

A Mixing-Independent Construction of The Unitarity Triangle

Matthias Neubert – Cornell University

Experimental Physics Seminar SLAC, 26 September 2002

(based on hep-ph/0207327 & hep-ph/0207002)

CORNELL

Constraints on the Unitarity Triangle

ϵ_{K} from CP violation in $K-\bar{K}$ mixing:

- due to CP violation, the long-lived strange meson $|K_L\rangle \approx (|K^0\rangle |\bar{K}^0\rangle)/\sqrt{2}$ is not exactly a CP eigenstate and so can decay into two pions
- ϵ_K is sensitive to $\text{Im}[(V_{td}^*V_{ts})^2]$

$|V_{ub}/V_{cb}|$ from semileptonic *B* decays:

In this can be measured by comparing semileptonic
 $b → ul\nu$ and $b → cl\nu$ decays

$$\Delta m_{d,s}$$
 from $B_{d,s}$ - $\overline{B}_{d,s}$ mixing:

- $B \overline{B}$ mixing amplitudes are dominated by virtual production of top quarks
- $\Delta m_{d,s}$ is sensitive to $|V_{td,ts}^*V_{tb}|^2$

 $\sin 2\beta$ from $B \rightarrow J/\psi K$ decays:

use amplitude interference in B decays into a CP eigenstate f_{CP} :

• CP asymmetry: $A_{\rm CP}(t) = -\sin 2\beta \sin(\Delta m_d t)$

Matthias Neubert: The CP-b Triangle - p.5/27

Summary of Constraints (2002)

Matthias Neubert: The CP-b Triangle - p.6/27

- has established the existence of a CP-violating phase in the top sector ($Im(V_{td}) \neq 0$)
- with exception of $|V_{ub}|$, all other constraints are sensitive to potential New Physics in $B-\bar{B}$ or $K-\bar{K}$ mixing
- except for $\sin 2\beta$, individual constraints have large theoretical uncertainties

Rare Hadronic B Decays

- after obtaining a consistent picture of CP violation in the top sector, the next step must be to explore the complex phase $\gamma = \arg(V_{ub}^*)$ in the bottom sector
- γ can be probed via the tree-penguin interference in rare hadronic decays $B \rightarrow \pi K, \pi \pi, \ldots$

• information from CP asymmetries ($\sim \sin \gamma$) and CP-averaged branching fractions ($\sim \cos \gamma$)

QCD, the marvellous theory of the strong interactions, has a split personality. It explains both "hard" and "soft" phenomena, the softer ones being the hardest.

(Y. Dokshitzer)

high energies ⇔ weak coupling (asymptotic freedom)
low energies ⇔ strong coupling (confinement)

Matthias Neubert: The CP-b Triangle - p.9/27

Different strategies exist for determining the relevant hadronic matrix elements:

QCD Factorization Approach

Factorization formula for hadronic *B*-meson decays: [Beneke, Buchalla, MN, Sachrajda]

 \Rightarrow provides a model-independent description of hadronic *B*-decay amplitudes (including their phases) in the heavy-quark limit

Matthias Neubert: The CP-b Triangle - p.11/27

Crucial Tests

• magnitude of tree amplitude: $Br(B^{\pm} \rightarrow \pi^{\pm}\pi^{0}) = (5.7 \pm 0.9) \cdot 10^{-6}$ compares well with prediction $5.3^{+0.8}_{-0.4}$ (pars.) ± 0.3 (power)

magnitude of tree-to-penguin ratio:

$$\epsilon_{\rm exp} = \tan \theta_C \, \frac{f_K}{f_\pi} \left[\frac{2 \mathsf{Br}(B^{\pm} \to \pi^{\pm} \pi^0)}{\mathsf{Br}(B^{\pm} \to \pi^{\pm} K^0)} \right]^{\frac{1}{2}} = 0.22 \pm 0.02$$

agrees with prediction $0.23 \pm 0.04 \,(\text{pars.}) \pm 0.04 \,(\text{power}) \pm 0.05 \,(V_{ub})$

 direct CP asymmetries are predicted (and found) to be small

Matthias Neubert: The CP-b Triangle - p.12/27

Establishing CPV in the Bottom Sector

- ✓ ratios of CP-averaged $B → \pi K, \pi \pi$ rates exhibit strong dependence on γ and $|V_{ub}|$
- derive constraints on p̄ and ŋ̄ from a global analysis of the data in the context of QCD factorization: [ввиз]

- combination of results from rare hadronic *B* decays with the $|V_{ub}|$ measurement in semileptonic decays excludes $\bar{\eta} = 0$ and so establishes the existence of a CP phase in the bottom sector of the CKM matrix
- allowed regions obtained from the fit to charmless hadronic decays are compatible with the standard fit, but tend to favor larger γ values
- same trend seen in an analysis that does not rely on QCD factorization but instead employs general amplitude parameterizations and flavor symmetries [Fleischer, Matias]

Origins of a Possible Discrepancy?

- errors in lattice calculations of matrix elements for $B_d \bar{B}_d$ and $B_s \bar{B}_s$ mixing may have been underestimated [Kronfeld, Ryan]
- more exciting: New Physics interpretations!
- **•** New Physics in $B_s \bar{B}_s$ mixing \Rightarrow check at Tevatron
- **•** New Physics in $B_d \bar{B}_d$ mixing
- New Physics in b → s or b → d FCNC transitions (e.g. from penguin and box graphs with exchange of new heavy particles)

 \Rightarrow clean signal would be a difference in the time-dependent CP asymmetries in $B \rightarrow \phi K_S$ and $B \rightarrow J/\psi K_S$ decays

The Future: "CP-b Triangle"

- if trend toward larger γ values persists, one will want to check compatibility with the standard analysis using measurements whose interpretation is theoretically "clean"
- propose a novel construction of the unitarity triangle which is over-determined, insensitive to potential New Physics effects in $B-\overline{B}$ or $K-\overline{K}$ mixing, and affected by smaller theoretical uncertainties than the standard analysis
- feasible with existing data

Matthias Neubert: The CP-b Triangle - p.16/27

Ingredients

• $|V_{ub}/V_{cb}|$ extracted from semileptonic *B* decays

- In the CP-averaged B^{\pm} → $(\pi K)^{\pm}$ branching fractions (generalized Neubert–Rosner method)
- time-dependent CP asymmetry $S_{\pi\pi} = \sin 2\alpha_{\text{eff}}$ in $B \to \pi^+\pi^-$ decays (analysed using QCD factorization and $\sin 2\beta$ measurement)

I. Comments on $|V_{ub}|$

- important recent developments concerning power corrections to the universal shape function connecting Fermi-motion effects in $B \rightarrow X_s \gamma$ and $B \rightarrow X_u \, l \, \nu$ decays [Bauer, Luke, Mannel; Leibovich, Ligeti, Wise; MN]
- corrections can be included into weight function connecting, e.g., the photon spectrum to the lepton spectrum:

$$F_u(E_0) = \left(1 + \frac{2\Lambda_{\rm SL}(E_0)}{\underbrace{m_b}}\right) \int_{E_0}^{M_B/2} dE_{\gamma} w(E_{\gamma}, E_0) S(E_{\gamma})$$

residual cor.

Matthias Neubert: The CP-b Triangle - p.18/27

weight function:

$$w(E_{\gamma}, E_0) = 2\left(1 - \frac{E_0}{E_{\gamma}}\right) \left\{1 + \frac{\alpha_s(\mu)}{\pi}g(E_0/E_{\gamma})\right\} - \frac{8\lambda_2}{m_b^2}$$

<i>E</i> ₀ [GeV]	NLO pert.	$1/m_b$	total	residual error
2.0	0.313 ± 0.014	-0.040 ± 0.006	0.273 ± 0.015	± 0.003
2.1	0.228 ± 0.010	-0.037 ± 0.006	0.191 ± 0.011	± 0.005
2.2	0.150 ± 0.006	-0.033 ± 0.005	0.117 ± 0.008	± 0.006
2.3	0.083 ± 0.004	-0.026 ± 0.004	0.057 ± 0.006	± 0.008

⇒ method used in a recent CLEO analysis (2002), giving $|V_{ub}| = (4.1 \pm 0.6_{exp} \pm 0.3_{th}) \times 10^{-3}$

Matthias Neubert: The CP-b Triangle - p.19/27

Is shape-function sensitivity good or bad?

- often argued that one should avoid sensitivity to Fermi motion using a cut on the lepton invariant mass ("q² cut"), and that the region of phase space with low hadronic mass and energy is theoretically favored over that with low mass but large energy [Bauer, Ligeti, Luke]
- however, this argument ignores the problem of quark—hadron duality violations! [Bigi, Uraltsev]

Matthias Neubert: The CP-b Triangle - p.20/27

- usually argue that duality holds, since an inclusive measurement includes a large number of hadronic final states with large mass and/or energy $M_H, E_H \gg \Lambda$ (necessity of having a hard scale!)
- any cut that eliminates the charm background restrict the invariant hadronic mass $M < m_D \sim (\Lambda m_B)^{1/2}$, but in principle still allows large energy $E_H \sim m_B$
- shape function effects result from the region where $\Lambda E_H/M_H^2 \sim 1$, corresponding to large E_H
- smearing provided by Fermi motion is crucial for restoring quark-hadron duality, and so is a good feature!

II. Comments on generalized NR method

without recourse to factorization, measurement of

$$R_* = \frac{\mathsf{Br}(B^{\pm} \to \pi^{\pm} K^0)}{2\mathsf{Br}(B^{\pm} \to \pi^0 K^{\pm})} = 0.71 \pm 0.10$$

and of the tree-to-penguin ratio $\epsilon_{exp} = 0.22 \pm 0.02$ provide a bound on $\cos \gamma$, which can be turned into a determination of $\cos \gamma$ when information about the relevant strong phase $\phi_{\pi^0 K^-}$ is available

QCD predicts that

 $\cos\phi_{\pi^0 K^-} = 1 - O[\alpha_s(m_b)^2, (\Lambda/m_b)^2, \alpha_s(m_b)\Lambda/m_b]$

equals 1 in the heavy-quark limit up to second-order corrections

Matthias Neubert: The CP-b Triangle - p.22/27

data (!) can be used to place bounds on strong phases:

 $A_{\rm CP}(\pi^+K^-) = -0.05 \pm 0.05 \quad \Rightarrow \quad \phi_{\pi^+K^-} = (8 \pm 10)^\circ$

 $\phi_{\pi^0 K^-} \simeq \phi_{\pi^+ K^-}$ to good approximation [Gronau, Rosner] better: use precision measurement of $A_{\rm CP}(\pi^0 K^-)$ to constrain $\phi_{\pi^0 K^-}$ directly

 \blacksquare \Rightarrow safe to assume that $\cos \phi_{\pi^0 K^-} > 0.8$

Matthias Neubert: The CP-b Triangle - p.23/27

General formula ($\phi_d = 2\beta$ in SM):

$$S_{\pi\pi} = \frac{2 \, \mathrm{Im} \lambda_{\pi\pi}}{1 + |\lambda_{\pi\pi}|^2} \quad \text{with} \quad \lambda_{\pi\pi} = e^{-i\phi_d} \, \frac{e^{-i\gamma} + (P/T)_{\pi\pi}}{e^{+i\gamma} + (P/T)_{\pi\pi}}$$

- trick to get insensitive to New Physics in mixing is to use $e^{-i\phi_d} = \pm (1 - s_{\exp}^2)^{1/2} - is_{\exp}$ with $s_{\exp} = (\sin 2\beta)_{\exp}$
- this turns circles in $(\bar{\rho}, \bar{\eta})$ plane into straight lines, which intersect $|V_{ub}|$ circles at (almost) 90° angles
- ▶ hadronic uncertainties (from QCD factorization) are large in α, but small when displayed as bands in the ($\bar{\rho}, \bar{\eta}$) plane (and that is what counts!)

Matthias Neubert: The CP-b Triangle - p.24/27

Combine three constraints and construct the resulting allowed regions for the apex of the unitarity triangle:

- If we use that ϵ_K requires positive value of $\bar{\eta}$, only two solutions in the upper half-plane remain
- one of these lies close to the standard fit (though once again somewhat larger γ values are preferred, in particular by the BaBar $S_{\pi\pi}$ result)
- a second allowed region, consistent with the constraints from ϵ_K and charmless hadronic decays, is incompatible with the constraints from $\sin 2\beta$ and $\Delta m_s/\Delta m_d$

 \Rightarrow would require a significant New Physics contribution to $B-\bar{B}$ mixing

Matthias Neubert: The CP-b Triangle - p.26/27

Summary

• it is time to move beyond $\sin 2\beta$

- many alternative methods exist that provide powerful constraints on the unitarity triangle
- rare hadronic decays still favor larger γ values than the standard analysis of the unitarity triangle
- construction of the CP-b triangle reinforces this trend, but with smaller theoretical uncertainties than previous methods (large γ favored by R_* and $S_{\pi\pi}^{\text{BaBar}}$)
- if this discrepancy is real, it may imply that (after all) New Physics is just around the corner!

Matthias Neubert: The CP-b Triangle - p.27/27