Challenges and Opportunities of the Open Physics Trigger of the BABAR Experiment

SLAC Experimental Seminar May 1, 2002

Rainer Bartoldus

Introduction

- The Trigger is what defines an "event", it initiates the readout of the detector and decides when to log the data
- All HEP experiments use triggers in sequential levels
- BaBar implements just two:
 - A Level 1 hardware trigger that feeds on segment information from the drift chamber (DCH), electromagnetic calorimeter (EMC) and instrumented flux return (IFR)
 - A Level 3 software trigger that processes complete events, does a partial reconstruction of DCH and EMC data and applies a set of algorithms on tracks and clusters

Level 1 Trigger

- The Level 1 Trigger is made of custom–built electronics
 - Track Segment Finders identify hit patterns in 8-wire templates ("pivot groups"), a Binary Link Tracker generates short and long tracks, a PT Discriminator finds tracks whose segments are inside certain momentum envelopes
 - EMT boards sum calorimeter energies in 3 by 8 crystal towers, and towers in theta to phi strips
 - Algorithms are implemented in firmware and configurable via lookup tables

- L1 Accept decision with a latency of 12 i s

(Will not talk much more about this here)

Level 3 Trigger

- The Level 3 Trigger runs in parallel on a farm of Unix processors
 - Sun Ultra 5, 333 Mhz, 512 MB workstations
 - Initial farm of 32 boxes, extended to 64 last year
 - For 2 kHz of L1, CPU budget is about 10 ms per event

Challenges

- Not all events have rich signatures like this one
 - Many events leave only marginal traces in the detector, yet some of them might be good Physics
- Configure a L1 Trigger that is "Open" in terms of minimal signatures, resulting in potentially high rates
- Build a Level 3 process that is able to sustain rates of 2+ kHz
 - Must develop a fast reconstruction and efficient algorithms that can reject unwanted events to a logging rate of 100+ Hz
- Make the system scalable to higher luminosities

Orthogonality

- Having independent inputs from two subdetectors, one of the fundamental concepts of the BaBar Trigger is that of "orthogonality"
 - Events meet independent criteria in drift chamber and calorimeter (e.g., a Bhabha event passes for both its high momentum tracks and its high energy deposits)
- Orthogonality is not trivial to realize and maintain, but has decisive benefits:
 - High redundancy in case of temporary failures (*DCH high voltage problem, EMC fiber damage*) -> Stability
 - Measurability of trigger efficiencies from data

How Open is Open?

- The Trigger decision is not composed of a set of individual Physics channels of interest (*such as a B trigger, a ô trigger, etc*)
- It is built on event topologies, which match all kinds of processes and channels
- Exception: Bhabha events are overwhelming the Physics cross section (~50 nb in the L1 fiducial, vs 1 nb of *bb*)
 - They have to be rejected in Level 3 ("Bhabha veto")

Orthogonality in Level 1 and Level 3

- In the Level 1 Trigger configuration, orthogonality is achieved to a high degree (*e.g.*, *pure two-track or two-cluster triggers*)
 - Some of the criteria had to be backed up by minimal requirements from the other system, to control the rates ("partial orthogonality")
- In Level 3 orthogonality is strict: the final Physics output is passed through two separate lines (L3OutDch, L3OutEmc)
 - The Bhabha veto uses all information, since its logic is reverse and it has to maximize purity
 - Some calibration filters that have more relaxed requirements on stable and measurable efficiencies also use both DCH and EMC for particle identification

A (subjective) Comparison with Belle

	BABAR	BELLE
Trigger Rates L1	1.0 – 1.5 kHz	~ 250 Hz
(logging) L3	100 – 130 Hz	(~ 120 Hz)
DAQ	pipelined	gated
Minimum intercommand spacing	2.7 ì s	~ 200 ì s
Irreducible deadtime at L1	0.4 %	~ 5 %
DAQ Manpower	3–5 FTE	1–2 FTE

Level 3 Tracking

- Track finding seeded on L1 track segments
 - Driven by configurable search tree
 - Reaches down to $p_T \sim 250 \text{ MeV}$
- Fast t₀ finding to better than 4 ns
- 5–parameter (helix) track fit

Level 3 Clustering

- Processes complete EMC readout, ~1200/6580 channels per event
- Fast bootstrap algorithm, forms 2D clusters in a single pass
- Crystal neighboring information configured via lookup table
- Cluster data comprise energy sum, weighted centroid, average time, cluster shape

Physics Filters

- Drift Chamber Filters (IP track filters)
 - 2 tracks from the IP with: $|d_0| < 1.5 \text{ cm}, |z_0| < 10.0 \text{ cm}, p_T > 250 \text{ MeV}$
 - 1 track from the IP with: $|d_0| < 1.0 \text{ cm}, |z_0| < 7.0 \text{ cm}, p_T > 600 \text{ MeV}$
- Calorimeter Filters (high energy / high multiplicity filters)
 - 2 clusters with: $E_{lab} > 100 \text{ MeV}, E_{CM} > 350 \text{ MeV}, m_{pseudo} > 1.5 \text{ GeV}$
 - 4 clusters with: $E_{lab} > 100 \text{ MeV}, m_{pseudo} > 1.5 \text{ GeV}$

Bhabha Veto

- Removes Bhabha events from the Physics lines
- Extremely pure selection
- 2–prong and 1–prong (degraded Bhabha)
- Uses acolinearity, trackcluster matching, E/p
- Accounts for initial and final state radiation

Physics Efficiencies

	BB	$B ightarrow \check{\partial}^{ heta} \check{\partial}^{ heta}$	$B \rightarrow \hat{o} \ i_{\hat{o}}$	ô ô
1 track filter	89.9	69.9	86.5	94.1
2 track filter	98.9	84.1	94.5	87.6
Comb. Drift chamber	99.4	89.1	96.6	95.5
2 cluster filter	25.8	91.2	14.2	34.3
4 cluster filter	93.5	95.2	62.3	37.8
Comb. Calorimeter	93.5	95.7	62.3	46.3
Comb. L3	> 99.9	99.3	98.1	97.3
Comb. L1+L3	> 99.9	99.1	97.8	92

Calibration Samples

- In addition to the Physics output from DCH and EMC, our trigger provides a whole variety of "output lines" for events that can be used for offline calibrations
- Initially we added cosmics and Bhabhas (that bypass the physics veto), but soon spawned off a real industry
 - Radiative Bhabhas, ãã (final state), Virtual Compton Scattering
 - Some of these use either tracks or clusters, some only part of the signatures, to provide unbiased selections for PID etc
- This was only possible because we were able to program filter algorithms in a very efficient way

Cosmics

- Track-based selection (gives unbiased MIP clusters)
- 2 tracks, back-to-back in the lab, balanced in p_T
- Small miss distance
- Extended vertex cuts $|d_0| < 1.5 \text{ cm}, |z_0| < 30 \text{ cm}$ (covers most of the SVT)

Cosmics (purified)

- Hard ISR Bhabha events can fake the back-to-back topology in the lab
- Predict missing energy from polar angles, compare to observed missing energy
- Reject if consistent with photon of momentum k

$$\frac{k}{W} = \frac{\left|\sin\left(\boldsymbol{\vartheta}_{1} + \boldsymbol{\vartheta}_{2}\right)\right|}{\left|\sin\left(\boldsymbol{\vartheta}_{1} + \boldsymbol{\vartheta}_{2}\right)\right| + \sin\left(\boldsymbol{\vartheta}_{1}\right) + \sin\left(\boldsymbol{\vartheta}_{2}\right)}$$

Cosmics Uses

- Cosmics events present valuable samples for
 - Tracking efficiency studies
 - Calorimeter MIP cluster selection (unbiased)
 - SVT local alignment
- They are a part of normal data taking
 - It took a long time until BaBar discovered they are useful
 - Gap at $p_T = 3$ GeV to be closed

Hadronic Monitors

- Select events w/ 3 good tracks
 - max pT > 0.5 GeV
 - $\max p < 4.5 \text{ GeV} (c.m.)$
 - (invariant mass)² > 5 GeV²
- Cut on Fox–Wolfram moment R2 = H2/H0
 - R2 < 0.95 ("HadA")
 - R2 < 0.40 ("HadB")

$$H_{l} = \sum_{(i \neq j)} \frac{|p_{i}||p_{j}|}{s} P_{l}(\cos \theta_{ij})$$

Hadron Ratios for 2001/2002

- Very stable over periods of many months
- Low values represent off– peak data taking
- Recent jump from installation of improved Level 3 tracking

EPICS Rate Monitoring

- Left column: filter output before prescaling
 - Dominated by Bhabha rate and unprescaled L1 accept
- Right column: logging rate
 - Dominated by Physics lines

M ()						
1	evel 3 Trigger Output Lines Rates	Status PEPII Stable Beam BaBar RUNRABLE Run 24623 Timer 794	PCTS Close Provent Rrint			
L	Trigger Line Input Rate Output Rate					
	L30utDeh	89.7	32.6			
4	L3OutEmc	44.6	0.1			
	L3OutDohEmcPreVeto	231.1	478			
4	L3OutDchEmcPreVetoOpr	211,1	0.0			
8	L3OutBhabha	347.7				
	L3OutBhabhaFlat	12.2	12.1			
7	L3OutBhabhaFlatOpr	1.3]	1.5			
	L3OutRadiativeBhabha	5.2	5.9			
	L3OutVirtualCompton	2.5	2.7			
10	L3OutEscBhabha	2.5	2.51			
11	L3OutHuPair	3.51	1.5			
12	L3OutCosmic	8.7 6	8.8			
-	L3OutLumi	27.4				
14	L3OutDiag	12.5	11.0			
15	L3OutGannaGanna	5.4	8.1			
18	L3OutGammaGammaOpr	5.4	1.1			
17	L3OutPhiGamma	1.1				
14	L3OutDataflowDamage	1.0				
13	L30utL10pen	1315.9	6.3			
	L3OutL1OpenOpr	1116.0				
24	L30utBunch	10.5				
-	L3OutBunchOnr	11.5				
-	L3OutCweliel	11				
24	L30utCuelic10nr	11				
	L3OutBackground					
	and a contraction of the					
27		100 million				
-						
5						
1						
-						

Luminosity Strip Chart

- Records Trigger rates, instantaneous & integrated Luminosity
- Update rate ~5 s or multiple
- Can be correlated with any other EPICS record

PEP–II Machine Background Studies

- Recent program to measure Trigger rates as a function of the beam currents
 - Varied HER over 0...950 mA, LER over 0...1650 mA
 - Set up single beam, colliding beams, and two beams out-ofcollision
- Data are most valuable for rate projections and upgrade planning

Background Model

Background model, 10-Feb-2002

- New data show clear quadratic dependence on HER current
- LER contribution lower than in summer 2000
- Collision data seem to suggest beam-beam contribution

 $L1[Hz] = 125 + 50 x I_{LER}[A] + 190 x I_{HER}[A] + 180 x (I_{HER}[A])^{2} + 110 x L[nb^{-1}s^{-1}]$

Summary (1)

- The rate capability of the deeply buffered BaBar DAQ system enables us to construct an Open Trigger
 - We achieve very high efficiencies for generic *BB* events, and high efficiencies for rare modes such as $B \rightarrow \tilde{\partial}^0 \tilde{\partial}^0$ and $B \rightarrow \hat{\partial} \hat{\partial}_0$
 - Orthogonality ensures to make these efficiencies
 - ✔ High
 - ✓ Stable
 - ✓ Well−measurable

ISR

- Caught with nearly 100 % efficiency in both L1 and L3
- This is not an "accident" but a consequence of the design
- Belle's L1 kills those
- We are going to analyse them

Summary (2)

- Significant rate reduction can be performed on the event filter farm (Level 3)
 - The ability to process a high rate of "minimum signature" events has opened many possibilities in
 - Logging a variety of calibration events continuously, (e.g., cosmics, ì -pairs, (radiative) Bhabhas, VCS, ãã, Ö Ks)
 - Monitoring all sorts of observables in real time, (e.g., *luminosity, hadron ratios, CM energy, boost, beam spot*)
- Despite the many improvements and extensions, constant code optimization let us stayed within the CPU budget all the time (*because we had to*)