The ATHENA experiment

Antihydrogen at Rest for precision Tests of CPT and WEP

M. H. Holzscheiter

Los Alamos National Laboratory

(for the ATHENA Collaboration)

- 1. Physics Goals
- 2. Antiproton Decelerator Providing 100 MeV/c antiprotons
- **3.** Antiproton capture and cooling Antiprotons "at rest"
- 4. Positron Accumulation
- **5. Recombination Physics Issues**
- 6. Antihydrogen Detector
- 7. Summary and Outlook

ATHENA Collaboration

Antiproton Capture External detectors Recombination

CERN

Doser M. Holzscheiter M.

Landua R. Riedler P. Rouleau G.

Genoa

Amoretti M. Carraro C. Lagomarsino V.

Macri M. Manuzio G. Testera G. Variola A.

Tokyo Univ.

Fujiwara M. Funakoshi R. Hayano R.

Higaki H. Yamazaki T. Yamazaki Y.

Positron AccumulatorAaSwanseaBowe

Charlton M. Collier M. Jorgensen L.

Van der Werf D.P. Watson T.

Annihilation Detector

Zurich Univ.

Amsler C. Lindelof D. Madsen N.

Pruys H. Regenfus C.

Pavia

Cesar C.I

Bendiscioli G. Fontana A. Marchesotti M.

Montagna P. Rotondi A. Salvini P.

DAQ / Slow Control Brescia Bonomi G. Lodi-Rizzini E. Zenoni A. Laser Spectroscopy Aarhus MIT Bowe P. Hangst J.S. Kleppner D. Rio de Janeiro (UFRJ)

Current Status of CPT Tests

Any local quantum field theory in flat space-time obeying Lorentz invariance and unitarity

requires CPT to be conserved G. Lüders, Ann. Phys. 2 (1957) 1-15

Antihydrogen promises the most precise, direct, and unambiguous test of this principle

provided that the methods so highly developed for hydrogen spectroscopy can be applied with equal precision

ATHENA General Overview

ATHENA / AD-1 : Antihydrogen Production and Spectroscopy

ATHENA Apparatus is complete

Antiproton Production at CERN

ATHENA/AD-1

Old Antiproton Source (LEAR)

New Antiproton Source (AD)

ATHENA/AD-1

SLAC – March 14, 2002

Slowing Antiprotons from MeV to keV

Beam degrading (Simulation)

Total magnetic field [T] vs Position [z]

Beam intensity measurement

- Absolute calibration by activation method (Nov 2000)
- Induced activity (²⁴Na) in 0.44 mm Al absorber foil
- Compare integrated beam (29 shots) with internal (Schottky) measurements and external (scintillator/HPD) detector

Correlation between Schottky signal (in AD) and no. of annihilations in scintillator

RESULTS

Average number of antiprotons per shot

 $1.14 \pm 0.2 \cdot 10^{7}$

Extraction efficiency $\sim 90\% \pm 5\%$

Good shot-to-shot stability (±10%)

Beam Steering

Antiproton Capture (Scheme)

2.

 Pre-load trap with electrons. (cool by synchrotron radiation τ^a 300 msec in 6 Tesla, T^a 10 K)

- **Inject antiprotons** through degrader **î** low energy component is reflected at exit electrode of trap.
- **3.** Close entrance electrode after last particle enters but before first particles leave. (Determines minimum length of trap)
- 4. Electrons (sympathetically) cool antiprotons. (excess energy is released into cryogenic bath)

Recombination Overview

Particle "p" spends ϵ_{τ} of its time inside plasma cloud "e" with density n_e

 $d\Gamma_p = \epsilon_\tau n_e \sigma(v_r) v_r$

$$\alpha(\mathbf{v}_{\mathrm{r}}) \equiv \int_{\mathrm{v}} d^3 \mathbf{v} \ \sigma(\mathbf{v}) \ \mathbf{v} \ \mathbf{f}(\mathbf{v})$$

'Recombination Coefficient" *

* This recombination coefficient has been measured in electron-cooled proton storage rings, since e-p recombination contributes to losses of stored protons

Routes to Recombination

(Stimulated) Spontaneous Recombination

$$\sigma_{\bullet \to n} = 1.96\pi^2 \frac{he^2}{m^2 c^3} \frac{\upsilon_1^2}{\upsilon(\upsilon - \upsilon_n)n^3}$$

= 2.1 \cdot 10^{-22} cm^2 $\frac{1}{nx(1 + n^2 x)}$
$$\sigma_{\bullet \to 1 - 10} \sim 1.0 \cdot 10^{-16} \text{ cm}^2 \quad \cdot \text{ T}^{-1} \quad \text{[K]}$$

 $(x = \frac{E_e}{13.6eV})$
 $\alpha_{\text{SRR}} \sim 3.8 \cdot 10^{-11} \text{ cm}^3 \text{ s}^{-1} \text{ T}^{-0.5} \text{ [K]}$

*****Recombination preferentially to low levels ($\sigma \sim 1/n$)

20 % to n = 160 % to n = 1 - 10

↔Lower cross-section

Needs large number of particles

*****Atoms are produced in stable levels

Three-Body Recombination

 $\Gamma_{\text{TBR}} \sim \Gamma$ (e-p collision) x Probability to find 2nd coll.

- e^+ -p Coulomb interaction radius: $R_T = e^2/kT$
- $\Gamma(e^+-p \text{ collision}) \sim n_e \quad v_e \quad R_T^2 (\emptyset v_e n_e^{-1/3})$
- Probability (e⁺ in vicinity) ~ $n_e R_T^3$

$$\Gamma_{\text{TBR}} = \kappa n_e^2 R_T^5 v_e \sim T^{-4.5}$$
(K = 0.76(4) for B=0, k = 0.07(1) for B = 6 Tesla)

*****High rate at low

*****Preferentially populates very high levels ($\sigma \sim n^6$, $E \sim kT$):

$$\sigma_{\bullet \not\in 100} = 10^6 \quad \sigma_{\bullet \not\in 10} = 10^{12} \quad \sigma_{\bullet \not\in 11}$$

*****Radiative de-excitation is slow:

 $n = 100 : <\tau > \sim \frac{1}{4}$ second

*Needs stimulated de-excitation to n ^a 10

(CO₂ Laser)

ATHENA/AD-1

SLAC – March 14, 2002

Three-Body Recombination (Physics Issues)

 $E_{ext} \cong \frac{e}{d^2} \approx \frac{e}{a_B^2 n_{\max}^4}$ $\Rightarrow n_{\max} \le \left(\frac{e}{a_B^2 E_{ext}}\right)^{\frac{1}{4}} \cong \left(5 \cdot 10^9 \text{ V/cm} \cdot \frac{1}{E_{ext}}\right)^{\frac{1}{4}}$

For typical electric fields:

1 V/cm	: $n_{max} = 158$	
10 V/cm	: $n_{max} = 90$	
100 V/cm	: $n_{max} = 50$	
1000 V/cm	: $n_{max} = 28$	

Field Ionisation - magnetic fields:

 $T = 4 K \rightarrow \beta = 0.9 \cdot 10^{-6}$

Motional electric fields ~ v xB :

(seen by a particle moving with velocity $v = \beta c$ in mag. field B)

 $v B = 3 \cdot 10^6 V/cm \beta B[T]$

$$n_{\max} \cong 3.8 \left(\frac{1}{\beta B[T]}\right)^{\frac{1}{4}}$$

For antihydrogen at 4 K, B = 6 T:

 $n_{\max} \cong 80$ (!)

Main achievements 2001

ATHENA/AD-1

SLAC – March 14, 2002

Antiproton and Recombination Traps

Degrader Optimization

Trap and dump antiprotons for optimization of degrader thickness

Final geometry:

- Beam Counter directly in front of capture trap
- Entire degrading foil on entrance electrode

Antiproton Capture

Results from PS200 at LEAR:

◆ 1 million antiprotons captured per 3.2 x 10⁸ particles from LEAR

★ 60+ % of captured antiprotons cooled to low energy in 5 minutes

Electron cooling of antiprotons in PS200

Antiproton Cooling and Stacking

Positron Accumulation (Scheme)

Accumulation Scheme:

- Inelastic collisions with N2 gas
- · Increasing electric trapping potential
- · Transfer to UHV trap before annihilation

Positron Accumulation (Overview)

<u>Schematic of the experimental setup</u> <u>Positron Accumulator</u>

Positron accumulation with new source

Positron cloud compression (rotating wall)

Plasma size before r.w. $\sim 15 \text{ mm}$ (FWHM)

after r.w. \sim 3-4 mm (FWHM)

Positron Accumulation

Accumulated positrons vs time

- High rate, stand-alone positron accumulator (~ $10^6 e^+/sec$)
- **Positron moderation**: solid Ne layer and buffer gas (N₂)
- 1.8 GBq (50 mCi) Na-22 source
- Plasma compression with rotating wall
- 1.7 10⁸ positrons accumulated per 5 minutes
- Plasma size 3 mm FWHM (with rotating wall)

Positron Transfer

Scheme of positron transfer efficiency measurements

• Transfer

- accelerate positrons $\sim 20 \text{ V}$
- pulse transfer magnet (1.2 T)
- monitor CsI counters 1, 2
- Result:
 - > 50 % transfer efficiency

Positrons in recombination trap

• Capture

switch end electrodes $\sim 3\mu s$ after injection - "squeeze" into centre

• Positron Lifetime

several hours (harmonic potential)

Diagnostics

Tuned circuit

Collective modes ("drive and read")

Extraction on Phosphor screen + CCD

Extraction on Faraday cups

Recombination trap and antihydrogen detector. In green, positron cloud after injection (light) and compression (dark)

Antihydrogen Detector

SLAC – March 14, 2002

'False' Antihydrogen Events

511 keV background from antiproton

- Antiproton annihilation produces neutral pions
- Decay γ's (50-500 MeV) convert in magnet
- Secondary positrons in shower annihilate
- Homogeneous, coincident 511 keV background
- Fake 'antihydrogen' events (together with pion signal)

Prevention

True Antihydrogen Signal

- Measure charged vertex position
- Identify two converted 511 γ's
- Plot angular correlation as seen from vertex
- Reject above certain threshold angle

Installation of Detector

Main Issues:

. . . .

. . . .

. . .

Extreme tight tolerances Self heating from electronics Thermal changes at cool down

Detector - Inner Layer Si strips

Double sided Si strips (140 x 19.5 mm² x 500µm):

Front 128 strips with 50 µm pitch

Back 128 pads with 1.1 mm pitch

two strips bonded together for increased axial length

Significant R & D on

low temperature behavior of kapton, silicon, ceramics.

Detector - Crystals

Studies done on:

light yield of pure CsI
 (50,000 photons/MeV @ 80 K
 vs. 3,200/MeV @ 300 K)

Coupling to read-out diodes

modularity, wrapping

> Compromise radial dimension

Maximize light collection and meet space demands of other components

Detector - Readout electronics

On board' of read-out to minimize number of cables from room temperature to cryogenic environment.

Heat load of electronics elevates detector temperature from 4.2 K to 100 K!

Detector - Cosmic event

Detector snapshot with cosmics

Crystals

(192)

Green - working Red - noisy Blue - no signal

(8192)

> 95 % of detector working fine !

Reconstruction of cosmic event

Detector - Antiproton injection from AD

ATHENA/AD-1

SLAC - March 14, 2002

Detector - Single antiproton annihilation

Detector - Full Reconstruction of Annihilation

Radial Distribution of Annihilation Vertex

Z Distribution of Annihilation Vertex

Next step: Slow Antihydrogen

Pulsed recombination with defined starting point Repetition rate 1 -1000 Hz

- optimal bounce frequency

Antihydrogen at Rest

• Theoretical estimate for spontaneous radiative recombination (to low-n levels): 10^7 antiprotons, 10^8 positrons, 10 % overlap of plasma clouds, T = 1 K :

~ 9,000 antihydrogen atoms / second

Main Issue: Maintain overlap (antiprotons are cooled by

2γ Antihydrogen Spectroscopy

One possibility for a first measurement of 1S-2S in Antihydrogen?

Trapped Hydrogen Spectroscopy

Spectroscopy of Trapped Hydrogen Atoms

The Hydrogen Spectroscopy Laser System at MIT

> Low number of <u>antihydrogen</u> atoms requires efficient usage î atoms need to be trapped

Magnetic Trapping of (Anti)Hydrogen

Coil Layout for short quadrupole version

ATHENA/AD-1

CPT Violation beyond Phenomenology?

Simplest Approach: Pure Phenomenology (no microscopic theory)

$$|\mathbf{K}_{\mathrm{S}}\rangle \sim (1 + \varepsilon_{K} + \delta_{K}) |\mathbf{K}^{0}\rangle + (1 - \varepsilon_{K} - \delta_{K}) |\overline{\mathbf{K}^{0}}\rangle$$
$$|\mathbf{K}_{\mathrm{I}}\rangle \sim (1 + \varepsilon_{K} - \delta_{K}) |\mathbf{K}^{0}\rangle + (1 - \varepsilon_{K} + \delta_{K}) |\overline{\mathbf{K}^{0}}\rangle$$

- $\epsilon_{\mathbf{K}}$ and $\delta_{\mathbf{K}}$ parameterize CP violation, with
- T violation governed by ε_κ
- CPT violation governed by $\delta_{\mathbf{K}}$

Note: δ_{K} is purely phenomenological and can NOT be CALCULATED

To make best progress, we want:

- microscopic theory at the fundamental level
- connection to experiment
 - quantitative predictions
 - in framework of standard model

This would allow:

calculation of phenomenological parameters comparison between different experimental tests prediction of signals

Example: Spontaneous violation of CPT and Lorentz invariance in Lorenz/CPT covariant fundamental theory (D. Colladay, V. A. Kostelecky; PRD 55 (1997) 6760 et al.) Specifically Antihydrogen (QED extension of Theory) R. Bluhm, V. A. Kostelecky, N. Russell; PRL 82 (1999) 2254

Modified Dirac Equation for a four component electron field Ψ of mass m_e and charge q = -|e| in the proton Coulombfield Aµ = (|e|/4π**r**,0):

$$D_{\mu} = i\delta_{\mu} - qA_{\mu} \implies$$

$$(i\gamma^{\mu}D_{\mu} - m_{e} - a_{\mu}^{e}\gamma^{\mu} - b_{\mu}^{e}\gamma_{5}\gamma^{\mu}$$
CPT violating

$$- \ \frac{1}{2} H^{e}_{\mu\nu} \sigma^{\mu\nu} + i c^{e}_{\mu\nu} \gamma^{\mu} D^{\nu} + i d^{e}_{\mu\nu} \gamma_{5} \gamma^{\mu} D^{\nu}) \Psi = 0$$

First Observation:

Both 1S and 2S levels in Hydrogen (and Antihydrogen) experience an identical energy shift

➡ There are no leading order effects in the 1S-2S spectroscopy

This is due to both excited and ground state having the same spin configuration \implies Use external field to lift degeneracy (trapped H)

Are there better choices of

Antihydrogen Spectroscopy on HFS

Direct, clean, and accurate test of CPT violating coupling b₂ for the proton

V. A. Kostelecky, et al.: Minimal extension of standard model

Spontaneous violation of CPT and Lorentz invariance in Lorentz/CPT covariant fundamental theory

- •Allows parametrization of possible violations of CPT/Lorentz invariance
- Places different tests on equal footings (figure of merit)
- Highlights best tests in given system
- 18 and 28 in hydrogen (and antihydrogen) experience identical shift - better to test HFS transition!
- ref.: D. Colladay, V. A. Kostelecky; PRD 55 (1997) 6760;

Gravity?

Indirect observation through precision frequency measurements:

Matter (H) and Antimatter (H) clocks from infinity to the solar system (earth surface) ...

- Check synchronicity of H \overline{H} clocks with $\Delta v/v \sim 10^{-15} \rightarrow$ as earth moves along its eccentric path around the sun ($\Delta U/U \sim 10^{-9}$) \rightarrow test equality of gravitational masses to 10⁻⁶

References: R. J. Hughes, M. H. Holzscheiter; Phys. Rev. Lett. 66, p. 854 (1991; J. of Modern Optics, 39, 263-278 (1992)

Gravity - Direct Observation

To say the least – this will be VERY difficult!

- 1. **GRAVITATIONAL SAG IN MAGNETIC BOTTLE?** $m \cdot g \cdot h = 1 \cdot 10^{-7} eV (for h = 1 m)$ 3 mK Antihydrogen @2.6 • 10^{-7} eV @ $\Delta z = 2.6$ m
- 2. **FREE FALL OF COLD ANTIHYDROGEN ATOMS?** $\Delta E = 3 \text{ mK}$ i $\Delta v^{a} 7 \text{ m/sec}$

3. **ATOM INTERFEROMETER?**

 $v = 10^4$ m/sec, 4000 atoms, measure phase shift to 0.1 radian

 $\Delta g/g = 1\%$ T.J. Phillips, LEAP94; eds. G. Kernel et al.; World Scientific (1995) 589 D. W. Keith, C. R. Ekstrom, O. A. Turchette, D. Pritchard; Phys. Rev. Lett. 66 (1991) 2693

4. **ATOMIC FOUNTAIN RAMAN SPECTROSCOPY?**

Use atomic fountain – split and recombine beam by Raman transitions – - final state depends on phase difference between the two paths: $\Delta \Phi = \mathbf{k} \cdot \mathbf{g} \cdot (\Delta t^2)$ ï Measurement on ²²Na yields $\Delta \mathbf{g}/\mathbf{g}^a$ 10⁻⁹ **BUT WHAT ABOUT Hydrogen/Antihydrogen?** hotter (Doppler limit 3 mK) lighter (more recoil, faster atoms, less precision on phase shift)

M. Kasevich, S. Chu; Appl. Phys. Rev. B54 (1992) 321

SLAC – March 14, 2002

ATRAP Results

- 1. Start from nested trap
- 2. Ramp potential in 10 ms
- **3.** All free charged particles are swept away by E field
- 4. Antihydrogen might form in high n states
- 5. E field ionizes the formed antihydrogen atoms
- 6. Pbars from ionized antihydrogen are captured in (new) trap

Possible problems:

- Rate too high?
- Patch effects, micro traps not
- N distribution not reproduced
 (N(n) ~ n⁶)

Summary and Outlook

- :-)) AD performance now better than design values
- :-)) ATHENA construction completed!

Antiprotons

- $2 \cdot 10^4$ captured / AD shot
- Stacking: multiple shots, no losses
- Cooling below 1 eV
- Storage time >> 1 h

Positrons

- $2.0 \cdot 10^8$ positrons accumulated in 5 minutes
- \sim 15 % transferred to recombination trap

Hbar detector

- installed + working fine at $T \sim 110$ K, B = 3 T
- tracking: excellent performance in $(r-\phi)$ and z
- 511 keV: clear separation from Compton edge

SHORT-TERM GOAL:

- observe + optimize antihydrogen production

MEDIUM-TERM GOALS:

- modify apparatus for laser spectroscopy
- 1S-2S measurement
- further studies of antihydrogen atom

LONG-TERM GOALS:

- add magnetic trap to apparatus to confine antihydrogen atoms
- ultra-precise spectroscopy on 1S-2S or HFS
- study of gravitational interaction of in Earth's gravitational field

Hbar Detector - 511 keV line (source test)

