Precision Physics with inclusive B decays

Christian Bauer

UC San Diego

In collaboration with
Ben Grinstein, Zoltan Ligeti, Mike Luke, Aneesh Manohar

Christian Bauer @ SLAC, 8/9 2002 - p. 1

Outline

- Introduction
- Fit to inclusive shape variables
- Discussion of available data
- Results for m_{b} and $\left|V_{c b}\right|$
- Discussion of errorrs
- BABAR hadronic moment
- Overview of measurement
- Relation between experiment and theory
- Some discussions
- Conclusions

Christian Bauer @ SLAC, 8/9 2002 - p. 2

Introduction

Christian Bauer @ SLAC, 8/9 2002 - p. 3

The Flavor Sector of the SM

Flavor changing processes at low energies

- Interactions mediated by local 4-Fermion interactions

$B_{d}-\bar{B}_{d}$ mixing

$B \rightarrow \psi K_{s}$
- There are hundreds of different interactions

What do we know about them?

Christian Bauer @ SLAC, 8/9 2002 - p. 4

The Flavor Sector of the SM

Flavor changing processes in the Standard model

- Interactions mediated by interactions with W boson

Nuclear Beta decay

$$
B_{d}-\bar{B}_{d} \text { mixing }
$$

- There are 11 parameters:
- Fermi coupling constant G_{F}
- 6 quark masses
- 4 parameters in the CKM matrix (A, λ, ρ, η)

How to test this prediction?

Christian Bauer @ SLAC, 8/9 2002 - p. 4

Information from B decays

Most of B decays can be described by

$$
\begin{gathered}
m_{t}=175 \pm 5, \quad m_{u, d, s}=0, \quad\left|V_{u s}\right|=0.2169 \pm 0.0026 \\
G_{F}=(1.16639 \pm 0.00001) \times 10^{-5} \mathrm{GeV}^{-2}
\end{gathered}
$$

In addition to

- Two quark masses m_{c} and m_{b}
- Three additional CKM parameters

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

Christian Bauer @ SLAC, 8/9 2002 - p.

Information from B decays

Most of B decays can be described by

$$
\begin{gathered}
m_{t}=175 \pm 5, \quad m_{u, d, s}=0, \quad\left|V_{u s}\right|=0.2169 \pm 0.0026 \\
G_{F}=(1.16639 \pm 0.00001) \times 10^{-5} \mathrm{GeV}^{-2}
\end{gathered}
$$

In addition to

- Two quark masses m_{c} and m_{b}
- Three additional CKM parameters

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)\right.
$$

- Precise measurement of $\left|V_{c b}\right|$ crucial

Christian Bauer @ SLAC, 8/9 2002 - p. 5

The Unitarity Triangle

Christian Bauer @ SLAC, 8/9 2002 - p. 6

Checking this picture

Why is it hard to check this picture?

- Relations are between parton model amplitudes
- Measurements are done with hadrons

We have to understand the hadronization effects

Be very careful

(Don't believe everything theorists tell you)

Christian Bauer @ SLAC, 8/9 2002 - p. 7

What to believe?

Model dependent Results

- Assume model to calculate strong interaction effect
- How do we know whether to believe the model?
- How to estimate uncertainties of model?

Model independent results

- Strong interaction effect calculable in limit of QCD
- Corrections are parametrically suppressed

$$
\langle O\rangle=(\text { calc })\left[1+\sum_{k}(\text { small parameter })^{k}\right]
$$

Christian Bauer @ SLAC, 8/9 2002 - p. 8

Model independent tools

Need a parametrically small quantity \Rightarrow separated scales

Christian Bauer @ SLAC, 8/9 2002 - p.9

Model independent tools

Need a parametrically small quantity \Rightarrow separated scales

chiral limit
 $m_{u, d} \ll \Lambda_{\chi}$
 heavy quark limit $\quad m_{b} \gg \Lambda_{\mathrm{QCD}}$

Christian Bauer @ SLAC, 8/9 2002 - p. 9

Model independent tools

Need a parametrically small quantity \Rightarrow separated scales

$$
\begin{array}{cc}
\text { chiral limit } & m_{u, d} \ll \Lambda_{\chi} \\
\hline \text { heavy quark limit } & m_{b} \gg \Lambda_{\mathrm{QCD}}
\end{array}
$$

- Spin Flavor symmetry
\Rightarrow reduction of form factors
- Non-relativistic QCD
\Rightarrow Quarkonium binding effects
- Large Energy Expansion
\Rightarrow NP effects in heavy to light decays
- Operator Product Expansion
\Rightarrow NP effects in inclusive processes

Operator Product Expansion

Describe the decay $B \rightarrow X \ell \bar{\nu}$ using optical theorem

$$
\left.\Gamma \sim \sum_{X}\left|\langle B| J^{\mu}\right| X\right\rangle\left.\right|^{2} \sim \int d^{4} q e^{-i q \cdot x} \operatorname{Im}\langle B| T\left\{J^{\mu \dagger}(x) J^{\nu}(0)\right\}|B\rangle
$$

Intermediate state off shell \rightarrow propagates short distance

Expand in terms of local operators (OPE) Similar to Deep Inelastic Scattering

Christian Bauer @ SLAC, 8/9 2002 - p. 10

Inclusive B decays

Typical OPE result for differential spectrum looks like
$\frac{d \Gamma}{d X}=\frac{d \Gamma_{\mathrm{part}}}{d X}+\frac{\bar{\Lambda}}{m_{M}} f_{\Lambda}(X)+\frac{\lambda_{i}}{m_{M}^{2}} f_{\lambda_{i}}(X)+\frac{\rho_{i}}{m_{M}^{3}} f_{\rho_{i}}(X)+\ldots$
Typical OPE result for moments of spectra looks like

$$
\langle X\rangle=\langle X\rangle_{\mathrm{part}}+\frac{\bar{\Lambda}}{m_{M}} F_{\Lambda}+\frac{\lambda_{i}}{m_{M}^{2}} F_{\lambda_{i}}+\frac{\rho_{i}}{m_{M}^{3}} F_{\rho_{i}}+\ldots
$$

All inclusive results given in terms of 9 parameters:

$$
\left\{\bar{\Lambda}, \lambda_{1}, \lambda_{2}, \rho_{1}, \rho_{2}, \mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}, \mathcal{T}_{4}\right\}
$$

Three relations amongst parameters $\Rightarrow 6$ parameters

Christian Bauer @ SLAC, 8/9 2002 - p. 11

Differential Spectra in the OPE

Which quantities can be calculated in OPE?

- To compare OPE results with data, have to smear result
- Smearing has to be over "many resonances"

Moments of distributions are calculable
Christian Bauer @ SLAC, 8/9 2002 - p. 12

CLEO analysis of $V_{c b}$

- Measure total inclusive decay rate $\Gamma_{\text {sl }}$
- Measure $\bar{\Lambda}$ and λ_{1} from moments of the decay spectra
- Determine $\left|V_{c b}\right|$

$V_{\mathrm{cb}}^{\mathrm{CLEO}}=\left[40.4 \pm 0.5_{\Gamma} \pm 0.4_{m_{b}, \lambda_{1}} \pm 0.9_{\mathrm{th}}\right] \times 10^{-3}$

Christian Bauer @ SLAC, 8/9 2002 - p. 13

Issues with the OPE

To what accuracy can we trust the OPE?

- Accuracy depends on size of higher order terms
- Value of the six parameters $\rho_{i}, \mathcal{T}_{i}$ unknown
- Dimensional analysis: $\rho_{i}, \mathcal{T}_{i} \sim \Lambda_{\mathrm{QCD}}^{3}$
- How big is Λ_{QCD} ?
- How much do we trust the OPE itself?
- Duality violation
- Separate from previous question?

Can we address this question
experimentally?
Christian Bauer @ SLAC, 8/9 2002 - p. 14

A Global Fit

Christian Bauer @ SLAC, 8/9 2002 - p. 15

Why do a Global Fit?

- Use more data \Rightarrow reduce uncertainties
- See inconsistencies between different measurments
- Investigate the effect of theoretical uncertainties
- Include theoretical correlations between different observables

Christian Bauer @ SLAC, 8/9 2002 - p. 16

Available Data

- Lepton energy moments from CLEO

$$
\begin{aligned}
& R_{0}^{\mathrm{C}}=0.6187 \pm 0.0021 \\
& R_{1}^{\mathrm{C}}=(1.7810 \pm 0.0011) \mathrm{GeV} \\
& R_{2}^{\mathrm{C}}=(3.1968 \pm 0.0026) \mathrm{GeV}^{2}
\end{aligned}
$$

- Lepton energy moments from DELPHI

DELPHI ('02)

$$
\begin{aligned}
& R_{1}^{\mathrm{D}}=(1.383 \pm 0.015) \mathrm{GeV} \\
& R_{2}^{\mathrm{D}}-\left(R_{1}^{\mathrm{D}}\right)^{2}=(0.192 \pm 0.009) \mathrm{GeV}^{2}
\end{aligned}
$$

Christian Bauer @ SLAC, 8/9 2002 - p. 17

Available Data

- Hadron invariant mass moments from CLEO

$$
\begin{aligned}
& S_{1}(1.5 \mathrm{GeV})=(0.251 \pm 0.066) \mathrm{GeV}^{2} \\
& S_{2}(1.5 \mathrm{GeV})=(0.576 \pm 0.170) \mathrm{GeV}^{4}
\end{aligned}
$$

- Hadron invariant mass moments from DELPHI

DELPHI ('02)

$$
\begin{aligned}
& S_{1}(0)=(0.553 \pm 0.088) \mathrm{GeV}^{2} \\
& S_{2}(0)=(1.26 \pm 0.23) \mathrm{GeV}^{4}
\end{aligned}
$$

Christian Bauer @ SLAC, 8/9 2002 - p. 18

Available Data

- Hadron invariant mass moments from BABAR

BABAR ('02)

$$
\begin{aligned}
S_{1}(1.5 \mathrm{GeV}) & =(0.354 \pm 0.080) \mathrm{GeV}^{2} \\
S_{1}(0.9 \mathrm{GeV}) & =(0.694 \pm 0.114) \mathrm{GeV}^{2}
\end{aligned}
$$

- Photon energy moments from CLEO

$$
\begin{aligned}
& T_{1}(2 \mathrm{GeV})=(2.346 \pm 0.034) \mathrm{GeV} \\
& T_{2}(2 \mathrm{GeV})=(0.0226 \pm 0.0069) \mathrm{GeV}^{2}
\end{aligned}
$$

- Avarage of semileptonic decay width

$$
\Gamma(B \rightarrow X \ell \bar{\nu})=(42.7 \pm 1.4) \times 10^{-12} \mathrm{MeV}
$$

PDG ('02)

Christian Bauer @ SLAC, 8/9 2002 - p. 19

Higher Hadron Moments

- Second hadron moment seems to give orthogonal information to most other moments

- Convergence of this moment questioned in literature

$$
\left\langle s^{2}-\langle s\rangle^{2}\right\rangle=0.73 \frac{\bar{\Lambda}^{2}}{\Lambda_{\mathrm{QCD}}^{2}}-0.96 \frac{\lambda_{1}}{\Lambda_{\mathrm{QCD}}^{2}}-0.56 \frac{\frac{\text { Falk, Luke }(99}{\rho_{\mathrm{QCD}}}}{\Lambda_{\mathrm{QCD}}^{3}}+\ldots
$$

Higher Hadron Moments

- From dimensional analysis

$$
\frac{\left\langle s^{2}-\langle s\rangle^{2}\right\rangle}{m_{B}^{4}}=\mathcal{O}(1) \frac{\bar{\Lambda}^{2}}{\bar{m}_{B}^{2}}+\mathcal{O}(1) \frac{\lambda_{1}}{\bar{m}_{B}^{2}}+\mathcal{O}(1) \frac{\rho_{1}}{\bar{m}_{B}^{3}}+\ldots
$$

- Breakdown of OPE: some coeffs $\gg \mathcal{O}(1)$, growing
- The previous expression is

$$
\frac{\left\langle s^{2}-\langle s\rangle^{2}\right\rangle}{m_{B}^{4}}=0.01 \frac{\bar{\Lambda}^{2}}{\bar{m}_{B}^{2}}-0.14 \frac{\lambda_{1}}{\bar{m}_{B}^{2}}-0.86 \frac{\rho_{1}}{\bar{m}_{B}^{3}}+\ldots
$$

- Large cancellation from $\bar{\Lambda}$ and λ_{1} term

Moment is well behaved, but sensitive to ρ_{1}

Christian Bauer @ SLAC, 8/9 2002 - p. 20

Comment on the BABAR measurement

- First measurement of a moment as a function of the cut
- Many more data points than used in this analysis
- Data points highly correlated, therefore only used two in fits

Much more in second half of talk

Christian Bauer @ SLAC, 8/9 2002 - p. 21

Correlations in the Data

- Obviously, different moments of the same spectrum are correlated
- Since most measurements have some assumptions \Rightarrow correlation between diefferent experiments
- Only used publically available data
- Worthwile do redo the fits with all correlations included
- Central value and error in $\left|V_{c b}\right|$ stable

Theoretical Uncertainties

Originate from unknown higher order terms in expansion

Two different kind of terms

- Unknown $1 / m_{b}^{3}$ matrix elements
- generic size $\Lambda_{\mathrm{QCD}}^{3}$
- There is no favorite value
- Don't use Gaussian with width $(0.5 \mathrm{GeV})^{3}$
- In our fits we add

$$
\Delta \chi^{2}\left(m_{\chi}, M_{\chi}\right)= \begin{cases}0, & |\langle\mathcal{O}\rangle| \leq m_{\chi}^{3} \\ \frac{\left[|\langle\mathcal{O}\rangle|-m_{\chi}^{3}\right]^{2}}{(0.5 \mathrm{GeV})^{6}} & |\langle\mathcal{O}\rangle|>m_{\chi}^{3}\end{cases}
$$

- We vary $0.5 \mathrm{GeV}<m_{\chi}<1 \mathrm{GeV}$

Christian Bauer @ SLAC, 8/9 2002 - p. 23

Theoretical Uncertainties

Originate from unknown higher order terms in expansion

Two different kind of terms

- Uncomputed higher order terms
- For quantity of mass dimension m_{B}^{n}

$$
\begin{aligned}
& \text { \& }\left(\alpha_{s} / 4 \pi\right)^{2} m_{B}^{n} \sim 0.0003 m_{B}^{n} \\
& \text { - }\left(\alpha_{s} / 4 \pi\right) \Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2} m_{B}^{n} \sim 0.0002 m_{B}^{n} \\
& \text { \& } \Lambda_{\mathrm{QCD}}^{4} /\left(m_{b}^{2} m_{c}^{2}\right) m_{B}^{n} \sim 0.001 m_{B}^{n}
\end{aligned}
$$

- Can underestimate perturbative uncertainties
- Better estimate might be to relate to last term computed
- We add $\sqrt{\left(0.001 m_{B}^{n}\right)^{2}+(\text { last computed })^{2} / 4}$

Christian Bauer @ SLAC, 8/9 2002 - p. 23

The Result

- One fit including and one fit excluding BABAR data
- This allows to investigate effect of BABAR data

$m_{\chi}[\mathrm{GeV}]$	χ^{2}	$\left\|V_{c b}\right\| \times 10^{3}$	$m_{b}^{1 S}[\mathrm{GeV}]$
0.5	5.0	40.8 ± 0.9	4.74 ± 0.10
1.0	3.5	41.1 ± 0.9	4.74 ± 0.11
0.5	12.9	40.8 ± 0.7	4.74 ± 0.10
1.0	8.5	40.9 ± 0.8	4.76 ± 0.11

- BABAR data makes fit considerably worse
- More on this later

Christian Bauer @ SLAC, 8/9 2002 - p. 24

Error analysis

What is included in error?

- Best estimate of perturbative uncertainties
- Best estimate of uncomputed $1 / m^{4}$ and α_{s}^{2} / m^{2} terms
- Very conservative estimate of $1 / m^{3}$ uncertainties
- All publically available experimental uncertainties

What is not included in error?

- Unknown experimental correlations
- Uncertainties from "Duality violations"

More on Theoretical Error

- $1 / m_{b}^{3}$ uncertainty

$m_{\chi}[\mathrm{GeV}]$	$\left\|V_{c b}\right\| \times 10^{3}$	$m_{b}^{1 S}[\mathrm{GeV}]$
0.5	40.8 ± 0.9	4.74 ± 0.10
1.0	41.1 ± 0.9	4.74 ± 0.11

- Theoretical correlations

$\delta\left(\lambda_{1}\right)$	$\delta\left(\lambda_{1}+\frac{\mathcal{I}_{1}+3 \mathcal{T}_{2}}{m_{b}}\right)$
± 0.38	± 0.22

- Theoretical limitations

$\delta\left(\left\|V_{c b}\right\|\right) \times 10^{3}$	$\delta\left(m_{b}^{1 S}\right)[\mathrm{MeV}]$
± 0.35	± 35

Christian Bauer @ SLAC, 8/9 2002 - p. 26

Different mass schemes

tree level, order α_{s}, order $\alpha_{s}^{2} \beta_{0}$

Better convergence for 1S and PS scheme
Christian Bauer @ SLAC, 8/9 2002 - p. 27

Experimental correlations

How important are experimental correlations?

- Remove DELPHI measurements from fit
- Increase all errors (except $\Gamma_{s l}$) by 2

	$\left\|V_{c b}\right\| \times 10^{3}$	$m_{b}^{1 S}[\mathrm{GeV}]$
Original Fit	40.8 ± 0.9	4.74 ± 0.10
Excluding DELPHI	40.6 ± 0.9	4.79 ± 0.09
$2 \times$ errors	40.8 ± 1.2	4.74 ± 0.24

Fit should be good for $\left|V_{c b}\right|$, but for confidence in $\delta\left(m_{b}\right)$ one should include all correlations

Christian Bauer @ SLAC, 8/9 2002 - p. 28

Result once again

$$
\begin{aligned}
\left|V_{c b}\right| & =(40.8 \pm 0.9) \times 10^{-3} \\
m_{b}^{1 S} & =(4.74 \pm 0.10) \mathrm{GeV} \\
\bar{m}_{b}\left(\bar{m}_{b}\right) & =4.22 \pm 0.09 \mathrm{GeV}
\end{aligned}
$$

Christian Bauer @ SLAC, 8/9 2002 - p. 29

The BABAR hadronic moments

Christian Bauer @ SLAC, 8/9 2002 - p. 30

Review of the measurement

The measured distibution

- Uses one fully reconstructed B decay
- Done as a function of the lepton energy cut

Review of the measurement

Obtaining the hadronic moments

- Fit to four distributions: D, D^{*}, X_{H}, Background
- Fit determines the fraction of D, D^{*}, X_{H} distros

Review of the measurement

Results

Significant disagreement with our fit results

Christian Bauer @ SLAC, 8/9 2002 - p. 31

Why fit to the 3 distros?

The measured differential spectrum is

$$
\frac{d \Gamma}{d s_{L}}=\int d s_{L}\left\{P_{D}\left(s, s_{L}\right) \frac{d \Gamma_{D}}{d s}+P_{D^{*}}\left(s, s_{L}\right) \frac{d \Gamma_{D^{*}}}{d s}+P_{X}\left(s, s_{L}\right) \frac{d \Gamma_{X}}{d s}\right\}
$$

What is calculated is

$$
\begin{aligned}
& \left\langle s-\bar{m}_{D}^{2}\right\rangle=\int d s\left(s-\bar{m}_{D}^{2}\right)\left\{\frac{d \Gamma_{D}}{d s}+\frac{d \Gamma_{D^{*}}}{d s}+\frac{d \Gamma_{X}}{d s}\right\} \\
& \text { Can we take the detector resolution into account } \\
& \text { theoretically? }
\end{aligned}
$$

Christian Bauer @ SLAC, 8/9 2002 - p. 32

Calculate the differential spectrum

Instead of just calculating moments, we can also calculate the differential hadronic invariant mass spectrum

$$
\begin{aligned}
& \frac{d \Gamma_{D}}{d s}=\frac{\operatorname{Br}(\mathrm{D})}{\tau_{B}} \delta\left(s-m_{D}^{2}\right), \quad \frac{d \Gamma_{D}}{d s}=\frac{\operatorname{Br}\left(\mathrm{D}^{*}\right)}{\tau_{B}} \delta\left(s-m_{D^{*}}^{2}\right) \\
& \begin{array}{r}
\frac{d \Gamma}{d s}= \\
\quad \Gamma\left(E_{\mathrm{cut}}\right)\left[\delta\left(s-\bar{m}_{D}^{2}\right)+A\left(E_{\mathrm{cut}}\right) \delta^{\prime}\left(s-\bar{m}_{D}^{2}\right)\right. \\
\left.\quad+B\left(E_{\mathrm{cut}}\right) \delta^{\prime \prime}\left(s-\bar{m}_{D}^{2}\right)+\ldots\right]+\frac{\alpha_{s}}{\pi} P\left(s, E_{\mathrm{cut}}\right) \\
A\left(E_{\mathrm{cut}}\right) \sim \Lambda_{\mathrm{QCD}} / m_{b}, \quad B\left(E_{\mathrm{cut}}\right) \sim \Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}, \quad \ldots
\end{array}
\end{aligned}
$$

Convolute with detector resolution

Convolution formula was

$$
\frac{d \Gamma}{d s_{L}}=\int d s_{L}\left\{P_{D}\left(s, s_{L}\right) \frac{d \Gamma_{D}}{d s}+P_{D^{*}}\left(s, s_{L}\right) \frac{d \Gamma_{D^{*}}}{d s}+P_{X}\left(s, s_{L}\right) \frac{d \Gamma_{X}}{d s}\right\}
$$

Can now be calculated using

$$
\frac{d \Gamma_{X}}{d s}=\frac{d \Gamma}{d s}-\frac{d \Gamma_{D}}{d s}-\frac{d \Gamma_{D^{*}}}{d s}
$$

Careful

- Theoretical distribution is singular
- Smearing functions has to have width $\sim \sqrt{\Lambda_{\mathrm{QCD}} m_{b}}$

Need further smearing \Rightarrow Moments
Christian Bauer @ SLAC, 8/9 2002 - p. 34

Facts about convolutions

Consider the simple convolution $G(x)=\int d y c(x-y) g(y)$

$$
\begin{aligned}
G_{N} & =\int d x x^{N} G(x)=\int d y g(y) \int d x x^{N} c(x-y) \\
& =\int d y g(y) \int d z(z+y)^{N} c(z) \\
& =\int d y g(y) \int d z \sum_{n=0}^{N}\binom{N}{n} y^{n} z^{N-n} c(z) \\
& =\sum_{n=0}^{N}\binom{N}{n} c_{(N-n)} g_{n}
\end{aligned}
$$

Moment of convolution is product of moments
Christian Bauer @ SLAC, 8/9 2002 - p. 35

Implications for BABAR measurement

- Measured spectrum is convolution of true spectrum and detector resolution $P\left(s_{L}-s\right)$
- Moments of measured spectrum given in terms of true moments
- Take into account different resolution functions for D, D^{*} and X

$$
\begin{aligned}
& \left\langle s-\bar{m}_{D}^{2}\right\rangle_{\text {meas }}-\left\langle s-\bar{m}_{D}^{2}\right\rangle_{\text {theo }} \\
& \quad=P_{1}^{X}+\left(P_{1}^{D}-P_{1}^{X}\right) \operatorname{Br}(D)+\left(P_{1}^{D^{*}}-P_{1}^{X}\right) \operatorname{Br}\left(D^{*}\right)
\end{aligned}
$$

Difference between calculated and measured moments is determined by mean of resolution functions

Some numbers

Thanks to Oliver Buchmüller and Henning Flächer
A plot of $\left\langle s-\bar{m}_{D}^{2}\right\rangle$ ("measured" moments, orig. data)

- Corrections $P_{1}^{D, D^{*}, X}$ not yet included
- Should be positive

Eliminating Goity-Roberts does not eliminate discreprancy
Christian Bauer @ SLAC, 8/9 2002 - p. 37

Conclusions

- OPE predicts all inclusive B meson shape variables in terms of 6 parameters
- Precise knowledge of these parameters required for inclusive determination of $\left|V_{c b}\right|$
- Fit to all available data is best way to extract $V_{c b} \mid$
- Fit should be done in well behaved mass scheme
- Find $\left|V_{c b}\right|=(40.8 \pm 0.9) \times 10^{-3}$
- Recent measurements of BABAR show some disagreement with fit predictions
- Eliminating most of the model dependence from measurement does not solve the problem
- Should be interesting times ahead of us

Christian Bauer @ SLAC, 8/9 2002 - p. 39

Higher Moments?

- The same trick works for higher moments.
- Assume universal distribution function

$$
\left\langle\left(s-\bar{m}_{D}^{2}\right)^{N}\right\rangle_{\text {meas }}=\sum_{n=0}^{N}\binom{N}{n} P_{(N-n)}\left\langle\left(s-\bar{m}_{D}^{2}\right)^{n}\right\rangle_{\text {theo }}
$$

- Can easily take into account different resolution functions
- All measured higher moments can be related to calculated moments and moments of resolution function

Christian Bauer @ SLAC, 8/9 2002 - p. 40

