Diquark-antidiquark Mesons : a new spectroscopy? *Report on work done with F. Piccinini, A. Polosa, V. Riquer SLAC, Feb. 25, 2005*

Luciano MAIANI,

Univ. di Roma1. Italia; INFN, Roma. Italia

SLAC. 25/02/05

Tetraquark Mesons

An idea which got momentum in the 70s (R. Jaffe, H. Lipkin...); QCD encourages the speculation that such states are indeed possible; As we shall see, the light scalar mesons a(980), f(980) really look like $[qq]_{col=\bar{3}}[\bar{q}\bar{q}]_{col=3}$

In alternative: a(980), f(980) could be K-Kbar "molecules", bound by one- π exchange, i.e. in the configuration:

 $(q\bar{q})_{col=1}(q\bar{q})_{col=1}$

The existence of lighter partners, σ and κ is crucial;

Recent expts, at FNAL(E791), Frascati (KLOE) and BES, have seen again σ and κ : this would be against "molecules";

...and there are states with hidden/open charm that do not look like charmonium states: X(3872), X(3940), (Belle, Babar in B decays), X(2632) (SELEX).

SLAC. 25/02/05

σ(600) ad E791

SLAC. 25/02/05

σ(600)[®] BES II

• BES II: σ in $J/\psi \rightarrow \omega \pi^+ \pi^-$.

Partial wave analysis: pole position

 $(541 \pm 39) - i(252 \pm 42) MeV$

No k needed in Dalitz plot fit of $D^0 \rightarrow K^- \pi^+ \pi^0 e D^0 \rightarrow K_S \pi^+ \pi^-$ (CLEO)

No k needed in Dalitz plot fit of $D^0 \rightarrow K^0 K^-\pi^+ e D^0 \rightarrow K K^+\pi^-$ (BABAR)

 $\Gamma = 410 \pm 43 \pm 87 \text{ MeV}$ Non Res. Bkg. :90% (no k) \rightarrow 13% (k)

The present work (1)

Recent evidence for σ at low energy led us to reconsider the case of sub-GeV scalar mesons.

Many previous investigations (Joffe, Close&Tornqvist, Schecter and coll...).

We propose:

- all scalars below 1 GeV are diquark-antidiquark bound states (1 nonet),
- the q-qbar scalar nonet (L=1, S=1, J=0) has to be above.

Results:

• Low energy states show inverted mass spectrum, consistent with "perfect mixing";

• Strong decays are reasonably accounted for;

• Relations with ealier proposal by Rossi&Veneziano suggests connection to baryon-antibaryon, rather than meson-meson states (or molecule)

PRL 93, 212002 (2004), hep-ph/0407017

SLAC. 25/02/05

The present work (2)

- Heavy quark interactions are spin independent: new spin states?
 - We propose that X(3872) observed by Belle and by Babar *is a diquarkantidiquark bound state and estimate the spectrum of states of the spin multiplet with the same flavors:*
 - X(3872)=(J=1⁺⁺)= $(cq)_{col=\bar{3},S=1}(\bar{c}\bar{q})_{col=3,S=1}$
 - with the same parameters, we can accommodate the X(2632) observed by SELEX:
 - X(2632)=(J=2⁺⁺) = $(cq)_{col=\bar{3},S=1}(\bar{s}\bar{q})_{col=3,S=1}$
- we predict X(3872) is made by two states with $\Delta m = (5-8) MeV \approx 2 (m_d m_u)$
- if one state only in the decay: $B^+ \rightarrow K^+ X(3872)$, the other must appear in $B^0 \rightarrow K_S X(3872)$
- a charged partners must exist: $X^+ = (CU)_{col=\bar{3},S=1} (\bar{s}d)_{col=3,S=1}$
- bounds to the production of X^+ are close but not in contradiction with BaBar.

SLAC. 25/02/05

Summary

- Attractive and repulsive channels in QCD
- String structures: the "baryonium" model (Rossi & Veneziano, 1977)
- The light scalar mesons;
- Two-meson decays;
- Surprising charmonium states seen by Belle, Babar and Selex;
- S-wave Tetraquarks, the X(3872) and spectrum of related states;
- Selex particle, X(2632), and associated spectrum;
- Alignment to quark masses, isospin breaking;
- Conclusions

Attractive & repulsive channels in QCD

Interaction of two colored objects:

With antisymmetry in color and spin and a common spatial configuration, Fermi statisti⊊s ⇒

Good diquarks: $[qq]_{\mathbf{\bar{3}_c},\mathbf{1_s},\mathbf{\bar{3}_f}}$ Bad diquarks: $(qq)_{\mathbf{\bar{3}_c},\mathbf{3_s},\mathbf{6_f}}$

Since spin interaction is a relativistic effect we might expect stronger for the lightest quarks....

Splitting: $(ud) - [ud] > (us) - [us] > (uc) - [uc] \approx 0$

HQ Spin Symmetry

SLAC. 25/02/05

Quantum numbers and mass formula

4 parameters, 4 masses+1 mixing, one overall relation:

$$f_{\circ}(I = 0) = \frac{1}{\sqrt{2}} \left([su][\bar{s}\bar{u}] + [sd][\bar{s}\bar{d}] \right)$$

$$\sigma_{\circ}(I = 0) = [ud][\bar{u}\bar{d}]$$

$$\begin{aligned} |f\rangle &= \cos \phi |f_{\circ}\rangle + \sin \phi |\sigma_{\circ}\rangle \\ |\sigma\rangle &= -\sin \phi |f_{\circ}\rangle + \cos \phi |\sigma_{\circ}\rangle. \end{aligned}$$

-Two solutions (see also Schecter et al.): First: almost "ideal mixing" Second: σ~u-ubar + d-dbar.

But: how to explain mass pattern in q-model? unfavoured by decays

- Linear mass formula gives very similar results
- With Linear m.f., parameters related to diquark masses: α =480 MeV, β = 250 MeV
- Note: α - β =230 MeV vs m_s=150 MeV.

SLAC. 25/02/05

FIG. 1: The decay of a scalar meson S made up of a diquarkantidiquark pair in two mesons M_1M_2 made up of standard $(q\bar{q})$ pairs.

$$\Gamma(S \to i) = \frac{A^2}{8\pi} \frac{p}{M_s^2} x_{s \to i}, \qquad (13)$$

where p is the decay momentum, M the mass of the scalar meson and $x_{s \to i}$ a factor which includes numerical coefficients in the individual amplitudes and isospin multiplicities.

SLAC. 25/02/05

TABLE II: Fit with a single parameter A = 2.6 GeV. For g_{π} we have reported the upper limit to the decay rate obtained from the $f - \sigma$ mixing considered previously, see text.

Maybe f $\pi\pi$ comes from "one-loop": $f \to K\bar{K} \to \pi\pi$, or perhaps (!!) $f \to B\bar{B} \to \pi\pi$ (Baryonium ?, see later)

All in all we get quite a consistent picture, reconciles the large σ width with narrow a and f widths and reinforces [qq][qbar qbar] assignement

SLAC. 25/02/05

Observation of a narrow charmonium-like state in exclusive $B^{\pm} \to K^{\pm} \pi^+ \pi^- J/\psi$ decays

By the way...

□ Events selected within 2σ (12 MeV/ c^2) of 3872 MeV/ c^2 show hints of a *B* signal.

- After cutting at $m(\pi^+\pi^-\pi^0) > 750 \text{ MeV}/c^2$, a cleaner signal is present over a low background. Fit yields $10.0 \pm 3.6 \text{ events} (5.8 \sigma)$

A new peak in J/ψ **recoil** $e^+e^- \rightarrow J/\Psi + X$

X has Charge Conj. =+

At ICHEP '04 Belle presented an update with full statistics, extending the mass range again to the high part of the spectrum (3.8 - 4.5 GeV/c²)

□ No evidence for *X*(3872) on the recoil

New peak observed at higher mass:

New status decaying to $J/\psi \omega$?

Tetraquarks with open and hidden charm (Phys.Rev. **D70**, 054009 (2004); hep-ph/0412098)

- The spin-spin interaction between heavy quarks is O(1/M)
 - If S=0 diquarks are bound, S=1 diquarks do
 - − All states in the composition (S=0 \oplus S=1) \otimes (S=0 \oplus S=1) must exist
 - not natural spin-parity only!
 - a large multiplet with composition:

$$2 (J^{PC}=0^{++})+(J=1^{++})+2 (J=1^{+-})+(J=2^{++}).$$

- Mass spectrum determined by:
 - constituent diquark massess
 - spin-spin interactions
 - the latter: from meson and baryon spectrum or from one gluon exchange

$$M = \sum_{i} m_i + \sum_{i < j} 2\kappa_{ij} (S_i \cdot S_j)$$

SLAC. 25/02/05

L.MAIANI. Scalar Mesons & 4-quarks

24

TABLE III: Spin-spin couplings for quark-quark pairs in color $\bar{\mathbf{3}}$ state from L = 0 baryons. One gluon exchange implies $(\kappa_{ij})_{\bar{\mathbf{3}}} = 1/2(\kappa_{ij})_{\mathbf{0}}$. The values in the second row, show the approximate scaling of the couplings with inverse masses (masses from the baryon spectrum).

SLAC. 25/02/05

Masses

- Two conflicting contributions to the mass of bound states:
 - Annihilation: $d\bar{d} \rightarrow u\bar{u}$ - $u\bar{u} \rightarrow d\bar{d}$

gives a matrix with all equal elements, which is diagonal in the isospin basis;

- **Quark Masses:** the eigenvectors are the states with quarks of definite flavor (e.g. ω/ϕ mixing)
- TOTAL:

- $\begin{pmatrix} 2m_u + \delta & \delta \\ \delta & 2m_d + \delta \end{pmatrix}$
- At charmonium scale, quark mass should dominate (Rossi -Veneziano; Maiani-Piccinini-Polosa-Riquer)
- and the approximate mass eigenstates should be
- $X_u = [cu][\bar{c}\bar{u}]$ $X_d = [cd][\bar{c}\bar{d}]$

rather then the I=1,0 states

• Belle sees both: X -> J+ ρ , J+ ω with similar B.R.!!!! A new phenomenon !!!!

SLAC. 25/02/05

Isospin breaking

We consider in this section the finer structure of the X(3872). In particular, we consider the neutral states with the composition:

$$X_u = [cu][\bar{u}\bar{c}]; X_d = [cd][\bar{d}\bar{c}]$$
(32)

Physical states could be expected to fall in isospin multiplets with I = 1, 0:

$$a_{c\bar{c}} = (X_u + X_d)/\sqrt{2};$$

$$f_{c\bar{c}} = (X_u - X_d)/\sqrt{2}$$

$$X_{\text{low}} = \cos\theta X_u + \sin\theta X_d;$$

$$X_{\text{high}} = -\sin\theta X_u + \cos\theta X_d$$

we get:

$$M(X_d) - M(X_u) = \frac{2(m_{\text{down}} - m_{up})}{\cos(2\theta)} = \frac{(6-8) \text{ MeV}}{\cos(2\theta)}$$

$$\frac{\Gamma(3\pi)}{\Gamma(2\pi)} \chi_{l} = \frac{(\cos\theta + \sin\theta)^{2}}{(\cos\theta - \sin\theta)^{2}} \cdot \frac{\langle p_{\omega} \rangle}{\langle p_{\rho} \rangle}$$
$$\frac{\Gamma(3\pi)}{\Gamma(2\pi)} \chi_{h} = \frac{(\cos\theta - \sin\theta)^{2}}{(\cos\theta + \sin\theta)^{2}} \cdot \frac{\langle p_{\omega} \rangle}{\langle p_{\rho} \rangle}$$
(44)

(33) BELLE attributes all events with $\pi^+\pi^-\pi^0$ mass above 750 MeV to ω decay and divides by the total number of observed 2π events. They find:

$$(\frac{\Gamma(3\pi)}{\Gamma(2\pi)})_{BELLE} = 0.8 \pm 0.3_{stat} \pm 0.1_{syst}$$
 (45)

The central value is compatible with eq.(44) for:

$$\theta \simeq \pm 20^0$$
 (46)

for X_l or X_h , respectively. Correspondingly, the mass difference of the two states is:

$$M(X_h) - M(X_l) \simeq 7 - 10 MeV$$
 (47)

SLAC. 25/02/05

L.MAIANI. Scalar Mesons & 4-quarks

(34)

(35)

29

Interference !

$$\begin{aligned} \frac{d\Gamma(X \to \psi + e^+ e^-)}{ds} &= \\ &= \frac{|A|^2 B_{(\rho \to e^+ e^-)}}{8\pi M_X^2} \frac{M_\rho \Gamma_V}{\pi} \cdot p(s) \cdot \\ &\cdot \left| \frac{1}{(s - M_\rho^2) + i(M_\rho \Gamma_\rho)} \pm \frac{1/3}{(s - M_\omega^2) + i(M_\omega \Gamma_\omega)} \right|^2 \end{aligned}$$

we have assumed the quark-model ratio for the leptonic amplitudes of ρ and ω and used the narrow width approximation. The sign \pm applies to X_u and X_d , respectively. Combining with eq.(43), with $\theta = 0$, we find:

$$B(X_u \to J/\Psi + e^+e^-) = 0.8 \cdot 10^{-4}$$

$$B(X_d \to J/\Psi + e^+e^-) = 0.3 \cdot 10^{-4}$$
(49)

SLAC. 25/02/05

L.MAIANI. Scalar Mesons & 4-quarks

30

Decay widths

- The baryonium picture implies that the two-meson decays go via intermediate baryon-antibaryon states of high mass. This implies basically narrow widths.
- We describe the decay by a single switch amplitude, associated to the process (subscripts indicate color configuration): $[cu][\bar{c}\bar{u}] \rightarrow (c\bar{c})_{col=1}(u\bar{u})_{col=1}$

$$\begin{split} L_{X_u\Psi V} &= g_V \epsilon^{\mu\nu\rho\sigma} P_\mu X_\nu \psi_\rho V_\sigma = \\ &= g_V M_X (\mathbf{X} \wedge \psi) \cdot \mathbf{V} \end{split} \qquad g_V M_X = \frac{A}{\sqrt{2}} \\ \text{a bold guess: A=2.6 GeV} \qquad \Gamma(X_l \to J/\psi + \pi^+\pi^-) = \frac{2x_{l,\rho}|A|^2}{8\pi M_X^2} \langle p \rangle_\rho = \\ &= 2x_{l,\rho} \cdot 2.3 \text{ MeV}; \\ \Gamma(X_l \to J/\psi + \pi^+\pi^-\pi^0) = \frac{2x_{l,\omega}|A|^2}{8\pi M_X^2} \langle p \rangle_\omega = \\ &= 2x_{l,\omega} \cdot 0.4 \text{ MeV} \end{split}$$

• We anticipate small widths, comparable to the resolution of Belle and Babar

SLAC. 25/02/05

X particles in B decays

- Two amplitudes: the relative frequence of X_u vs. X_d is not determined
- Taking Belle data at face value, we conclude that only one of the two neutral states is produced appreciably in B⁺ decay (too narrow to describe two resonances about 7MeV apart)
- The the other has to appear in B⁰ decay:
 - The X particles in B⁺ and B⁰ decays are not the same, and have a mass difference of 7±2 MeV

 D^+

• Bounds to the production of X⁺:

$$R^{-} = \frac{\mathcal{B}(B^{+} \to K_{S}X^{+}) \cdot \mathcal{B}(X^{+} \to J/\Psi + \pi^{+}\pi^{0})}{\mathcal{B}(B^{+} \to K^{+}X_{l/h}) \cdot \mathcal{B}(X_{l/h} \to J/\Psi + \pi^{+}\pi^{-})} > 0.2$$

$$R^{0} = = \frac{\mathcal{B}(B^{0} \to K^{+}X^{-}) \cdot \mathcal{B}(X^{-} \to J/\Psi + \pi^{-}\pi^{0})}{\mathcal{B}(B^{0} \to K_{S}X_{h/l}) \cdot \mathcal{B}(X_{h/l} \to J/\Psi + \pi^{+}\pi^{-})} > 0.53$$

to be compared with the upper limit given by BaBar [27]:

$$R^{+} < 0.8$$

with large errors.

L.MAIANI. Scalar Mesons & 4-quarks

SLAC. 25/02/05

34

D-D* molecule

- one state only: D⁰-D^{*0}
- ... and very extended:

$$R = \frac{1}{\sqrt{2M_D E_{bind}}} \sim 4 \, fm$$

- most of the time (70-80%), D and D* are too far to exchange a c-quark and form a J/ Ψ ;
- for a tight state: BR($\Psi' \rightarrow \Psi \pi^+ \pi^-$) ≈ 0.3 , maybe: BR($X \rightarrow \Psi \pi^+ \pi^-$) ≈ 0.03
- the measure of inclusive B(B⁺→ XK⁺) determines the X BR from the overall ratio:

•
$$R = \frac{B(B^+ \to XK^+)B(X \to J/\Psi \pi^+ \pi^-)}{B(B \to \Psi'K^+)B(\Psi' \to J/\Psi \pi^+ \pi^-)} = 0.063 \pm 0.014$$

• and give an important clue (G. Wormser, yesterday talk).

SLAC. 25/02/05

The qq-qbar qbar shopping list for X(3872)

Questions

- Do you see X in $B^0 \rightarrow X + K_s$?
- can you see a mass difference between X (B^0) and X (B^+)?
- can you look for the other partner? $X^+ = (cu)(\bar{c}\bar{d})$
- •
- Other X-like states:
 - above thresh.: $0_{high}^{++} \rightarrow D + \bar{D}$
 - below thresh.: $0_{low}^{++} \rightarrow \eta_C + \dots$
 - X(3940): seen $X(3940) \rightarrow J/\Psi + \omega$
 - what about ? $X(3940) \rightarrow D + \overline{D}$ (??) (d-wave)
- SELEX-like particles in B decays ???
- how about $D_{sJ}(2317)$, $D_{sJ}(2460)$?

Conclusions

- A convincing picture of light scalars as $[qq][\bar{q}\bar{q}]$ states:
 - Masses
 - Ideal mixing
 - Decays reasonably described (exact SU3!) but for OZI violating (??)
 - Note: $\Delta m(f-a) \sim 10 \text{MeV}$, $\Delta m(\text{up-down}) \sim 5 \text{MeV}$: are f(980) and a(980) pure I-spin eigenstates?
- New phenomena
 - States $[cq][\bar{c}\bar{q}]$ and $[cq][\bar{c}\bar{s}]$ should exist, with both natural and unnatural spin parity;
 - I-spin breaking expected maximal in certain decay: was the SELEX particle just the first case?
 - X(3872) a good candidate, X(3940) predicted

WERE ARE THE EXOTIC STATES??? !

SLAC. 25/02/05