The New $D_{s} \pi^{0}$ State:

The Hydrogen Atom Revisited

R. Cahn
May 13, 2003

- Typeset by FoilTEX -

BaBar Discovery of Narrow State Decaying to $D_{s} \pi^{0}$

- π^{0} signal $+\mathrm{D}_{s}$ signal gives peak
- π^{0} signal $+\mathrm{D}_{s}$ sideband gives no peak
- π^{0} sideband $+\mathrm{D}_{s}$ signal gives no peak

- $D_{s} \pi^{0}$ mass distribution for $D_{s} \rightarrow K^{+} K^{-} \pi^{+}$
- $D_{s} \pi^{0}$ mass distribution for $D_{s} \rightarrow K^{+} K^{-} \pi^{+} \pi^{0}$

- No sign of $D_{s J}^{*}(2317) \rightarrow D_{s} \gamma$
- No sign of $D_{s, J}^{*}(2317) \rightarrow D_{s}^{*} \gamma$
- Apparent structure in $D_{s} \pi^{0} \gamma$

Heavy Quark - Light Quark Spectroscopy

is the Hydrogen Atom

- First approximation: heavy quark is static source of potential
- Orbital angular momentum ℓ, light-quark $\operatorname{spin} s$, separately conserved
- Add spin-orbit interaction, $\ell \cdot s$
$-j=\ell+s$ conserved, not ℓ, s
- Add heavy quark, with spin S
- Interactions suppressed by m / M
- Spin-orbit interaction $\ell \cdot S$
- Spin-spin contact interaction $s \cdot \boldsymbol{S} \delta^{3}(\boldsymbol{r})$
- Tensor force $3 S \cdot \hat{r} s \cdot \hat{r}-S \cdot s$
$-J=j+S$ conserved, not $j=\ell+s$

p-wave states

potential
spin-orbit
tensor force

Canonical Approach

DiPierro and Eichten, PRD 64, 114004 (2001)

- Dirac equation with two potentials
- Coulomb potential in fourth component of vector potential
- Linear (confining) potential in scalar potential
- Solve Dirac equation with spin-orbit included
- Add tensor force (and small spin-orbit) perturbatively
- Fix coefficients of Coulomb and linear, masses of quarks to fit data from D, D_{s}, B, B_{s} systems

Predictions of DiPierro and Eichten

	D		D_{s}	
J^{P}	$\mathrm{~m}(\mathrm{GeV})$ exp.	$\mathrm{m}(\mathrm{GeV}) \mathrm{th}$	$\mathrm{m}(\mathrm{GeV})$ exp.	$\mathrm{m}(\mathrm{GeV}) \mathrm{th}$
$S(J=0)$	1.865	1.868	1.969	1.965
$S(J=1)$	2.007	2.005	2.112	2.113
$P(J=0)$	$[2.290]$	2.377		2.487
$P(J=1)$	2.422	2.417	2.535	2.535
$P(J=2)$	2.459	2.460	2.573	2.581
$P(J=1)$	$[2.400]$	2.490		2.605

- The states $D_{0}(2290)$ and $D_{1}(2400)$ are from Belle at ICHEP and were not known at the time of the predictions.
- The same potentials are used for the D, D_{s}, B, and B_{s} systems.

Decays and Selection Rules

- Angular momentum conserved: no $0 \rightarrow 0 \gamma$ decays
- Not weak decays: Parity conserved
$-D_{s J}^{*}(2317) \rightarrow D_{s}\left(0^{-}\right) \pi^{0}$ forces natural spin-parity for $D_{s J}^{*}(2317)\left[0^{+}, 1^{-} \ldots\right.$
$-D_{s J}^{*}(2317) \rightarrow D_{s}^{*}\left(1^{-}\right) \pi^{0}$ forbidden if $D_{s J}^{*}(2317)$ is 0^{+}
- Isospin mostly conserved
$-D_{s J}^{*}(2317) \rightarrow D_{s}\left(0^{-}\right) \pi^{0}$ violates isospin
$-D_{s}^{*}(2112) \rightarrow D_{s}\left(0^{-}\right) \pi^{0}$ violates isospin, 5% of $D_{s}(2112) \rightarrow D_{s}\left(0^{-}\right) \gamma$
- $D_{s ?}(2460 ?) \rightarrow D_{s}\left(0^{-}\right)(\pi \pi)_{L=0}$ allowed if 1^{+}, needs p-wave
- $D_{s 2}(2575) \rightarrow D K$ d-wave, $\rightarrow D^{*} K$ d-wave
- $D_{s 1}(2535) \rightarrow D^{*} K$ s-wave, d-wave
- Light-quark angular momentum $(j=\ell+s)$ nearly conserved
- $D_{s 1}(2535)$ mostly $j=3 / 2, D(2007)$ all $j=1 / 2$
- $D_{s 1}(2535) \rightarrow D(2007) K$ d-wave not s-wave $(\Gamma<2.3 \mathrm{MeV}$)
- $D(J=1, j=1 / 2)$ should be broad
- Isospin violation
- Violated by electromagnetism
- Violated by $m_{u} \neq m_{d}$
- Scale is $\left(m_{u}-m_{d}\right) / \Lambda_{Q C D} \ll 1$

Chiral Symmetry and Isospin Violation

$$
\Pi=\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & \frac{\pi^{0}}{\sqrt{2}}-\frac{\eta}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta
\end{array}\right) ; \quad M=\left(\begin{array}{ccc}
m_{u} & 0 & 0 \\
0 & m_{d} & 0 \\
0 & 0 & m_{s}
\end{array}\right)
$$

Mass-squared term from $\operatorname{Tr} \Pi M \Pi$ leads to $\pi^{0}-\eta$ mixing, with mixing angle

$$
\tan \theta=\frac{\sqrt{3}}{2} \frac{m_{d}-m_{u}}{m_{s}-\left(m_{u}+m_{d}\right) / 2}
$$

Use $\frac{m_{K^{+}}^{2}-m_{\pi^{+}}^{2}}{m_{K^{0}}^{2}-m_{\pi^{0}}^{2}}=\frac{m_{s}-m_{d}}{m_{s}-m_{u}} ; \quad \frac{m_{\eta}^{2}}{m_{\pi^{0}}^{2}}=\frac{\left(4 m_{s}+m_{u}+m_{d}\right) / 3}{m_{u}+m_{d}}$
to find $m_{s} / m_{d}=20, m_{u} / m_{d}=0.55, \tan \theta \approx 1 / 50$

"Almost-Model-Independent’ Spectroscopic Predictions (J. D. Jackson \& RNC: hep-ph/0305012)

- Potential includes V and S
- V is Coulombic, as suggested by QCD
- Fourth component of vector potential
- S is linear, confining
- Scalar, not fourth component of vector potential
- Determine potentials from Feynman diagram, expand in v / c

Effective Interaction

$$
\begin{aligned}
& \mathcal{V}_{\text {quasi-static }}=V+S+\left(\frac{V^{\prime}-S^{\prime}}{r}\right) \boldsymbol{\ell} \cdot\left(\frac{\boldsymbol{\sigma}_{1}}{4 m_{1}^{2}}+\frac{\boldsymbol{\sigma}_{2}}{4 m_{2}^{2}}\right)+\left(\frac{V^{\prime}}{r}\right) \boldsymbol{\ell} \cdot\left(\frac{\sigma_{1}+\boldsymbol{\sigma}_{2}}{2 m_{1} m_{2}}\right) \\
&+\frac{1}{12 m_{1} m_{2}}\left(\frac{V^{\prime}}{r}-V^{\prime \prime}\right) S_{12}+\frac{1}{6 m_{1} m_{2}} \nabla^{2} V \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}
\end{aligned}
$$

- If V is Coulombic $-V^{\prime \prime}+V^{\prime} / r=3 V^{\prime} / r$
- To order $1 / m_{2}: \quad M=\lambda \ell \cdot s_{1}+4 \tau \ell \cdot s_{2}+\tau S_{12}$

$$
\lambda=\frac{1}{2 m_{1}^{2}}\left[\frac{V^{\prime}}{r}\left(1+\frac{2 m_{1}}{m_{2}}\right)-\frac{S^{\prime}}{r}\right] \quad \tau=\frac{1}{4 m_{1} m_{2}} \frac{V^{\prime}}{r} .
$$

Quantum Mechanics in Action

- Can diagonalize commuting variables
- One choice: J^{2}, j^{2}, J_{z}
- Another: $J^{2}, j^{\prime 2}, J_{z} \quad j^{\prime}=\ell+s_{2}$
- Yet another: $J^{2}, S^{2}, J_{z} \quad S=s_{1}+s_{2}$
- Must be possible to express one basis in terms of another
- Calculate $\ell \cdot s_{1}$ in first basis
- Calculate $\ell \cdot s_{s}$ in second basis
- Calculate S_{12} in third

Masses of the Four \mathbf{P} states

$$
\begin{aligned}
& M_{2}=\frac{\lambda}{2}+\frac{5}{8} \tau \\
& M_{0}=-\lambda-8 \tau
\end{aligned}
$$

Masses of the two $J=1$ state from diagonalizing in the $|J j m\rangle$ basis

$$
\left(\begin{array}{cc}
\frac{\lambda}{2}-\frac{8}{3} \tau & -\frac{2 \sqrt{2}}{3} \tau \tag{1}\\
-\frac{2 \sqrt{2}}{3} \tau & -\lambda+\frac{8}{3} \tau
\end{array}\right)
$$

The two eigenmasses for $J=1$ are then

$$
\begin{aligned}
& M_{1+}=-\frac{\lambda}{4}+\sqrt{\frac{\lambda^{2}}{16}+\frac{1}{2}(\lambda-4 \tau)^{2}} \\
& M_{1-}=-\frac{\lambda}{4}-\sqrt{\frac{\lambda^{2}}{16}+\frac{1}{2}(\lambda-4 \tau)^{2}}
\end{aligned}
$$

Use Three Measured States to Predict Fourth

$$
\begin{aligned}
D_{2} & =M_{2}-M_{0} \\
D_{1} & =M_{1-}-M_{0}
\end{aligned}
$$

we find

$$
\tau=\frac{10}{87} D_{2}-\frac{2}{29} D_{1} \pm \sqrt{\left(\frac{10}{87} D_{2}-\frac{2}{29} D_{1}\right)^{2}+\frac{5}{232}\left(D_{1}^{2}-D_{1} D_{2}\right)}
$$

and

$$
\lambda=\frac{2}{3} D_{2}-\frac{32}{5} \tau
$$

Masses in D and $D_{s} \mathbf{P}$ States

	Exp.	Theory		
		Sol. A	Sol. B	DiPierro-Eichten
D mesons				
$M\left(2^{+}\right)(\mathrm{GeV})$	2.459	$[2.459]$	$[2.459]$	2.460
$M\left(1^{+}\right)(\mathrm{GeV})$	2.400	2.400	2.385	2.490
$M\left(1^{+}\right)(\mathrm{GeV})$	2.422	$[2.422]$	$[2.422]$	2.417
$M\left(0^{+}\right)(\mathrm{GeV})$	2.290	$[2.290]$	$[2.290]$	2.377
$\lambda(\mathrm{MeV})$		39	54	-11
$\tau(\mathrm{MeV})$		11	9	+11
$D_{s} \mathrm{mesons}$				
$M\left(2^{+}\right)(\mathrm{GeV})$	2.572	$[2.572]$	$[2.572]$	2.581
$M\left(1^{+}\right)(\mathrm{GeV})$		2.480	2.408	2.605
$M\left(1^{+}\right)(\mathrm{GeV})$	2.536	$[2.536]$	$[2.536]$	2.535
$M\left(0^{+}\right)(\mathrm{GeV})$	2.317	$[2.317]$	$[2.317]$	2.487
$\lambda(\mathrm{MeV})$		43	115	-7
$\tau(\mathrm{MeV})$		20	9	+11

Widths in D and $D_{s} \mathbf{P}$ States

	Exp.	DiPierro-Eichten pure s-wave pure d-wave	
D mesons			
$D_{2}^{*}(2460) \rightarrow D(1865) \pi$	23 ± 5		16
$D_{2}^{*}(2460) \rightarrow D^{*}(2007) \pi$	23 ± 5		9
$D_{1}(2422) \rightarrow D^{*}(2007) \pi$	$18.9_{-3.5}^{+4.6}$	94	10
$D_{1}(2400) \rightarrow D^{*}(2007) \pi$	$380 \pm 100 \pm 100$	100	
$D_{0}^{*}(2290)$	$305 \pm 30 \pm 25$	100	
D_{s} mesons			
$D_{2}^{*}(2573) \rightarrow D(1865) K$	15_{-4}^{+5}		8.9
$D_{2}^{*}(2573) \rightarrow D^{*}(2007) K$	15_{-4}^{+5}		1.4
$D_{1}(2535) \rightarrow D^{*}(2007) K$	<2.3	100	0.3

Choosing Solutions

- Need nearly pure $j=3 / 2$ to suppress $D_{1}(2422), D_{s}(2535)$ decays
- Forces solutions with large λ / τ
- Contrary to "traditional picture."

Alternative Views: Molecules not Atoms

- Barnes, Close, and Lipkin [hep-ph/0305025]
- Bound $D K$, near threshold
- Might be isovectors, too. Look for $D_{s} \pi^{ \pm}$
- Expect to find regular $c \bar{s}$ states as well

Alternative Views Chiral Symmetry + Heavy Quark Symmetry

- Bardeen, Eichten, and Hill [hep-ph/030549]
- If chiral symmetry good $\left(0^{-}, 1^{-}\right)$degenerate with $\left(0^{+}, 1^{+}\right)$
- Predicted roughly 340 MeV splitting, new 1^{+}at 2460 !
- Predict
$-\Gamma\left(\left(D_{s}\left(0^{+}\right) \rightarrow D_{s}^{*}\left(1^{-}\right) \gamma\right)=1.7 \mathrm{keV}\right.$
- $\Gamma\left(\left(D_{s}\left(0^{+}\right) \rightarrow D_{s}^{*}\left(0^{-}\right) \pi^{0}\right)=22 \mathrm{keV}\right.$
- $\Gamma\left(\left(D_{s}\left(1^{+}\right) \rightarrow D_{s}\left(0^{-}\right) \gamma\right)=5 \mathrm{keV}\right.$
- $\Gamma\left(\left(D_{s}\left(1^{+}\right) \rightarrow D_{s}\left(1^{-}\right) \pi^{0}\right)=22 \mathrm{keV}\right.$
- $\Gamma\left(\left(D_{s}\left(1^{+}\right) \rightarrow D_{s}\left(0^{-}\right) \pi \pi\right)=4 \mathrm{keV}\right.$
- $\Gamma\left(\left(D_{s}\left(1^{+}\right) \rightarrow D_{s}\left(0^{+}\right) \gamma\right)=3 \mathrm{keV}\right.$

Summary

- BaBar results on $D_{s} \pi^{0}$ contradict theoretical predictions
- Belle results on D somewhat contradict theoretical predictions
- Can fit p-wave masses, but with bigger spin-orbit energy than expected
- To suppress decay rate of 1^{+}states need to take extremely large spin-orbit energy
- BaBar results will profoundly affect heavy-quark light-quark spectroscopy

