CP studies & other B-physics with *Relle*

Stephen L.Olsen U. of Hawaii

- Introduction
- Tools
 - KEKB
 - Belle
- CP measurements
 - $\phi_1(\beta)$
 - $-\phi_2(\alpha)$
 - $-\phi_3(\gamma)$
 - $\phi_{NP} \text{ non-SM}$
- EW penguins - B→K^(*) *l*+*l*-

Goal 1: map out CKM matrix with B mesons

Goal 2: probe for non-SM physics

• CKM: is that all there is?

is the unitarity triangle a triangle?
are there non-SM phases

"virtual" new physics

Tools

KEKB

asymmetric e⁺e⁻ collider •Two separate rings •e+ (LER) : 3.5 GeV •e⁻ (HER) : 8.0 GeV •E_{CM} : 10.58 GeV at Y(4S) •Luminosity •target: 10³⁴ /cm²/s •achieved: 7.2x10³³/cm²/s •Small beam sizes: • $\sigma_v \approx 3 \mu m$; $\sigma_x \approx 100 \mu m$ •±11 mrad crossing angle

Machine Parameters of the KEKB (March 28/2002)

	LER	HER		
Horizontal Emittance	18	24	nm	
Beam current	1393	869	mA	
Number of bunches	1223			
Bunch current	1.138	0.710	mA	
Bunch spacing	2.4		m	
Bunch trains	1			
Total RF volatage Vc	6.6	12.0	MV	
Synchrotron tune v_s	-0.0225	-0.0199		
Betatron tune v_x/v_y	45.513/43.566	44.514/41.580		
beta's at IP β_{x}^{*} / β_{y}^{*}	59/0.62	63/0.7	cm	
beam-beam parameters <i>हू. । ह्</i> ,	0.078/0.049	0.074/0.043		
Beam lifetime	98@1393	276@ 869	min.@mA	
Luminosity (Belle Cs I)	7.25		10 ³³ /cm ² /sec	
Luminosity records per day/ 7 days / month	359/2207/7248		/pb	

high lum. with low currents

A World-Wide Activity Involving ~50 Institutions

\mathbf{vos} ervation of $B \to J/\psi K_1(1270)$

The Belle Collaboration

K. Abe¹⁰, K. Abe³⁸, I. Adach¹⁰, Byoing Sup Abn¹⁵, H. Alhara⁴⁰, M. Asal¹¹, Y. Asano⁴⁵, T. Aso⁴⁴, V. Aulchenko², T. Aushev¹⁴, A. M. Balich²⁵, E. Banas²⁶, W. Bartel^{8,10}, S. Behari¹⁰, F. K. Behera⁴⁶, D. Beiline², A. Bondar², A. Bozek²⁵, T. E. Browler⁶, B. C. K. Casey⁶, P. Chang²⁵, Y. Chao²⁶, B. G. Cheon³⁵, S.-K. Chol⁸, Y. Chol⁸⁵, J. Dragle¹⁹, A. Duttskoy¹⁴, S. Eldelman³, Y. Ena¹²⁴, F. Fang⁹, H. Fujfil¹⁰, C. Fukumaga⁴³, M. Fukushina¹⁹,
 A. Garnesh^{2,10}, A. Gordon¹⁹, K. Gotow⁴⁷, R. Guo³³, J. Haba¹⁰, H. Hamasakl¹⁰, K. Hanagakl³³, K. Ham³⁰,
 T. Hara³⁰, N. C. Hastings¹⁹, H. Hayashi¹²³, M. Hasumi³⁰, E. M. Hernan¹⁹, Y. Higasing²¹, I. Hynchi³⁰ T. Hguch⁴⁰, H. Hrano⁴¹, T. Hojo⁵⁰, Y. Hosh⁴⁶, S.-E. Hol⁴⁷, W.-S. Holl⁴⁷, S.-C. Hau⁴⁸, H.-C. Huang⁴, Y. Igarash¹⁰, T. Ijima¹⁰, H. Iceta¹⁰, K. Inamf²¹, A. IshIcawa²¹, H. IshIno⁴¹, E. Hoh¹⁰, G. Iwal²⁶, H. Iwasakl¹⁰, Y. Iwasali (b, D. Jackson³⁰, P. Jalcha²⁶, H. K. Jang⁴⁴, M. Jones³, R. Kagal⁴⁰, H. Kakun⁴¹, J. Kaneko⁴⁴, J. B. Kaneko⁴⁵, J. S. Kang⁴⁶, P. Kapusta²⁶, N. Katsyanua¹⁰, H. Kawal⁴⁰, N. Kawanima¹, T. Kawasak¹⁶⁶, S. Kang⁴⁶, N. Kawanima¹, T. Kawasak¹⁶⁶, N. Kawanima¹, T. Kawasak¹⁶⁶, N. Kawanima¹, S. Kang⁴⁶, N. Kawanima¹, T. Kawasak¹⁶⁶, N. Kawanima¹, T. Kawasak¹⁶⁶, N. Kawanima¹⁶, N. Kawanima¹⁶, N. Kawanima¹⁶, N. Kawanima¹⁶, N. Kawanima¹⁶, T. Kawasak¹⁶⁶, N. Kawanima¹⁶, N. Kawani¹⁶, N. Kawanima¹⁶, N. Kawanima¹⁶, N. Kawani¹⁶, N. H. Kichlud¹⁰, D. W. Kim³⁵, Heejong Kim⁴⁶, H. J. Kim⁴⁶, Hymwco Kim¹⁶, S. K. Kim⁴⁴, T. H. Kim⁴⁶, K. Kinoshita⁶, S. Kobayash³⁵, S. Kolah⁴⁴, P. Krokowny², R. Kulashi⁵, S. Kimar⁴, A. Kusmin², Y.-J. Kwon⁴⁶, J. S. Lange⁷, S. H. Lee³⁴, D. Liventsev¹⁴, E.-S. Lu²⁵, D. Marlow³², T. Matsubara⁴⁰, S. Matsu¹², S. Matsumoto⁴ T. Matsumoto²¹, Y. Mikani³⁰, K. Miyabayashi²², H. Miyaka³⁰, H. Miyata²⁵, G. E. Moloney¹³, G. F. Moorhead¹³ Mont⁴, T. Mord⁴, A. Minakami⁴, T. Nagan he⁴, Y. Nagasha⁴, Y. Nagasha⁴, T. Nakatains⁴⁰, E. Nakar⁴⁰, K. Nakar⁴⁰, T. Nakatains⁴⁰, K. Nakar⁴⁰, J. W. Nam⁴, S. Natian⁴⁰, Z. Natianis⁴², K. Nekh⁴⁵, S. Nishida¹⁷, O. Nitoh⁴⁵, S. Nogush²², T. Nozald¹⁰, S. Ogawa³⁷, T. Okshina³¹, T. Oksh²⁴, S. Okumo⁴⁵, S. L. Okan⁹, H. Ozald¹⁰, F. Pakhlov⁴, ⁴ I. Kowaki, S. Ogawa, J. Okanima, T. Okate, S. Okubo, S. L. Okat, J. Caki, F. Fakikov, H. Bakaz, C. S. Fark¹⁶, C. W. Fark¹⁶, H. Fark¹⁶, L. S. Ferk¹⁶, M. S. Ferk¹⁶, M. Serkard, P. Sakamoto¹⁷, M. Satapathy⁴⁶, J. L. Kofrigues⁹, N. Root³, M. Kozanaka²⁶, K. Ryhlch²⁶, H. Sagawa¹⁰, Y. Saka¹⁰, H. Sakamoto¹⁷, M. Satapathy⁴⁶, A. Satathy^{10, K}, S. Schrenk⁴, S. Semence¹⁴, K. Senyo²¹, M. E. Sevior¹³, M. Shiniya³⁷, B. Shwartz³, S. Stank⁴⁶, A. Sug²¹, A. Sugjama²¹, K. Simika²⁰, T. Simika²⁰, J. I. Simika²⁰, K. Simika²⁴, S. Simika²⁴, S. Y. Simika²⁰, T. Simika²⁰, J. J. Simika²⁰, K. Simika²⁴, S. Simika²⁴, S. Y. Simika²⁰, S. Simika²⁴, S. Simika²⁴, S. Simika²⁰, S. Simik²⁰, S S. K. Swain³, T. Takahashi²³, F. Takasaki¹⁰, M. Takita³⁰, K. Tamal¹⁰, N. Tamura²⁶, J. Tanala⁴⁰, M. Tanaka¹⁰, Y. Tanaka²⁰, G. N. Taylor¹⁹, Y. Teramoto²⁹, M. Tomoto¹⁰, T. Tomura⁴⁰, S. N. Tovey¹⁹, K. Trabels¹⁹ T. Tsuboyama¹⁰, T. Tsukamoto¹⁰, S. Uchara¹⁰, K. Ueno²⁶, Y. Unno⁸, S. Uno¹⁰, Y. Ushiroda¹⁰, S. E. Vahsen²³, K. E. Varwell³², C. H. Wang³⁴, J. G. Wang⁴⁷, M.-Z. Wang³⁵, Y. Watanabe⁴¹, E. Won³⁴, B. D. Yabsley¹⁰, Y. Yamada¹⁰, M. Yamaga³⁰, A. Yamaguch³⁰, H. Yamamoto⁹, Y. Yamashita²⁷, M. Yamauchl¹⁰, S. Yamaka⁴¹, K. Yoshida²¹, Y. Yusa³³, H. Yuta¹, C. C. Zhang¹³, J. Zhang⁴⁵, H. W. Zhao¹⁰, Y. Zheng⁹, V. Zhilich², and D. Zontar⁴⁵ ¹Annori University, Annori ²Budger Institute of Nuclear Physics, Normibiral

¹Ohiba Treimersity, Ökiba ⁴Ohiba Treimersity, Takyo ¹Tesimersity of Oisoisensti, Öhe ²Desimersity of Frankfurt, Frankfurt ²Tesimersity of Frankfurt, Frankfurt ²Gysenegang National Tesimersity, Chingin

²¹ Nagaya Unimensity, Nagaya
 ²³ Nata Women's Unimensity, Nara
 ²³ National Kanhaima Normal Unimensity, Kanhaima g
 ²⁴ National Lien-Ho Institute of Inchaology, Liao Li
 ²⁶ National Taiman Unimensity, Taipei
 ²⁶ H. Niconaki Institute of Inchao Ingenia, Krakam

- **SVD** σ ~ 55μm for 1GeV/c @ 90°
- CDC $\sigma_p/p \sim 0.35\%$ @ 1GeV/c; $\sigma_{\pi}(dE/dx) \sim 7\%$
- K[±] id: TOF (σ ~100 ps); Aerogel (n = 1.01 ~ 1.03)
- CsI $\sigma_{\rm E}/E_{\gamma} \sim 1.5\%$ @ 1GeV
- KLM (RPCs) μ^{\pm} : effic. > 90%; ~2% fakes

 ϕ_1 : interfere $B \rightarrow f_{CP}$ with $B \leftrightarrow \overline{B} \rightarrow f_{CP}$

What's needed?

- Lots of B mesons $(Br (B \rightarrow f_{CP}) \sim 10^{-3})$ - very high Luminosity \Rightarrow KEKB
- Find CP eigenstate decays
 - high quality $\sim 4\pi$ detector \Rightarrow Belle
- Tag other B's flavor
 - good particle id $\Rightarrow dE/dx$, Aerogel, TOF
- Measure decay-time difference
 - Asymmetric energies \Rightarrow (@KEKB: $\gamma\beta c\tau \approx 200 \mu m$)
 - good vertexing \Rightarrow silicon strip vertex detector

$B \rightarrow J/\psi K_L$

Measure K_Langles in KLM, use B-mass to get |p|

Flavor-tag the other B meson

Use *inclusive* flavor-specific properties:

Also need to consider correlations

2-level multi-dimensional flavor tagging

Determination of wrong tag fraction w_l

only use *r* to classify events

-reconstruct a $B \rightarrow D^* l v$

-tag the other B

-get w from the $B \Leftrightarrow \overline{B}$ mixing amplitude: $(1-2w_l)\cos(\Delta m_d \Delta t)$

Multi-dimensional Flavor Tagging

• Uses all events – Efficiency > 99% 0.8 -2w 0.6 $-\epsilon_{\text{effective}} = 28 \pm 1.4\%$ 0.4 Includes correlations 0.2 • Use *r* (from mc) to classify 0 0.2 0.8 0.6 • Use w (from data) for CP fits from mc

Data & MC track pretty well

Magnified vertex

y-z vertices

Vertex Resolution Function

verify with B⁰ & B⁺ lifetimes

PRL 88, 171801 (2002)

 $\Delta m_d = 0.505 \pm 0.017 \pm 0.020 \text{ ps}^{-1}$

Event-by-event Likelihood

Latest $sin2\phi_1$ results (Spr 2002)

"Raw" asymmetries:

 $sin2\phi_1(\beta) = 0.82 \pm 0.12 (stat) \pm 0.05 (sys)$

Compare with SM prediction

Conclude: KM model works

 $\phi_2(\alpha)$ from $B \rightarrow \pi^+ \pi^-$ V $_{u}$ π^{t} ub b **B**⁰ d d π $\propto V_{td}^{*2} V_{ub}^2 \propto \sin 2\phi_2$ d \mathbf{V}^{*} V_{ub} $\mathbf{V_{tb}}_{b}$ $_{u}\pi$ td t d **B**⁰ \overline{B}^{0} u d t b V_{tb} V* td

Must deal with "Penguin Pollution" i.e. additional, non-tree amplitudes

Penguins can be ~comparable in strength to b→u transitions

CKM enhanced

Δt dependence for $B \rightarrow \pi^+ \pi^-$

What are SM expectations?

$φ_2$ (α) ≈100° (from SLAC's poster)

SM expectation: $\phi_2 + \delta \approx 100^\circ \pm 75^\circ$

Expectations for direct CPV

tree-penguin interference

continuum bkgd suppression:

Combine into Likelihood ratios

$\Delta E \text{ for } B \rightarrow \pi^+\pi^-/K^+\pi^-$

Kπ: 28±13 qq: 99± 7

B⁰- and **B**⁰-tagged $\pi^+\pi^-$ yields

B⁰ tags

 $\overline{\mathbf{B}}^{\mathbf{0}}$ tags

 $N_{\pi\pi} = 44.5 \pm 9.8$

 $N_{\pi\pi} = 28.8 \pm 8.5$

"raw" asymmetries for $\pi^+\pi^-$

•more B^0 tags than \overline{B}^0 tags •more B^0 tags with $\Delta t < 0$ than $\Delta t > 0$

Fit for $(A_{\pi\pi}, S_{\pi\pi})$

$$A_{\pi\pi} = +0.94_{-0.31}^{+0.25} \pm 0.09$$

$$\mathbf{S}_{\pi\pi} = -1.21 \begin{array}{c} +0.38 + 0.16 \\ -0.27 - 0.13 \end{array}$$

~3 σ from (0,0) !!!

Significance? $(A_{\pi\pi}, S_{\pi\pi}) = (0.94, -1.21)$ A $\pi\pi$ 1.5 1 0.5 Ð -0.5 -1 -1.5 -2 -2.5 -2.5 -2 -1.5 -1 -0.5 0 0.5 1<u>.....</u> 1.5 2 -11 2.5

1.6% of the events generated with $(A_{\pi\pi}, S_{\pi\pi}) = (0, 0)$ are outside the ellipse

- Belle's $(A_{\pi\pi}, S_{\pi\pi})$ is ~1.2 σ from the $A_{\pi\pi}^2 + S_{\pi\pi}^2 = 1$ boundary
- Belle & BaBar disagree by $>2\sigma$
- Belle's $S_{\pi\pi}$ errors are < BaBar's

(The component parts of the analysis are the same as those used to measure $\sin 2\phi_1$, \mathcal{T}_B , Δm_d , $B \rightarrow h^+h^-$, etc, all in *reasonable* agreement with BaBar & PDG averages.)

Possibilities

- are the backgrounds asymmetric?
 - check with $K\pi$ and qq-sideband samples
 - check with high statistics $B^- \rightarrow D^{(*)}\pi^-$, $D^*\rho^-$ samples
- is vertexing wrong for B→h⁺h⁻ decays?
 - measure $\tau_{B} \& \Delta m_{d}$ for $B \rightarrow \pi^{+}\pi^{-} \& K^{+}\pi^{-}$ decays
- flavor tagging different than J/ψK?
 MC studies of effects of continuum suppression cuts
- do the likelihood values & errors make sense?
 do toy MC experiments

• ...?

• statistical fluctuations?

apply fit to $(q\overline{q})$ sideband data

no asymmetry

5

fit to the ~300 event $K\pi$ sample

Bkgnd "enriched" $D^{(*)}\pi(\rho)$ sample

"A_{$$\pi\pi$$}" = +0.03 ±0.04

"S_{$\pi\pi$}"= 0.08 ±0.06

no asymmetry

Measure $\tau_{\rm B}$ for $B\!\to\pi^{\!+}\!\pi^{\!-}$ and $K^{\!+}\!\pi^{\!-}$

Pulls & errors

toy MC results with input $(A_{\pi\pi}, S_{\pi\pi}) = (0.7, -0.7)$

Possibilities revisited

- are the backgrounds asymmetric?
 - K π , qq-sideband & D π/ρ samples have null asymmetries
- is vertexing wrong for $B \rightarrow h^+h^-$ decays?
 - lifetimes for $B \rightarrow \pi^+\pi^- \& K^+\pi^-$ samples are OK
- flavor tagging different than $J/\psi K$?
 - differences are in the noise
- do the likelihood values & errors make sense?
 S_{ππ} errors are small but allowable
- statistical fluctuations? ← most likely (↑for Belle & ↓for BaBar?)

Belle/BaBar avg: $(A_{\pi\pi}, S_{\pi\pi}) = (0.49 \pm 0.21, -0.66 \pm 0.26)$

sort out with $B \rightarrow \pi \pi$

Br:=5.1 \pm 1.0 x 10⁻⁶

$$B^{+}$$
 π^{0} $(T+c)/\sqrt{2}$ Br:=7.0 ± 2.0 x 10⁻⁶

$$B^{0} \xrightarrow{t} \pi^{0} \pi^{0} (c-P)/\sqrt{2} Br: <5.6 \times 10^{-6}$$
90%CL

Chiang & Rosner hep-ph/012285

Large r & $|\delta| \rightarrow$ large B⁰ $\rightarrow \pi^0 \pi^0$ ie Br ~ few x 10⁻⁶

big question: what's B $\rightarrow \pi^0 \pi^0$?

 $Br(B \rightarrow \pi^0 \pi^0) < 5.6 x 10^{-6} (29 fb^{-1})$

 $(Br \approx 3 \times 10^{-6})$

interference in $B^- \rightarrow K^- D^0(\overline{D}^0)$ $B^{\pm} \rightarrow K^{\pm} D_{CP}; D_{CP} \rightarrow CP$ eigenstate

 $r = |A_1/A_2| \sim 0.1$

Results (with 29 fb⁻¹)

$$A_{1,2} = \frac{Br(D_{1,2} K^{-}) - Br(D_{1,2} K^{+})}{Br(D_{1,2} K^{-}) + Br(D_{1,2} K^{+})} = \frac{\pm 2r \sin\phi_3 \sin\delta}{1 + r^2 \pm 2r \cos\phi_3 \cos\delta}$$

 $A_1 = 0.29 \pm 0.26 \pm 0.05$ $A_2 = -0.22 \pm 0.24 \pm 0.04$ $A_{\text{non CP}} = 0.00 \pm 0.09 \pm 0.04$

constraints on *r* & δ

$$R_{1,2} = \frac{\frac{Br(D_{1,2} K^{\pm}) / Br(D_{1,2} \pi^{\pm})}{Br(D^0 K^{\pm}) / Br(D^0 \pi^{\pm})} = 1 + r^2 \pm 2r \cos \phi_3 \cos \delta$$
$$+ \rightarrow D_1$$
$$- \rightarrow D_2$$

$R_1 = 1.33 \pm 0.37 \pm 0.12$ $R_2 = 1.27 \pm 0.29 \pm 0.09$

needs ~ 10x more data (ie $300 \sim 400 \text{ fb}^{-1}$)

non-SM phases in $B \rightarrow K_S \eta'$?

SM prediction is same as for $J/\psi K_S$ A non-SM particle in the loop with a complex coupling would cause deviations from sin2 ϕ_1

Use $\eta' \rightarrow \pi^+ \pi^- \eta$ and $\rho \gamma$

 $N(K^+ \pi \pi \eta) = 78 \pm 10$ $N(K^+ \rho \gamma) = 152 \pm 14$

$$N(K_{S} \pi \pi \eta) = 28 \pm 6$$

 $N(K_{S} \rho \gamma) = 46 \pm 8$

B lifetimes with η 'K samples

 $\tau(B^+) = 1.54 \pm 0.14 \text{ ps}$ PDG: 1.65 ± 0.03 ps

Use $B \rightarrow K^+\eta'$ as control sample

"sin2($\phi_1 + \theta_{NP}$)" = 0.12 ± 0.40

Fit the 73 $B \rightarrow K_S \eta$ ' events

$$sin2(\phi_1 + \theta_{NP}) = 0.29 \pm 0.54 \pm 0.07$$

A clean and potentially powerful method for searching for non-SM CPV

needs more data

b-changing neutral currents

EM & EW Penguins

EM Penguin (b→sγ)
•1st found by CLEO
•rate agrees with SM
•limits on new particles in loop (eg H⁺)

EW Penguin (b→s l+l⁻)
•≈100x smaller in SM
•M _{l+l-} dist & F-B asymm sensitive to new physics

Search for $B \rightarrow K^{(*)}l^+l^-$

Backgrounds:

•B \rightarrow J/ ψ (ψ ') K^(*) \leftarrow use J/ ψ (ψ ') veto •B \rightarrow X $l^+\nu$ & B \rightarrow Y $l^-\nu$ \leftarrow no Δ E & M_{bc} peaks •E_{vis} & cos θ_B •B \rightarrow K^(*)h⁺h⁻; \rightarrow 2 fake *l*'s $\leftarrow \Delta$ E & M_{bc} peaks

•Continuum \leftarrow no $\Delta E \& M_{bc}$ peaks •Event shape, $\cos \theta_{B}$

 $B^+ \rightarrow K^+ \pi^+ \pi^-$ in Belle

K^(*) h⁺h⁻ with fake μs

Data

$B \rightarrow K^{(*)}l^+l^-$ results

mode	signal	BF(×10 ⁻⁶)	signif.
Ke ⁺ e ⁻	$4.1^{+2.7+0.6}_{-2.1-0.8}$	< 1.3	2.5
$K^*e^+e^-$	$6.3^{+3.7+1.0}_{-3.0-1.1}$	< 5.6	2.5
$K\mu^+\mu^-$	$9.5^{+3.8+0.8}_{-3.1-1.0}$	$0.99^{+0.40+0.13}_{-0.32-0.14}$	4.7
$K^*\mu^+\mu^-$	$2.1^{+2.9+0.9}_{-2.1-1.0}$	< 3.1	-
Kl^+l^-	$13.6^{+2.9+0.9}_{-2.1-1.0}$	$0.75^{+0.25}_{-0.21} \pm 0.09$	5.3

Phys. Rev. Lett. 88. 021801 (2002)

B⁻→K⁻ $\mu^+\mu^-$ event in Belle

$B \rightarrow K^{(*)}l^+l^-$ results (cont'd)

PRL 88 021801 (2002)

Wilson coefficient constraints

Summary

- Progress on CPV front
 - $\phi_1(\beta)$ measured; agrees with SM
 - $-\phi_2(\alpha)$ in progress; definitive results may be soon.
 - need Br($B \rightarrow \pi^o \pi^o$); this summer?
 - $\phi_3(\gamma)$ under way; a few years to go??
 - ϕ_{NP} just starting;
- Neutral currents/EW penguins
 - $B \rightarrow K l^+ l^-$ seen; at ~expected level
 - $\mathbf{B} \rightarrow \mathbf{K}^* l^+ l^- \& \mathbf{X}_{\mathrm{s}} l^+ l^- \operatorname{next}$
- Many, many other results:
 - b→c (Cabibbo- & color-suppressed), b→u,...
 - EM penguins
 - charm & charmonium
 - taus, two-photons, …

A_{CP} from self-tagged $K\pi/\pi\pi$

A (K⁰ π^{\pm}) =0.45±0.15±0.02

hep-ex/0109026 → PRL

Br(B \rightarrow K $\mu^+\mu^-$) = 1.0 $^{+0.4}_{-0.3} {}^{+0.1}_{-0.1} \times 10^{-6}$ (SM: 0.3~0.6×10⁻⁶)

$\mu^+\mu^-$ mass distribution

(also see $\approx 2.5\sigma$ level signals in Ke⁺e⁻, K^{*}e⁺e⁻ & X_s $\mu^+\mu^-$)