
Concept for a

GEM Configuration Tool

SLAC, 16 November 2005

Martin Kocian

11/23/05 GLAST Trigger 2

Introduction
� The goal is to create a GEM configuration tool with the

following features:

� Input and output of the configuration should be human
readable and convenient.

� The tool should fully reflect the abilities of the hardware.

� The configuration should be easy to store in a database.

� The same software object should be used
� to create and read configurations.
� to configure the hardware/produce hardware configuration files
� to retrieve configuration information in reco/analysis and

simulation code.

11/23/05 GLAST Trigger 3

Trigger parameters
� The “real” configuration is a number of GEM register

settings

� These settings include

� Lookup table for the mapping of conditions and trigger
engines

� Engine definitions

� Input enables

� Window open mask and window width

� Periodic trigger setup

� ROI mapping

11/23/05 GLAST Trigger 4

Configuration script
� An xml file or any register based configuration would be too

cryptic to specify or understand a configuration

� Instead, use a script that defines the configuration

� The script can be parsed by standard tools (lex/yacc) that
verify its grammar and report inconsistencies and warnings.

� A script can be stored in a configuration database without
having any problems with schema evolution. The code can
deal with any backward compatibility issues.

� The tool should be able to dump a configuration in the same
format which makes it easy to make changes to the scripts.

� Comments can be used in the script to illustrate its intent.

11/23/05 GLAST Trigger 5

Example configuration script
[Window]
Window_open_mask: TKR CALlow CALhigh EXT
Input_enable_mask: TKR, CALlow, CALhigh, CNO, ROI, EXT
Window_width=12

[Trigger Engines]
Format is engine: actions options
Engine 0: Inhibit
Engine 1: TACK, 0-suppression
Engine 2: TACK, 4-range_readout
Engine 4: Calstrobe, TACK, 4-range_readout
Engine 6: TACK, precale=5

[Trigger definitions]
Periodic: engine 1 # highest priority, always get periodic triggers
TKR: engine 6
ROI: engine=0 # inhibit ROI
CNO: engine=1
CALhigh &! CALlow: engine=2
only CALlow: engine=2 #only one entry in the LUT is affected
Solicited: engine=4

[Periodic_Trigger]
1_PPS, Free_running, Limit = 10 Prescale = 10
#one could add more complicated configurations, e.g. autoscaling

11/23/05 GLAST Trigger 6

Schematic view of configuration

Caching

Simulation
Reco/Analysis

LATc
input file

object

C++ config Configuration

Script

Trigger

tool

Trigger tool

Trigger tool

LATTE

sip

code

Trigger tool

Database

code
User I/O

11/23/05 GLAST Trigger 7

Full trigger configuration

Scripts could be extended to provide a coherent
definition of the trigger (GEM + filters).

[Conditions Definitions]:
Line 1: ROI, Engine 1 #GEM part

[Filter definitions]
Input=Line 1, action=Passthrough, prescale=10

11/23/05 GLAST Trigger 8

Summary

� Same configuration object in online and offline

� Scripts are the source of the GEM configuration.

� The scripts are the part that is persisted in the database.

� A database system should be able to do caching so multiple
machines can access the same data easily, e. g. in
simulation.

� A ROI configuration could be added.

� Flight software filters could be added to capture the trigger
configuration in one place.

