

Penguin Approach to Sin2β at BaBar

Stefan Spanier SLAC

A national laboratory funded by the Department of Energy

Outline

- B Factory and BaBar
- Event Selection
- $\sin 2\beta$ Measurement
- Summary / Outlook

CP Violation in B Decays

CP observation needs interference between at least two different amplitudes: $A = a_1 \cdot e^{i\phi_1} + a_2 \cdot e^{i\phi_2}$... to project out phase by interference. <u>Decay</u>: for example b c,u b s,d t.c.u t,c,u b s,d W photon, Z⁰ gluon penguins tree Mixing: New Particles enter: (d t,c,u $\overline{\mathbf{B}}_{d}^{0}$ new phases B_d^0 W W (e.g. in MSSM: minimal flavor violation) b t,c,ū box \Rightarrow modification in decay / mixing (CP violation in mixing negligible in SM) • ~ 1 TeV scale

Direct CP Violation (in Decay)

•CP violation \Leftrightarrow Rate($B^0 \rightarrow f$) $\neq \overline{Rate}(\overline{B^0} \rightarrow \overline{f})$

Rate difference:

$$R - \overline{R} = -2\sum_{i,j} a_i a_j \sin(\phi_i - \phi_j) \sin(\delta_i - \delta_j)$$

 ϕ_i : weak phases δ_i : strong phases

- Many SM % New Physics predictions for RATES, ASYMMETRIES.
- Short range, long range (rescattering) hadronic interactions need to be modeled \Rightarrow B decays are inputs for model builders.

5

CP Violation in Interference between Mixing and Decay

•B⁰, \overline{B}^0 decay into same CP eigenstate f_{CP} e.g. $J/\psi K_s^0$: CP = -1

•Only one phase dominant in decay and CP violation in mixing negligible:

$$C = 0, S = (CP) sin2(\phi + \theta)$$

$$f_{CP}=J/\psi K_{S}^{0}$$
 (b $\rightarrow c\bar{c}s$): S = -sin2 β

$$f_{CP} = \phi K_{S}^{0}$$
 (b $\rightarrow s\overline{s}s$): S = $-sin 2\beta$

New Physics : $\Delta a = |a_{J/\Psi}(t) - a_{\phi}(t)|$

 $\frac{c}{c} = 0$ $\frac{c}{c} = 0$ $\frac{c}{c} = 0$ $\frac{c}{c} = 0$ $\theta = 0$

•CP violation \Leftrightarrow $R(B^0 \rightarrow f_{CP}) \neq \overline{R}(\overline{B}^0 \rightarrow f_{CP})$

 $a(t) = \frac{R - \overline{R}}{R + \overline{R}}(t) = S\sin(\Delta m_d t) - C\cos(\Delta m_d t)$

h

in SM

time dependent

measurement

Stefan Spanier

How clean ?

How strong is the effective suppression of u-quark loop diagram (A^c > A^u) penguin mode ?

 Flavor SU(3):
|\$\$\phi\$> = |\$\$\vec{s}\$\$> with ~1% uncertainty (ideal mixing of vectors)

• Electroweak penguins:

 \Rightarrow in SM:

same phase as gluonic penguins; effective suppression (~25% of gluonic penguins)

7

Estimate uncertainty experimentally with flavor SU(3) (b->s % b->d) relating B-> ϕK_s to B⁺-> $\phi \pi^+$, B⁺->K^{*}K⁺: $\Delta a < 0.2$ (BF from BaBar, Belle)

 $\Delta a = | a_{J/\psi} - a_{\phi} | < 0.04$

[Grossman, Isidori,Worah]

B-Meson Production

- Electron-Positron collider
 - Y(4S) resonance decays into B_d -meson pairs (~100%)
 - Can provide high luminosity (rates)
 - Clean environment (~10 tracks/event)

Measuring time-dependent B decays

The SLAC PEP-II B factory

The BaBar Detector

Silicon Vertex Tracker

5 layers of double sided Si strips

DIRC 144 synthetic fused silica bars 11000 PMTs (3.1 GeV) Drift Chamber 40 axial stereo layers 1.5T Solenoid (9.0 GeV) **Electromagnetic Calorimeter Instrumented Flux Return** 6580 CsI(Tl) crystals 19 layers of RPCs 11

Performance

Tracking

92% of 4π in laboratory SVT + DCH 97% average tracking efficiency $\sigma(p_T)/p_T \sim 0.5\%$ @ 1 GeV/c

Electromagnetic Calorimeter

 $\sigma(E)/E \sim 3\% @ 1 GeV$ ~7 MeV/c² π^0 resolution, for E_y > 30 MeV

- SVT Located in high radiation area (inner radius: 3.2 cm)
 - Radiation hard readout electronics (2Mrad)
- Up to 98% hit reconstruction efficiency
- Hit z-resolution ~15 µm at 0°

Principle of the DIRC

Typical DIRC photon: $\lambda \approx 400$ nm, ~ 200 bounces, ~ 5 m path in quartz. Geometrical uncertainty $\sigma(\theta_c) = 7.3 \text{ mr}$

13

Principle of the DIRC

- 12 DIRC sectors
- each has one aluminium box with 12 quartz bars kept in nitrogen atmosphere
- <u>Coverage</u>:
 - 87% C.M. polar angle, 94% azimuthal angle
 - 97% photon production efficiency

Installation of the last bar box

Reconstruction

bar propagation time $t_b = Length/v = t(\alpha_x, \alpha_y) \sim t(\theta_c, \phi_c)$

Time Reconstruction

Angle Reconstruction

resolution dominated by:

- 7.3 mrad from PMT/bar size,
- 5.4 mrad from chromatic term,
- ~2 mrad from bar imperfections.

~10% background under $\Delta \theta_{\underline{c},\gamma}$ peak: (scintillation, PeP II background negligible)

Kaon Identification

- For selection combine the Gaussian $G(\theta, \theta_c)$ with Poissonian $P(N_{\gamma}, N_{expected} + N_{bck})$ of photon counting (and drift-chamber and SVT dE/dX (Gaussian))
- Tuning using control channels, e.g.

 $D^{*-} \rightarrow D^0 \pi^ \downarrow K^- \pi^+$

identify the π and K from the D^o kinematically. Correct for combinatorial background (~10%).

Future

• <u>Better time resolution</u>

- 1) At about 200ps the time information becomes competitive with the spatial resolution
- 2) Sensitivity to chromatic smearing via dispersion:

$$\Delta t : t_{calculated} = L (\cos \Theta_{c} = 1/n_{phase}(\lambda) \beta)/v$$

- $t_{measured} = L/v_{group} \quad v_{group} = c/n_{group}$

- \Rightarrow ~1 ns shift for typical photon
- Large water tank collects background

Low energy photons, energy E < 2-2.5 MeV (for 90% of them), from accelerator make Compton scattering in water/quartz; Radiative Bhabha hit area below SOB

 \Rightarrow Compactify readout plane and improve time resolution

e.g. modified optics (focusing) and flat panel multi-anode PMTs

Resonances

Energy & Momentum conservation:

Energy Difference in CoM

 $\Delta E = E_B^* - E_{\text{beam}}^*$

Beam Energy-Substituted Mass $m_B = m_{ES} = \sqrt{E_{\text{beam}}^{*2} - p_B^{*2}}$

Typical resolutions:

 $\sigma(\Delta E)/E_{beam} \sim 15 - 30 \text{ MeV}$ Detector $\sigma(m_{ES}) \sim 2 - 3 \text{ MeV}$ Accelerator

Reconstruction of Rare Decays (charmless)

Distinct signatures : -> BB background minor -> continuum background (jet)

Event topology:

Penguin Modes

B->¢K :	Channel	BF (10 ⁻⁶)	signal events	
	$B^+ \rightarrow \phi K^+$	$7.7^{+1.6}_{-1.4} \pm 0.8$	~ 31	control channel
	$B^0 \rightarrow \phi K^0(K^0{}_S)$	$8.1^{+3.1}_{-2.5} \pm 0.8$	~ 11	CP channel
	$B^0 \rightarrow \phi K^{*+}(K^+\pi^0, K^0\pi^+)$	$9.7^{+4.2}_{-3.4} \pm 1.7$	~ 11	
	$B^0 \rightarrow \phi K^{*0}(K^+\pi^-)$	$8.6^{+2.8}_{-3.4} \pm 1.1$	~ 17	
	$B^0 \rightarrow \phi \pi^+$	< 1.4 (90% C.L.)	~ 1	

B->η'K:

Direct CP Measurements

In channels b->u tree + b->s / b->d penguins sensitive to γ , $\beta+\gamma$,

<u>but</u>: strong phase weakens any quantitative relation to weak phase angles !

Measure charge asymmetry:
$$A_{CP} = \frac{n_i^+ - n_i^-}{n_i^+ + n_i^-}$$

Pure penguin $\phi K^{\pm(*)}$: in SM $A_{CP} \sim 0$

Uncertainty:

25

- 1 2 % charge asymmetry in PID
- 2 3 % PDF models (6% for K*->K π^{0})

Impact of tagging and resolution on CP

Stefan Spanier

Flavor tagging

- 4 categories pre-defined using
- particle identification selectors
- neural-network selection to resolve residual set
- E : efficiency

(1): mistag-fraction D = (1 - 2); quality $Q \equiv \varepsilon D^2$

• precision $\sigma(\sin 2\beta) \sim 1 / \sqrt{QN}$

<u>Mis-tagging probabilities</u> <u>from the data</u>, using the sample of fully reconstructed *B* decays.

$$Q_{total} = (25.1 \pm 0.8)\%$$

Vertexing

- Efficiency ~ 97% (1-prongs included)
- Resolution dominated by tag-side
- Average ∆t resolution ~ 0.6 ps ∆t resolution function (3 Gaussian) modeled on Monte Carlo, measured from the B-flavor sample

Vertexing ($\Phi K % J/\Psi K$)

Opening angles quite different:

Flavor Sample

Combined unbinned Maximum Likelihood Fit to Δt spectra of Flavor and CP sample

Fit Parameters		
S	1 Tagged CP Sample	
C Mictor fractions for P^0 and $\overline{P^0}$ toos		
Signal resolution function	Tagged Flavor Samp	
Empirical description of background Δt	17	
B lifetime fixed to the PDG value	† _в = 1.548 ps	
Mixing Frequency fixed to the PDG value	$\Delta m_{d} = 0.472 \text{ ps}^{-1}$	
	*Max. correlation of sin 2β	

with other param: 14%

Sin2 β Result - CP=-1, Kaon Tag

Check for bias in $\sin 2\beta$ fit by treating B_{flav} (mixing) sample same way as CP sample.

CP asymmetry not expected and not observed.

Sin 2 β - Mode by Mode

~13% improvement in statistical error to previous measurement [naïve: $\sigma(\sin 2\beta) = 0.14 \times \operatorname{sqrt}(30 \operatorname{fb}^{-1}/56 \operatorname{fb}^{-1})$].

Probing New Physics

In case more than one weak decay phase present

 \Rightarrow additional $cos(\Delta m \Delta t)$ term in decay distribution

CP violation modified:

Fit with η_{CP} =-1 sample:

 $C = 0.083 \pm 0.065 \text{ (stat.)} \pm 0.022 \text{ (syst.)}$

S remains unchanged

Sin 2 β – World Average

Toy MC test for ϕK_s in 100fb⁻¹

Fit $BF \otimes CP$:

```
Signal = 60, background = 1915, sin 2\beta = 0.7
```

Allow no-tag category

PDFs from BF fit and for CP side modeled on the flavor sample

CKM Interpretation

- sin2 β measurement is consistent with current SM constraints
- no new physics in mixing

[Höcker et al, Eur.Phys.J.C21:225-259,2001 or other recent CKM fits)]

Summary

- BaBar measures time-dependent CP-violating asymmetries in neutral B decays at the Y(4S) resonance with very high precision.
- We have observed CP violation in the B⁰ system at the 7.6 σ level sin(2 β)=0.75±0.09±0.04
- The value is consistent with other experimental constraints on the Standard Model.
- BaBar is well suited to measure sin2 β in the pure penguin channel ϕK^0 .
- In 100fb⁻¹ we expect: $\sigma(\sin 2\beta)_{J/\Psi} \sim 0.07$ $\sigma(\sin 2\beta)_{\phi} \leq 0.50 \ (\sim 0.35 \ \text{with all } \phi, \eta' \ \text{modes})$

$$\Delta$$
(sin2 β) _{Theory} < 0.04 (< 0.15).

