CP Violation at Belle and Beyond

Tom Browder (University of Hawaii)

Introduction

Observation of CPV outside of the kaon sector.

Controversies.

The Future.

KM ansatz: CPV is due to a complex phase in the quark mixing matrix:

The B Physics Program

Quark couplings are complex and lead to CP violation. *Is CP violation a result of a single weak phase in the KM matrix ?*

Or is it a signal of new interactions beyond the Standard Model ?

Is there new physics in loop decays ?

Notational Conventions

Three Angles: $(\varphi_1, \varphi_2, \varphi_3)$ *or* (β, α, γ)

Three Angles: $(\varphi_1, \varphi_2, \varphi_3)$ *or* (β, α, γ)

 $\sin 2\phi_1$ from $B \rightarrow f_{CP} + B \leftrightarrow B \rightarrow f_{CP}$ interf.

Requirements for CPV measmts.

- <u>Many B mesons</u> [*Br* ($B \rightarrow f_{CP}$) ~ O(10⁻³)] - KEKB \rightarrow 140 fb⁻¹ (results today from 78 fb⁻¹)
- <u>Reconstruct+isolate CP eigenstate decays</u>
 - Kinematic variables for signal +(*cont. bkg suppr+PID*).
- <u>Tag flavor of the other B</u>
 - Likelihood based flavor tagging
- Measure decay-time difference
 - Asymmetric beam energies, high precision vertexing(Δz)
 - Likelihood fit to the Δt distributions

The KEKB Collider (8 x 3.5 GeV, ±11 mrad X angle)

New Daily Record May 13: 595 pb⁻¹/24 hr

Kinematic variables for the Y(4S)

Belle: CP eigenstates $(b \rightarrow c\bar{c}s)$

B→	CP	# evts.	S/(S+N)
<i>J/ψK_S</i> (K _S →π ⁺ π ⁻)	odd	1285	0.98
$J/\psi K_S(K_S{\rightarrow}\pi^0\pi^0)$	odd	188	0.82
$\psi(2S)K_S(\psi(2S){\rightarrow}l^+\!l^-)$	odd	91	0.96
$\psi(2S) \mathcal{K}_S \left(\psi(2S) {\rightarrow} \pi^+ \pi^- J_i\right)$	/ψ) odd	112	0.91
$\chi_{c1} K_S ~(\chi_{c1} \rightarrow \gamma J / \psi)$	odd	77	0.96
$\eta_c K_S \ (\eta_c {\rightarrow} K_S K^+ \pi^-)$	odd	72	0.65
$\eta_c K_S \ (\eta_c \rightarrow K^+ K^- \pi^0)$	odd	49	0.73
$\eta_c K_S(\eta_c \rightarrow \overline{\rho} p)$	odd	21	0.94
$J/\psi K^{\star 0}(K^{\star 0} \rightarrow K_S \pi^0)$	81% ev 19% od	en d 101	0.92
total		1996	0.94
J/ψK _L	even	1330	0.63
total		3326	

2958 events are used in the fit. hep-ex/020825, PRD 66, 071102(2002)

Example of a $B^0 \rightarrow J/\psi K_L$ Decay

1) $J/\psi \rightarrow l^+l^- + (K_L)$ 2) Assume $B \rightarrow J/\bar{\psi} K_L$: compute $P_{\rm KL}$ 3) Remove reconstructed $B \rightarrow J/\psi K, J/\psi K^*, \dots$ 4) Cut on a likelihood based on kinematical and shape quantities 5) Plot $\mathbf{P}_{\mathbf{B}}^{*} = |\vec{P}_{\mathbf{J}/\psi}^{*} + \vec{P}_{\mathbf{KL}}^{*}|$

Flavor-tag the other B meson

Use *inclusive* flavor-specific properties:

Inclusive Leptons: $b \rightarrow c (l \rightarrow V)$ $\downarrow S (l \rightarrow V)$ ■high-p l⁻ ■*intermed-p* l⁺ Inclusive Hadrons: •high-p π^+ ■*intermed-p* K⁺ •low-p π^-

Also take into account correlations. *Effective* $\varepsilon_{eff} = 28.8 \pm 0.6\%$

Tagging Performance illustrated with $B \rightarrow D^{*+}l^{-}v$

(OF-SF)/(OF+SF) ~(1-2 w)cos(Δm t)

r

E_{eff}

r > 0.875	0.136	0.020 ± 0.006	$0.126\substack{+0.003\\-0.004}$
0.75 < r < 0.875	0.094	$0.112 {\pm} 0.009$	0.056 ± 0.003
0.625 < r < 0.75	0.122	$0.160\substack{+0.009\\-0.008}$	0.056 ± 0.003
0.5 < r < 0.625	0.104	$0.228 {\pm} 0.010$	0.031 ± 0.002
0.25 < r < 0.5	0.146	$0.336 {\pm} 0.009$	0.016 ± 0.002
r < 0.25	0.398	$0.458 {\pm} 0.006$	0.003 ± 0.001
Total	1.0		$0.288 {\pm} 0.006$

W

 $\Delta t = (z_{TAG} - z_{CP}) / \gamma \beta$

Belle uses double-sided silicon strip detectors and a small radius beampipe (r=2cm) to measure Δz .

KEKB: 8 x 3.5 GeV : $\beta \gamma = 0.425$

Vertex resolutions: $(\sigma(z_{cp}) = 75 \mu m; \sigma(z_{tag}) = 140 \mu m)$

Measure $(z_{TAG} - z_{CP}) / \gamma \beta$

<u>Precise measurement of $sin2\phi_1$ (Belle)</u>

- ▶ 78 fb⁻¹ (84M BB)
 - 6 *b→c*cs decay modes (B→ΨK_S, ΨK_L, η_CK_{S..})

$$S_{ccs} = \sin 2\phi_1$$

= <u>0.719±0.074±0.035</u>

|λ_{ccs}| =0.950±0.049±0.026
 i.e., consistent
 with no direct CPV.

hep-ex/020825, PRD 66, 071102 (2002)

Compare CP odd and CP even (Belle)

Raw asymmetry

CP = -1 sample

 $sin2\phi_1$ = 0.716±0.083

CP = +1 sample $(B^0 \rightarrow J/\psi K_L)$

 $sin2\phi_1$ = 0.78±0.17

hep-ex/020825, PRD 66,071102 (2002)

Details of Belle's $sin2\phi_1$ measurement

TABLE III. The numbers of candidate events, N_{ev} , and values of sin $2\phi_1$ for various subsamples (statistical errors only).

Sample	$N_{\rm ev}$	$\sin 2\phi_1$
$\overline{J/\psi K_S^0(\pi^+\pi^-)}$	1116	0.73 ± 0.10
$(c\bar{c})K_S^0$ except $J/\psi K_S^0(\pi^+\pi^-)$	523	0.67 ± 0.17
$J/\psi K_L^0$	1230	0.78 ± 0.17
$J/\psi K^{*0}(K^0_S\pi^0)$	89	0.04 ± 0.63
$f_{\rm tag} = B^0 (q = +1)$	1465	0.65 ± 0.12
$f_{\text{tag}} = \overline{B}^0 (q = -1)$	1493	$0.77 \!\pm\! 0.09$
$0 \le r \le 0.5$	1600	1.27 ± 0.36
$0.5 < r \le 0.75$	658	0.62 ± 0.15
$0.75 < r \le 1$	700	0.72 ± 0.09
data before 2002	1587	0.78 ± 0.10
data in 2002	1371	0.65 ± 0.11
All	2958	0.72 ± 0.07

Belle's $sin(2\phi_1)$ measurement in the ρ - η plane

sin2φ₁ =0.719±0.074±0.035 Belle July, 2002

PDG2002 (http://pdg.lbl.gov /2002/kmmixrpp)

Status/history of results for $sin(2\varphi_1)[sin(2\beta)]$

Belle 2001: $sin(2\phi_1) = 0.99 \pm 0.14 \pm 0.06$

Babar 2001: $sin(2\phi_1) = 0.59 \pm 0.14 \pm 0.05$

First signals for CPV outside of the kaon sector

Belle 78 fb⁻¹ : $sin(2\varphi_1) = 0.719 \pm 0.074 \pm 0.035$ Babar 81 fb⁻¹: $sin(2\varphi_1) = 0.741 \pm 0.067 \pm 0.033$ Now becoming a precision measurement

Summer of 2001

VOLUME 87, NUMBER 9

PHYSICAL REVIEW LETTERS

27 August 2001

Observation of Large CP Violation in the Neutral B Meson System

We present a measurement of the standard model *CP* violation parameter $\sin 2\phi_1$ based on a 29.1 fb⁻¹ data sample collected at the Y(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. One neutral *B* meson is fully reconstructed as a $J/\psi K_S$, $\psi(2S)K_S$, $\chi_{c1}K_S$, $\eta_c K_S$, $J/\psi K_L$, or $J/\psi K^{*0}$ decay and the flavor of the accompanying *B* meson is identified from its decay products. From the asymmetry in the distribution of the time intervals between the two *B* meson decay points, we determine $\sin 2\phi_1 = 0.99 \pm 0.14(\text{stat}) \pm 0.06(\text{syst})$. We conclude that we have observed *CP* violation in the neutral *B* meson system.

VOLUME 87, NUMBER 9 PHYSICAL REVIEW LETTERS

27 August 2001

Observation of CP Violation in the B^0 Meson System

BaBat: with the BABAR de sample of Y(4S) de events in which one the flavor of the ot *CP*-violating asymm time distributions in

We present an updated measurement of time-dependent *CP*-violating asymmetries in neutral *B* decays with the *BABAR* detector at the PEP-II asymmetric *B* Factory at SLAC. This result uses an additional sample of $\Upsilon(4S)$ decays collected in 2001, bringing the data available to $32 \times 10^6 B\overline{B}$ pairs. We select events in which one neutral *B* meson is fully reconstructed in a final state containing charmonium and the flavor of the other neutral *B* meson is determined from its decay products. The amplitude of the *CP*-violating asymmetry, which in the standard model is proportional to $\sin 2\beta$, is derived from the decay time distributions in such events. The result $\sin 2\beta = 0.59 \pm 0.14(\text{stat}) \pm 0.05(\text{syst})$ establishes *CP* violation in the *B*⁰ meson system. We also determine $|\lambda| = 0.93 \pm 0.09(\text{stat}) \pm 0.03(\text{syst})$, consistent with no direct *CP* violation.

Belle:

Contributions to the systematic error in $sin(2\varphi_1)$

source	BABAR	Belle
vertexing	0.014	0.022
dilutions	0.012	0.015
resolution function	0.009	0.014
physics	0.005	0.007
$J/\psi K^0_{\scriptscriptstyle L}$ background	0.015	0.010
signal & background	0.018	0.006
fit bias	0.013	0.011
total	0.034	0.035

Table 8: Contributions to the systematic error in $\sin 2\beta$.

Current Belle and BaBar Results for sin $(2\varphi_l)$

sin2\$\operatorname{1}{1}\$ (Belle)
=0.719±0.074±0.035
sin2\$\operatorname{1}{1}\$ (BaBar)
=0.741±0.067±0.033

sin2¢₁ (World Av.) =0.734±0.055

$B \rightarrow \pi^+ \pi^- CPV CONTROVERSY$

"Penguin Pollution" in $B \rightarrow \pi^+ \pi^-$

Direct CPV asymmetry

• Asymmetry in B decay rates

$$\begin{split} A_{dir} &\equiv \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)} \\ &= \frac{2r \sin \phi \sin \delta}{1 + r^2 + 2r \cos \phi \cos \delta} \\ r &= |P| / |T|, \phi = weak \ phase \ diff \\ \delta = strong \ phase \ diff \end{split}$$

• The direct CP asymmetry (A_{dir}) can be significant if the b \rightarrow d penguin (P) and b \rightarrow u tree(T) amplitudes are comparable.

Observables: $S_{\pi\pi}$ and $A_{\pi\pi}$

$$S_{\pi\pi} = \frac{2 \operatorname{Im} \lambda}{|\lambda|^{2} + 1} = \sqrt{1 - A_{\pi\pi}^{2}} \frac{\sin 2(\phi_{2} + \theta)}{|\lambda|^{2} + 1}$$
$$A_{\pi\pi} = \frac{|\lambda|^{2} - 1}{|\lambda|^{2} + 1} = \frac{|\overline{A}_{+-}|^{2} - |A_{+-}|^{2}}{|\overline{A}_{+-}|^{2} + |A_{+-}|^{2}} \qquad \begin{array}{c} \text{DCPV} \\ \text{asymmetries} \end{array}$$

 λ is a complex parameter: the product of p/q and the ratio of the amplitudes for B⁰ and B⁰ decay to $\pi^+\pi^-$

N.B. Notational convention, $C_{\pi\pi} = -A_{\pi\pi}$

Measurement of CPV asymmetries

$$P_{\pi\pi}(B \to \pi^{+}\pi^{-}; \Delta t) = \frac{e^{-|\Delta t|/\tau_{B}}}{4\tau_{B}} [1 + q \cdot \{A_{\pi\pi}\cos(\Delta m\Delta t) + S_{\pi\pi}\sin(\Delta m\Delta t)\}]$$

with q=±1

Particle Identification (Belle)

For $B \rightarrow \pi^{+} \pi^{-}$, eff: $\varepsilon_{\pi} = 91\%$ fake: $\varepsilon_{K} = 10.3\%$ (10.0±0.2) K⁻, (10.6±0.2) K⁺

Continuum suppression (Idea)

Collimated, jetlike

 $e^+e^- \rightarrow Y(4S) \rightarrow BB$ Small energy release *spherical*
Continuum suppression (Belle)

Kinematic variables for $B \rightarrow \pi^+ \pi^-$

Event shape cut depends on flavor tag category.

$B \rightarrow \pi^+ \pi^-$ Data Sample

Tests: Lifetime and Mixing Measurements

Tests with Control Samples

Fit Results

$$A_{\pi\pi} = +0.77 \pm 0.27(\text{stat}) \pm 0.08(\text{syst})$$

$$S_{\pi\pi} = -1.23 \pm 0.41(\text{stat}) \stackrel{+0.08}{_{-0.07}} (\text{syst})$$

After background subtraction

data points with LR > 0.825 curves from combined fit result

Fit Results: Statistical Issues

Confidence Regions:

- Feldman-Cousins frequentist approach using Toy MC exps.
- Acceptance regions from MC ensembles.
- Systematic errors included.
- Confidence Level (CL) calculated at each point.

Constraints on the CKM angle $\varphi_2(\alpha)$

S_{ππ}, A_{ππ} depend on 4 parameters:
 φ₂, φ₁[21.3° -25.9°], [P/T][0.15-0.45], δ
 -> plot confidence contours in (φ₂, δ) for various [P/T]
 e.g.

Data: Belle (78 fb⁻¹) versus Babar (81 fb⁻¹)

Comparison of Belle and BaBar ($S_{\pi\pi}$, $A_{\pi\pi}$)

r=|P|/|T|; strong phase difference

Branching Fraction Results for $B \rightarrow h h$ Modes 29 fb⁻¹ (PRD 66, 092002 2002, B.C.K Casey et al) \rightarrow 78 fb⁻¹

Mode	N_s	$\mathcal{S}\left[\sigma ight]$	<i>ϵ</i> [%]	$B[10^{-6}]$
$K^+\pi^-$	$595.9 \ {}^{+}_{-} \ {}^{33.2}_{32.5}$	24.1	37.9	$18.5 \pm 1.0 \pm 0.7$
$K^+\pi^0$	198.9 ± 21.5	10.8	18.3	$12.8 \pm 1.4 \ {}^{+}_{-} \ {}^{1.4}_{1.0}$
$K^0\pi^+$	187.0 ± 16.3	16.4	10.0	$22.0 \pm 1.9 \pm 1.1$
$K^0\pi^0$	72.6 ± 14.0	5.8	6.8	$12.6 \pm 2.4 \pm 1.4$
$\pi^+\pi^-$	$132.7 \ {}^{+}_{-} \ {}^{18.9}_{18.2}$	8.5	35.2	$4.4 \pm 0.6 \pm 0.3$
$\pi^+\pi^0$	72.4 ± 17.4	4.5	16.1	$5.3\pm1.3\pm0.5$
$\pi^0\pi^0$	$12.0 \begin{array}{c} + & 9.1 \\ - & 8.6 \end{array}$	1.9	7.8	$1.8 \stackrel{+}{_{-}} \stackrel{1.4}{_{-}} \stackrel{+}{_{-}} \stackrel{0.5}{_{-}} < 4.4$
K^+K^-	$-1.0 \ {}^+ \ {}^{6.6}_{5.9}$	0.0	20.1	< 0.7
$K^+\overline{K}{}^0$	$8.6\pm~5.9$	1.6	5.9	$1.7 \pm 1.2 \pm 0.1 < 3.4$
$K^0\overline{K}^0$	2.0 ± 1.9	1.3	2.9	$0.8 \pm 0.8 \pm 0.1 < 3.2$

These measurements provide additional clues.

Data for $B^+ \rightarrow \pi^+ \pi^0$ and $B \rightarrow \pi^0 \pi^0$

Clues from the Ratios of Branching Fractions

Modes	Ratio @78 fb $^{-1}$	
$\Gamma(\pi^+\pi^-) / \Gamma(K^+\pi^-)$	$0.24 \pm 0.04 \pm 0.02$	
$2\Gamma(K^+\pi^0)/\Gamma(K^0\pi^+)$	$1.16 \pm 0.16 \ {}^+ \ {}^{0.14}_{0.11}$	
$\Gamma(K^+\pi^-)/\ \Gamma(K^0\pi^+)$	$0.91 \pm 0.09 \pm 0.06$	
$\Gamma(K^+\pi^-)/2\Gamma(K^0\pi^0)$	$0.74 \pm 0.15 \pm 0.09$	
$\Gamma(\pi^+\pi^-)$ $/2\Gamma(\pi^+\pi^0)$	$0.45 \pm 0.13 \pm 0.05$	
$\Gamma(\pi^0\pi^0)$ / $\Gamma(\pi^+\pi^0)$	< 0.92	

The deviation of $\Gamma(\pi^+ \pi)/2 \Gamma(\pi^+ \pi^0)$ from unity indicates: either φ_3 >90° or large FSI or a large color suppressed contribution.

The bound $\Gamma(\pi^0\pi^0)/2\Gamma(\pi^+\pi^0)$ gives a weak limit on $\theta = |\varphi_{2eff} - \varphi_2| < 68^0$ (e.g. Grossman-Quinn bound)

FIG. 10. The A and \tilde{A} isospin triangles.

M. Gronau and D.London. PRL 65, 2381 (90)

Dreams of New Physics and Adventures with rare B decays.

Hunting for phases from new physics

Example:

In the SM, $sin(2\varphi_1)^{eff} = sin(2\varphi_1) (B \rightarrow \psi K_S)$

Hunting for new phases in $b \rightarrow s$ penguins

(hep-ph/0209290), J-P Lee, K. Y. Lee; (hepph/0208226) B. Dutta, C.S. Kim and S. Oh; (hepph/0208091), M. Raidal; (hep-ph/0208087), M. Ciuchini, L. Silvestrini; (hep-ph/0208016), A. Datta;(hep-ph/0208005), H. Murayama;(hepph/0207356), G. Hiller; (hep-ph/0207070), M-B. Causse; (hep-ph/0208080) Y. Nir

K. Abe et al,PRD 67, 03402(R),2003

 2.7σ off

Belle: $\sin 2\varphi_{1eff} = -0.73 \pm 0.64 \pm 0.22$

c.f. Babar: $sin2\phi_{1eff} = -0.19\pm0.51\pm0.09$

 $WA: sin2\phi_{1eff} (\varphi K_{S}) = -0.39 \pm 0.41$

 $N(K K K_{S}) = 96 \pm 10$

Search for New Physics in the $B \rightarrow K^+ K^- K_S$ penguin decay.

> +0.33S_{KKKs} = 0.49±0.43±0.11 -0.00

The third error is due to uncertainty in the CP content.

In the absence of New Physics, $S_{KKKs} = sin (2\phi_1)$

Current WA: $sin (2\phi_1)=0.734\pm0.055$

Hunting for new phases in $b \rightarrow s$ penguins

Large rates for exclusive and inclusive $B \rightarrow \eta' X_s$ decays.

 $N(\eta' K_{s}) = 146 \pm 12$

Search for New Physics in the $B \rightarrow \eta' K_S$ penguin decay.

 $S_{\eta'Ks} = 0.71 \pm 0.37 + 0.05$ -0.06

In the absence of New Physics, $S_{\eta'Ks} = \sin(2\varphi_1)$ (a.k.a. $\sin(2\beta)$)

Current WA: $sin (2\phi_1)=0.734\pm0.055$

The Hunt for the EW Penguin: $B \rightarrow X_s l^+ l^-$

Figure 1: Standard Model diagrams for the decays $B \to K^{(*)} \ell^+ \ell^-$.

As in b \rightarrow s γ , heavy particles in the loops can be replaced with NP particles (e.g.W⁺ \rightarrow H⁺)

Note contributions from virtual γ^* , W, Z^* and internal t quark.

Belle 2001: Observation of $B \rightarrow K l^+ l^-$

Predicted distributions for $q^2 = M^2_{l+l}$

• Solid line + blue bands: SM range (\pm 35%); Ali et al. form factors

- Dotted line: SUGRA model ($R_7 = -1.2$, $R_9 = 1.03$, $R_{10} = 1$)
- Long-short dashed line: SUSY model ($R_7 = -0.83$, $R_9 = 0.92$, $R_{10} = 1.61$)

m_{l+l} distributions for $B \rightarrow K l^+ l^-$

Belle 2002 (update)

FIG. 5. The dilepton mass distributions for $B \to K \ell^+ \ell^-$ candidates. The hatched histogram shows the data distribution while the open histogram shows the MC signal distribution.

Consistent with the SM. Statistics are low

Theoretical predictions: exclusive $b \rightarrow s l^+ l^-$ modes

Authors	$\mathcal{B}(B \rightarrow K l^+ l^-)$	$\mathcal{B}(B \rightarrow K^* \mu^+ \mu^-)$	$\mathcal{B}(B \rightarrow K^* e^+ e^-)$
	$/10^{-6}$	$/10^{-6}$	$/10^{-6}$
Ali et al. (2000)	$\rightarrow 0.57^{+0.17}_{-0.10}$	$1.9^{+0.5}_{-0.4}$	$2.3^{+0.7}_{-0.5}$
Ali et al. (2001) [NNLO] -	$\rightarrow 0.35 \pm 0.12$	1.19 ± 0.39	1.58 ± 0.49
Aliev et al. (1997)	0.31 ± 0.09	1.4	
Colangelo et al. (1996)	0.3	1.0	
Faessler et al. (2002)	0.55	0.81	
Geng and Kao (1996)	0.5	1.4	
Melikhov et al. (1998)	0.44	1.15	1.50
Zhong et al. (2002)	$0.69\substack{+0.28\\-0.25}$	$1.98^{+0.66}_{-0.71}$	$2.01\substack{+0.65 \\ -0.73}$

• $\mathcal{B}(B \rightarrow K\ell^+\ell^-) =$ dominant uncertainty: form factors (0.35 ± 0.11(form fac.) ± 0.04(μ_b) ± 0.02($m_{t,pole}$) ± 0.0005(m_c/m_b)) × 10⁻⁶ [Ali, Lunghi, Greub, Hiller, hep-ph/0112300, 2001] New calculations of QCD corrections predict too high a rate for B->K* γ ; the necessary adjustment of T_1 form factor lowers the prediction for B->K* l^+l^- .

Belle 2002: Observation of *inclusive* $B \rightarrow X_s l^+ l^-$

BF(B \rightarrow X_sl⁺l⁻) = (6.1±1.4^{+1.3}_{-1.1}) x 10⁻⁶

Belle 2002: M_{11} and M_{Xs} distributions for $B \rightarrow X_s l^+ l^-$

Data vs MC

hep-ex/0208029, PRL xxxx

Sensitivity to new physics in $A_{FB} (B \rightarrow K^* l^+ l^-)$

Super KEKB, PEP-II, L=10³⁵⁻³⁶/cm²/sec;

G. Hiller

Figure 4. Flavor/CP yield of models of electroweak symmetry breaking.

Scenarios for flavor physics beyond the SM.

Signatures in time-dependent CPV (φK_S), rare decays (e.g. $b \rightarrow s l^+ l^-$, $b \rightarrow s \gamma$)

Sensitivity to new physics phases

Pessimistic KEKB Future Scenario: K. Oide

Effect of crab cavity system •Beam-Beam simulation using Ohmi's code (Tawada)

-Luminosity will be doubled with the present machine parameters, if the crossing angle becomes zero.

Super KEKB design parameters

Machine Parameters of the SuperKEKB

	LER	HER	
Horizontal Emittance	33	33	nm
Vertical Emittance	2.1	2.1	nm
x-y coupling	6.4	6.4	%
Beam current	9.4	4.1	Α
Number of bunches	5018 (2% ä		
Bunch current	1.87	0.817	mA
Bunch spacing	0	m	
Half crossing angle	1	mrad	
Luminosity reduction R _L	0.7		
$\xi_{\mathbf{X}}$ reduction $\mathbf{R}_{\xi\mathbf{X}}$	0.6		
_{ຣັy} reduction R _{ຣັy}	0.916		
Bunch length	3	3	mm
Radiation loss U _O	1.23	3.48	MeV/turn
Betatron tune v_x/v_y	45.515/43.57 ?	44.515/41.57 ?	
beta's at IP β_x^* / β_y^*	15/0.3	15/0.3	cm
beam-beam parameters हू. / ह्र,	0.068/0.05	0.068/0.05	
Beam lifetime	~150	~150	min.
Luminosity	1	10 ³⁵ /cm ² /sec	
Backup Slides

Must deal with "Penguin Pollution"

e.g. use $B \rightarrow \pi^0 \pi^0$ to determine size of penguin effects:

Branching Fractions for $B \rightarrow \pi \pi$ Modes

If all three $B \rightarrow \pi \pi$ modes are measured, an isospin analysis allows the additional strong phase δ to be determined. Can then extract $\sin(2 \varphi_2)$.

FIG. 10. The A and \tilde{A} isospin triangles.

Measuring $\phi_3(\gamma)$ in $D_{CP}K^-$ decays

When the D meson decays to a CP eigenstate, the two diagrams interfere. The interference depends on the phase of V_{ub} i.e. ϕ_3

BFs and Direct CPV in D_{CP} K⁻

$155.2+-13.6 \text{ D}^{0}->K^{-}\pi^{+}$

22.5+-5.7 CP=+1

BELLE-CONF-0108,

hep-ex/nnnn

$sin(2\varphi_1 + \varphi_3)$ from $B^0 \rightarrow D^{*+} \pi^-$

mixing freq $\Delta m=0.517+-0.017(stat)+-0.019(sys)$

hep-ex/0211065 to appear in PRD.

 $sin(2\varphi_1 + \varphi_3)$ from $B^0 \rightarrow D^{*+} \pi^-$

Sensitivity is +-0.34 with 200 fb⁻¹

Direct CP Asymmetries for $B \rightarrow h h$ Modes

Mode	$N_s(\overline{B})$	$N_s(B)$	\mathcal{A}_{CP}	90% confidence intervel
$K^+\pi^-$	$235.4 \ {}^+ \ {}^{19.8}_{19.1}$	$270.2 \ {}^+ \ {}^{19.7}_{18.9}$	$-0.07 \pm 0.06 \pm 0.01$	$-0.18 < \mathcal{A}_{CP} < 0.04$
$K^+\pi^0$	122.0 ± 15.8	76.5 ± 14.5	$0.23 \pm 0.11 \ {}^+ \ {}^{0.01}_{0.04}$	$-0.01 < \mathcal{A}_{CP} < 0.42$
$K^0\pi^+$	$119.1 \ {}^+ \ {}^{13.8}_{13.1}$	$104.4 \ {}^+ \ {}^{13.2}_{12.5}$	$0.07 \ {}^+ \ {}^{0.09}_{0.08} \ {}^+ \ {}^{0.01}_{0.03}$	$-0.10 < \mathcal{A}_{CP} < 0.22$
$\pi^+\pi^0$	31.2 ± 11.9	41.3 ± 12.7	-0.14 ± 0.24 $^+_{-}$ $^{0.05}_{0.04}$	$-0.57 < \mathcal{A}_{CP} < 0.30$

Hint (~2.2 σ level) of direct CP violation in $B^0 \rightarrow \pi^+ \pi^-$: $A_{\pi\pi} = 0.77 \pm 0.27 \pm 0.08$

In the pure penguin mode $B^{\pm} \rightarrow K_S \pi^{\pm}$ no asymmetry observed with 78 fb⁻¹

Signals for $B \rightarrow h h$ Modes at 78 fb⁻¹

Theoretical Expectations: 5-10 % in QCD Fact or pQCD

Systematic uncertainties*

	Αππ		Sππ	
source	+error	-error	+error	-error
Background fractions	+0.058	-0.048	+0.044	-0.055
Vertexing	+0.044	-0.054	+0.038	-0.012
Fit bias	+0.016	-0.021	+0.052	-0.020
Wrong tag fraction	+0.026	-0.021	+0.015	-0.016
$\tau_B, \Delta m_d, A_{K\pi}$	+0.021	-0.014	+0.022	-0.022
Resolution function	+0.019	-0.020	+0.010	-0.013
Background shape	+0.003	-0.015	+0.007	-0.002
Total	+0.08	-0.08	+0.08	-0.07

* blind analysis: actual estimations done before seeing fit result.

Constraints on the CKM angle ϕ_2

$$\begin{split} A(B^{0} \rightarrow \pi^{+}\pi^{-}) &= -(|T| e^{i\delta_{T}} e^{i\phi_{3}}) + |P| e^{i\delta_{P}}), \\ A(\overline{B}^{0} \rightarrow \pi^{+}\pi^{-}) &= -(|T| e^{i\delta_{T}} e^{-i\phi_{3}}) + |P| e^{i\delta_{P}}), \\ A(\overline{B}^{0} \rightarrow \pi^{+}\pi^{-}) &= -(|T| e^{i\delta_{T}} e^{-i\phi_{3}}) + |P| e^{i\delta_{P}}), \\ A_{\pi\pi} &= e^{i\phi_{2}} \frac{1 + |P/T| e^{i(\delta+\phi_{3})}}{1 + |P/T| e^{i(\delta-\phi_{3})}} \\ A_{\pi\pi} &= e^{i\phi_{2}} \frac{1 + |P/T| e^{i(\delta-\phi_{3})}}{1 + |P/T| e^{i(\delta-\phi_{3})}} \\ A_{\pi\pi} &= [\sin 2\phi_{2} + 2 |P/T| \sin(\phi_{1} - \phi_{2}) \cos \delta - |P/T|^{2} \sin 2\phi_{1}]/R_{\pi\pi}, \\ A_{\pi\pi} &= -[2 |P/T| \sin(\phi_{1} + \phi_{2}) \sin \delta]/R_{\pi\pi}, \\ R_{\pi\pi} &= 1 - 2 |P/T| \cos(\phi_{1} + \phi_{2}) \cos \delta + |P/T|^{2} \\ \delta &\equiv \delta_{P} - \delta_{T} \\ \hline PT| & 0.15 - 0.45 \text{ (representative) Theory ~ 0.3} \\ \phi_{1} &= 21.3 - 25.9 \text{deg} \text{ (Belle & BaBar combined)} \end{split}$$

K. Abe et al. [Belle Collaboration], Phys. Rev. D 67, 031102(R) (2003)

$B^0 \rightarrow K^+ K^- K_S : CP = \pm 1$ Mixture

Since $B^0 \rightarrow K^+K^-K_S$ is 3-body decay, the final state is a mixture of $CP = \pm 1$. How can we determine the mixing fraction?

$CP = \pm 1$ fraction is equal to that of λ =even/odd

 $B^0 \rightarrow K^+ K^- K_S : CP = \pm 1$ Mixture

λ-even fraction in $|K^0K^0>$ can be determined by $|K_SK_S>$ system

$$\frac{\left|K^{0}\overline{K}^{0}\right\rangle}{CP = +1} = \frac{a}{\sqrt{2}} \left(\frac{\left|K_{S}K_{S}\right\rangle + \left|K_{L}K_{L}\right\rangle}{\lambda = \text{even}}\right) + b\left|K_{S}K_{L}\right\rangle}{\lambda = \text{odd}}$$

Add K^+ to above kets $\left|K^+K^0\overline{K}^0\right\rangle = \frac{a}{\sqrt{2}}\left(K^+K_SK_S\right) + \left|K^+K_LK_L\right\rangle\right)$ $+ b\left|K^+K_SK_L\right\rangle$ Using isospin symmetry

$$B(B^{+} \otimes K^{+}K^{0}\overline{K}^{0}) = B(B^{0} \otimes K^{0}K^{+}K^{-})' \frac{t_{B^{+}}}{t_{B^{0}}}$$
$$= \frac{B(B^{0} \otimes K_{S}K^{+}K^{-})}{2}' \frac{t_{B^{+}}}{t_{B^{0}}}$$

$$a^{2} = 2 \frac{B(B^{+} \otimes K^{+}K_{S}K_{S})}{B(B^{0} \otimes K^{0}K^{+}K^{-})}, \frac{t_{B^{0}}}{t_{B^{+}}}$$
$$= \frac{B(B^{+} \otimes K^{+}K_{S}K_{S})}{B(B^{0} \otimes K_{S}K^{+}K^{-})}, \frac{t_{B^{0}}}{t_{B^{+}}}$$
$$= 1.04 \pm 0.19(\text{stat}) \pm 0.06(\text{syst})$$

$$100^{+0}_{-20}\%$$
 CP even

Constraints on ϕ_2 (cont'd)

Consistent with theoretical predictions
 Larger |P/T| favored

TABLE III: The fractions of MC pseudo-experiments outside the physical boundary and above the CP violation we observe for various input values. $\rho_{\pi\pi} = \sqrt{\mathcal{A}_{\pi\pi}^2 + \mathcal{S}_{\pi\pi}^2}$. The selected points are on the line segment between $(\mathcal{A}_{\pi\pi}, \mathcal{S}_{\pi\pi}) = (0,0)$ and (+0.57, -0.82).

$\text{Input} \rho_{\pi\pi}$	The fractions outside the physical boundary	The fractions above the CP violation	
	(%)	we observe (%)	
0.00	1.8	0.07	
0.20	3.3	0.17	
0.40	7.3	0.62	
0.60	16.4	1.7	
0.80	34.4	6.0	
1.00	60.1	16.6	

Statistical Issues: Likelihood for $B \rightarrow \pi \pi$

FIG. 3: (a) The value of $-2\ln(\mathcal{L}/\mathcal{L}_{max})$ vs. $\mathcal{A}_{\pi\pi}$ and (b) the value of $-2\ln(\mathcal{L}/\mathcal{L}_{max})$ vs. $\mathcal{S}_{\pi\pi}$. The dotted curves represent parabolic functions which pass the point at 1σ .

Errors for $B \rightarrow \pi \pi$ *in data and toy* MC

FIG. 4: The result of MC pseudo-experiments with input values of $\mathcal{A}_{\pi\pi} = +0.57$ and $\mathcal{S}_{\pi\pi} = -0.82$: the distributions of (a) the negative and (b) positive MINOS errors of $\mathcal{A}_{\pi\pi}$, and (c) the negative and (d) positive MINOS errors of $\mathcal{S}_{\pi\pi}$. The arrows indicate the MINOS errors obtained from the fit to data.

Example of a Fully-reconstructed Event

Time Dependent Likelihood Fit

Dependence of the results on cuts

Cut value	${\cal A}_{\pi\pi}$	$\mathcal{S}_{\pi\pi}$
default	$0.77\substack{+0.20\\-0.23}$	$-1.23\substack{+0.24\-0.15}$
(KID < 0.4)		
$ \Delta E < 2\sigma$	$0.81\substack{+0.20\-0.22}$	$-1.21\substack{+0.25\-0.16}$
$ \Delta E < 1\sigma$	$0.82\substack{+0.21\-0.25}$	$-1.18\substack{+0.29\\-0.19}$
KID < 0.20	$0.74^{+0.20}_{-0.23}$	$-1.11\substack{+0.26\\-0.17}$
KID < 0.15	$0.59\substack{+0.22\-0.24}$	$-1.14\substack{+0.23 \\ -0.14}$
LR > 0.825	$0.84\substack{+0.22\-0.25}$	$-1.19\substack{+0.27\\-0.18}$
LR > 0.925	$0.69\substack{+0.26\-0.30}$	$-1.24\substack{+0.30\-0.19}$
qr > 0.75	$1.02\substack{+0.19 \\ -0.25}$	$-1.24\substack{+0.19 \\ -0.25}$
qr > 0.875	$0.91\substack{+0.24 \\ -0.31}$	$-1.18\substack{+0.24 \\ -0.31}$
$ \Delta t < 15 \text{ ps}$	$0.77\substack{+0.20\\-0.23}$	$-1.25\substack{+0.24\-0.15}$
$ \Delta t < 5 ~{ m ps}$	$0.76\substack{+0.20\\-0.22}$	$-1.27\substack{+0.26 \\ -0.17}$
Sample I (42 fb $^{-1}$)	$1.00\substack{+0.19\\-0.25}$	$-1.14\substack{+0.30\\-0.21}$
Sample II (36 fb^{-1})	$0.37\substack{+0.32\-0.33}$	$-1.99\substack{+0.70\\-0.65}$

TABLE V: Selection-requirement dependence of $\mathcal{A}_{\pi\pi}$ and $\mathcal{S}_{\pi\pi}$ (MINOS errors only).