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1. Introduction



Unresolved mystery in the high-energy sky among many

• What are blazars?

• ~60 were detected with EGRET

• What are the emission mechanisms?

• Are they beamed AGNs?—Is AGN unification picture really right?

•What are unidentified EGRET sources?

• What is the origin of cosmic gamma-ray background?

• EGRET discovered isotropic gamma-ray background in GeV region

• Can unresolved astrophysical sources explain all the flux?

• Do we have chance to see signature of dark matter annihilation?



GLAST: Gamma Ray Large Area Space Telescope

• GLAST is equipped with a large volume gamma-ray 
detector (LAT)

• Sensitivity covers 30 MeV–300 GeV

• Very large field of view (2.4 sr), enabling all sky survey

• Point source flux sensitivity: 2×10−9 cm−2 s−1, 50 times better 
than EGRET

• Better map of (1) point sources and (2) diffuse radiation



2. Point source anisotropy: 
blazars and clusters of galaxies

Ando, Komatsu, Narumoto, & Totani, 
MNRAS in press; astro-ph/0610155



Blazar luminosity function: How many at GLAST?

• Luminosity-dependent density evolution (LDDE) model motivated by X-ray AGN 
observation (Ueda et al. 2003; Hasinger et al. 2005) fits the data very well

• Pure-luminosity evolution (PLE; Stecker & Salamon 1996; Chiang & Mukherjee 1998) model 
still gives a reasonable fit

• The best fit model predicts ~3,000 blazars from all sky
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FIG. 3.— Histogram of radio to gamma-ray luminosity ratio, p= log10(Lγ/Lr), of the EGRET blazars. The luminosities are νLν in the restframe 100 MeV
and 2.7 GHz bands, respectively. The solid curve is a Gaussian fit to the histogram.

FIG. 4.— The solid contours show the 68%, 95% and 99% C.L. regions for the PLE model parameters [the faint-end slope index γ1 and the mean gamma-ray
to radio luminosity ratio, 〈p〉 = 〈log10(Lγ/Lr)〉]. The best-fit values, (〈p〉,γ1) = (3.28,0.69), are shown by the cross. The dashed contours correspond to
η = 10−0.33, 10−0.66, 10−1.0, and 10−1.33, respectively, where η is the ratio of the normalizations of the gamma-ray to radio luminosity functions.
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FIG. 5.— Redshift distribution of the EGRET blazars. The histogram is the EGRET data. The solid and dashed curves are the best-fit models for the LDDE and
PLE models, respectively, from the likelihood analysis. The dotted curve is obtained from the blazar GLF model of SS96. The error bars are 1σ Poisson error.
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FIG. 6.— Luminosity distribution of the EGRET blazars. The line markings are the same as Figure 5. The luminosity is νLν at 100 MeV. The error bars are
1σ Poisson error.

FIG. 7.— The solid contours and crosses are the same as Figure 4 showing the fit by the PLE model. The dashed contours show 25%, 50%, 75%, and 100%

contribution of unresolved blazars to the EGRB. The upper left, upper right, lower left, and lower right panels are for the cases of Lγ,min = 1043, 1042, 1041, and

1040 erg s−1, respectively.
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Power spectrum of GLAST point sources 3

Hasinger et al. (2005) have found AX = 6.69 × 10−7 Mpc−3,
log (L∗

X erg s−2) = 43.94 ± 0.11, z∗
c = 1.96 ± 0.15, log (La erg s−2)

= 44.67, α = 0.21 ± 0.04, p∗
1 = 4.7 ± 0.3, p∗

2 = −1.5 ± 0.7, β1 =
0.7 ± 0.3, β2 = 0.6 ± 0.8, γ 2 = 2.57 ± 0.16 and γ 1 = 0.87 ± 0.10.
We call this model the ‘luminosity-dependent density evolution’
model, LDDE.

How robust are our predictions from this model? The most impor-
tant parameter for our purpose in this paper is the slope of XLF in the
faint end, γ 1, as the expected number count of blazars that would be
detected by GLAST is sensitive to how many blazars there are in the
faint end of luminosity function. Narumoto & Totani (2006) have
fitted the GLF of blazars detected by EGRET in order to find γ 1,
q = log (Lγ /LX) and κ , with the other parameters fixed at the best-
fitting values from the XLF given above. (The blazar sample from
EGRET was constructed by requiring that EGRET sources were
identified as blazars by radio observations. The probability that the
blazars giving the flux above the EGRET point-source sensitivity
also gives the sufficient radio flux was taken into account in their
analysis.) They have found that (γ 1, q, κ) = (1.19, 3.80, 5.11 ×
10−6) best describes the GLF of EGRET blazars. This γ 1 is larger
than that obtained from the XLF, γ 1 = 0.87 ± 0.10, at the 3σ level,
which may imply that a better model is needed; however, we do not
investigate this point any further and simply accept γ 1 = 1.19 as
the canonical value for the GLF of blazars. One should come back
to this point, however, when GLAST flies and collects many more
blazars than available now.

One can also calculate the contribution to the extragalactic
gamma-ray background (EGRB) from blazars once the GLF is
specified. The EGRB intensity has been measured by EGRET
(Sreekumar et al. 1998; Strong, Moskalenko & Reimer 2004)2, and
the best-fitting model with γ 1 = 1.19 accounts for 25–50 per cent
of the EGRB intensity, depending on the assumed minimum γ -ray
luminosity of blazars, Lγ ,min = 1040 to 1043 erg s−1. Here, we assume
that no blazars fainter than the minimum luminosity would exist. On
the other hand, blazars can still account for all the EGRB intensity, if
the blazars can be as faint as Lγ ,min = 1041 erg s−1, and the faint end
of the GLF is slightly steeper, γ 1 = 1.31, than the canonical model.
The other parameters are given by (q, κ) = (3.80, 3.9 × 10−6).
This model appears to be a bit extreme, as γ 1 = 1.31 is inconsistent
with the X-ray determination, γ 1 = 0.87 ± 0.10, at the 4.4σ level.
Nevertheless, we use this model to show the uncertainty in our pre-
dictions from the uncertainty in the faint end of the GLF. Henceforth,
we call the canonical model (γ 1 = 1.19) the ‘LDDE1’ model, and
the latter model (γ 1 = 1.31) the ‘LDDE2’ model. For both models,
we adopt Lγ ,min = 1041 erg s−1 as the lower luminosity cut-off.

2.3 Survey parameters, number count, angular correlation
function and power spectrum of blazars from GLAST

The flux sensitivity for point sources of the GLAST LAT is Fγ ,lim =
2 × 10−9 cm−2 s−1 for 2 yr of full-sky observations and for sources
having the energy spectral index of 2; we adopt this value of the flux
sensitivity in the following discussions, unless otherwise stated. The
γ -ray flux, Fγ , represents the flux integrated above Emin = 100 MeV,
and it is related to the γ -ray luminosity through

Lγ (Fγ , z) = 4πd2
L(αγ − 1)

(1 + z)2−αγ
Emin Fγ , (15)

2 But these estimates are still controversial (Keshet, Waxman & Loeb 2004b).

Table 1. Parameters of the LDDE GLFs and the expected number, N, and the
surface number density, N , of blazars that would be detected by GLAST. We
have assumed that no blazars fainter than Lγ ,min = 1041 erg s−1 would exist,
and GLAST LAT can detect the flux down to Fγ ,lim = 2 × 10−9 cm−2 s−1

for 2 yr of all-sky observations.

Model (q, γ 1) κ N N (sr−1)

LDDE1a (3.80, 1.19) 5.11 × 10−6 3100 250
LDDE2b (3.80, 1.31) 3.90 × 10−6 6500 520

aBest-fitting model of the EGRET blazar distribution.
bA model explaining 100 per cent of the EGRB intensity.

where dL is the luminosity distance. One can calculate the number
of blazars that would be detected by GLAST from

N = &

∫ zmax

0

dz
d2V

dz d&
φ(z), (16)

where we use zmax = 5, & is the solid angle covered (& = 4π sr
for the all-sky survey) and φ(z) is the cumulative GLF given by
equation (6).

For the canonical GLF model that accounts for 25–50 per cent of
the EGRB intensity (LDDE1) and the lower luminosity cut-off of
Lγ ,min = 1041 erg s−1 (hereafter, we use this value unless otherwise
stated), we obtain N $ 3100. For the GLF model that accounts for
all the EGRB intensity (LDDE2) and the same luminosity cut-off,
we obtain N $ 6500. These results are summarized in Table 1.
Therefore, it is easier to detect the spatial clustering of blazars in
the LDDE2 model than in the LDDE1 model.

Fig. 1 shows the redshift distribution of GLAST blazars predicted
from the LDDE1 and LDDE2 model. For both cases, the distri-
bution exhibits a sharp cut-off around z = 0.01, which is due to
our assumption that no blazars fainter than Lγ ,min would exist; a

Figure 1. Redshift distribution of blazars that would be detected by GLAST,
for LDDE1 (solid) and LDDE2 (dashed) models. (See Table 1 for the model
parameters as well as for the expected number of blazars.) The thick solid line
shows the LDDE1 model with Lγ ,min = 1041 erg s−1, while the thin solid
lines show the LDDE1 model with Lγ ,min = 1040 erg s−1 and 1042 erg s−1:
the larger the Lγ ,min is, the fewer the low-z blazars would be detected.
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power spectrum of galaxy clusters. Section 5 is devoted to further
discussions, and we conclude in Section 6.

2 A N G U L A R P OW E R S P E C T RU M
O F B L A Z A R S

2.1 Formalism

The angular power spectrum of blazars that would be detected by
GLAST is given by the sum of the shot (Poisson) noise term, CP

l ,
and the correlation term, CC

l , as (Peebles 1980)

Cl = C P
l + CC

l , (1)

C P
l = N−1, (2)

CC
l = 2π

∫ 1

−1

d cos θ Pl (cos θ )w(θ ), (3)

where N ≡ dN/d" is the number of blazars per solid angle, and
w(θ ) is the angular correlation function of blazars that would be
detected by GLAST. Note that the shot noise term is independent of
multipoles.

A standard procedure to calculate the angular correlation func-
tion is as follows. We model the 3D spatial correlation function
of blazars, ξ (r, z), as the correlation function of dark matter parti-
cles, multiplied by the ‘bias’ factors that depend on the physics of
formation and evolution of blazars in dark matter haloes. We then
project the resulting 3D correlation function on the sky to calcu-
late the 2D angular correlation function of blazars, w(θ ). As the
bias factors depend on redshift and luminosity of blazars, we model
ξ (r, z) as ξ (r;Lγ ,1, Lγ ,2|z) = ξ lin(r, z) bB(Lγ ,1, z) bB(Lγ ,2,z), where
r = |x2 − x1| is the distance between two blazars, Lγ ,1 and Lγ ,2

are their luminosities and ξ lin(r, z) is the 3D correlation function
of linear dark matter fluctuations. As we show in this paper, the
angular correlation function of blazars may be detectable only on
large scales, and thus the linear correlation function and the linear
bias model would provide a good approximation. By projecting the
3D correlation function on the sky, one obtains (Peebles 1980)

N 2w(θ ) =
∫ zmax

0

dz
d2V

dz d"
χ (z)2φ(z)2bB(z)2

×
∫ ∞

−∞
du ξlin

(

√

u2 + χ (z)2θ 2, z
)

, (4)

where χ (z) is the comoving distance out to an object at
z, d2V/dz d" is the comoving volume element per unit solid an-
gle and per unit redshift range, bB(z) is the average bias of blazars
weighted by the GLF of blazars,1 ργ (Lγ , z):

bB(z) ≡ 1
φ(z)

∫ ∞

Lγ (Fγ ,lim,z)

dLγ ργ (Lγ , z)bB(Lγ , z), (5)

and φ(z) is the cumulative GLF of blazars, i.e. GLF integrated from
a given minimum luminosity cut-off,

φ(z) ≡
∫ ∞

Lγ (Fγ ,lim,z)

dLγ ργ (Lγ , z). (6)

Note that we have not used the so-called ‘small-angle approxima-
tion’ or ‘Limber’s approximation’, as we are mainly interested in
the signals on large angular scales, θ ! 10◦.

1 The luminosity function represents the number of sources per unit comov-
ing volume and unit luminosity range.

We calculate ξ lin(r, z) from the power spectrum of linear matter
density fluctuations, Plin(k):

ξlin(r , z) =
∫

k2 dk
2π2

Plin(k)
sin kr

kr
. (7)

We use the linear transfer function given in Eisenstein & Hu (1999)
to compute Plin(k).

Equations (2) and (3) suggest that C P
l = N−1 dominates when

the number of blazars detected by GLAST is small, making it diffi-
cult to detect the correlation term. It is therefore very important to
understand how many blazars one can detect with GLAST. In the
next section, we calculate the expected number count of blazars for
GLAST using the latest GLF of blazars (Narumoto & Totani 2006).

2.2 Gamma-ray luminosity function of blazars

The basic idea behind the model of the GLF of blazars proposed by
Narumoto & Totani (2006) is that the jet activity that powers γ -ray
emission from blazars must be related to accretion on to the central
black holes, from which X-ray emission emerges; thus, the X-ray
and γ -ray luminosity of blazars must be correlated. We use the fol-
lowing relation between GLF of blazars, ργ , and X-ray luminosity
function (XLF) of AGNs, ρX:

ργ (Lγ , z) = κ
LX

Lγ

ρX(LX, z). (8)

The advantage of this method is that the XLF has been determined
accurately by the extensive study of the X-ray background (Ueda
et al. 2003; Hasinger, Miyaji & Schmidt 2005), and thus the pre-
dicted GLF would also be fairly accurate, provided that the γ -ray
luminosity and X-ray luminosity of blazars are tightly correlated.
Since not all AGNs detected in X-rays are blazars, we have intro-
duced a normalization factor, κ . We relate the γ -ray luminosity, Lγ ,
and X-ray luminosity, LX, of blazars by a linear relation with the
constant of proportionality given by 10q:

Lγ = 10q LX, (9)

where Lγ represents νLν at 100 MeV, and LX is the X-ray luminosity
integrated over the ROSAT band, 0.5–2 keV. (Both are evaluated at
the source rest frame.) We convert the measured flux to the rest-
frame luminosity by specifying the spectrum of sources: for γ -ray
we use a spectral index of αγ = 2.2 (Sreekumar et al. 1998), while
for X-ray αX = 2 (Hasinger et al. 2005).

The AGN XLF, ρX, is given by a double power law in luminosity
with an evolution factor f(LX, z) (Hasinger et al. 2005):

ρX(LX, z) = AX f (LX, z)
(ln 10)LX

[(

LX

L∗
X

)γ1

+
(

LX

L∗
X

)γ2
]−1

, (10)

where

f (LX, z)

=

{

(1 + z)p1 [z " zc(LX)],

f [LX, zc(LX)]
[

1+z
1+zc(LX)

]p2 [z > zc(LX)],
(11)

where zc is the redshift of evolutionary peak given by

zc(LX) =

{

z∗
c (LX # La),

z∗
c

(

LX
La

)α
(LX < La),

(12)

and p1 and p2 are given by

p1 = p∗
1 + β1

[

log
(

LX/erg s−1
)

− 44
]

, (13)

p2 = p∗
2 + β2

[

log
(

LX/erg s−1
)

− 44
]

. (14)
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power spectrum of galaxy clusters. Section 5 is devoted to further
discussions, and we conclude in Section 6.
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(
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=
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(
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Is blazar clustering detectable with GLAST?

•Blazars should cluster spatially tracing the dark matter distribution

•Given the large number statistics (~3,000), can the spatial 
clustering be detectable with GLAST?

•We can compare data immediately with prediction of angular 
power spectrum

•One can immediately get the idea about the source idensitiy

•One can directly get blazar bias, providing independent test of 
AGN unification picture as well as AGN formation

•This is a very straightforward and important thing to do; 
nevertheless has not been done by anybody



Formulation: Angular power spectrum

• Everything is in textbook by Peebles (1980)

θ

Angular correlation function:

Angular power 
spectrum:

Blazar bias
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the signals on large angular scales, θ ! 10◦.

1 The luminosity function represents the number of sources per unit comov-
ing volume and unit luminosity range.

We calculate ξ lin(r, z) from the power spectrum of linear matter
density fluctuations, Plin(k):
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We use the linear transfer function given in Eisenstein & Hu (1999)
to compute Plin(k).

Equations (2) and (3) suggest that C P
l = N−1 dominates when

the number of blazars detected by GLAST is small, making it diffi-
cult to detect the correlation term. It is therefore very important to
understand how many blazars one can detect with GLAST. In the
next section, we calculate the expected number count of blazars for
GLAST using the latest GLF of blazars (Narumoto & Totani 2006).

2.2 Gamma-ray luminosity function of blazars

The basic idea behind the model of the GLF of blazars proposed by
Narumoto & Totani (2006) is that the jet activity that powers γ -ray
emission from blazars must be related to accretion on to the central
black holes, from which X-ray emission emerges; thus, the X-ray
and γ -ray luminosity of blazars must be correlated. We use the fol-
lowing relation between GLF of blazars, ργ , and X-ray luminosity
function (XLF) of AGNs, ρX:

ργ (Lγ , z) = κ
LX
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ρX(LX, z). (8)

The advantage of this method is that the XLF has been determined
accurately by the extensive study of the X-ray background (Ueda
et al. 2003; Hasinger, Miyaji & Schmidt 2005), and thus the pre-
dicted GLF would also be fairly accurate, provided that the γ -ray
luminosity and X-ray luminosity of blazars are tightly correlated.
Since not all AGNs detected in X-rays are blazars, we have intro-
duced a normalization factor, κ . We relate the γ -ray luminosity, Lγ ,
and X-ray luminosity, LX, of blazars by a linear relation with the
constant of proportionality given by 10q:

Lγ = 10q LX, (9)

where Lγ represents νLν at 100 MeV, and LX is the X-ray luminosity
integrated over the ROSAT band, 0.5–2 keV. (Both are evaluated at
the source rest frame.) We convert the measured flux to the rest-
frame luminosity by specifying the spectrum of sources: for γ -ray
we use a spectral index of αγ = 2.2 (Sreekumar et al. 1998), while
for X-ray αX = 2 (Hasinger et al. 2005).
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power spectrum of galaxy clusters. Section 5 is devoted to further
discussions, and we conclude in Section 6.
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detected by GLAST. Note that the shot noise term is independent of
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GLAST using the latest GLF of blazars (Narumoto & Totani 2006).
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We use the linear transfer function given in Eisenstein & Hu (1999)
to compute Plin(k).

Equations (2) and (3) suggest that C P
l = N−1 dominates when

the number of blazars detected by GLAST is small, making it diffi-
cult to detect the correlation term. It is therefore very important to
understand how many blazars one can detect with GLAST. In the
next section, we calculate the expected number count of blazars for
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The basic idea behind the model of the GLF of blazars proposed by
Narumoto & Totani (2006) is that the jet activity that powers γ -ray
emission from blazars must be related to accretion on to the central
black holes, from which X-ray emission emerges; thus, the X-ray
and γ -ray luminosity of blazars must be correlated. We use the fol-
lowing relation between GLF of blazars, ργ , and X-ray luminosity
function (XLF) of AGNs, ρX:
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The advantage of this method is that the XLF has been determined
accurately by the extensive study of the X-ray background (Ueda
et al. 2003; Hasinger, Miyaji & Schmidt 2005), and thus the pre-
dicted GLF would also be fairly accurate, provided that the γ -ray
luminosity and X-ray luminosity of blazars are tightly correlated.
Since not all AGNs detected in X-rays are blazars, we have intro-
duced a normalization factor, κ . We relate the γ -ray luminosity, Lγ ,
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constant of proportionality given by 10q:
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integrated over the ROSAT band, 0.5–2 keV. (Both are evaluated at
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we use a spectral index of αγ = 2.2 (Sreekumar et al. 1998), while
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density fluctuations, Plin(k):

ξlin(r , z) =
∫

k2 dk
2π2

Plin(k)
sin kr

kr
. (7)

We use the linear transfer function given in Eisenstein & Hu (1999)
to compute Plin(k).

Equations (2) and (3) suggest that C P
l = N−1 dominates when

the number of blazars detected by GLAST is small, making it diffi-
cult to detect the correlation term. It is therefore very important to
understand how many blazars one can detect with GLAST. In the
next section, we calculate the expected number count of blazars for
GLAST using the latest GLF of blazars (Narumoto & Totani 2006).

2.2 Gamma-ray luminosity function of blazars

The basic idea behind the model of the GLF of blazars proposed by
Narumoto & Totani (2006) is that the jet activity that powers γ -ray
emission from blazars must be related to accretion on to the central
black holes, from which X-ray emission emerges; thus, the X-ray
and γ -ray luminosity of blazars must be correlated. We use the fol-
lowing relation between GLF of blazars, ργ , and X-ray luminosity
function (XLF) of AGNs, ρX:

ργ (Lγ , z) = κ
LX

Lγ

ρX(LX, z). (8)

The advantage of this method is that the XLF has been determined
accurately by the extensive study of the X-ray background (Ueda
et al. 2003; Hasinger, Miyaji & Schmidt 2005), and thus the pre-
dicted GLF would also be fairly accurate, provided that the γ -ray
luminosity and X-ray luminosity of blazars are tightly correlated.
Since not all AGNs detected in X-rays are blazars, we have intro-
duced a normalization factor, κ . We relate the γ -ray luminosity, Lγ ,
and X-ray luminosity, LX, of blazars by a linear relation with the
constant of proportionality given by 10q:

Lγ = 10q LX, (9)

where Lγ represents νLν at 100 MeV, and LX is the X-ray luminosity
integrated over the ROSAT band, 0.5–2 keV. (Both are evaluated at
the source rest frame.) We convert the measured flux to the rest-
frame luminosity by specifying the spectrum of sources: for γ -ray
we use a spectral index of αγ = 2.2 (Sreekumar et al. 1998), while
for X-ray αX = 2 (Hasinger et al. 2005).

The AGN XLF, ρX, is given by a double power law in luminosity
with an evolution factor f(LX, z) (Hasinger et al. 2005):

ρX(LX, z) = AX f (LX, z)
(ln 10)LX

[(

LX

L∗
X

)γ1

+
(

LX

L∗
X

)γ2
]−1

, (10)

where

f (LX, z)

=

{

(1 + z)p1 [z " zc(LX)],

f [LX, zc(LX)]
[

1+z
1+zc(LX)

]p2 [z > zc(LX)],
(11)

where zc is the redshift of evolutionary peak given by

zc(LX) =

{

z∗
c (LX # La),

z∗
c

(

LX
La

)α
(LX < La),

(12)

and p1 and p2 are given by

p1 = p∗
1 + β1

[

log
(

LX/erg s−1
)

− 44
]

, (13)

p2 = p∗
2 + β2

[

log
(

LX/erg s−1
)

− 44
]

. (14)

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS
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Figure 2. (Left) Angular correlation function, w(θ), and (Right) correlation term of the angular power spectrum, l(l + 1)CC
l /2π, of the

blazars that would be detected by GLAST. Both have been divided by the average bias squared; thus plotted quantities are w(θ)/b
2
B and

l(l+1)CC
l /(2πb

2
B). The dotted, solid, and dashed lines show the predictions for the limiting flux of Fγ,lim = 2, 3, and 4×10−9 cm−2 s−1,

respectively. The top panels are for the LDDE1 model, while the bottom panels are for the LDDE2 model.

Our results depend on the luminosity cutoff of the GLF,
Lγ,min, as the correlation at large separations (l ! 30) is
dominated mainly by relatively nearby (less bright) sources.
We have therefore performed the same calculations with
different Lγ,min (with the other parameters of the LDDE1
model held fixed), and found that the correlation would be

detectable (i.e., C
C

/δC > 1) for the average bias greater
than 0.9 and 1.7, for Lγ,min = 1040 and 1042 erg s−1, re-
spectively.

One may also ask how these results would change, if
we chose other GLF models. The “pure-luminosity evolu-
tion” (PLE) model has been used traditionally in the litera-
ture (Stecker & Salamon 1996; Chiang & Mukherjee 1998),
while the LDDE model fits the EGRET blazar properties
better (Narumoto & Totani 2006). Motivated by the cor-
relation between radio and γ-ray luminosities of blazars,
Stecker & Salamon (1996) used the PLE model to obtain
the GLF of blazars. We find that the large-angle correlation
(l " 30) is more difficult to detect in their model: the correla-
tion would be detectable only when bB > 4.2. Their model,
however, was not intended to reproduce the redshift and
luminosity distributions of the EGRET blazars, and thus
their fit to these data is not very good. Chiang & Mukherjee

(1998) improved the PLE model by adjusting a few pa-
rameters such that the model can reproduce the distribu-
tion of EGRET blazars. (Although the authors did not use
the radio and γ-ray luminosity relation, we incorporate this
in our calculations; see Narumoto & Totani (2006) for de-
tails.) Again, we find that the correlation signal is more
difficult to detect in the best-fit PLE model: the correla-
tion would be detectable only when bB > 6.9. These results
are because the PLE model predicts the blazar distribu-
tion that is much more biased toward the high redshift (see
Fig. 11 of Narumoto & Totani (2006)), and hence, the large-
separation power (due mainly to low-redshift blazars) is sup-
pressed. In fact, the results improve if we instead adopt the
smaller separation, 30 " l " 300, where the high-redshift
contribution becomes larger. The sensitivity to the bias pa-
rameter goes down to bB > 2.4 and bB > 3.0, respectively
for the Stecker & Salamon (1996) and Chiang & Mukherjee
(1998) models. On the other hand, as we have already shown,
the latest GLF from the LDDE model, which best describes
the distribution of EGRET blazars, predicts that the corre-
lation would be detectable for bB of order unity.

c© 2006 RAS, MNRAS 000, 1–14

Results:
(i) Angular correlation and power spectrum

Point source flux limit: 
2, 3, 4 × 10−9 cm−2 s−1 

LDDE1 Best fit model

LDDE2
Explains 100% of 

gamma-ray 
background

Ando et al., astro-ph/0610155
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Figure 1. Redshift distribution of blazars that would be detected
by GLAST, for LDDE1 (solid) and LDDE2 (dashed) models. (See
Table 1 for the model parameters as well as for the expected
number of blazars.) The thick solid line shows the LDDE1 model
with Lγ,min = 1041 erg s−1, while the thin solid lines show the
LDDE1 model with Lγ,min = 1040 erg s−1 and 1042 erg s−1:
the larger the Lγ,min is, the fewer the low-z blazars would be
detected.

Figure 1 shows the redshift distribution of GLAST
blazars predicted from the LDDE1 and LDDE2 model. For
both cases, the distribution exhibits a sharp cut-off around
z = 0.01, which is due to our assumption that no blazars
fainter than Lγ,min would exist; a larger Lγ,min results in a
larger cut-off redshift. Nevertheless, since only a small frac-
tion of the distribution is eliminated by this effect, the to-
tal number of blazars that would be detected by GLAST,
N , hardly changes; for example, we expect 3200 and 2900
blazars to be observed by GLAST for Lγ,min = 1040 and 1042

erg s−1 (both for the LDDE1 parameters), respectively. On
the other hand, we shall show in Section 3.1 that Lγ,min has
an important consequence for detectability of the anisotropy
signal.

Figure 2 shows the angular correlation function, w(θ)
(left panels), and the correlation term of the angular power
spectrum, l(l+1)CC

l /2π (right panels), divided by the aver-
age bias squared, for the LDDE1 (top panels) and LDDE2
(bottom panels) model. In each panel we vary the GLAST
LAT point-source flux sensitivity, Fγ,lim, from 2 × 10−9 to
4 × 10−9 cm−2 s−1. As expected, the clustering is stronger
when more sources are observed, i.e., LDDE2 and lower
Fγ,lim.

3 DETECTABILITY OF THE BLAZAR

CORRELATION

3.1 Signal-to-noise vs blazar bias

As the correlation function and power spectrum are propor-

tional to the average bias squared, w(θ) ∝ b
2
B and CC

l ∝ b
2
B ,

whether or not one can detect the angular clustering of
blazars crucially depends on bB. Before we investigate a
model of the blazar bias, let us ask this question, “how large
bB should be, in order for CC

l to be detected by GLAST?”
The statistical error in the measurement of Cl is given

by the following argument. Assuming statistical isotropy
of the universe, we have 2l + 1 independent samples of
Cl = |alm|2 (with different m’s) per multipole. Here, alm

is the spherical harmonic coefficient of the distribution of
blazars on the sky. One may thus estimate Cl from Cl =
∑l

m=−l |alm|2/(2l + 1). The error in Cl is given by

(δCl)
2 =

2C2
l

(2l + 1)∆lfsky
=

2(CP
l + CC

l )2

(2l + 1)∆lfsky
(17)

where ∆l is the bin size in l space and fsky is a fraction of
the sky covered by observations. For the all-sky survey like
GLAST, we may adopt fsky = 1; we note that the point
source sensitivity becomes worse near the galactic plane be-
cause of strong galactic foreground. As CP

l = N−1 is inde-
pendent of l and depends only on the inverse of the surface
density of blazars, one can fit it and subtract it from the
measured Cl, leaving only CC

l . The error in CC
l , however,

still contains the contribution from CP
l . This shows why it

is important to detect as many blazars as possible (and thus
reduce CP

l as much as possible), in order to measure CC
l .

Figure 3 shows the 1-σ error boxes binned with ∆l =
0.5l for the LDDE1 and LDDE2 model. We show the errors
for the average bias of bB = 1 and 3. (Note that we have
ignored the redshift dependence of bB .) We find that it would
be difficult to detect CC

l for the LDDE1 plus bB = 1 model,
while the other models yield sufficient signal-to-noise ratios.

To increase statistical power one may sum Cl over mul-
tipoles. Let us define the angular power spectrum averaged
over 2 ! l ! 30,2

C(2 ! l ! 30) =
1
29

30
∑

l=2

Cl. (18)

The errors of this quantity is then given by

(δC)2 =
30

∑

l=2

(

∂C
∂Cl

)2

[δCl(∆l = 1)]2

=
1

292

30
∑

l=2

2
(2l + 1)fsky

(CP
l + CC

l )2. (19)

Figure 4 shows C
C

(2 ! l ! 30) as a function of the average
blazar bias, bB , for the LDDE1 (top panel) and LDDE2 (bot-
tom panel) models. The expected 1-σ errors as well as the

Poisson contribution, C
P
, are also shown. For the LDDE1

model we find that GLAST can detect C
C

if bB " 1.2. For
the LDDE2 model the detection is much easier, even for
bB " 0.5.

2 A dipole component, C1, depends on Earth’s motion and is not
considered here.

c© 2006 RAS, MNRAS 000, 1–14

(ii) Errors of angular power spectrum

• We can detect blazar 
correlation at large 
angular scale

• This directly tells us 
blazar bias

Ando et al., astro-ph/0610155



(iii) Dependence on blazar bias and other observations

• Average over large scale: 2 ≤ l 
≤ 30

• Correlation is detectable for bB 
> 1.2 (LDDE1), and bB > 0.5 
(LDDE2)

• For the PLE model, the 
required is bB > 3

• Optical quasar gives: bQ ~ 0.8 
at relevant redshift range 
(Croom et al. 2005; Myers et 
al. 2006)

• X-ray AGNs seem more 
strongly clustered with b ~ 3–4 
(Yang et al. 2003; Basilakos et 
al. 2005; Gandhi et al. 2006)

Ando et al., astro-ph/0610155



(iv) Clusters of galaxies

Miniati 2003



(iv) Clusters of galaxies
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Table 2. Model parameters, α and ε, the expected number count,
N , the surface density, N , the average bias, bC(z = 0.01), of
clusters that would be detected by GLAST. The last column lists
the expected signal-to-noise ratio for detecting the correlation
power spectrum averaged over 2 ! l ! 30.

Model αp,e εp,e N N (sr−1) bC C
C

/δC

pp1 2.2 0.5 6600 530 2.0 7.0
pp2 2.2 0.1 1100 88 2.5 4.6
pp3 2.2 0.01 63 5.0 3.3 1.9
IC1 2 0.05 3700 290 1.4 4.5
IC2 2 0.01 430 34 1.7 2.4
IC3 2.2 0.01 62 4.9 2.2 1.3

Figure 8. Redshift distribution of clusters of galaxies that would
be detected by GLAST for (a) proton-proton collision and (b)
inverse-Compton scattering models. Model parameters are given
in Table 2.

where Rform(Mh, z) is the formation rate of clusters with
mass of Mh at z, per comoving volume, and ∆tγ is the time
scale during which γ-rays are radiated efficiently from each
cluster. We calculate ∆tγ as either the inverse-Compton
cooling time or the shock wave propagation time (whichever
is longer): ∆tγ = max{tIC, tshock}. In most cases of our in-
terest, the latter is always much longer than the former, and
therefore, ∆tγ = tshock ! rvir/vs = 1.5(1 + z)−3/2 Gyr, in-
dependent of Mh, where rvir is the virial radius and vs the
sound speed. The formation rate of clusters, Rform(Mh, z),
is given by the time-derivative of the halo mass function,
dnh/dMh(Mh, z), corrected for the halo destruction rate
(Kitayama & Suto 1996).

Similar to the proton-proton collision case, we calcu-
late the total energy of relativistic electrons, Ee, by as-
suming that a fraction, εe, of the gravitational binding
energy of baryons is given to electrons. We use a power
law with an index of αe (either 2 or 2.2; see Table 2) for
the γ-ray spectrum, with an upper cutoff whose energy

is determined by a balance between the acceleration time
scale and the cooling time scale. To calculate the acceler-
ation time scale we use the magnetic field energy given by
εB = 10−3 times the binding energy of baryons. We choose
(αe, εe) = (2, 0.05), (2, 0.01), and (2.2, 0.01) as our models,
and we call them IC1, IC2, and IC3, respectively. The IC1
model is investigated by Totani & Kitayama (2000), and it
gives maximally allowed number of γ-ray emitting clusters,
as the IC1 model predicts the EGRB flux that is as large
as what is measured by EGRET. These models are again
summarized in Table 2 and Fig. 8.

4.2 Angular power spectrum of galaxy clusters

from GLAST

The angular power spectrum of clusters of galaxies is given
by equations (1)–(4) with the averaged blazar bias, bB , re-
placed by the average cluster bias,

bC,pp(z) =
1

φC,pp(z)

∫

∞

Mh(Fγ,lim,z)

dMh
dnh

dMh
(Mh, z)

× bh(Mh, z), (26)

bC,IC(z) =
1

φC,IC(z)

∫

∞

Mh(Fγ,lim,z)

dMh Rform(Mh, z)∆tγ

× bh(Mh, z), (27)

for the proton-proton collision model and the inverse-
Compton model, respectively.

Figure 9 shows the angular power spectrum of these
γ-ray clusters with the binned error boxes (∆l = 0.5l) as
well as the shot noise term for (a)–(c) proton-proton colli-
sion and (d)–(f) inverse-Compton models. The correlation is
quite significant particularly for optimistic models predict-
ing large number of γ-ray emitting clusters being detected
by GLAST, i.e., pp1 and IC1. The last column of Table 2
shows the signal-to-noise ratio for the power spectrum av-
eraged over 2 ! l ! 30, C/δC. We find that the signal-to-
noise ratio exceeds unity for all the models that we have
considered: the minimum is C/δC = 1.3 for IC3, and the
maximum is 7.0 for pp1, despite the fact that only small
number of clusters are expected to be seen in the GLAST
data. This is because clusters of galaxies are formed in the
high-density peaks and thus are highly biased. The sixth
column of Table 2 shows the average bias factors of clusters
at z = 0.01.

5 DISCUSSION

5.1 Admixture of blazars and galaxy clusters

While follow-up programs should reveal the identity of the
GLAST γ-ray sources and also some of the galaxy clus-
ters might appear as extended sources, at very early stage
of GLAST observational campaign, all the point sources
should more generally be considered to be mixed of various
emitters. Here we consider two-population case, blazars and
galaxy clusters. Our purpose in this section is to investigate
whether it is possible to distinguish the blazar component
from that of clusters by the angular clustering, even before
the follow-ups.

When there are more than one species of sources on

c© 2006 RAS, MNRAS 000, 1–14

• Proton-proton collision (pp) 
model

Berezinsky et al. 1997; 
Colafrancesco & Blasi 1998

• Inverse-Compton (IC) model

Loeb & Waxman 2000; Totani & 
Kitayama 2000; Keshet et al. 2003; 
Miniati 2003

Ando et al., astro-ph/0610155



Discussion:
How to discriminate blazars and galaxy clusters (1)

• LDDE1 and bB = 3 
blazar model

• The shape of angular 
power spectrum is 
different for blazars and 
galaxy clusters

• This is potentially a 
useful tool to 
distinguish the source 
population

Ando et al., astro-ph/0610155



How to discriminate blazars and galaxy clusters (2)

• Radio survey such as FIRST (Faint Images of the Radio Sky at Twenty 
Centimeters) is useful for source discrimination

• Designed to produce the radio equivalent of the Palomar Observatory Sky Survey over 10,000 
square degrees of the North and South Galactic Caps. Using the NRAO Very Large Array (VLA) 
and an automated mapping pipeline, we produce images with 1.8" pixels, a typical rms of 0.15 mJy, 
and a resolution of 5". At the 1 mJy source detection threshold, there are ~90 sources per square 
degree, ~35% of which have resolved structure on scales from 2-30" (from http://sundog.stsci.edu/)

• Blazars are also bright in radio unlike galaxy clusters

• Using the known correlation between gamma-ray and radio luminosities, the radio 
flux corresponding to the GLAST sensitivity is 10 mJy, an order of magnitude 
brighter than the FIRST limiting flux

http://sundog.stsci.edu/
http://sundog.stsci.edu/


Example strategy for GLAST point source survey

1. Source detection

2. Removing galaxy clusters

Catalog may contain galaxy clusters. These can be removed by using the FIRST 
radio survey

3. Updating blazar luminosity function

According to the source number, we may update the luminosity function

4. Analysis of angular power spectrum

We can constrain the blazar bias, even before follow-up observations

5. Completion of follow-ups: beginning of precision study

Analysis with more precise luminosity function. One may also use 3D power 
spectrum



3. Anisotropy of cosmic gamma-
ray background (CGB) and 
dark matter annihilation

Ando & Komatsu, Phys. Rev. D 73, 023521 (2006)
Ando, Komatsu, Narumoto & Totani, Phys. Rev. D 75, 063519 (2007)
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FIG. 1: The CGB spectrum from dark matter annihilation
(dashed) and blazars with the best-fit LDDE GLF (dotted).
Total intensity is shown by the solid curve, and the data points
are from the EGRET data [2].

work which included dark matter substructures [35] has
shown that this is indeed possible with a standard value
of the annihilation cross section, σv = 3×10−26 cm3 s−1,
which gives the right amount of the dark matter density
in the universe if dark matter was thermally produced in
the early universe [27, 29]. On the other hand, anisotropy
depends only on mχ and α. We shall therefore vary α
and see how the results depend on α, while we fix the
mass at 100 GeV throughout the paper.

B. Blazars

If a non-negligible fraction of the CGB flux comes
from astrophysical sources such as blazars and clusters
of galaxies, they inevitably give a background (noise) for
the dark matter detection in the anisotropy signature. It
is thus very important to evaluate the contribution from
the unresolved point sources. We concentrate on blazars
as an example.

To calculate the mean CGB intensity from blazars one
needs the GLF of blazars. We use the latest luminosity
dependent density evolution (LDDE) model, which re-
produces the observed GLF of the EGRET blazars bet-
ter than a traditionally used pure luminosity evolution
model [10]. As the LDDE GLF was originally given for
the luminosity at 100 MeV, we need to generalize it to
the other energies. We do this by specifying the spec-
tral shape; here we assume it to be a power law with
a spectral index of αγ = 2.2 [1]. Then, the luminosity

per unit energy range, L, is connected to the luminos-
ity, Lγ(100 MeV) (= EL at 100 MeV) adopted in the
previous GLF via the following simple relation:

L(Eem) =

(

Eem

100 MeV

)1−αγ Lγ

100 MeV
, (7)

The GLF is accordingly replaced with the one defined
as the comoving number density per unit range in L,
ΦE(L, z), which is related to the original one through

dL ΦE(L, z) = dLγ ργ(Lγ , z), (8)

where we show the energy dependence of the new GLF
explicitly by attaching subscript E. Note that ργ on the
right hand side is given by Eqs. (8) and (10) of Ref. [46].
Using Eqs. (7) and (8), we can rewrite the luminosity and
the GLF at any energies as long as the spectrum is kept
to be a power law with the same index.

The photon flux from the source with luminosity L at
redshift z at energy E is given by

FE(L, z) =
(1 + z)L[(1 + z)E, z]

4πd2
L(z)

, (9)

where dL(z) is the luminosity distance out to a source at
z. The flux sensitivity for point sources of the EGRET is
Fγ,lim " 10−7 cm−2 s−1 above 100 MeV [47], and all the
unresolved sources that give a flux below this threshold
contribute to the CGB. The conversion from the differ-
ential flux per energy, FE , to the integrated flux, Fγ , can
easily be performed by integrating over energy above 100
MeV and assuming the spectrum to be a power law with
an index αγ . One obtains

FE = (αγ − 1)

(

E

100 MeV

)1−αγ

Fγ . (10)

We use this equation and Eq. (9) to calculate the limiting
source luminosity, L(FE,lim, z), from Fγ,lim.

We calculate the mean CGB intensity coming from un-
resolved blazars whose gamma-ray flux is below FE,lim

from

E〈IN (E)〉 =

∫ zmax

0
dz

d2V

dzdΩ

∫ L(FE,lim,z)

0
dL ΦE(L, z)

× FE(L, z), (11)

where we use zmax = 5, and d2V/dzdΩ is the comoving
volume per unit redshift and unit solid angle ranges. We
show in Fig. 1 the CGB spectrum calculated with the
best-fitting LDDE GLF together with the EGRET data.
The predictions fall below the EGRET data, accounting
for only 25–50% of the observed CGB [10, 46].

This is presumably either because there is another class
of objects which can contribute to the CGB by equally
significant amount, or because the best-fitting LDDE

Dark matter (WIMP) annihilation

• If dark matter is WIMP, it may 
annihilate into visible photons

• WIMP mass is likely around 
GeV–TeV, so GLAST might have 
good chance to detect the 
signature

• WIMP annihilation in 
cosmological dark halos may 
thus contribute significantly to 
the CGB flux

Bergstrom et al. 1998; Ullio et al. 
2002; Taylor & Silk 2003; Elsaesser & 
Mannheim 2005; Ando 2005
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General Upper Bound on the Dark Matter Total Annihilation Cross Section
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We consider dark matter annihilation into Standard Model particles and show that the least de-
tectable final states, namely neutrinos, define an upper bound on the total cross section. Calculating
the cosmic diffuse neutrino signal, and comparing it to the measured terrestrial atmospheric neutrino
background, we derive a strong and general bound. Our bound is much stronger than the unitarity
bound at the most interesting masses, shows that dark matter halos cannot be significantly modified
by annihilations, and can be improved by a factor of 10–100 with existing neutrino experiments.

PACS numbers: 95.35.+d, 98.62.Gq, 98.70.Vc, 95.85.Ry

The self-annihilation cross section is a fundamental
property of dark matter. For thermal relics, it sets the
dark matter mass density, ΩDM ! 0.3, and in these and
more general non-thermal scenarios, also the annihila-
tion rate in gravitationally-collapsed dark matter halos
today [1]. How large can the dark matter annihilation
cross section be? There are two general constraints that
bound the rate of dark matter disappearance. (Through-
out, we mean the cross section averaged over the halo
velocity distribution, i.e., 〈σAv〉, where vrms ∼ 10−3c.)

The first is the unitarity bound, developed for the early
universe case by Griest and Kamionkowski [2], and for
the late-universe halo case by Hui [3]. In the plane of
〈σAv〉 and dark matter mass mχ, this allows only the
region below a line 〈σAv〉 ∼ 1/m2

χ (this will be made more
precise below). The second is provided by the model
of Kaplinghat, Knox, and Turner (KKT) [4], in which
significant dark matter annihilation is invoked to resolve
a conflict between predicted (sharp cusps) and observed
(flat cores) halo profiles. Since this tension may have
been relaxed [1], we reinterpret this type of model as
an upper bound, allowing only the region below a line
〈σAv〉 ∼ mχ. That the KKT model requires 〈σAv〉 values
! 107 times larger than the natural scale for a thermal
relic highlights the weakness of the unitarity bound in
the interesting GeV range. However, there have been no
other strong and general bounds to improve upon these.

While these bound the disappearance rate of dark mat-
ter, they say nothing about the appearance rate of annihi-
lation products, instead assuming that they can be made
undetectable. To evade astrophysical limits, the branch-
ing ratios to specific final states can be adjusted in model-
dependent ways. However, a model-independent fact is
that the branching ratios for all final states must sum
to 100%. The most reasonable assumption is that these
final states are Standard Model (SM) particles, as it is
assumed the dark matter is the lightest stable particle in
the Beyond-SM sector. See Fig. 1.

χ

χ







































All Standard

Model

final states

=

“Visible” states:

γγ, qq, e
+
e
−

, ...

+

“Invisible” states:

νν

FIG. 1: Annihilation of dark matter into SM final states.
Since all final states except neutrinos produce gamma rays
(see text), we can bound the total cross section from the neu-
trino signal limit, i.e., assuming Br(“Invisible”) = 100%.

We will show that the most difficult SM final state
to detect is neutrinos; but that surprisingly strong flux
limits can be derived from recent high-statistics data;
and that we may interpret these as bounding all SM fi-
nal states, and hence the dark matter total annihilation
cross section. To be robust and general, our bound is de-
rived with very conservative assumptions. This provides
a strong new constraint on the particle physics of the
dark matter, and implies that dark matter halos cannot
have been significantly modified by annihilations.

Probing Dark Matter Disappearance.— For dark
matter that is a thermal relic, the cross section required
to ensure ΩDM ∼ 0.3 is 〈σAv〉 ∼ 3 × 10−26 cm3 s−1 [1].
KKT discussed several models in which the dark matter
is not a thermal relic, e.g., it might have acquired mass
only in the late universe, or have been produced through
the late decays of heavier particles [4]. As emphasized in
Refs. [3, 4], it is interesting to ask how large the annihila-
tion cross section could be in halos today, irrespective of
possible early-universe constraints. This addresses more
directly the questions of particle properties and the ef-
fects of annihilations on dark matter halos.

In the KKT model, the required cross section to suffi-
ciently distort the dark matter profiles of galaxies is

〈σAv〉KKT ! 3 × 10−19 cm3

s

[ mχ

GeV

]

. (1)

GeV-γ 



CGB anisotropy from dark matter annihilation

• Astrophysical sources like blazars and clusters of galaxies cannot fully 
explain the observed CGB

• but only 25–50% using the latest blazar luminosity function 
(Narumoto & Totani 2006)

• If dark matter annihilation contributes significantly, it might be observed 
through anisotropy signature of the CGB

• Potentially a smoking gun of dark matter annihilation

• Powerful tool in addition to energy spectrum for Galactic sources 
(Baltz, Taylor & Wai, astro-ph/0610731)



Procedure of this study (Ando et al. 2007; PRD 75, 063519)

• We consider two origins as the CGB components:

• Blazars (astrophysical point sources) and dark matter annihilation

• Evaluate angular power spectrum for each component

• Treat dark matter as a signal and blazars as background

• As we should know blazar clustering relatively well from the point 
source analysis

• We argue under which condition, GLAST can detect dark matter 
component from the CGB angular power spectrum



θ

Angular power spectrum of annihilation gamma rays

• Projected along the line of sight is 
the CGB intensity

• Angular power spectrum, Cl, is 
related to the spatial power 
spectrum via Limber’s equation

• 3D correlation can be modeled, 
using

• linear matter correlation 
function

• halo mass function, and

• density profile in each halo
θ (= π / l)

Dark matter halo



Density profile of dark matter: substructure?

• Case 1: A smooth density profile like 
Navarro, Frenk & White (1996; NFW)

• Gamma luminosity ∝ ρ2

• Case 2: Density profile dominated by 
substructures

• Gamma luminosity ∝ ρ 
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Density profile of dark matter: substructure?

•Simulation covering the entire Milky Way, resolution down to 
~106 Msun substructure

•Higher resolution reveals more and more substructures

Simulation by Diemand, Kuhlen & Madau 2007



• Dark matter mass 100 GeV, 
gamma-ray energy 10 GeV

• Subhalo-dominated case

• Number of subhalos in a 
parent halo M

• Host-halo-dominated case

• Minimum halo mass as a free 
parameter

• 1(2)-halo term: correlation 
between two points in one 
identical (two distinct) halo(s)

of dark matter substructures. We therefore investigate these
two effects in detail in this paper, as they cannot be ignored
if one wants to discuss whether anisotropy can really help
detect the first signature of dark matter annihilation.

This paper is organized as follows. In Sec. II, we explain
what the CGB intensity averaged over all the directions
looks like, for both the dark matter annihilation (Sec. II A)
and blazars (Sec. II B). We then turn our attention to the
CGB anisotropy from dark matter substructure and blazars
in Secs. III and IV, respectively, where we present formu-
lation and results of the angular power spectrum. Section V
is the main part of this paper, devoted to discussion con-
cerning anticipated anisotropy analysis in the presence of
components from both dark matter annihilation and blaz-
ars. We study the case of other astrophysical sources and
discuss the robustness of our results in Sec. VI, and we also
give conclusions in the same section.

II. COSMIC GAMMA-RAY BACKGROUND: MEAN
INTENSITY

In this section we calculate the mean intensity (i.e.,
intensity averaged over the directions) of the CGB from
both dark matter annihilation (with substructures taken into
account) and blazars, and we compare the characteristics of
these two components.

A. Dark matter annihilation

We include the effect of dark matter substructures as
follows: we assume that substructures consist of a number
of subhalos within a bigger host halo. These subhalos
follow a certain mass function which is still unknown,
but for our purpose we are only interested in quantities
that are averaged over the mass function. If this mass
function is independent of the halo position as we assume,
these averaged subhalos having the same gamma-ray lu-
minosity would follow a smooth density profile of a host
halo such as the one proposed by Navarro, Frenk, and
White (NFW) [42,43] with a halo concentration parameter
given in Ref. [44]. The gamma-ray profile of a halo thus
traces the dark matter density, rather than the density
squared which would be expected if dark matter distribu-
tion were smooth [41].

We define the number intensity, IN , as the number of
photons emitted per unit area, time, solid angle, and energy
range. In a general cosmological context, it is given by

 EIN!n̂; E" #
c
4!

Z
dz

P"!$1% z&E; z; n̂r"
H!z"!1% z"4 e'#!$1%z&E;z";

(1)

where P" is the volume emissivity (energy of photons per
unit volume, time, and energy range), H!z"2 # H2

0$!1%
z"3!m %!"& is the Hubble function in a flat universe, and
we assume the standard values for cosmological parame-
ters, H0 # 100h km s'1 Mpc'1 with h # 0:7, !m # 0:3,

and !" # 0:7. We specify a certain direction by a unit
vector, n̂, position by a comoving distance vector, r # rn̂,
and time by a redshift, z (comoving distance, r, is also used
interchangeably). The exponential factor reflects the effect
of gamma-ray absorption due to pair production with the
extragalactic background light; such an effect is negligible
in the energy range of interest here.

To evaluate the mean intensity, hIN!E"i, we need
hP"!E; z"i. Let us define the gamma-ray spectrum per
subhalo averaged over its mass function by N sh!E", and
the number of these subhalos within a parent halo of mass
M by hNjMi. Then, we obtain the mean volume emissivity
as

 hP"!E; z"i # !1% z"3 #nsh!z"EN sh!E"; (2)

where #nsh!z" is the mean comoving number density of
subhalos given by

 

#n sh!z" (
Z 1

Mmin

dM
dn
dM

!M; z"hNjMi; (3)

and dn=dM is the halo mass function for which we use the
expression given in Ref. [45]. The function, N sh!E", in-
cludes all the particle physics parameters such as the
annihilation cross section, $v, the dark matter mass m%,
and the gamma-ray spectrum per annihilation dN"=dE.
For the latter, we use a simple parameterization, i.e.,
dN"=dE # !0:73=m%"e'7:76E=m%=$!E=m%"1:5 % 0:000 14&,
which is a good approximation for supersymmetric neu-
tralino dark matter particles [30]. We parameterize the
number of subhalos in each parent halo, which is also
known as the halo occupation distribution, as

 hNjMi #
!
M
M0

"
&
: (4)

If we ignore tidal destruction of subhalos entirely, we
obtain & # 1, i.e., the number of subhalos is simply pro-
portional to the mass of the parent halo. The tidal destruc-
tion should also change the gamma-ray emission profiles in
the parent halo, as it works more strongly at inner halo
regions. However, we adopt the NFW profile for all of our
calculations, because the profile change should exert only
secondary effect to our conclusions as discussed in
Sec. III B.

Using Eqs. (1) and (2), we obtain the mean intensity as
follows:

 hIN!E"i #
Z

drW!$1% z&E; z"; (5)

where

 W!E; z" # 1

4!
#nsh!z"N sh!E; z"e'#!E;z": (6)

Figure 1 shows the CGB spectrum from dark matter anni-
hilation, where the particle mass is assumed to be m% #
100 GeV. We do not give a specific value of $v or M0.
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Results:
Angular power spectrum from dark matter annihilation

Ando et al., PRD 75, 063519 (2007) 



Angular power spectrum from blazars

Ando et al., PRD 75, 063519 (2007) 

• Independent of gamma-ray energy

• Blazar contributions are treated as background, calibrated at lower energies (e.g., 100 MeV)



• Error of the signal can be given by

• Detector noise and Galactic emission (foreground)???

Discussion:
Detectability and backgrounds

been tidally disrupted. (Note, however, that there still
remains large allowed range for the former case, 10!12–
0:1M" [59]). Compared with the subhalo-dominated case,
the anisotropy signature is typically smaller, but the gen-
eral tendency is almost the same, justifying qualitative
arguments regarding substructures given in AK06 [41].

C. Can GLAST detect dark matter annihilation?

We use the standard procedure to calculate the projected
1-! error (binned over !l) on the extracted power spec-
trum of the CGB from dark matter annihilation:

 "Cs
l #

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2

$2l% 1&!lfsky

s "
Cs
l % Cb

l %
CN

W2
l

#
; (33)

where fsky # "sky=4# is the fraction of the sky covered by
GLAST, !l is the bin width (which we shall take to be
!l # 0:5l), CN # "skyNtotal=N2

CGB is the power spectrum
of photon noise, and NCGB and Ntotal are the photon num-
bers of the CGB and total (CGB plus other backgrounds),

respectively, expected from the region "sky, and Wl is the
window function of a Gaussian point spread function,
Wl # exp$!l2!2

b=2&. Note that this formula assumes that
CGB anisotropy obeys Gaussian statistics. We take the
following specifications for GLAST: the field of view is
"fov # 2:4 sr, the angular resolution is !b # 0:115', and
the effective area is Aeff # 104 cm2, and both are evaluated
at E # 10 GeV [56]. We assume a two-year all-sky survey
(T # 2 yr), which corresponds to mean exposure of
Aeffteff # AeffT"fov=4# # 1:2( 1011 cm2 s, towards
each point in the sky.

Equation (33) clearly shows that the ‘‘astrophysical
background noise’’ from blazars, Cb

l contributes to the
error budget. On the other hand, the background that con-
tributes to CN includes detector noise and Galactic gamma-
ray radiation, which we call foreground. The detector noise
is very small for GLAST, about 5% of the CGB flux
above 100 MeV; this decreases significantly as the
gamma-ray energy and the detector noise is safely assumed
to be negligible. The Galactic foreground is more dif-
ficult to estimate, but according to recent calculations

 

FIG. 6 (color online). The same as Fig. 5 but for hNjMi / M0:7.
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Detector backgrounds

•Detector background

•Negligible, being 5% 
of the CGB above 
100 MeV (even 
smaller at 10 GeV)
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Galactic foregrounds

•Galactic cosmic rays — 
foreground

•It strongly depends on the 
galactic latitude

•The flux is about one order of 
magnitude smaller than CGB for 
|b| > 20 deg, safely negligible
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Fig. 4.— γ-ray spectrum of conventional model (44-500180) for the sky regions described in Table 2: top row H–A–B, middle row
C–D–E, bottom F. The model components are: π0-decay (dots, red), IC (dashes, green), bremsstrahlung (dash-dot, cyan), EGRB (thin
solid, black), total (thick solid, blue). EGRET data: red vertical bars. COMPTEL data: green vertical bars. NB EGRB is added to the
total prediction for the EGRET energy range only.

low 100 MeV and above 1 GeV. Also IC dominates at
latitudes |b| > 10◦ at all energies.

Longitude profiles at low latitudes are shown in Fig. 9.
The agreement with the EGRET data is generally good
considering that the model does not attempt to include
details of Galactic structure (e.g., spiral arms), and the
systematic deviations reflect the lack of an exact fit to
the spectra in Fig. 8. The largest deviation (∼20%) is at
2–4 GeV, but this is still compatible with the systematic
errors of the EGRET data. Latitude profiles in the lon-
gitude ranges 330◦ < l < 30◦, 30◦ < l < 330◦ are shown
in Figs. 10, 11, where the logarithmic scale is chosen
given the large dynamic range and to facilitate the com-

parison at high Galactic latitudes. The agreement with
EGRET is again good, in particular the reproduction of
the high-latitude variation confirms the importance of
the IC component which is much broader than the gas-
related π0-decay and bremsstrahlung emission. In the
inner Galaxy (Fig. 10) there is evidence for an excess
at intermediate latitudes, perhaps related to an underes-
timate of the interstellar radiation field in the Galactic
halo, or special conditions in the Gould’s Belt. The outer
Galaxy latitude profiles (Fig. 11) are in excellent agree-
ment with the data.

The χ2 values (Table 3) confirm the visual conclusion
of the improvement of this model over the conventional
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Fig. 4.— γ-ray spectrum of conventional model (44-500180) for the sky regions described in Table 2: top row H–A–B, middle row
C–D–E, bottom F. The model components are: π0-decay (dots, red), IC (dashes, green), bremsstrahlung (dash-dot, cyan), EGRB (thin
solid, black), total (thick solid, blue). EGRET data: red vertical bars. COMPTEL data: green vertical bars. NB EGRB is added to the
total prediction for the EGRET energy range only.

low 100 MeV and above 1 GeV. Also IC dominates at
latitudes |b| > 10◦ at all energies.

Longitude profiles at low latitudes are shown in Fig. 9.
The agreement with the EGRET data is generally good
considering that the model does not attempt to include
details of Galactic structure (e.g., spiral arms), and the
systematic deviations reflect the lack of an exact fit to
the spectra in Fig. 8. The largest deviation (∼20%) is at
2–4 GeV, but this is still compatible with the systematic
errors of the EGRET data. Latitude profiles in the lon-
gitude ranges 330◦ < l < 30◦, 30◦ < l < 330◦ are shown
in Figs. 10, 11, where the logarithmic scale is chosen
given the large dynamic range and to facilitate the com-

parison at high Galactic latitudes. The agreement with
EGRET is again good, in particular the reproduction of
the high-latitude variation confirms the importance of
the IC component which is much broader than the gas-
related π0-decay and bremsstrahlung emission. In the
inner Galaxy (Fig. 10) there is evidence for an excess
at intermediate latitudes, perhaps related to an underes-
timate of the interstellar radiation field in the Galactic
halo, or special conditions in the Gould’s Belt. The outer
Galaxy latitude profiles (Fig. 11) are in excellent agree-
ment with the data.

The χ2 values (Table 3) confirm the visual conclusion
of the improvement of this model over the conventional

Strong, Moskalenko & Reimer et al. 2004

20–60 deg

60–90 deg



NCGB ! EICGBAeffTΩfov

= 105(E/10 GeV)−1

CN = ΩskyNtotal/N2
CGB ! Ωsky/NCGB

= 8× 10−5(E/10 GeV) sr

Discussion:
Detectability and backgrounds

• Error of the signal can be given by

• Detector noise and Galactic emission (foreground)???—can be negligible

been tidally disrupted. (Note, however, that there still
remains large allowed range for the former case, 10!12–
0:1M" [59]). Compared with the subhalo-dominated case,
the anisotropy signature is typically smaller, but the gen-
eral tendency is almost the same, justifying qualitative
arguments regarding substructures given in AK06 [41].

C. Can GLAST detect dark matter annihilation?

We use the standard procedure to calculate the projected
1-! error (binned over !l) on the extracted power spec-
trum of the CGB from dark matter annihilation:

 "Cs
l #

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2

$2l% 1&!lfsky

s "
Cs
l % Cb

l %
CN

W2
l

#
; (33)

where fsky # "sky=4# is the fraction of the sky covered by
GLAST, !l is the bin width (which we shall take to be
!l # 0:5l), CN # "skyNtotal=N2

CGB is the power spectrum
of photon noise, and NCGB and Ntotal are the photon num-
bers of the CGB and total (CGB plus other backgrounds),

respectively, expected from the region "sky, and Wl is the
window function of a Gaussian point spread function,
Wl # exp$!l2!2

b=2&. Note that this formula assumes that
CGB anisotropy obeys Gaussian statistics. We take the
following specifications for GLAST: the field of view is
"fov # 2:4 sr, the angular resolution is !b # 0:115', and
the effective area is Aeff # 104 cm2, and both are evaluated
at E # 10 GeV [56]. We assume a two-year all-sky survey
(T # 2 yr), which corresponds to mean exposure of
Aeffteff # AeffT"fov=4# # 1:2( 1011 cm2 s, towards
each point in the sky.

Equation (33) clearly shows that the ‘‘astrophysical
background noise’’ from blazars, Cb

l contributes to the
error budget. On the other hand, the background that con-
tributes to CN includes detector noise and Galactic gamma-
ray radiation, which we call foreground. The detector noise
is very small for GLAST, about 5% of the CGB flux
above 100 MeV; this decreases significantly as the
gamma-ray energy and the detector noise is safely assumed
to be negligible. The Galactic foreground is more dif-
ficult to estimate, but according to recent calculations
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bers of the CGB and total (CGB plus other backgrounds),

respectively, expected from the region "sky, and Wl is the
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(T # 2 yr), which corresponds to mean exposure of
Aeffteff # AeffT"fov=4# # 1:2( 1011 cm2 s, towards
each point in the sky.

Equation (33) clearly shows that the ‘‘astrophysical
background noise’’ from blazars, Cb

l contributes to the
error budget. On the other hand, the background that con-
tributes to CN includes detector noise and Galactic gamma-
ray radiation, which we call foreground. The detector noise
is very small for GLAST, about 5% of the CGB flux
above 100 MeV; this decreases significantly as the
gamma-ray energy and the detector noise is safely assumed
to be negligible. The Galactic foreground is more dif-
ficult to estimate, but according to recent calculations
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Detectability of angular power spectrum

• At 10 GeV for 2-year 
observation

• 1-halo term dominated

• Dark matter signal would 
be detected very well in any 
case investigated

Subhalo-dominated + α=1

Dark matter signal
Dark matter correlation
Blazar background
Dark matter-blazar cross corretation



Dark matter signal
Dark matter correlation
Blazar background
Dark matter-blazar cross corretation

Ando et al., PRD 75, 063519 (2007) 

Detectability of angular power spectrum

• At 10 GeV for 2-year 
observation

• 2-halo term dominated

• Still detectable if 
contribution exceeds 30%
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Detectability of angular power spectrum

• At 10 GeV for 2-year 
observation

• 2-halo term dominated

• Again detectable if 
contribution exceeds 30%

Host-halo-dominated + Mmin=10−6 Msun
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FIG. 6: The coefficients alm up to lmax = 10 calculated from the PSCz gamma maps of Fig. 5. The shaded band shows the 1-σ
shot noise error given by Eq. (B6); in the right panel the inner shaded region refers to HAWC, the outer one to MILAGRO.
We report the predictions for both the linear and quadratic cases.

Experiment Aeff (cm2) Ωfov (sr) fsky DC gcut hcut range

GLAST[41] 104 2.4 fm ∼90% ∼1 ∼.06 fγ E <
∼0.5-1 TeV

MILAGRO[44] >
∼ 107

∼ 2 <
∼ fm × 2π > 90% 0.5 0.08 E ∼1–20 TeV

HAWC[45] ∼ 108.5
∼2 <

∼ fm × 2π > 90% 0.5 0.08 E ∼0.3–10 TeV

TABLE I: The characteristics of the experiments considered in our estimates. The fraction of the sky observable by a given
experiment fsky is needed for our estimate of the errors, see Appendix B.

Denoting by I(Eγ) the extrapolated EGRET flux
which takes into account attenuations (see section II),
one can estimate the number of events, Nγ , above the
energy Eγ to be collected during the time t as

Nγ = t · gcut ·DC ·Ωfov · fm

∫ ∞

Eγ

dE Aeff(E)Iγ(E) , (10)

where: DC is the duty-cycle of the instrument; Ωfov is
the solid angle of the field of view; fm < 1 is the use-
ful fraction of the sky due to the presence of the galac-
tic mask; gcut is the fraction of γ’s passing the actual
cuts; Aeff(E) is the effective collecting area of the instru-
ment (averaged over the field of view of the instrument).
In the following, we shall assume fm = 0.84 due to the
mask in the PSCz catalogue, but the actual value may
differ. Eq. (10) assumes a quasi-isotropic γ sky, which
may be violated to some extent at the multi-TeV ener-
gies of interest for EAS detectors. Even in this case, right
ascension anisotropies would not affect the estimate, and
only large latitude anisotropies might affect Nγ by a fac-
tor of O(1). This is acceptable enough since we shall
only perform a parametric study of the performances of
an EAS observatory. Analogously, the CR background

can be estimated as

NCR = t · hcut · DC · Ωfov · fm

∫ ∞

Eγ

dE Aeff(E)ICR(E),

(11)
where now hcut is the fraction of hadrons passing the
cuts. Note that we consider the same area for CRs as for
γ’s, although a differential performance of the instrument
may be taken into account by properly rescaling the fac-
tor hcut. The typical parameters we shall use are taken
from existing literature, and reported in Tab. I. Note
that GLAST is expected to have an excellent background
identification, so that only cosmic rays in the amount of
∼ 6% of the gamma flux pass the cuts. On the other
hand, EAS experiments have a poor rejection capability
(some of them like TIBET [42] have none), which in-
creases typically the gamma content of the diffuse flux
by no more than one order of magnitude. Therefore one
should keep in mind that even after gamma/hadron sep-
aration, the anisotropies of the gamma sky have to be
identified against a quasi-isotropic background which is
>∼ 104 larger than the gamma flux.

In Fig. 6 we report the coefficients alm’s up to lmax =
10 calculated from the PSCz gamma maps of Fig.5, with
the errors estimated according to what reported in Ap-

Other related studies

Cuoco et al., astro-ph/0612559

• At higher energies E > 100 GeV, where gamma absorption is important

• The signature of large-scale structure should be seen at large angular scales
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Fig. 3.— Power spectrum of angular correlation function for
γ-ray emission from IC at intergalactic shocks (solid), hadronic
processes in cluster cores (long dash), LDDE blazar model (short
dash) and PLE blazar model (dot long dash), respectively. The
dot line correspond to the Poisson noise, which is very similar for
both the PLE and LDDE model.

For blazars, appreciable signal from spatial clustering
of the sources is predicted only in the LDDE scenario
(short dash). This is always below that from struc-
ture shocks but for ! ≤ 100 is comparable to that from
hadronic processes in cluster cores. In the PLE model the
angular fluctuations due to spatial clustering are much
lower and always below the Poisson noise. The reason
is that in this model most of the unresolved emission is
produced at high redshifts. Thus the angular correlation
is reduced not only by the fact that the amplitude of
the correlation function decreases at higher redshifts (cf
Fig. 2) but also because a correlated region at higher red-
shift is projected on smaller angular scales in the sky, at
least for the cosmological model and the redshift range of
interest here. This, however, does not affect the Poisson
noise which only depends upon the number density and
luminosity of the sources. In both LDDE and PLE sce-
narios the Poisson noise dominates the signal for ! ≥ 50.
At ! ∼ 50, accessible by GLAST at 100 MeV, the inten-
sity fluctuations are expected to be at the level of a few
per cent. For larger angular scales they decrease below a

per cent of the average intensity and deviate from pure
Poisson noise only in the LDDE model.

Note that the CGB integral intensity is I(ε) ∝
ε−αI , αI ≥ 1. The spectrum of IC emission from struc-
ture shocks is at least as flat as that (Miniati 2002), so
that relative to the average intensity, the intensity and
fluctuations contributed by this process should remain at
least constant as a function of photon energy. In addi-
tion, the integral sensitivity of GLAST up to a few GeV
also scales as ∝ ε−1 as is the integral spectrum of blazars.
This implies that the number of resolved sources should
not change appreciably as a function energy and that the
Poisson noise from unresolved sources should also scale
with photon energy as the background intensity. There-
fore, the power spectrum predicted in Fig. 3 should be
roughly independent of photon energy, between 100 MeV
and a few GeV. This implies that by using information
at different energies GLAST should be able to probe the
power spectrum of angular fluctuations on a significant
range of scales, from ! % a few tens corresponding to sev-
eral degrees at 100 MeV and up to a ! % a few hundreds,
corresponding to a fraction of a degree at 2 Gev.

The ambiguity in the predicted blazars contribution to
the level of fluctuations at large scales will be improved
as GLAST will potentially be able to discriminate be-
tween the LDDE and PLE models based on their dis-
tinct predictions for the blazar luminosity function and
redshift evolution (Narumoto & Totani 2006). In addi-
tion the only free parameter in the calculation of the
power spectrum of the IC and hadronic processes in clus-
ters is the efficiency of shock acceleration; however, this
can be constrained by GLAST by measuring the γ-ray
emission from individual galaxy clusters as a function of
their X-ray temperature (Miniati 2002, 2003). Therefore,
measuring the power spectrum of intensity fluctuations
should provide a valuable test for the scenario in which
the CGB is produced by either IC emission at structure
formation shocks or unresolved blazars.
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the manuscript. FM acknowledges support by the Swiss
Institute of Technology through a Zwicky Prize Fellow-
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FIG. 3: The angular profile of the Galactic emission of gamma’s from dark matter annihilation for three values
of the clumpiness parameter, ζ. The curves have been normalized to 1 at ψ = 20◦. The region ψ < 20◦ is not
shown, since it is affected by large uncertainties (see text for discussion).

A. Offset Position of the Sun

In the limit of exact spherical symmetry of the dark matter halo, an observer placed in the center of
the distribution would observe an isotropic annihilation signal. This follows trivially from Eq. (2) in the
limit r! → 0. However, the Sun is offset with respect to the center of the Galactic halo. This induces
a peculiar angular dependence, with a maximum toward the inner Galaxy and a minimum toward the
antigalactic Center. We show this in Fig. 3 for three values of ζ. In the limit of spherically symmetric
halo, this is independent of the azimuthal angle, φ, around the Sun-Galactic Center line. This signature
is fairly robust in two limits:

A) When ζ <∼ 0.0002 (and ∆2(0) <∼ 105) and the angular distribution is dominated by the smooth halo
(bottom curve in Fig. 3). For example, the ratio of the flux at ψ = 45◦ to the flux at ψ = 135◦ is
about 5.

B) When ζ >∼ 0.0005 (and ∆2(0) <∼ few×105) and the angular distribution is dominated by the clumpy
halo (top curve in Fig 3). In the limit of negligible tidal disruption (P (r) $ 1), the ratio of the flux
at ψ = 45◦ to the flux at ψ = 135◦ is of about 2.2.

Note that the two models considered in Ref. [30] correspond to these two extreme situations. It is,
however, important to point out that, in the most realistic case of the variable P (r) and a dominant
clumpy contribution, this anisotropy feature is likely to be partially suppressed [17], and paradoxically
one may end with an almost isotropic flux despite the offset position of the Sun.

Furthermore, since clumps orbiting in the Galactic disk are more easily disrupted than those with
“polar” orbits, a slightly lower emission should result from the disk plane than from the vertical one [17,
31]. That is, the flux would acquire a modulation in φ even in the limit of a spherical dark matter
halo. Although an interesting feature, we note that it may be difficult to observe this effect, which
is suppressed when masking the low-latitude Galactic diffuse emission, which is likely dominated by
astrophysical sources.

B. Compton-Getting Effect (Proper Motion of the Sun in the Halo)

A second signature, which to the best of our knowledge is discussed in detail here for the first time in
relation to dark matter, is purely kinematic. Unlike the disk of our Galaxy, which is supported against

Other related studies

Miniati et al., astro-ph/0702083

• The effect of large-scale structure 
shocks in galaxy clusters

• Effect of Galactic emission from dark 
matter annihilation

Cluster IC

Cluster pp

Blazar LDDE

Blazar 
Poisson

Blazar PLE

Hooper & Serpico, astro-ph/0702328



4. Conclusions



Conclusions I:
Point source anisotropy

• Blazars are the most promising source for GLAST: 1,000–10,000 are 
expected from all-sky survey

• We calculated angular power spectrum of these blazars and showed that

• it would be detectable at large angular scales, dominated by low-
redshift (faint blazars);

• spatial clustering would be measurable if blazar bias were larger than 
1.2 (0.5) for the best-fit (optimistic) luminosity function

• This would be a first direct measurement of blazar bias, and could 
provide further test of AGN unification picture



Conclusions II:
Anisotropy of background radiation

• The CGB anisotropy would be a key to revealing the origin of CGB, 
and potentially be a smoking gun of annihilating dark matter

• The resulting angular spectrum would be very different from the case 
of other sources

• We developed a new formalism for that calculation

• We showed that if the annihilating dark matter is a main CGB 
constituent, GLAST can detect anisotropy in a few years

• This is also true even with the existence of other sources like blazars, 
if the current dark matter contribution exceeds 30% at 10 GeV


