The Physics of RHIC Peter Jacobs Lawrence Berkeley National Laboratory

- Why collide nuclei at high energy?
- RHIC: machine and experiments
- Physics from the first year of RHIC
- Outlook

Schematic Phase Diagram of Strongly Interacting Matter

- T>> Λ_{QCD} : weak coupling \Rightarrow deconfined phase (Quark Gluon Plasma) • T< Λ_{QCD} : strong coupling \Rightarrow confinement \Rightarrow phase transition at T~ Λ_{QCD} ?
- Similar arguments for squeezing cold matter (increasing μ_B)

Lattice QCD at Finite Temperature

• Coincident transitions: deconfinement and chiral symmetry restoration • Currently only for $\mu_B=0$ (but some recent developments...)

Ideal gas (Stefan-Boltzmann limit)

Critical energy density: $\varepsilon_c = (6 \pm 2)T_c^4$

 $T_C \sim 175 \text{ MeV} \Rightarrow \varepsilon_C \sim 1 \text{ GeV/fm}^3$

Order of the Phase Transition

- Only partially understood:
 - Three massless flavours: first order
 - Two massless flavours: second order
 - Two light and one heavy: probably second order
 - $\mu_B=0$, physical strange quark mass: rapid cross over?
- So what? Early universe (t~10⁻⁵ sec): strong first order transition may have generated:
 - primordial black holes
 - strange quark nuggets
 - baryon asymmetries \Rightarrow implications for nucleosynthesis

Can we study the QCD Phase Diagram in the Laboratory?

Space-time Evolution of Heavy Ion Collisions

Observables of the QGP in Nuclear Collisions

- Nuclear collisions are highly dynamic, no first-principles theory
- Some tools to distinguish deconfined QGP from dense hadron gas:
 - Direct observation of deconfinement: suppression of J/ψ
 - High energy density: interaction of jets with medium
 - High temperature: direct photons
 - Non-hadronic degrees of freedom: charge fluctuations
 - Quasi-equilibrium at early stage: flow
 - Rapid equilibration, mass shifts: strangeness enhancement
 - Threshold behaviour: must be able to turn effects off
 - $\Rightarrow \sqrt{s}$, centrality of collision, mass of system

Smoking gun? More likely scenario: QGP is most reasonable picture from many different observables simultaneously

Charmonium Suppression: compare to models

Hadronic models: cold nuclear + "comover" dissociation

QGP models: energy density thresholds $+ E_T$ fluctuations

 \Rightarrow "thresholds" and high E_T behavior favour QGP models

SLAC, Nov 13, 2001

Summary of Pb+Pb Collisions at the SPS

- hadron thermodynamics:
 - Baryon-rich system at y~0
 - high initial energy density (ε~3 GeV/fm³?)
 - early equilibration ?
- low mass enhancement of di-electrons: chiral symmetry restoration?
- direct photons beyond hadronic sources: radiation from plasma?
- multistrange baryon enhancement \neg difficult to explain by
- charmonium suppression

difficult to explain by dense hadronic gas

Evidence for deconfinement at the SPS is suggestive but not definitive:

- theoretical ambiguities: dense hadron gas vs QGP effects
- if deconfinement indeed seen at top SPS energy, how to turn it off? (⇒lower energy running)

The Relativistic Heavy Ion Collider at Brookhaven National Laboratory

- Dedicated collider for heavy ion physics:
 - Au+Au up to $\sqrt{s_{NN}} = 200 \text{ GeV} (\text{SPS: } \sqrt{s_{NN}} = 17\text{-}20 \text{ GeV})$
 - (polarized) p+p up to $\sqrt{s} = 450 \text{ GeV}$
- great flexibility in beams and energies: extensive reference data
- What is new relative to fixed target experiments?
 - higher initial energy density \Rightarrow longer-lived hot phase
 - (much) lower baryon density
 - new physics channels: jets, B-production,...
 - much higher statistics: more detailed studies
- First physics run June-Aug '00: Au+Au at $\sqrt{s_{NN}} = 130 \text{ GeV}$

Gold Ion Collisions in RHIC

The Two Large Detectors

STAR

Solenoidal field, large-Ω tracking TPC's, Si-vertex tracking RICH, TOF, large EM Cal ~420 participants

PHENIX

Axial field, high resolution & rates 2 central arms, 2 forward muon arms TEC, RICH, EM Cal, Si, TOF, μ-ID ~450 participants

The Two Small Detectors

BRAHMS

2 "conventional" spectrometers full phase space coverage Magnets, TPCs, TOF, RICH ~40 participants

PHOBOS

"Table-top" 2-arm spectrometer full phase space multiplicity measurement Magnet, Si µ-strips, Si multiplicity rings, TOF ~80 participants

STAR High Multiplicity Au+Au Collision at $\sqrt{s_{NN}}=130 \text{ GeV}$

colors ~ momentum: low - - - high

SLAC, Nov 13, 2001

The Physics of RHIC

Digression: ultra-peripheral collisions

- γγ, γ-Pomeron interactions
- Signature: back-to-back opposite charges
- $\bullet \; Au{+}Au \rightarrow Au{+}Au + \rho^0$

Geometry of Heavy Ion Collisions

Non-central Collisions Central Collisions Central Collisions Reaction plane

Nparticipant: number of incoming nucleons (participants) in the overlap region Nbinary: number of equivalent inelastic nucleon-nucleon collisions

Experimental Determination of Geometry

Baryon Density at Midrapidity

pbar/p vs \sqrt{s} , central collisions of heavy nuclei

- Approaching baryon-free environment
- But net baryon number still finite (baryon transport over $\Delta y \sim 5.5$)

Charged particle production ($\eta=0$)

Central Au+Au @ $\sqrt{s_{NN}}$ =130: world average dN_{ch}/dη =584±18

• 40% increase relative to p+pbar: Au+Au is not a simple superposition

• grows faster with \sqrt{s} than p+pbar: onset of hard scattering? (~Nbinary)

Particle Production vs. Collision Centrality

Data agree with both simple Glauber (hard/soft eikonal calculation) and high density QCD \Rightarrow no discriminating power yet!!

Bjorken Energy Density

- Bjorken '83: ideal 1+1 D relativistic hydrodynamics
- boost invariance $\Rightarrow \eta \sim 0$

$$\varepsilon = \frac{1}{\pi R^2 \tau} \frac{dE_T}{dy} \approx \frac{1}{\pi R^2 \tau} \langle p_T \rangle \frac{3}{2} \frac{dN_{ch}}{d\eta} \quad (R \sim A^{1/3}, \tau = 1 \text{ fm/c})$$

Central Au+Au @ $\sqrt{s_{NN}}=130$:

- PHENIX E_T : $\epsilon = 4.6 \text{ GeV/fm}^3$ (*nucl-ex/0104015*)
- STAR charged particles: $\epsilon \sim 4.5 \text{ GeV/fm}^3$

Compare NA49 Pb+Pb@SPS: $\varepsilon \sim 3 \text{ GeV/fm}^3$ ($\tau = 1 \text{ fm/c}$)

Critical issues:

- Has equilibrium been achieved? (i.e. hydrodynamics valid?)
- If so, what is formation time τ ?

p_T Spectra: central collisions

Radial flow of matter: common velocity boost \Rightarrow stiffer momentum spectrum for more massive particles

SLAC, Nov 13, 2001

• Parameters T, μ_{B} , μ_{s} , μ_{I3}

Particle ratio (data)

• Fit to ratios of antiparticle/particles: π , K, p, Λ , Ξ , K^*_0

Typical fits: $T_{ch} = 175 \sim 200 \text{ MeV}, \mu_B \sim 50 \text{ MeV}, \mu_s \sim 0$ Simple "model" works well: evidence for chemical equilibrium?

Phase Diagram at Chemical Freezeout

- parameters near phase boundary
- (strangeness) equilibration time for hadronic gas very long (~50 fm/c)
- do we have more direct evidence of early equilibration?

Elliptic Flow in Non-central Collisions

• Asymmetry generated early in collision, quenched by expansion \Rightarrow observed asymmetry emphasizes early time = atan $\frac{p_y}{}$

 $v_2 =$

Second Fourier coefficient v2:

$$\langle \cos 2\phi \rangle \phi =$$

SLAC, Nov 13, 2001

 p_x

Elliptic Flow (cont'd)

- Hydrodynamic calculations in reasonable agreement
- \Rightarrow compatible with early equilibration
- Cascade models require extreme elastic cross sections or huge gluon densities (Molnar and Gyulassy)

SLAC, Nov 13, 2001

Fly in the Ointment: Pion Interferometry

(GGLP/HBT effect)

 π - π -: |y|<0.5 0.125< pT(GeV/c) < 0.225

• interference of identical bosons at low relative momentum **q**

• certain components of **q** sensitive to duration of particle emission

• strong 1st order phase transition \Rightarrow large latent heat \Rightarrow long "stall" in expansion \Rightarrow long lifetime-----

• No variation with \sqrt{s} seen \Rightarrow explosive expansion??

High p_T hadrons in Nuclear Collisions

Bjorken, Wang&Gyulassy, Baier et al.:
dE/dx: parton traversing medium
dissipates energy via brehmsstrahlung
coherence effects: dE/dx ~ x²
dE/dx much larger in deconfined

medium than hadronic matter

- Full jet reconstruction in Au+Au impossible (underlying event)
- But also not relevant: observable is softening of fragmentation SLAC, Nov 13, 2001 The Physics of RHIC 31

Leading Hadrons in Fixed Target Experiments

High p_T charged hadrons (central collisions)

STAR negative hadrons

PHENIX vs STAR

The Physics of RHIC

Ratio STAR/UA1 vs p_T

Scaling factors: energy dependence, nuclear geometry Ratio **Binary Collisions Scaling** STAR UA1-fit(130) \times T_{AA} 0.8 Hadron suppression in nuclear collisions 0.6 at high p_T 0.4 • important open issues STAR preliminary about systematics of UA1 0.2 Wounded Nucleon Scaling comparison Û 2 0 1 3 4 p_{\perp}^{5} (GeV/c)⁶ • flavor and isospin are few

percent effects

PHENIX: charged hadrons and π^0

nucl-ex/0109003, submitted to PRL

central normalized to p+p/pbar+p

central/peripheral

Suppression greater for π^0 than for charged hadrons Suppression larger if reference includes Cronin effect

SLAC, Nov 13, 2001

PHENIX: $\pi/K/p$ at high p_T

• baryon junctions?

The Physics of RHIC

p_π (GeV/c)

p_T (GeV/c)

Elliptic flow at high p_T : predictions

Jet propagation through anisotropic matter (non-central collisions)

Snellings; Gyulassy, Vitev and Wang (nucl-th/00012092)

Finite asymmetry at high p_T sensitive to energy density

SLAC, Nov 13, 2001

STAR: Elliptic flow at high p_T

- watch out for autocorrelation: jets distort reaction plane measurement
 - look at v_1 (1st order coeff): effect is negligible
- saturation to 6 GeV: not yet perturbative?? not yet understood

SLAC, Nov 13, 2001

Elliptical flow vs. inclusive hadron spectra

SLAC, Nov 13, 2001

Summary of Au+Au Collisions at RHIC

Machine and experiments are working well!

Low p_T hadrons:

- low baryon density at y~0
- strong evidence for early equilibration
- high initial pressure and energy density
 - best estimate: $\epsilon \sim 4.5 \text{ GeV/fm}^3$

High p_T hadrons:

- suppression of inclusive yields
- $p/\pi > 1$ at $p_T > 2$ GeV: radial flow or exotic fragmentation?
- elliptic flow persists at high p_T

Most exciting prospect: jet quenching in dense matter?

 \Rightarrow direct indicator of deconfinement

 \Rightarrow but still a long road: need higher p_T, p+p, p+A, γ +jet measurements

SLAC, Nov 13, 2001

Outlook

- RHIC Year 2:
 - July-Nov: Au+Au @200 GeV (design luminosity reached)
 - Dec-Jan: 5 weeks of polarized protons
- Major detector upgrades in Year 2:
 - STAR: EM calorimeter, inner and forward tracking
 - PHENIX: completed spectrometers, first muon arm
- Year 2 physics:
 - Very high p_T spectra & correlations
 - First charm physics (J/ψ)
 - Many rare probes: detailed dynamics
 - Energy scan: extensive systematics (unique to RHIC)
- Long term: extensive program of pA, AA, polarized protons,...