Hadronic Vacuum Polarization

Confronting Spectral Functions from e⁺e⁻ Annihilation and τ Decays: Consequences for the Muon Magnetic Moment

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE Andreas Höcker (*) LAL - Orsay

> SLAC Seminar September 3, 2002

(*) work done in collaboration with M. Davier, S. Eidelman and Z. Zhang [hep-ph/0208177]

Outline

The Muon Magnetic Anomaly ... and Hadronic Vacuum Polarization

e^+e^- versus τ Data

a_µ[had]

 $\Delta \alpha_{\text{OFD}}$ [had]

Isospin Breaking and Radiative Corrections

Two New Standard Model Predictions

for (g–2)_µ

Magnetic Anomaly

The Muonic $(g-2)_{\mu}$

Contributions to the Standard Model (SM) Prediction:

$$\boldsymbol{a}_{\mu} \equiv \left(\frac{g-2}{2}\right)_{\mu} = \left(\boldsymbol{a}_{\mu}^{\text{QED}}\right) + \left(\boldsymbol{a}_{\mu}^{\text{had}}\right) + \left(\boldsymbol{a}_{\mu}^{\text{weak}}\right)$$

n 1995	Source	σ(a _µ)	Reference	
tion 1	QED	~ 0.3 × 10 ⁻¹⁰	[Schwinger '48 & others]	Dominant uncertainty from
The Situat	Quarks and Hadrons	~ (15 ⊕ 4) × 10 ⁻¹⁰	[Eidelman-Jegerlegner '95 & others]	 Iowest order hadronic piece. Cannot be calculated from QCD ("first principles") – but
	Z, Wexchange	~ 0.4 × 10 ⁻¹⁰	[Czarnecki et al. '95 & others]	we can use experiment (!)

Hadronic Vacuum Polarization

Define: photon vacuum polarization function $\Pi_{\gamma}(q^2)$

$$i\int d^4x \ e^{iqx} \left\langle 0 \left| T J^{\mu}_{em}(x) \left(J^{\nu}_{em}(x) \right)^{\dagger} \right| 0 \right\rangle = - \left(g^{\mu\nu} q^2 - q^{\mu} q^{\nu} \right) \Pi_{\gamma}(q^2)$$

Ward identities: only vacuum polarization modifies electron charge

 $\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha(s)} \quad \text{with:} \quad \Delta \alpha(s) = -4\pi \alpha \operatorname{Re} \left[\prod_{\gamma} (s) - \prod_{\gamma} (0) \right]$

Leptonic $\Delta \alpha_{\text{lep}}(s)$ calculable in QED. However, quark loops are modified by longdistance hadronic physics, cannot (yet) be calculated within QCD (!)

... and equivalently for a [had]

Why Do We Need to Know it so Precisely?

The fine structure constant at M_z is an important ingredient to EW precision fits

For the Beauty of it: BNL (g-2) Measurement

Observed positron rate in successive 100µs periods

Spin precession frequency:

$$\vec{\omega}_a = \frac{e}{mc} a_\mu \vec{B}$$

obtained from 5-parameter fit to the function:

 $N(t) = N_0 e^{-\lambda t} [1 + A\cos(\omega_a t + \phi)]$

taken from: **E821 (g – 2) [D.W. Hertzog]** hep-ex/0202024

2001: The First Round of BNL Results on a_{μ}

The E821 (g –2) experiment at BNL published early 2001 a value $3 \times$ more precise than the previous CERN and BNL exps. combined:

E821 (*g* **–2)** hep-ex/0102017

 $a_{\mu}(\exp) = 11\ 659\ 202(16) \times 10^{-10}$

BNL compares with Standard Model prediction: $a_{\mu}(SM) = 11\ 659\ 159.6(6.7) \times 10^{-10}$ Averaging E821 with previous experiments gives: $a_{\mu}(exp) - a_{\mu}(SM) = 43(16) \times 10^{-10}$ [$\rightarrow 2.7\ \sigma$]

<u>BUT</u>: In November 2001, Knecht & Nyffeler have corrected a sign error in the dominant (π -pole) contribution from hadronic light-bylight (LBL) scattering, reducing the above discrepancy to

25(16) × **10**^{−10} [→1.6 σ]

Knecht-Nyffeler, hep-ph/0111058; result approved by: Hayakawa-Kinoshita, hep-ph/0112102; Bijnens-Pallante-Prades, hep-ph/0112255

2002: The Second Round of BNL Results on a_{μ}

The new analysis, first presented at ICHEP'02, achieves $2 \times$ better precision (using $4 \times$ more statistics) than the 2001 result:

E821 (g –2) hep-ex/0208001

 $a_{\mu}(\exp) = 11\ 659\ 203(7)(5) \times 10^{-10}$

Error dominated by statistics. Systematics:

- 3.6 × 10⁻¹⁰ from precession frequency
- 2.8 × 10⁻¹⁰ from magnetic field

BNL compares WA with SM prediction (using DH'98 for hadronic vac. pol.):

 $a_{\mu}(\exp) - a_{\mu}(SM) = 25(10) \times 10^{-10}$

Experimental and theoretical uncertainties now of similar order !

More work and, in particular, better data needed to achieve a more precise prediction of the hadronic contribution

The Data Situation (around 1995)

Data density and quality unsatisfactory in some crucial energy regions

(I) Energy-Dependent Contributions and Errors

Improved Determination of the Hadronic Contribution to $(g-2)_{\mu}$ and $\alpha(M_Z^2)$

Situation 1995 [Eidelman-Jegerlehner] and since ...

	Eidelman-Jegerlehner		Energy range [GeV]	Input 1995	Input after 1998
	hep-ph/9502298		2 <i>m</i> _π - 1.8	Data	Data (e⁺e⁻ & τ) + QCD
	Davier-AH hep-ph/9805470		1.8 – J/ψ	Data	QCD
			J/ψ - Υ	Data	Data + QCD
			Υ - 40	Data	QCD
nprovement in 3 Steps:			40 - ∞	QCD	QCD

Inclusion of precise τ data using SU(2) (CVC)

Alemany-Davier-AH'97, Narison'01, Trocóniz-Ynduráin'01

Extended use of (dominantly) perturbative QCD

Martin-Zeppenfeld'95, Davier-AH'97, Kühn-Steinhauser'98, Erler'98, + others

More theoretical constraints from QCD sum rules

Groote, Körner, Schilcher, Nasrallah'98, Davier-AH'98, Martin-Outhwaite-Ryskin'00, Cvetič-Lee-Schmidt'01, + others

Situation before Summer 2002

a, had:

- Reasonable agreement among recent evaluations
- All recent analyses use enhanced theoretical input (compared to EJ'95)
- Most recent analyses employ e^+e^- and τ data

A New Analysis of a^{had}

Motivation for new work:

- New high precision e⁺e⁻ results (0.6% sys. error) around ρ from CMD-2 (Novosibirsk)
- New *τ* results from ALEPH using full LEP1 statistics, also: use CLEO data
- New R results from BES between 2 and 5 GeV
- New theoretical analysis on SU(2) breaking

CMD-2 PL B527, 161 (2002)

ALEPH CONF 2002-19

CLEO PR D61, 112002; PR D61, 072003 (2000)

BES PRL 84 594 (2000); PRL 88, 101802 (2002)

Cirigliano-Ecker-Neufeld hep-ph/0207310

Outline of the new analysis:

- Include all new Novisibirsk (CMD-2, SND) and ALEPH data
- Apply (revisited) SU(2)-breaking corrections to *τ* data
- Identify application/non-application of radiative corrections
- Recompute all exclusive, inclusive and QCD contributions to dispersion integral; revisit threshold contribution and resonances
- Results, comparisons, disussions...

Davier-Eidelman-AH-Zhang hep-ph/0208177

The Conserved Vector Current

The CVC property of weak decays follows from the factorization of strong physics produced through the γ and W propagators out of the QCD vacuum

The Conserved Vector Current – SU(2)

Hadronic physics factorizes in Spectral Functions:

fundamental ingredient relating long distance (resonances) to short distance description (QCD)

Isospin symmetry (CVC) connects $l=1 e^+e^-$ cross section to vector τ spectral functions:

$$\sigma^{(l=1)}\left[e^+e^- \to \pi^+\pi^-\right] = \frac{4\pi\alpha^2}{s}\upsilon\left[\tau^- \to \pi^-\pi^0\nu_\tau\right]$$

$$\upsilon \left[\tau^{-} \to \pi^{-} \pi^{0} v_{\tau}\right] \propto \frac{\mathsf{BR}\left[\tau^{-} \to \pi^{-} \pi^{0} v_{\tau}\right]}{\mathsf{BR}\left[\tau^{-} \to e^{-} \overline{v}_{e} v_{\tau}\right]} \frac{1}{\mathsf{N}_{\pi\pi^{0}}} \frac{d\mathsf{N}_{\pi\pi^{0}}}{ds} \frac{m_{\tau}^{2}}{\left(1 - s/m_{\tau}^{2}\right)^{2} \left(1 + s/m_{\tau}^{2}\right)}$$

branching Fractions mass spectrum

kinematic factor (PS)

τ Spectral Functions

Hadronic τ decays are a clean probe of hadron dynamics – experimentally in many ways complementary to $e^+e^- \rightarrow$ hadrons:

au

 e^+e^-

- Excellent normalization (branching fractions) due to high statistics, large acceptance, small non-*τ* background
- Shape subject to bin-to-bin resolution corrections (unfolding)
- Excellent relative cross sections (correlated systematics)
- Overall normalization subject to radiative corrections, systematic uncertainties from acceptance and luminosity

QCD Results from τ Decays

Evolution of $\alpha_s(m_{\tau})$, measured using τ decays, to M_Z using RGE (4-loop QCD β -function & 3-loop quark flavor matching) shows the excellent compatibility of τ result with EW fit:

 $\alpha_{s}(M_{z}) = 0.1202 \pm 0.0027$ (ALEPH'98, theory dominated) $\alpha_s(M_z) = 0.1183 \pm 0.0027$ (LEP'00, statistics dominated) 0.4 ALEPH m. 0.6 τ (ALEPH) Z (LEP + SLD) Data (exp. errors only) 0.3 RGE Evolution (n,=3) 0.5 $\alpha_{s}(\forall s)$ ······ RGE Evolution (n,=2) 0.2 0.4 Μ-0.1 0.3 1.5 10² 2 2.5 3 10 s_o (GeV²) √s (GeV) The τ spectral function allows to directly measure

the running of $\alpha_s(s_0)$ within $\sqrt{s_0} \in [\sim 1...1.8 \text{ GeV}]$

 $\alpha_{s}(s_{0})$

$\tau \rightarrow \pi^{-} \pi^{0} v_{\tau}$: Comparing ALEPH and CLEO

Spectral functions expressed as cross sections.

Shape comparison only. Both normalized to WA branching fraction.

Agreement observed

ALEPH more precise at low s

CLEO better at high s

SU(2) Breaking

Electromagnetism does not respect isospin and hence we have to consider isospin breaking when dealing with an experimental precision of 0.5%

Corrections for SU(2) breaking applied to τ data for dominant $\pi^-\pi^+$ contrib.:

- Electroweak radiative corrections:
 - ► dominant contribution from short distance correction S_{EW} to effective 4-fermion coupling $\propto (1 + 3\alpha(m_{\tau})/4\pi)(1+2\langle Q\rangle)\log(M_Z/m_{\tau})$
 - subleading corrections calculated and small
 - long distance radiative correction $G_{\text{EM}}(s)$ calculated [add FSR to the bare cross section in order to obtain $\pi^-\pi^+(\gamma)$]

Cirigliano-Ecker-Neufeld, hep-ph/0207310

Charged/neutral mass splitting:

Develpment

- $m_{\pi^-} \neq m_{\pi^0}$ leads to phase space (cross sec.) and width (FF) corrections
- ▶ $m_{\rho-} \neq m_{\rho0}$ and $\rho-\omega$ mixing (EM $\omega \rightarrow \pi^-\pi^+$ decay) corrected using FF model
- Electromagnetic decays, like: $\rho \rightarrow \pi \pi \gamma$, $\rho \rightarrow \pi \gamma$, $\rho \rightarrow \eta \gamma$, $\rho \rightarrow I^+I^-$
- Quark mass difference $m_u \neq m_d$ generating "second class currents" (negligible)

SU(2) Breaking

Multiplicative SU(2) corrections applied to $\tau^- \rightarrow \pi^- \pi^0 \nu_{\pi}$ spectral function:

Only β^{3} and EW short distance corrections applied to 4π spectral functions

SU(2) Breaking

Corrections for isospin violation applied to τ data

	Δa_{μ}^{had} (10 ⁻¹⁰)				
	$\pi^-\pi^+$ (simple)	$\pi^-\pi^+$ (improved)	$\pi^-\pi^+ 2\pi^0$	$2\pi^-2\pi^+$	
Short distance radiative corrections to τ decays $(S_{\text{EW}} = 1.0267 \pm 0.0027)$ [Marciano- Sirlin'88, Braaten-Li'90, new evaluation DEHZ'02]	-13.8 ± 2.5	-13.8 ± 2.5	-0.49 ± 0.09	-0.25 ± 0.05	
Long distance corrections	-	-1.0	-	-	
$m_{\pi^-} \neq m_{\pi^0} (\beta \text{ in cross section})$	-7.0	-7.0	$+0.6 \pm 0.6$	-0.4 ± 0.4	
$\boldsymbol{m}_{\pi^{-}} \neq \boldsymbol{m}_{\pi^{0}} \left(\boldsymbol{\beta} \right)$ in width	+4.0	+4.2	-	-	
$m_{ ho-} \neq m_{ ho0} (\pm \approx 1 \text{ MeV/c}^2)$	+0 ± 0.2	+0 ± 2.0	-	-	
<i>ρ-ω</i> mixing (exp. uncertainty)	$+3.5 \pm 0.6$	+3.5 ± 0.6	-	-	
EM decay modes	-1.4 ± 1.2	-1.4 ± 1.2	-	-	
Total correction	-14.7 ± 2.9	-15.7 ± 2.8	+0.1 ± 0.6	-0.7 ± 0.4	

e⁺e⁻Radiative Corrections

Multiple radiative corrections are applied on measured *e*⁺*e*⁻ cross sections

Situation often unclear: whether or not - and if - which corrections were applied

- Vauum polarization (VP) in the photon propagator:
 - Ieptonic VP mostly corrected
 - hadronic VP not corrected but for CMD-2 (in principle: iterative proc.)
- Initial state radiation (ISR)
 - corrected by experiments
- Final state radiation (FSR) [we need $e^+e^- \rightarrow$ hadrons (γ) in dispersion integral]
 - mostly, experiments obtain bare cross section so that FSR has to be added "by hand"; done for CMD-2, (supposedly) not done for others

Comparing $e^+e^- \rightarrow \pi^+\pi^-$ and $\tau \rightarrow \pi^-\pi^0 \nu_{\tau}$

Correct τ data for missing ρ - ω mixing (taken from BW fit) and all other SU(2)breaking sources

But: is it good enough ?

Comparing $e^+e^- \rightarrow \pi^+\pi^-$ and $\tau^- \rightarrow \pi^-\pi^0 v_{\tau}$

Comparing the 4π Spectral Functions

Testing CVC

Infer τ branching fractions from e^+e^- data:

Specific Contributions

Specific Contributions: Low s Threshold

Use Taylor expansion for $\pi^+\pi^-$ threshold:

$$\sigma_{\pi\pi} = \frac{\pi \alpha^2 \beta^3}{3s} |F_{\pi}|^2 \quad \text{and:} \quad F_{\pi} = 1 + \frac{1}{6} \langle r^2 \rangle_{\pi} s + c_1 s^2 + c_2 s^3 + O(s^4)$$

• exploiting precise space-like data, $\langle r^2 \rangle_{\pi} = (0.439 \pm 0.008)$ fm², and fitting c_1 and c_2

Specific Contributions: Narrow Resonances

Use direct data integration for ω (782) and ϕ (1020) to account for non-resonant contributions. However, careful integration necessary:

- trapezoidal rule creates systematics for functions with strong curvature
- use phenomenological fit

Specific Contributions: the Charm Region

New precise BES data improve cc resonance region:

Results: the Data & the Theory

 Agreement between Data (BES) and pQCD

 Better agreement between exclusive and inclusive (γγ2) data than in previous analysis

Results: the Compilation

Contributions to a_{μ}^{had} from the different energy domains:

Modes	Energy range	<i>a</i> _μ ^{had} (10 ^{−10})			
mouco	[GeV]	e+e-	au		
Low s expansion	$2m_{\pi}^{}-0.5$	58.0 ± 1.7 ± 1.1 _{rad}	54.0 ± 1.7 ± 0.3 _{SU(2)}		
$\pi^+\pi^-$	2 <i>m</i> _π – 1.8	440.8 ± 4.7 ± 1.5 _{rad}	459.0 ± 2.9 ± 2.5 _{SU(2)}		
$\pi^+\pi^-2\pi^0$	2 <i>m</i> _π – 1.8	16.7 ± 1.3 ± 0.2 _{rad}	21.4 ± 1.1 ± 0.6 _{SU(2)}		
2 <i>π</i> ⁺ 2 <i>π</i> ⁻	2 <i>m</i> _π – 1.8	14.0 ± 0.9 ± 0.2 _{rad}	12.3 ± 1.0 ± 0.4 _{SU(2)}		
ω(782)	0.3 – 0.81	36.9 ± 0.8 ± 0.8 _{rad}			
<i>ф</i> (1020)	1.0 – 1.055	34.8 ± 0.9 ± 0.6 _{rad}	-		
Other exclusive	$2m_{\pi}^{}-2.0$	32.2 ± 1.6 ± 0.3 _{rad}			
<i>JΙψ</i> , ψ(2S)	3.08 – 3.11	7.4 ± 0.4 ± 0 _{rad}			
R [data]	2.0 - 5.0	33.9 ± 1.7 _{exp} ± 0 _{rad}	-		
R [QCD]	5.0 – ∞	9.9 ± 0.2 _{theo}	-		
Sum	$2m_{\pi}-\infty$	684.7 ± 6.0 ± 3.6 _{rad}	701.9 ± 4.7 ± 1.2 _{rad} ± 3.8 _{SU(2)}		

Discussion

The problem of the $\pi^+\pi^-$ contribution [shifts given in units of 10⁻¹⁰]:

- Experimental conspiracy:
 - ▶ new CMD-2 data produce downward shift [-1.9], with much better precision
 - new ALEPH BRs produce upward shift [+3.5]
 - CLEO spectral functions produce upward shift [+2.2]
 - ▶ previous difference was: $\Delta[\tau e^+e^-] = (11 \pm 15) \ 10^{-4} \rightarrow we could use average$
- Who is wrong ?
 - e⁺e⁻ is consistent with among experiments, but error dominated by CMD-2; large radiative corrections applied
 - au is consistent with among experiments, but error dominated by ALEPH

▶ SU(2) corrections: basic contributions identified and stable since long; overall correction applied to τ is (- 2.2 ± 0.5)%, dominated by uncontroversial short distance piece; additional long-distance corrections found to be small

At present, we believe that it is unappropriate to combine τ and e^+e^-

Other changes with respect to DH'98 analysis:

- Experimental Contribution from *\phi* resonance much smaller [-4.3]
- Constraints from isospin lead to reduced contributions from 6π modes

Final Results

[DEHZ'02]	a ,, ^h	ad [ee]	= (6	84.7 ± 7.0)) 10 ⁻¹⁰	(exp and theo errors added in quadra	ature)		
	a	$_{u}^{had}[\tau]$	= (7	′01.9 ± 6.2	2) 10 ⁻¹⁰	$\Delta[\tau - e^+e^-] = (0.62 \pm 0.29)$)%	692.4 ± 6.2 [DH'98]	
		$a_{\mu}[ee] = (11\ 659\ 169.1 \pm 7.0_{had} \pm 3.5_{LBL} \pm 0.3_{QED+EW})\ 10^{-10}$							
		$a_{\mu}[\tau]$	= (1	1 659 186	5.3 ± 6.2 _{had} ± 3	8.5 _{LBL} ± 0.3 _{QED+EW}) 10 ⁻¹	0		
inc	lu-	Hadror	nic co	ntribution f	rom higher ord	er : $a_{\mu}^{\text{had}} [(\alpha_s / \pi)^3] = -(10)$).0 ±	0.6) 10 ⁻¹⁰	
dir	ng:	Hadronic contribution from LBL scattering : a_{μ}^{had} [LBL] = + (8.6 ± 3.5) 10 ⁻¹⁰							

Observed Discrepancy:

$$\mathbf{a}_{\mu} [\exp] - \mathbf{a}_{\mu} [SM] = \begin{cases} \mathbf{34} \pm \mathbf{11} & [e^+e^-] \\ \mathbf{10}^{-10} & \mathbf{17} \pm \mathbf{11} & [\tau] \end{cases}$$

Effect on $\Delta \alpha_{had} (M_Z^2)$: $\Delta [\tau - e^+e^-] = (2.37 \pm 0.62) \ 10^{-4}$ $\Rightarrow \Delta M_{Higgs} \approx -15 \ \text{GeV/c}^2 \ \text{for } \tau$

Conclusions/Perspectives

- Hadronic vacuum polarization creates dominant systematics for SM predictions of many precision measurements
- New analysis of leading hadronic contribution motivated by new, precise e^+e^- (0.6% systematic error for e^+e^-) and τ (0.5% error on normalization) data
- New theoretical analysis confirmed the rules to correct for SU(2) breaking
- Radiative (VP and FSR) corrections in e⁺e⁻ are major source of systematics
- We have re-evaluated all exclusive and inclusive as well as resonance contributions
- We conclude with two incompatible numbers from e^+e^- and (mainly) τ , leading to SM predictions that differ by 3.0 σ [e^+e^-] and 1.6 σ [τ] from the experiment
- The key problem is the quality of the experimental data...
- Future experimental projects are:
 - PEP-N (SLAC): e^+e^- → hadrons between 1.4-3.1 GeV \Rightarrow

■ ISR production $e^+e^- \rightarrow hadrons + \gamma$ @ KLOE, BABAR, CLEO & BES as τ /charm factories **→** (systematics?)

Proof of Principle of ISR Method

Finite mass resolution visible in sharp ρ - ω interference. Requires unfolding.

The data correspond to an integrated luminosity of only 22 fb⁻¹.

Background from $e^+e^- \rightarrow \mu^+\mu^- + \gamma$ events is at the level of 1%.

■ The present statistics (>80 fb⁻¹) is more than competitive with the latest results from CMD-2.

The main concern is the control of the systematics, in particular for particle identification.

Backup Slides

how could we further improve a_{μ}^{had} , if there were no incompatibilities ?

Extend the Use of QCD

- The inclusion of τ data has reduces the error on a_{μ}^{had} by 40%
- However, no significant improvement for $\Delta \alpha^{had}(M_z)$

...how can we further improve – in particular: $\Delta \alpha^{had}(M_z)$?

Inclusive hadronic τ decays have shown that QCD is safely applicable at m_{τ} ~1.8 GeV/c²

Why not also for e⁺e⁻ ?

ALEPH (1993, 1998) CLEO (1994) OPAL (1998)

Do equivalent QCD analysis as for τ decays using spectral moments of $\sigma[e^+e^- \rightarrow hadrons](s)$

$$R_{e^+e^-}(s_0) = \frac{1}{2\pi i} \prod_{|s|=s_0} \frac{ds}{s} D(s)$$

The combined fit of spectral moment to e^+e^- data showed consistent OPE prediction and revealed small non-perturbative contributions at $s_0=1.8$ GeV

Spectral Functions and QCD

- Optical theorem $v(s) \propto \text{Im} \Pi(s)$ (1)
- Apply Cauchy's theorem for "save" (*i.e.*, sufficiently large) s₀: (2)

ds

- Use the Adler function to remove unphysical subtractions: $D(s) = s \frac{d \prod(s)}{d \prod(s)}$ (3)
- Use global quark-hadron duality in the framework of the Operator (4) Product Expansion (OPE) to predict: $D(s) \sim D_{pert}(s) + D_{q-mass}(s) + D_{non-pert}(s)$
- Use analytical moments $f_n(s) = f(s) \cdot poly_n(s)$ to fix non-perturbative (5) parameters of the OPE ... and then fit $\alpha_s(m_{\tau})$

QCD Results from τ Decays

Evolution of $\alpha_s(m_{\tau})$ to M_Z using RGE (4-loop QCD β -function & 3-loop quark flavor matching) shows the excellent compatibility of τ result with EW fit:

 $\alpha_s(M_Z) = 0.1202 \pm 0.0027$ (ALEPH'98, theory dominated) $\alpha_s(M_Z) = 0.1183 \pm 0.0027$ (LEP'00, statistics dominated)

Data Driven QCD Sum Rules

- The use of τ data and extended QCD reduces the error on a_{μ}^{had} by 51%
- and provides a 60% (!) reduction of the error on $\Delta \alpha^{had}(M_z)$

...however, there exist domains for which no theoretical constraints are used so far... we can thus still increase our information budget !

where the P_n are (analytic) polynomials that approximate the kernel f(s) and thus reduce the data piece of the integral replaced by known theory. No new assumptions ! An optimization procedure minimizes the total experimental and (conservative) theoretical error