Searches for point-like sources of high-energy neutrinos with the AMANDA-II detector

Markus Ackermann IceCube collaboration

Markus.Ackermann@desy.de DESY

11

http://icecube.wisc.edu

1

I Motivation

2

Cosmic rays

3

Acceleration of cosmic rays

Acceleration in relativistic shocks (first order Fermi acceleration)

• Energy gain: $\Delta E = E_2 - E_1 \sim \beta$

4

- Expected energy spectrum: Φ ~ E⁻²... -2.3
- Compatible with cosmic ray spectrum: Φ ~ E^{-2.7} (if propagation losses are taken into account)

Potential sources of high-energy cosmic rays

Identification of cosmic ray sources

Observations of high energy gamma ray sources

Markus Ackermann

7

Gamma-ray vs. neutrino signal

 γ Multi-wavelength observation + spectral modelling necessary to distinguish hadronic & leptonic acceleration processes.

 \mathbf{v} Signal unambiguous indicator for hadronic acceleration.

8

GLAST science lunch, Stanford Linear Accelerator Center, 24.01.07

Gamma-ray vs. neutrino detection

 γ Universe partly opaque for gamma-rays. Opaqueness increasing with energy.

 \boldsymbol{v} Universe is transparent for neutrinos up to the highest energies.

9

GLAST science lunch, Stanford Linear Accelerator Center, 24.01.07

18

18

Gamma-ray vs. neutrino detection

Small cross section of neutrino nucleon scattering demands for
detectors with huge target volume

O(10) v_{μ} / year (E_v > 1TeV) expected in a km³-sized neutrino detector. (If γ -rays from π_0 -decay)

11

18

5

Guetta and Amato, astro-ph/0209537

Kappes et al., astro-ph/0607286

II The AMANDA-II Neutrino detector

18

The AMANDA-II neutrino detector

Signatures of neutrino interactions in ice

- Use of a natural target material
- Optical properties of glacial ice are very inhomogeneous
- Require extensive measurements, modelling and simulation

The South Pole challenge

 2-dimensional ice model was developed for simulation
Just recently implemented in the simulation chain (due to CPU constraints)

AMANDA-II physics program

Search for point sources of astrophysical neutrinos

- Time integrated searches
- Searches for time variable sources
- Gamma-Ray Bursis

Search for a diffuse cosmic neutrino flux

- Muon neutrinos
- Cascades (all neutrino flavors)
- Ultra high energy analysis
- Galactic plane
- Search for neutrinos from WIMP annihilation
- other topics: Atmospheric muons & neutrinos, cosmic ray composition, gamma-ray astronomy with muons, supernova searches, exotic particles

Neutrino event selection (point source search)

Markus Ackermann

Search for point sources

- Search for signal from candidate sources
- Scan of full northern sky
- Dedicated searches for variable sources
- Flux upper limits set if no signal is seen

Sensitivity

- Sensitivity (limit setting capability) to neutrino flux $d\Phi/dE \sim E^{-2}$
- Contribution of v_{τ} to sensitivity 10-16% (declination dependent)
- $v_{\mu} + v_{\tau}$ is the strongest limit on the neutrino flux for a $v_{\mu}:v_{\tau} = 1:1$ flavor ratio

18

Markus Ackermann

Final neutrino sample

- Zenith distribution of events in the point source sample
- Predictions from atmospheric neutrino simulation is shown with its (experimental) systematic error interval

21

18

Systematic uncertainties

Main contributions the systematic error are (point source analysis)

- average OM efficiency (~ 10%)
- rock density (up to 7%)
- detector simulation inaccuracies (~ 7 %)

Total systematic uncertainty on the signal efficiency

- E⁻² spectrum: +10 / -15 %
- E⁻³ spectrum: +5 / -20 %
- atmos. spectrum: +5 / -25 %
- Included in the limit calculation

III Results from the point source search

1

Results I: Candidate sources

- No significant excess, no indication for a neutrino source
- Systematic error of 15% on signal prediction included in limits

Results II: Grid search

90% confidence level flux upper limits for the northern hemisphere in
0.5 deg bins (15% systematic error included)

- Time-integrated search not optimal if neutrino emission of a source is variable.
- Hypothesis: electromagnetic and neutrino emission are correlated (naturally expected for neutrino / high-energy gamma-ray emission).
- Selection of time periods of high electromagnetic source activity to improve signal-to-noise ratio.
- Continuous monitoring of source activity necessary → X-ray / radio data used for period selection.
- **3 Sources investigated**: Markarian 421, 1ES1959+650 and Cygnus X-3

27

11

18

Search in predefined time windows

Search for neutrino flares

- Search for excess of events in short time window.
- 12 potentially variable sources investigated.
- Search with sliding time window of 20 days (galactic sources) / 40 days (extra-galactic sources) duration.
- No significant excess of events found.

- 3 neutrinos in 66 days.
- In overlap with the only observed period of strong gamma-ray flares of this source.
- Only affirmed observation of an "orphan flare" (gamma-ray and x-ray intensity not correlated)

Neutrinos from the direction of 1ES 1959+650

 Event at MJD
52429.0 at the day of the "orphan flare"

Event at MJD
52460.3 in
coincidence with
smaller flare

"A posteriori" observation. Assignment of a significance not possible.

Target of opportunity test run with MAGIC IACT (Sep - Dec 2006)

- Trigger γ-ray observations by neutrinos
- Neutrino events selected by AMANDA on-line filtering (∆t ≈ 1h)
- Alert sent to MAGIC if neutrinos are from the directions of predefined source candidates
- MAGIC observation, if source visible within 24 hours after the neutrino arrival
- 5 alerts sent, 1 MAGIC observation.

MAGIC telescope, La Palma

- Results will be exchanged and compared to pre-determined thresholds for γ-ray flux.
- Neutrino events by themselves are consistent with prel. background estimates.

IV Interpretation of flux limits

1

11 III

Comparison to selected models

- Specific theoretical models for neutrino emission from a single source rarely show a pure E⁻² spectrum
- Variation of the spectral index between γ=1 and γ=3 shifts the peak energy of the detected neutrinos by 6 orders of magnitude

Specific limits have to be calculated for the sources/spectra modelled based on the effective area of AMANDA-II

34

Sensitivity to different spectra

Markus Ackermann

Crab nebula

- Guetta & Amato: Rescaling of gamma ray flux (N_{v,exp}=0.16)
- Bednarek & Protheroe: Heavy nuclei accelerated in outer gap (N_{v,exp}=0.08)
- Bednarek: Time evolution of pulsar wind nebula (N_{v.exp}=0.03)
- Link & Burgio: Ions accelerated near pulsar surface (N_{v,exp}=1.2)

Markus Ackermann

X-ray binaries

- Distefano et al.: pγ-interaction in the jet with int. and ext. photons (N_{v,exp}=7.8 for SS 433)
- Bednarek: pp-interaction in WR star and accretion disk after photodissoziation of heavy nuclei in the jet (N_{v.exp}=2.1 / 1.4 for Cygnus X-3)
- Anchordoqui et al.: Protons accelerated in electrostatic gap interact in accretion disk (N_{v.exp}=0.12 for AO 0535+625)

Markus Ackermann

37

÷ 11

EGRET Blazars

 Neronov and Semikoz: Model for "typical GeV loud Blazar", pγ-interaction in the AGN core

 $N_{v,exp} = 0.04 - 1.1$ (QSO 0528+134) $N_{v,exp} = 0.006 - 0.14$ (QSO 0954+556)

Markus Ackermann

Markarian 421

WHIPPLE observations

Muecke et al.: Model of Markarian 421 as High frequency peaked BLLac in the Proton Synchrotron Blazar model (N_{v,exp}~ 0)

Markus Ackermann

39

Summary....

- 5 years of data (1001 effective days) of the AMANDA-II detector have been analyzed for a signal from neutrino point sources.
- No statistically significant source of neutrinos has been found so far.
- A dedicated analysis for variable sources has been performed also with negative result.
- An interesting coincidence between a gamma-ray flare and the arrival time of neutrinos has been found for the Blazar 1ES 1959+650
- The analysis provides the most stringent limits on neutrino fluxes from point sources on the northern hemisphere.
- Current models of neutrino emission from Microquasars can be constrained by the results.

... and Outlook: IceCube

South Pole Station AMANDA **Geographic South Pole** Photograph: Forest Bank

41

-

8 Q.

From AMANDA to IceCube

Deployment status

18

1

11

- Currently 20 strings deployed,
- 21-22 expected after end of deployment season

Neutrino candidate in IceCube-9

Markus Ackermann

44

Expected IceCube performance

Markus Ackermann

BACKUP SLIDES

IceCube verification: Time calibration

Neutrino effective area

11 II

3C273

- Nellen et al.: pp interaction in AGN core (N_{v,exp} = 0.86)
- Stecker and Salamon: $p\gamma$ interaction in AGN core ($N_{v,exp} = 0.81$)
- Mannheim: pp and p γ interaction in the Blazar jet (N_{v,exp} = 0.01)

Markus Ackermann

Source stacking analysis

- Search for an excess of events from several sources combined
- AGNs grouped in classes of potential high energy neutrino sources
- Assumption: neutrino flux is linearly correlated with luminosity

Flux upper limit in units of 10^{-7} GeV cm⁻²s⁻¹ for differential flux d Φ /dE ~ E⁻²

Source class	N _{src}	Flux
IR Blazars	11	1.2
keV Blazars (HEAO-A)	3	0.59
keV Blazars (ROSAT)	8	0.63
GeV Blazars	8	0.32
Uni. GeV sources	22	3.2
TeV Blazars	5	0.69
GPS and CSS	8	0.57
FR-I Galaxies	1	0.54
FR-I Galaxies (no M87)	17	0.43
FR-II Galaxies	17	3.5
Radio-weak sources	11	1.3

A. Gross, Ph.D thesis, University of Dortmund Achtenberg et al., "On the selection of AGN ...", Accepted by Astropart. Phys.

Markus Ackermann 50

GLAST science lunch, Stanford Linear Accelerator Center, 24.01.07