

## Finding "Hot" CAL FLE and FHE Discriminators

J. Eric Grove 3 Aug 2005



- What's a "hot" discriminator?
  - "Hot" means "causing high trigger rates"
    - Regardless of whether that's due to noise, crosstalk, or any other random or systematic process
- Why do we care?
  - Need to time-in CAL-LO
    - Trigger group aims for FLE ~1/4 to ~1/2 MIP
      - 3-6 MeV is just too low for some GCFEs
      - Note that there is no need to time-in every single channel!
  - Need to understand headroom ("footroom"??) for FHE
    - FHE flight setting is determined by need for
      - self-veto prevention
      - on-board filter for bkg rejection
    - Current plan is FHE = 1 GeV
      - But how low can we set it?
        - » My guess is that some GCFEs will run away ~ 0.5 GeV
  - Parallel muTrg is hard to run
    - CAL-LO trigger rates at "8 MeV" are quite high
    - Work-around to try: use TKR triggers instead

**GLAST LAT Project** 



- Test plan to find hot FLE and FHE
  - Two purposes
    - For FLE, identify GCFEs with high, out-of-family minimum useful settings so they can be excluded from timing-in
    - For FHE, measure the headroom between the minimum useful setting and the flight setting
  - Basis and constraints
    - Minimum useful setting varies from channel to channel
      - Known hot FLE include FM105, board X-, row 0, col 10.
        - » See appendix for full list
    - Event readout is cause for retrigger
      - Not event content, not trigger source
      - Use external pulser to give predictable, high rate
        - » Prescale logging-to-disk of pulser triggers to minimize data volume
    - Event counter matters
      - "Need" to accumulate >128k events in each config
    - Rely on trigger diagnostics
      - Need to be sure to latch at right time for FLE and FHE

**GLAST LAT Project** 



### **Proposed FHE test plan**

- FHE test sequence
  - 1. Set FHE to flight nominal, enable all GCFEs, all Towers in parallel
    - Trigger mask
      - Enable: all FHEs in all layer-ends
  - 2. Collect data with trigger on pulser || CAL-HI. Analyze.
    - Trigger mask as defined by step 1 for first pass, step 5 for next passes
    - Analysis
      - Calculate rate of FHE=true for each layer-end based on diagnostic bits. Find outliers
  - 3. Collect data, disabling hot layer-ends to verify. Analyze.
    - Trigger mask
      - Enable: all FHEs in nominal layer-ends
      - Disable: all FHEs in each hot layer-end
  - 4. Collect data, enabling individual GCFEs within hot layer-ends in sequence to find hot channels. Analyze.
    - Trigger mask
      - Enable: all FHEs in nominal layer-ends, one FHE in each hot layer-end
      - Disable: all-but-one FHE in each hot layer-end
    - Loop 12 times, once for each GCFE in sequence
  - 5. Disable all hot GCFEs, set FHE to lower value, and start again at step 2. Analyze.
    - Trigger mask
      - Enable: all FHEs except known hot
      - Disable: all known hot FHEs



# FHE test configuration

#### • CAL and Trig configuration

**GLAST LAT Project** 

| Tower enable               | All, parallel acquisition                                                           |  |  |
|----------------------------|-------------------------------------------------------------------------------------|--|--|
| Gain                       | LE = 5, HE = 15                                                                     |  |  |
| Readout                    | 1-range, auto-range, zero-suppressed                                                |  |  |
| Zero-suppression threshold | LAC = 2 MeV, enabled                                                                |  |  |
| Trigger source             | Ext    CAL-HI<br>TKR, CAL-LO, ACD disabled                                          |  |  |
| Ext pulser                 | 1 kHz periodic                                                                      |  |  |
| CAL-LO, HI thresholds      | FLE = 100 MeV, disabled<br>FHE = 1000 MeV, 500 MeV, 300 MeV, 200 MeV in sequence    |  |  |
| TEM diagnostics            | Enabled                                                                             |  |  |
| Data logging               | Prescale pulser trig by 1024 (just to ensure some output)<br>Do not prescale CAL-HI |  |  |
| Run time                   | 3 minutes, each config                                                              |  |  |

**GLAST LAT Project** 



- For FLE test, do entirely analogous procedure
  - Sorta substitute FLE for all FHE, CAL-LO for all CAL-HI
  - Enable CAL-LO
    - Use FLE = 20 MeV, 15 MeV, 10 MeV, and 5 MeV in sequence
  - Disable CAL-HI
    - Set FHE = 1000 MeV (flight setting)
  - Analysis unchanged
    - FLE will be triggering on muons, but hot FLEs will still be outliers in rate of FLE=true
    - Can confirm that events are retriggers with muon imaging and with gemDeltaEventTime
- Be willing to stop before minimum FLE or FHE in list if rate is unacceptable
  - Stopping early is *not* failure



### **Software needs**

- Online
  - Need tool to generate FLE and FHE trigger masks
    - Code exists within calf\_mu\_optical in CAL\_NRL environment
      - We used this e.g. for FM105 and FM117
      - Presents GUI and writes temporary trg.xml table
    - Code could be resurrected for v3 SLAC environment
- Analysis
  - NRL has tools to find trigger efficiency using diagnostic data
    - Exist in ROOT (e.g. as part of muTrg analysis) and IDL
      - Need tweaks to follow this test plan
    - Could be offline or rewritten to Python for online

**GLAST LAT Project** 

## Appendix: Known hot FLEs

- Known hot FLEs
  - ATDP website contains Exceptions List XML files
    - <u>http://heseweb.nrl.navy.mil/glast/CAL\_ATDP/index.html</u>
    - Includes hot FLE list from Module Assy & Test
      - In this case, "hot" means min setting ~ muon peak

| Module | Board          | Row         | Column      |
|--------|----------------|-------------|-------------|
| FM105  | Х-             | 0           | 10          |
| FM117  | Y+<br>Y-<br>Y- | 2<br>0<br>3 | 1<br>5<br>4 |