Heinrich Päs Vanderbilt University

Absolute neutrino mass determination

double beta decay

neutrino oscillations

cosmology

In Collaboration with: H.V. Klapdor-Kleingrothaus (MPI Heidelberg), A.Yu. Smirnov (ICTP Trieste) T.J. Weiler (Vanderbilt University)

Outline

- What are neutrino oscillations?
- Experimental evidence: solar and atmospheric neutrinos
- What is double beta decay?
- Double beta decay and neutrino oscillations: correlations
- Neutrino mass schemes: the reconstruction of the spectrum

Why lepton number violation?

Specific rôle of the neutrino:

- only neutral fermion
- $m_
 u \ll m_{q^+,q^-,l}$

SM: massless "by hand"

Grand Unification:

 ν together in a multiplett with q^+,q^-,l

 \rightarrow Dirac mass $m^D \overline{\nu}_L \nu_R$

with $m_D\simeq m_q^+, m_{q^-}, m_l$

- \Rightarrow contradiction to experiment
- Cancellation with 2nd mass term

Majorana mass

$$m_M(\overline{\nu_L}\nu_R^C+\overline{\nu_R^C}\nu_L)$$

 \rightarrow *L* violated: $\nu = \nu^{C}$

 \rightarrow only possible for neutral particles

Neutrino mass and R_pSUSY

 \mathbb{R}_p SUSY couplings may induce neutrino mass via one loop self-energy graphs

 $\Rightarrow \lambda_{ijk}^{(\prime)}\lambda_{ikj}^{(\prime)}$ products directly constrained from $m_{
u_{ii'}}$:

$m_{ u_{ii'}} \simeq rac{N_c \lambda_i'}{16}$	$rac{jk}{5\pi^2} m_{d_j} m_{d_j}$	$m_{d_k} \left[rac{f(m_{d_j}^2/r)}{m_{ ilde{d}_k}} ight]$	$\frac{m_{\tilde{d}_k}^2)}{dk} + \frac{f(m)}{dk}$	$\left[rac{2}{d_k}/m_{ ilde{d}_j}^2) ight] {m_{ ilde{d}_j}} ight]$
		Our	Previous	
		Bounds	Bounds	
	$\lambda_{133}^{'}\lambda_{133}^{'}$	$3.0 \cdot 10^{-8}$	$4.9 \cdot 10^{-7}$	-
2	$\lambda_{132}^{'}\lambda_{123}^{'}$	$7.5 \cdot 10^{-7}$	$1.6 \cdot 10^{-2}$	
2	$\lambda_{122}^{'}\lambda_{122}^{'}$	$1.8 \cdot 10^{-5}$	$4.0 \cdot 10^{-4}$	
2	$\lambda_{133}\lambda_{133}$	$5.3 \cdot 10^{-7}$	$9.0 \cdot 10^{-6}$	
2	$\lambda_{132}\lambda_{123}$	$8.7 \cdot 10^{-6}$	$2.0 \cdot 10^{-3}$	
2	$\lambda_{122}\lambda_{122}$	$1.4 \cdot 10^{-4}$	$1.6 \cdot 10^{-3}$	

463 (1999) 77)

3 or 4 light neutrinos?

LSND: Requires 3rd $\Delta m^2 \Rightarrow$ 4th (sterile) neutrino

atmosheric ν 's: Results of matter effects, NC rate and τ appearance strongly disfavor $\nu_{\mu} \rightarrow \nu_{s}$

solar ν 's:

 $u_{\mu} \rightarrow \nu_{s}$ disfavored by matter effects in the sun; Comparison of Super-K ES and SNO CC \rightarrow Total active flux fits SSM prediction

 \Rightarrow superposition of ν_s and ν_{τ} ?

solar ν 's: $\nu_e \rightarrow \cos \alpha \quad \nu_s + \sin \alpha \quad \nu_{\tau}$

atmospheric ν 's: $\nu_{\mu} \rightarrow \cos \alpha \quad \nu_{\tau} - \sin \alpha \quad \nu_s$

This implies:

$$\left[\frac{P(\nu_e \to \nu_s)}{P(\nu_e \to \nu_{\not q})}\right]_{sun} + \left[\frac{P(\nu_\mu \to \nu_s)}{P(\nu_\mu \to \nu_{\not q})}\right]_{atm} = \cos^2 \alpha + \sin^2 \alpha = 1$$

for $\theta_{LSND} = \theta_{SBL1} = \theta_{SBL2} = 0$

(O.L.G. Peres, A. Yu. Smirnov, Nucl. Phys. B 599 (2001) 3)

3 or 4 light neutrinos?

Experimental data: $\cos^2 \alpha + \sin^2 \alpha < 0.63(SMA) (90 \% \text{ C.L.})$ $\cos^2 \alpha + \sin^2 \alpha < 0.75(LMA) (90 \% \text{ C.L.})$ $\cos^2 \alpha + \sin^2 \alpha < 0.64(QVO) (90 \% \text{ C.L.})$

Contradiction!

(C. Gonzalez-Garcia, C. Peña-Garay, PRD 63 (2000) 073013)

What about non-vanishing $\theta_{LSND}, \theta_{SBL1}, \theta_{SBL2}$?

Preliminary: Experimental data don't fit sumrule!

(adiabatic approximation, no matter effects)

(H. Päs, T.J. Weiler, L. Song, work in progress)

How large are ν -masses?

Direct measurements:

- ightarrow supernova u's ightarrow sensitivity \lesssim 1 eV
- \rightarrow tritium decay \rightarrow sensitivity \lesssim 0.3 eV

 \rightarrow $\pi,$ τ decay \rightarrow much worse

3 assumptions for indirect ν -mass determination:

 ν 's are Majoranas (see-saw, R_p -generated, etc.)

only 3 ν 's (LSND neglected)

solar ν 's: LMA or LOW solution

What is double beta decay?

$$\frac{2\nu\beta\beta}{Z} \stackrel{A}{Z} X \rightarrow^{A}_{Z+2} X + 2e^{-} + 2\overline{\nu}_{e}$$

•SM allowed: $T^{2\nu}_{1/2} \simeq 10^{19} - 10^{24}$ y
•observed for 10 isotopes

$$\frac{0\nu\beta\beta}{Z} \stackrel{A}{\underset{Z}{\to}} X \rightarrow^{A}_{Z+2} X + 2e^{-}$$

• Physics beyond SM (L violation)

Future Projects:

Sensitive on:

• effective Neutrino–Majorana mass: $\langle m_{
u}
angle = \sum_{j}^{'} U_{ej}^2 m_j$

 $\langle m_{\nu} \rangle < 0.27 \text{ eV} (68 \% \text{ C.L.})$ (Heidelberg-Moscow-Experiment)

CUORE: 0.1 eV MOON: 0.03 eV EXO, GENIUS 1t: 0.02 eV GENIUS 10 t: 0.002 eV 0
uetaeta and u oscillations

 $0
u\beta\beta$ observable:

 $\langle m
angle \equiv |m_{ee}| = \left| \sum_{j} |U_{ej}|^2 e^{i\phi_j} m_j \right|$ $m_{ee} = |m_{ee}^{(1)}| + e^{i\phi_2} |m_{ee}^{(2)}| + e^{i\phi_3} |m_{ee}^{(3)}|$

$$|m_{ee}^{(1)}| = |U_{e1}|^2 m_1$$

$$|m_{ee}^{(2)}| = |U_{e2}|^2 \sqrt{\Delta m_{21}^2 + m_1^2}$$

$$|m_{ee}^{(3)}| = |U_{e3}|^2 \sqrt{\Delta m_{31}^2 + m_1^2}.$$

sum of 3 vectors in complex space:

Neutrino oscillations observable:

 $\Delta m_{ij}^2 \equiv |m_i|^2 - |m_j|^2 \;, \qquad |U_{ej}|^2, \qquad \delta$

solar neutrinos: Δm_{12}^2 , $|U_{e1}|^2 = \cos^2 \theta_{\odot}$, $|U_{e2}|^2 = \sin^2 \theta_{\odot}$ atmospheric neutrinos: Δm_{23}^2 CHOOZ, Palo Verde: Δm_{13}^2 , $|U_{e3}|^2 = \frac{1}{4} \sin^2(2\theta_{eq}) < 0.025$ Correlations of m_{ee} and Δm^2

- character of hierarchy
 - direct: $|U_{e1}|^2 > |U_{e2}|^2, |U_{e3}|^2$
 - inverse: $|U_{e1}|^2 < |U_{e2}|^2$, $|U_{e3}|^2$

 \rightarrow ν oscillations in matter & supernova ν

- level of hierarchy
 - hierarchy: $m_1^2 \ll \Delta m_{21}^2 \ll \Delta m_{31}^2$
 - partial degeneracy: $\Delta m^2_{21} \ll m^2_1 \ll \Delta m^2_{31}$
 - degeneracy: $\Delta m^2_{21} \ll \Delta m^2_{31} \ll m^2_1$
- solution of the solar neutrino problem
 - MSW SMA: energy spectrum distortion
 - MSW LOW: day-night effect
 - MSW LMA: spectrum + day-night effect
 - VAC: seasonal variations

Hierarchical schemes

$$\begin{array}{lll} m_{ee}^{(1)} &\simeq & 0 \\ m_{ee}^{(2)} &= & \sin^2 \theta_{\odot} \sqrt{\Delta m_{\odot}^2} \simeq (1-3) \cdot 10^{-3} \ \text{eV} \\ m_{ee}^{(3)} &= & \frac{1}{4} \sqrt{\Delta m_{atm}^2} \sin^2 2\theta_{ee} \lesssim 10^{-3} \ \text{eV} \end{array}$$

Inverse Hierarchy

Disfavored from SN87A (C. Lunardini, A. Yu. Smirnov, hep-ph/0009356)

$$m_{ee}^{(1)} = \cos^2 \theta_{\odot} \cdot \sqrt{\Delta m_{atm}^2}$$
$$m_{ee}^{(2)} = \sin^2 \theta_{\odot} \cdot \sqrt{\Delta m_{atm}^2}$$
$$m_{ee}^{(3)} \simeq 0$$

$$\langle m \rangle = (\cos(2\theta_{\odot}) - 1) \cdot \sqrt{\Delta m_{atm}^2}$$

= $(1 - 7) \cdot 10^{-2} \text{ eV (LMA)}$
= $(0.4 - 7) \cdot 10^{-2} \text{ eV (LOW)}$

Degenerate schemes

$$m_{ee}^{(1)} = \cos^2 \theta_{\odot} \cdot m_1$$

$$m_{ee}^{(2)} = \sin^2 \theta_{\odot} \cdot m_1$$

$$m_{ee}^{(3)} \lesssim 0.025 \text{ eV}$$

$$\langle m \rangle = (\cos(2\theta_{\odot}) - 1) \cdot m_1$$

m₁(eV)

Z-burst model and $0 u\beta\beta$ decay

Comparison of Z-burst and EXO/GENIUS 1t sensitivity:

- $0\nu\beta\beta$ decay measured at $\langle m \rangle > 0.01$ eV: E_R determined up to factor 4, degeneracy yields factor of 3, halo clustering a factor of 100 and factor 2 for Majoranas is gained
- $0\nu\beta\beta$ decay not measured at $\langle m \rangle > 0.01$ eV: $E_R = \sqrt{\Delta m_{atm}^2}$, no enhancements for Z-burst
- If Z-burst is right: Most probably $\langle m
 angle > 0.01$ eV

Anomalie: Extreme energy cosmic rays above GZK cutoff (due to scattering on CMB γ 's)

Possible solution: Resonant scattering of extreme energy ν 's on relic ν background at $E_{\nu}^{R} = 2m_{Z}^{2}/(2m_{\nu})$ (T.J. Weiler, Astroparticle Physics 11 (1999) 303)

Drawback: High ν fluxes required, ν halo clustering helps!

 $\Rightarrow m_{\nu} \gtrsim 0.1$ eV predicted!

Conclusions

• Future $0\nu\beta\beta$ projects can test all scenarios but the hierarchical LOW solution (disfavored by SN87A: M. Kachelriess, R. Tomas, J.W.F. Valle, JHEP 0101 (2001) 030)

• The following conclusions for the mass spectrum can be drawn:

 ⟨m⟩ > 0.1 eV: Degenerate neutrinos, region for absolute mass depending on sin² 2θ_☉, (KAMLAND determines sin² 2θ_☉ within ±0.1 with 3 years of measurement: V. Barger, D. Marfatia, B.P. Wood, hep-ph/0011251)

- $\langle m \rangle \simeq 0.01 0.1 \text{ eV}$: Degenerate neutrinos, partial degeneracy or inverse hierarchy, region for absolute mass, provided that inverse/direct hierarchy can be determined in matter oscillations (inverse already disfavored)
- $\langle m \rangle > 0.001 0.01$ eV: Partial degeneracy or inverse hierarchy, conclusions as above
- $\langle m \rangle \lesssim 0.001$ eV: Hierarchical spectrum

H.V. Klapdor-Kleingrothaus, H. Päs, A.Yu. Smirnov, hepph/0003219 & PRD, in the press H. Päs, T.J. Weiler, hep-ph/0101091, PRD, in the press