Precision Physics with inclusive *B* **decays**

Christian Bauer

UC San Diego

In collaboration with Ben Grinstein, Zoltan Ligeti, Mike Luke, Aneesh Manohar

Outline

- Introduction
- Fit to inclusive shape variables
 - Discussion of available data
 - Results for m_b and $|V_{cb}|$
 - Discussion of errorrs
- BABAR hadronic moment
 - Overview of measurement
 - Relation between experiment and theory
 - Some discussions
- Conclusions

Introduction

The Flavor Sector of the SM

Flavor changing processes at low energies

Interactions mediated by local 4-Fermion interactions

There are hundreds of different interactions

What do we know about them?

The Flavor Sector of the SM

Flavor changing processes in the Standard model

Interactions mediated by interactions with W boson

Nuclear Beta decay

$$B_d - \bar{B}_d$$
 mixing

- There are 11 parameters:
 - Fermi coupling constant G_F
 - 6 quark masses
 - 4 parameters in the CKM matrix (A, λ , ρ , η)

How to test this prediction?

Information from *B* **decays**

Most of *B* decays can be described by

 $m_t = 175 \pm 5, \ m_{u,d,s} = 0, \ |V_{us}| = 0.2169 \pm 0.0026$ $G_F = (1.16639 \pm 0.00001) \times 10^{-5} \text{GeV}^{-2}$

In addition to

- Two quark masses m_c and m_b
- Three additional CKM parameters

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Information from *B* **decays**

Most of *B* decays can be described by

 $m_t = 175 \pm 5, \ m_{u,d,s} = 0, \ |V_{us}| = 0.2169 \pm 0.0026$ $G_F = (1.16639 \pm 0.00001) \times 10^{-5} \text{GeV}^{-2}$

In addition to

- Two quark masses m_c and m_b
- Three additional CKM parameters

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

• Precise measurement of $|V_{cb}|$ crucial

The Unitarity Triangle

Checking this picture

Why is it hard to check this picture?

- Relations are between parton model amplitudes
- Measurements are done with hadrons

We have to understand the hadronization effects

Be very careful

(Don't believe everything theorists tell you)

What to believe?

Model dependent Results

- Assume model to calculate strong interaction effect
- How do we know whether to believe the model?
- How to estimate uncertainties of model?

Model independent results

- Strong interaction effect calculable in limit of QCD
- Corrections are parametrically suppressed

$$\langle O \rangle = (\text{calc}) \left[1 + \sum_{k} (\text{small parameter})^{k} \right]$$

Model independent tools

Need a parametrically small quantity \Rightarrow separated scales

Model independent tools

Need a parametrically small quantity \Rightarrow separated scales

chiral limit heavy quark limit $m_b \gg \Lambda_{\rm QCD}$

 $m_{u,d} \ll \Lambda_{\chi}$

Model independent tools

Need a parametrically small quantity \Rightarrow separated scales

- Spin Flavor symmetry ⇒ reduction of form factors
- Non-relativistic QCD
 - \Rightarrow Quarkonium binding effects
- Large Energy Expansion
 NP effects in heavy to light decays
- Operator Product Expansion
 > NP effects in inclusive processes

Operator Product Expansion

Describe the decay $B \to X \ell \bar{\nu}$ using optical theorem

$$\Gamma \sim \sum_{X} |\langle B|J^{\mu}|X\rangle|^2 \sim \int d^4q \, e^{-iq \cdot x} \mathrm{Im} \langle B|T\{J^{\mu\dagger}(x)J^{\nu}(0)\}|B\rangle$$

Intermediate state off shell \rightarrow propagates short distance

Expand in terms of local operators (OPE) Similar to Deep Inelastic Scattering

Inclusive *B* **decays**

Typical OPE result for differential spectrum looks like

$$\frac{d\Gamma}{dX} = \frac{d\Gamma_{\text{part}}}{dX} + \frac{\bar{\Lambda}}{m_M} f_{\Lambda}(X) + \frac{\lambda_i}{m_M^2} f_{\lambda_i}(X) + \frac{\rho_i}{m_M^3} f_{\rho_i}(X) + \dots$$

Typical OPE result for moments of spectra looks like

$$\langle X \rangle = \langle X \rangle_{\text{part}} + \frac{\overline{\Lambda}}{m_M} F_{\Lambda} + \frac{\lambda_i}{m_M^2} F_{\lambda_i} + \frac{\rho_i}{m_M^3} F_{\rho_i} + \dots$$

All inclusive results given in terms of 9 parameters: $\{\overline{\Lambda}, \lambda_1, \lambda_2, \rho_1, \rho_2, \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4\}$

Three relations amongst parameters \Rightarrow 6 parameters

Differential Spectra in the OPE

Which quantities can be calculated in OPE?

- To compare OPE results with data, have to smear result
- Smearing has to be over "many resonances"

Moments of distributions are calculable

CLEO analysis of V_{cb}

- Measure total inclusive decay rate Γ_{sl}
- Measure $\bar{\Lambda}$ and λ_1 from moments of the decay spectra
- Determine $|V_{cb}|$

 $V_{\rm cb}^{\rm CLEO} = [40.4 \pm 0.5_{\Gamma} \pm 0.4_{m_b,\lambda_1} \pm 0.9_{\rm th}] \times 10^{-3}$

Issues with the OPE

To what accuracy can we trust the OPE?

- Accuracy depends on size of higher order terms
 - Value of the six parameters ρ_i , T_i unknown
 - Dimensional analysis: ρ_i , $T_i \sim \Lambda_{\text{QCD}}^3$
 - How big is Λ_{QCD} ?
- How much do we trust the OPE itself?
 - Duality violation
 - Separate from previous question?

Can we address this question experimentally?

A Global Fit

Why do a Global Fit?

- Use more data \Rightarrow reduce uncertainties
- See inconsistencies between different measurments
- Investigate the effect of theoretical uncertainties
- Include theoretical correlations between different observables

Available Data

Lepton energy moments from CLEO

CLEO ('02)

$$R_0^{\rm C} = 0.6187 \pm 0.0021$$

 $R_1^{\rm C} = (1.7810 \pm 0.0011) \,{\rm GeV}$
 $R_2^{\rm C} = (3.1968 \pm 0.0026) \,{\rm GeV}^2$

Lepton energy moments from DELPHI

DELPHI ('02)

$$R_1^{\rm D} = (1.383 \pm 0.015) \,\text{GeV}$$

 $R_2^{\rm D} - (R_1^{\rm D})^2 = (0.192 \pm 0.009) \,\text{GeV}^2$

Available Data

Hadron invariant mass moments from CLEO

CLEO ('01)

$$S_1(1.5 \,\text{GeV}) = (0.251 \pm 0.066) \,\text{GeV}^2$$

 $S_2(1.5 \,\text{GeV}) = (0.576 \pm 0.170) \,\text{GeV}^4$

Hadron invariant mass moments from DELPHI ('02)

$$S_1(0) = (0.553 \pm 0.088) \,\mathrm{GeV}^2$$

 $S_2(0) = (1.26 \pm 0.23) \,\mathrm{GeV}^4$

Christian Bauer @ SLAC, 8/9 2002 - p.18

 \mathbf{a}

Available Data

Hadron invariant mass moments from BABAR

BABAR ('02)

- $S_1(1.5 \,\text{GeV}) = (0.354 \pm 0.080) \,\text{GeV}^2$ $S_1(0.9 \,\text{GeV}) = (0.694 \pm 0.114) \,\text{GeV}^2$
- Photon energy moments from CLEO
 $T_1(2 \text{ GeV}) = (2.346 \pm 0.034) \text{ GeV}$ $T_2(2 \text{ GeV}) = (0.0226 \pm 0.0069) \text{ GeV}^2$ Avarage of semileptonic decay width

 $\Gamma(B \to X \ell \bar{\nu}) = (42.7 \pm 1.4) \times 10^{-12} \,\mathrm{MeV}$ PDG ('02)

Higher Hadron Moments

Second hadron moment seems to give orthogonal information to most other moments

Convergence of this moment questioned in literature

$$\left\langle s^2 - \langle s \rangle^2 \right\rangle = 0.73 \frac{\bar{\Lambda}^2}{\Lambda_{\rm QCD}^2} - 0.96 \frac{\lambda_1}{\Lambda_{\rm QCD}^2} - 0.56 \frac{\rho_1}{\Lambda_{\rm QCD}^3} + \dots$$

Higher Hadron Moments

From dimensional analysis

$$\frac{\langle s^2 - \langle s \rangle^2 \rangle}{m_B^4} = \mathcal{O}(1) \frac{\bar{\Lambda}^2}{\bar{m}_B^2} + \mathcal{O}(1) \frac{\lambda_1}{\bar{m}_B^2} + \mathcal{O}(1) \frac{\rho_1}{\bar{m}_B^3} + \dots$$

Breakdown of OPE: some coeffs $\gg \mathcal{O}(1)$, growing

The previous expression is

$$\frac{\left\langle s^2 - \langle s \rangle^2 \right\rangle}{m_B^4} = 0.01 \frac{\bar{\Lambda}^2}{\bar{m}_B^2} - 0.14 \frac{\lambda_1}{\bar{m}_B^2} - 0.86 \frac{\rho_1}{\bar{m}_B^3} + \dots$$

Large cancellation from $\bar{\Lambda}$ and λ_1 term

Moment is well behaved, but sensitive to ρ_1

Comment on the BABAR measurement

- First measurement of a moment as a function of the cut
- Many more data points than used in this analysis
- Data points highly correlated, therefore only used two in fits

Much more in second half of talk

Correlations in the Data

- Obviously, different moments of the same spectrum are correlated
- Since most measurements have some assumptions
 ⇒ correlation between diefferent experiments
- Only used publically available data
- Worthwile do redo the fits with all correlations included
- Central value and error in $|V_{cb}|$ stable

Theoretical Uncertainties

Originate from unknown higher order terms in expansion

Two different kind of terms

- Unknown $1/m_b^3$ matrix elements
 - generic size Λ^3_{QCD}
 - There is no favorite value
 - Don't use Gaussian with width $(0.5 \text{ GeV})^3$
 - In our fits we add

$$\Delta \chi^{2}(m_{\chi}, M_{\chi}) = \begin{cases} 0, & |\langle \mathcal{O} \rangle| \le m_{\chi}^{3} \\ \frac{\left[|\langle \mathcal{O} \rangle| - m_{\chi}^{3}\right]^{2}}{(0.5 \, \text{GeV})^{6}} & |\langle \mathcal{O} \rangle| > m_{\chi}^{3} \\ 0.4 \\ 0.2 \\$$

• We vary $0.5 \,\mathrm{GeV} < m_{\chi} < 1 \,\mathrm{GeV}$

Christian Bauer @ SLAC, 8/9 2002 - p.23

 γ^2

Theoretical Uncertainties

Originate from unknown higher order terms in expansion

Two different kind of terms

- Uncomputed higher order terms
 - For quantity of mass dimension m_B^n
 - $(\alpha_s/4\pi)^2 m_B^n \sim 0.0003 m_B^n$
 - $(\alpha_s/4\pi)\Lambda_{\rm QCD}^2/m_b^2 m_B^n \sim 0.0002 \, m_B^n$
 - $\Lambda_{\rm QCD}^4 / (m_b^2 m_c^2) m_B^n \sim 0.001 \, m_B^n$
 - Can underestimate perturbative uncertainties
 - Better estimate might be to relate to last term computed
 - We add $\sqrt{(0.001m_B^n)^2 + (\text{last computed})^2/4}$

The Result

- One fit including and one fit excluding BABAR data
- This allows to investigate effect of BABAR data

$m_{\chi} \; [{ m GeV}]$	χ^2	$ V_{cb} \times 10^3$	$m_b^{1S} [{ m GeV}]$
0.5	5.0	40.8 ± 0.9	4.74 ± 0.10
1.0	3.5	41.1 ± 0.9	4.74 ± 0.11
0.5	12.9	40.8 ± 0.7	4.74 ± 0.10
1.0	8.5	40.9 ± 0.8	4.76 ± 0.11

- BABAR data makes fit considerably worse
- More on this later

Error analysis

What is included in error?

- Best estimate of perturbative uncertainties
- Sest estimate of uncomputed $1/m^4$ and α_s^2/m^2 terms
- Very conservative estimate of $1/m^3$ uncertainties
- All publically available experimental uncertainties

What is not included in error?

- Unknown experimental correlations
- Uncertainties from "Duality violations"

More on Theoretical Error

• $1/m_b^3$ uncertainty

$m_{\chi} \; [{ m GeV}]$	$ V_{cb} \times 10^3$	$m_b^{1S} [{ m GeV}]$
0.5	40.8 ± 0.9	4.74 ± 0.10
1.0	41.1 ± 0.9	4.74 ± 0.11

Theoretical correlations

$$\begin{array}{c|c} \delta(\lambda_1) & \delta\left(\lambda_1 + \frac{\mathcal{T}_1 + 3\mathcal{T}_2}{m_b}\right) \\ \hline \pm 0.38 & \pm 0.22 \end{array}$$

Theoretical limitations

$$\frac{\delta(|V_{cb}|) \times 10^3}{\pm 0.35} \qquad \frac{\delta(m_b^{1S}) \,[\text{MeV}]}{\pm 35}$$

Different mass schemes

tree level, order α_s , order $\alpha_s^2\beta_0$

Better convergence for 1S and PS scheme

Experimental correlations

How important are experimental correlations?

- Remove DELPHI measurements from fit
- Increase all errors (except Γ_{sl}) by 2

	$ V_{cb} \times 10^3$	$m_b^{1S} [{ m GeV}]$
Original Fit	40.8 ± 0.9	4.74 ± 0.10
Excluding DELPHI	40.6 ± 0.9	4.79 ± 0.09
$2 \times errors$	40.8 ± 1.2	4.74 ± 0.24

Fit should be good for $|V_{cb}|$, but for confidence in $\delta(m_b)$ one should include all correlations

Result once again

 $|V_{cb}| = (40.8 \pm 0.9) \times 10^{-3}$ $m_b^{1S} = (4.74 \pm 0.10) \,\text{GeV}$ $\overline{m}_b(\overline{m}_b) = 4.22 \pm 0.09 \,\text{GeV}$

The BABAR hadronic moments

Review of the measurement

The measured distibution

- Uses one fully reconstructed B decay
- Done as a function of the lepton energy cut

Review of the measurement

Obtaining the hadronic moments

- Fit to four distributions: D, D^* , X_H , Background
- Fit determines the fraction of D, D^* , X_H distros

Review of the measurement

Results

Significant disagreement with our fit results

Why fit to the 3 distros?

The measured differential spectrum is

$$\frac{d\Gamma}{ds_L} = \int ds_L \left\{ P_D(s, s_L) \frac{d\Gamma_D}{ds} + P_{D^*}(s, s_L) \frac{d\Gamma_{D^*}}{ds} + P_X(s, s_L) \frac{d\Gamma_X}{ds} \right\}$$

What is calculated is

$$\left\langle s - \bar{m}_D^2 \right\rangle = \int ds \left(s - \bar{m}_D^2 \right) \left\{ \frac{d\Gamma_D}{ds} + \frac{d\Gamma_{D^*}}{ds} + \frac{d\Gamma_X}{ds} \right\}$$

Can we take the detector resolution into account theoretically?

Calculate the differential spectrum

Instead of just calculating moments, we can also calculate the differential hadronic invariant mass spectrum

$$\frac{d\Gamma_D}{ds} = \frac{\operatorname{Br}(D)}{\tau_B} \delta(s - m_D^2), \quad \frac{d\Gamma_D}{ds} = \frac{\operatorname{Br}(D^*)}{\tau_B} \delta(s - m_D^2)$$

$$\frac{d\Gamma}{ds} = \Gamma(E_{\operatorname{cut}}) \left[\delta(s - \bar{m}_D^2) + A(E_{\operatorname{cut}}) \delta'(s - \bar{m}_D^2) + B(E_{\operatorname{cut}}) \delta''(s - \bar{m}_D^2) + \ldots \right] + \frac{\alpha_s}{\pi} P(s, E_{\operatorname{cut}})$$

$$A(E_{\operatorname{cut}}) \sim \Lambda_{\operatorname{QCD}}/m_b, \quad B(E_{\operatorname{cut}}) \sim \Lambda_{\operatorname{QCD}}^2/m_b^2, \quad \ldots$$

Convolute with detector resolution

Convolution formula was

$$\frac{d\Gamma}{ds_L} = \int ds_L \left\{ P_D(s, s_L) \frac{d\Gamma_D}{ds} + P_{D^*}(s, s_L) \frac{d\Gamma_{D^*}}{ds} + P_X(s, s_L) \frac{d\Gamma_X}{ds} \right\}$$

Can now be calculated using

$$\frac{d\Gamma_X}{ds} = \frac{d\Gamma}{ds} - \frac{d\Gamma_D}{ds} - \frac{d\Gamma_{D^*}}{ds}$$

<u>Careful</u>

- Theoretical distribution is singular
- Smearing functions has to have width $\sim \sqrt{\Lambda_{
 m QCD} m_b}$

Need further smearing \Rightarrow Moments

Facts about convolutions

Consider the simple convolution $G(x) = \int dy c(x - y)g(y)$

$$G_{N} = \int dx \, x^{N} G(x) = \int dy \, g(y) \int dx \, x^{N} c(x - y)$$

$$= \int dy \, g(y) \int dz \, (z + y)^{N} c(z)$$

$$= \int dy \, g(y) \int dz \sum_{n=0}^{N} {N \choose n} y^{n} z^{N-n} c(z)$$

$$= \sum_{n=0}^{N} {N \choose n} c_{(N-n)} g_{n}$$

Moment of convolution is product of moments

Implications for BABAR measurement

- Measured spectrum is convolution of true spectrum and detector resolution $P(s_L s)$
- Moments of measured spectrum given in terms of true moments
- Take into account different resolution functions for D, D* and X

$$\langle s - \bar{m}_D^2 \rangle_{\text{meas}} - \langle s - \bar{m}_D^2 \rangle_{\text{theo}}$$

= $P_1^X + (P_1^D - P_1^X) \text{Br}(D) + (P_1^{D^*} - P_1^X) \text{Br}(D^*)$

Difference between calculated and measured moments is determined by mean of resolution functions

Some numbers Thanks to Oliver Buchmüller and Henning Flächer

A plot of $\langle s - \bar{m}_D^2 \rangle$ ("measured" moments, orig. data) 0.8 0.6 0.4 0.2 0

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

• Corrections $P_1^{D,D^*,X}$ not yet included

Should be positive

Eliminating Goity-Roberts does not eliminate discreprancy

Conclusions

- OPE predicts all inclusive B meson shape variables in terms of 6 parameters
- Precise knowledge of these parameters required for inclusive determination of $|V_{cb}|$
- Fit to all available data is best way to extract V_{cb}
- Fit should be done in well behaved mass scheme
- Find $|V_{cb}| = (40.8 \pm 0.9) \times 10^{-3}$
- Recent measurements of BABAR show some disagreement with fit predictions
- Eliminating most of the model dependence from measurement does not solve the problem
- Should be interesting times ahead of us

Higher Moments?

- The same trick works for higher moments.
- Assume universal distribution function

$$\left\langle (s - \bar{m}_D^2)^N \right\rangle_{\text{meas}} = \sum_{n=0}^N \binom{N}{n} P_{(N-n)} \left\langle (s - \bar{m}_D^2)^n \right\rangle_{\text{theo}}$$

- Can easily take into account different resolution functions
- All measured higher moments can be related to calculated moments and moments of resolution function