_{0} m_{i} m_{j}(\mathrm{GeV})^{3}$	0.029	0.029		0.036	0.059	0.16

TABLE II: Spin-spin couplings for quark-antiquark pairs in color singlet from the hyperfine splittings of $L=0$ mes (first row). The values in the second row show the app imate scaling of the couplings with inverse masses (ma from meson spectrum). *The $s \bar{s}$ coupling which is not ex imentally accessible, is obtained by rescaling the $s \bar{q}$ ont
 the factor m_{q} / m_{s}.

TA BLE Ill. Cpitr-spill coupings for quark-quak pairs in color $\bar{\sigma}$ state from $L=0$ baryons. One gluon exchange implies $\left(\kappa_{i j}\right)_{\overline{\mathbf{s}}}=1 / 2\left(\kappa_{i j}\right)_{0}$. The values in the second row, show the apporimate scaling of the couplings with inverc ntasses
(masses from the baryon spectrum).

The states: $[c u]_{S=0,1}[\bar{s} \bar{u}]_{S=0,1}$

- The spectrum is uniquely predicted
- Quantum numbers of $\operatorname{Ds}(2317)$ and $\operatorname{Ds}(2462)$ fit well
- The assignement of $\operatorname{Ds}(2327)$ is more uncertain

SLAC. 25/02/05
L.MAIANI. Scalar Mesons \& 4-quarks

Masses

- Two conflicting contributions to the mass of bound states:
- Annihilation: $\quad d \bar{d} \rightarrow u \bar{u}$
$-\quad u \bar{u} \rightarrow d \bar{d}$
gives a matrix with all equal elements, which is diagonal in the isospin basis;
- Quark Masses: the eigenvectors are the states with quarks of definite flavor (e.g. ω / ϕ mixing)
- TOTAL:

$$
\left(\begin{array}{cc}
2 m_{u}+\delta & \delta \\
\delta & 2 m_{d}+\delta
\end{array}\right)
$$

- At charmonium scale, quark mass should dominate (Rossi -Veneziano; Maiani-Piccinini-Polosa-Riquer)
- and the approximate mass eigenstates should be $\quad X_{u}=[c u][\bar{c} \bar{u}]$
-

$$
X_{d}=[c d][\bar{c} \bar{d}]
$$

rather then the $\mathrm{I}=1,0$ states

- Belle sees both: $\mathrm{X}->\mathrm{J}+\rho$, J+ ω with similar B.R.!!!! A new phenomenon !!!!

Isospin breaking

We consider in this section the finer structure of the $X(3872)$. In particular,we consider the neutral states with the composition:

$$
\begin{equation*}
X_{u}=[c u][\overline{\bar{u}} \bar{c}] ; X_{d}=[c d][\bar{d} \bar{d}] \tag{32}
\end{equation*}
$$

Physical states could be expected to fall in isospin multiplets with $I=1,0$:

$$
\begin{gather*}
a_{c \bar{c}}=\left(X_{u}+X_{d}\right) / \sqrt{2} ; \\
f_{c \bar{c}}=\left(X_{u}-X_{d}\right) / \sqrt{2} \tag{33}\\
X_{\text {low }}=\cos \theta X_{u}+\sin \theta X_{d} ; \tag{45}\\
X_{\text {high }}=-\sin \theta X_{u}+\cos \theta X_{d} \tag{34}
\end{gather*}
$$

we get:

$$
\begin{aligned}
& M\left(X_{d}\right)-M\left(X_{u}\right)=\frac{2\left(m_{\mathrm{down}}-m_{\mathrm{up}}\right)}{\cos (2 \theta)}= \\
& =\frac{(6-8) \mathrm{MeV}}{\cos (2 \theta)}
\end{aligned}
$$

$$
\begin{align*}
& \left.\frac{\Gamma(3 \pi)}{\Gamma(2 \pi)}\right) x_{l}=\frac{(\cos \theta+\sin \theta)^{2}}{(\cos \theta-\sin \theta)^{2}} \cdot \frac{\left\langle p_{\omega}\right\rangle}{\left\langle p_{\rho}\right\rangle} \\
& \left.\frac{\Gamma(3 \pi)}{\Gamma(2 \pi)}\right) x_{h}=\frac{(\cos \theta-\sin \theta)^{2}}{(\cos \theta+\sin \theta)^{2}} \cdot \frac{\left\langle p_{\omega}\right\rangle}{\left\langle p_{\rho}\right\rangle} \tag{44}
\end{align*}
$$

BELLE attributes all events with $\pi^{+} \pi^{-} \pi^{0}$ mass above 750 MeV to ω decay and divides by the total number of observed 2π events. They find:

$$
\left(\frac{\Gamma(3 \pi)}{\Gamma(2 \pi)}\right)_{B E L L E}=0.8 \pm 0.3_{\text {stat }} \pm 0.1_{\text {syst }}
$$

The central value is compatible with eq.(44) for:

$$
\begin{equation*}
\theta \simeq \pm 20^{\circ} \tag{46}
\end{equation*}
$$

for X_{l} or X_{h}, respectively. Correspondingly, the mass difference of the two states is:

$$
\begin{equation*}
M\left(X_{h}\right)-M\left(X_{l}\right) \simeq 7-10 \mathrm{MeV} \tag{47}
\end{equation*}
$$

Interference!

$$
\begin{aligned}
& \frac{d \Gamma\left(X \rightarrow \psi+e^{+} e^{-}\right)}{d s}= \\
& =\frac{|A|^{2} B_{\left(\rho \rightarrow e^{+} e^{-}\right)}}{8 \pi M_{X}^{2}} \frac{M_{\rho} \Gamma_{V}}{\pi} \cdot p(s) \\
& \cdot \frac{1}{\left(s-M_{\rho}^{2}\right)+i\left(M_{\rho} \Gamma_{\rho}\right)} \pm\left.\frac{1 / 3}{\left(s-M_{\omega}^{2}\right)+i\left(M_{\omega} \Gamma_{\omega}\right)}\right|^{2}
\end{aligned}
$$

we have assumed the quark-model ratio for the leptonic amplitudes of ρ and ω and used the narrow width approximation. The sign \pm applies to X_{u} and X_{d}, respectively. Combining with eq.(43), with $\theta=0$, we find:

$$
\begin{align*}
& B\left(X_{u} \rightarrow J / \Psi+e^{+} e^{-}\right)=0.8 \cdot 10^{-4} \\
& B\left(X_{d} \rightarrow J / \Psi+e^{+} e^{-}\right)=0.3 \cdot 10^{-4} \tag{49}
\end{align*}
$$

Decay widths

- The baryonium picture implies that the two-meson decays go via intermediate baryon-antibaryon states of high mass. This implies basically narrow widths.
- We describe the decay by a single switch amplitude, associated to the process (subscripts indicate color configuration): $\quad[c u][\bar{c} \bar{u}] \rightarrow(c \bar{c})_{c o l=1}(u \bar{u})_{c o l=1}$

$$
\begin{aligned}
L_{X_{u} \Psi V} & =g_{V} \epsilon^{\mu \nu \rho \sigma} P_{\mu} X_{\nu} \psi_{\rho} V_{\sigma}= & g_{V} M_{X}=\frac{A}{\sqrt{2}} \\
& =g_{V} M_{X}(\mathrm{X} \wedge \psi) \cdot \mathrm{V} &
\end{aligned}
$$

- a bold guess: $\mathrm{A}=2.6 \mathrm{GeV} \quad \Gamma\left(X_{l} \rightarrow J / \psi+\pi^{+} \pi^{-}\right)=\frac{2 x_{l, \rho}|A|^{2}}{8 \pi M_{X}^{2}}\langle p\rangle_{\rho}=$

$$
=2 x_{l, \rho} \cdot 2.3 \mathrm{MeV} ;
$$

$$
\Gamma\left(X_{l} \rightarrow J / \psi+\pi^{+} \pi^{-} \pi^{0}\right)=\frac{2 x_{l, \omega}|A|^{2}}{8 \pi M_{X}^{2}}\langle p\rangle_{\omega}=
$$

$$
=2 x_{l, \omega} \cdot 0.4 \mathrm{MeV}
$$

- We anticipate small widths, comparable to the resolution of Belle and Babar

X particles in B decays

There are two amplitudes for $\mathrm{B}^{+} \Rightarrow \mathrm{K}^{+} \mathrm{X}$

States (cq)(sbar qbar) in B^{+}decay ?

X particles in B decays

- Two amplitudes: the relative frequence of X_{u} vs. X_{d} is not determined
- Taking Belle data at face value, we conclude that only one of the two neutral states is produced appreciably in B^{+}decay (too narrow to describe two resonances about 7 MeV apart)
- The the other has to appear in B^{0} decay:
- The X particles in B^{+}and B^{0} decays are not the same, and have a mass difference of $7 \pm 2 \mathrm{MeV}$
- Bounds to the production of $\mathrm{X}^{+}: \quad R^{+}=$

$$
\begin{aligned}
& =\frac{\mathcal{B}\left(B^{+} \rightarrow K_{S} X^{+}\right) \cdot \mathcal{B}\left(X^{+} \rightarrow J / \Psi+\pi^{+} \pi^{0}\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} X_{l / h}\right) \cdot \mathcal{B}\left(X_{l / h} \rightarrow J / \Psi+\pi^{+} \pi^{-}\right)}>0.2 \\
& R^{0}= \\
& =\frac{\mathcal{B}\left(B^{0} \rightarrow K^{+} X^{-}\right) \cdot \mathcal{B}\left(X^{-} \rightarrow J / \Psi+\pi^{-} \pi^{0}\right)}{\mathcal{B}\left(B^{0} \rightarrow K_{S} X_{h / l}\right) \cdot \mathcal{B}\left(X_{h / l} \rightarrow J / \Psi+\pi^{+} \pi^{-}\right)}>0.53
\end{aligned}
$$

to be compared with the upper limit given by BaBar [27]:

$$
R^{+}<0.8
$$

with large errors.
SLAC. 25/02/05
L.MAIANI. Scalar Mesons \& 4-quarks

D-D* molecule

- one state only: $\mathrm{D}^{0}-\mathrm{D}^{* 0}$
- ... and very extended:

$$
R=\frac{1}{\sqrt{2 M_{D} E_{\text {bind }}}} \sim 4 \mathrm{fm}
$$

- most of the time ($70-80 \%$), D and D^{*} are too far to exchange a cquark and form a J / Ψ;
- for a tight state: $\mathrm{BR}\left(\Psi^{\prime} \rightarrow \Psi \pi^{+} \pi^{-}\right) \approx 0.3$, maybe: $\mathrm{BR}\left(\mathrm{X} \rightarrow \Psi \pi^{+} \pi^{-}\right) \approx 0.03$
- the measure of inclusive $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{XK}^{+}\right)$determines the X BR from the overall ratio:
- $R=\frac{B\left(B^{+} \rightarrow X K^{+}\right) B\left(X \rightarrow J / \Psi \pi^{+} \pi^{-}\right)}{B\left(B \rightarrow \Psi^{\prime} K^{+}\right) B\left(\Psi^{\prime} \rightarrow J / \Psi \pi^{+} \pi^{-}\right)}=0.063 \pm 0.014$
- and give an important clue (G. Wormser, yesterday talk).

The qq-qbar qbar shopping list for $\mathbf{X}(3872)$

- Do you see X in $\mathrm{B}^{0} \rightarrow \mathrm{X}+\mathrm{K}_{\mathrm{s}}$?

Questions

- can you see a mass difference between $\mathrm{X}\left(\mathrm{B}^{0}\right)$ and $\mathrm{X}\left(\mathrm{B}^{+}\right)$?
- can you look for the other partner? $X^{+}=(c u)(\bar{c} \bar{d})$
- Other X-like states:
- above thresh.: $\quad 0_{\text {high }}^{++} \rightarrow D+\bar{D}$
- below thresh.: $\quad 0_{\text {low }}^{++} \rightarrow \eta_{C}+\ldots$
- X(3940): seen $\quad X(3940) \rightarrow J / \Psi+\omega$
- what about? $\quad X(3940) \rightarrow D+\bar{D}$ (??) (d-wave)
- SELEX-like particles in B decays ???
- how about $\mathrm{D}_{\mathrm{sJ}}(2317), \mathrm{D}_{\mathrm{sJ}}(2460)$?

Conclusions

- A convincing picture of light scalars as $[q q][\bar{q} \bar{q}]$ states:
- Masses
- Ideal mixing
- Decays reasonably described (exact SU3!) but for OZI violating (??)
- Note: $\Delta \mathrm{m}(\mathrm{f}-\mathrm{a}) \sim 10 \mathrm{MeV}, \Delta \mathrm{m}(\mathrm{up}-$ down $) \sim 5 \mathrm{MeV}$: are $\mathrm{f}(980)$ and $\mathrm{a}(980)$ pure I-spin eigenstates?
- New phenomena
- States $[c q][\bar{c} \bar{q}]$ and $[c q][\bar{c} \bar{s}]$ should exist, with both natural and unnatural spin parity;
- I-spin breaking expected maximal in certain decay: was the SELEX particle just the first case?
- X(3872) a good candidate, $X(3940)$ predicted

> WERE ARE THE EXOTIC STATES??? !

