

Swift Gamma-ray Burst Explorer Instrumentation & New Puzzles of GRBs

Goro Sato NASA/GSFC

Let me introduce myself

Research Areas

- X-ray and Gamma-ray Astrophysics
 - Gamma-ray Bursts
- Development of Gamma-ray Detectors
- 2000 -
 - Ph.D. Student
 - @ Univ. of Tokyo and ISAS/JAXA, Japan
 - Development of Gamma-ray Detectors for Space Missions
 - CdTe / CdZnTe semiconductor detectors

• 2002 -

- Development of Swift/BAT instrument
- Stayed at NASA/GSFC for ~2 years
- CdZnTe Detector Calibration & Response
- GRB Study with Swift
- 2006 March
 - Ph.D. (Physics) @ Univ. of Tokyo
- 2006 May Present
 - Postdoc @ NASA/GSFC

Calibration test @ NASA/GSFC 2002-2003

Outline

Swift observatory

BAT response/calibration

Swift GRBs

X-ray lightcurves

Jet breaks

Current work & Future

Swift Mission

Burst Alert Telescope (BAT)

Autonomous operations

CdTe/CdZnTe semiconductors

CdTe Atomic Number: 48/52 Density: 5.85 g cm⁻³ Egap: 1.4 eV CdZnTe Atomic Number: 48/30/52 Density: 5.81 g cm⁻³ Egap: 1.6 eV

High quantum efficiency ~ Nal

Operate at room temp.

Energy resolution x 5-10 higher than Nal

Can be fabricated in a compact array

Charge Transport Properties

low mobility (μ) and short lifetime (τ) especially for holes

- \rightarrow depth-dependent efficiency
- → tail shape depends on energy & incident angle

 \rightarrow determine $\mu\tau$ for electrons and holes simultaneously

Measured 32K sets of $\mu\tau$ products

Development of BAT DRM

With the use of $\mu\tau$ products obtained from Co-57 spectra, we can reproduce spectral shapes for any incident energy/angles

Developed the BAT response generator (FTOOL batdrmgen)

Distributed to the world as a part of Swift science software

Swift Statistics

187 non-GRB TOO's 60,000 slews

Pre-Swift Afterglow Data

Discovery of bright Early afterglow

Initial rapid decay

High latitude emission of the prompt γ-ray emission (Curvature effect) Kumar & Panaitescu 2000

X-ray Afterglow Behaviors

Burrows et al.

X-ray flares: Late time internal shock emission? This may be answered by GLAST with IC component observation

Generic X-ray light curve

Shallow decay is very problematic for the standard GRB-Afterglow theory

 $10^2 - 10^3 \text{ s}$ $10^3 - 10^4 \text{ s}$

Zhang et al., Nousek et al. 2005

Jet Break: Evidence of Collimation

The most fundamental feature of the standard GRB-Afterglow scenario

decelerated by ISM

- beaming effect becomes small
- hydro-dynamical transition (jet broadening)
- \rightarrow should be wavelength independent (achromatic)

It has been highly expected that Swift clearly detect achromatic breaks, however ...

No evidence for the most of cases

(Note: ~6 possible jet breaks / ~200 Swift GRBs)

no clear answers

just the observation is not long enough? very energetic GRB? low density environment?

quantitative jet break search

Jet break search in X-ray

Sample selection

From the 10 Swift GRBs with redshifts up to July 2005 Sato Ph. D. thesis 2006 Sato et al. 2007 (astro-ph/0611148)

- redshift determination
- well-constrained prompt emission
- well-sampled X-ray light curve

GRB 050401

XRF 050416a

GRB 050525a

Methodology

The time interval can be joined with a single power law

GRB 050401 cont.

Panaitescu et al. 2006

no break is found in optical band too

XRF 050416a X-ray light curve $F_{\nu} = F_0 t^{\alpha} v^{\beta}$ in 2 - 10 keV Time since trigger [day] 10⁻³ 10^{-2} 10^{2} 10⁻¹ 10 pre-X-ray break 10⁻⁸ $\alpha = -0.55$ 10⁻⁹ $\beta = -1.20$ Predicted time interval 10-10 Flux [erg cm⁻² s⁻¹ 10⁻¹¹ post- X-ray break 10⁻¹² α = -0.82 10⁻¹³ $\beta = -1.04$ X-ray break shallow decay **t**b = 1670 s 10-14 to 75 days 10⁻¹⁵ 10⁶ 10² 10^{3} 10⁵ 10⁴ 10⁷ Time since trigger [s] No temporal break is observed within the time interval

c.f. no optical long observation

GRB 050525a

$F_{\nu} = F_{o} t^{\alpha} v^{\beta}$

X-ray light curve in 2 - 10 keV

→ No jet break feature in X-ray

GRB 050525a cont.

05

Della Valle et al. 2006

Sampling rate is low, but looks like the old-fashioned, our familiar "jet break"

Implication of no jet break in X-ray

	X-ray		
	break?	predicted time?	α–β relation?
GRB 050401	yes	no	no
XRF 050416a	yes	no	no
GRB 050525a	yes	marginal	no

(1) no jet break feature in X-ray

 \rightarrow masked in the X-ray band by one or more additional components?

(2) GRB 050401: jet break at a later time compared to the time in previous GRBs? \rightarrow Ghirlanda relation has a larger scatter than previously thought

(3) GRB 050525a: achromatic break, but X-ray does not follow the theory \rightarrow pre-Swift "jet breaks" are indeed jet breaks

Epeak is still key to interpret afterglows

corrected by shallow to normal X-ray break

corrected by "jet break"

Nava et al. 2007 astro-ph/0701705

Need to determine Epeak for more GRBs

BAT Extended DRM (my current work)

Spectrum without mask modulation (i.e. inc. scattered comp.)

To be verified by cross-calibrations with more GRBs

channel energy (keV)

Effective Area

GRB Observation with GLAST

- Electron Synchrotron: Epeak, Energetics, (GBM)
- Electron inverse-Compton (LAT)
- Proton Synchrotron (LAT)
- Hadronic process (LAT)
- $\gamma \gamma$ absorption in the prompt emission: Γ , r (LAT)
- γ–IR (TeV + I eV), γ–UV (100 GeV + 10 eV): probe of radiation field (LAT)

Karin, my first baby

Born at the night of Christmas eve, 2006

Swift Team

Characterization: measure $\mu\tau$ <u>Traditional method</u>: utilize α -particles

dependence on the bias voltage --> $\mu\tau$ procuts However, easily affected by the surface condition

BAT CdZnTe Calibration I proposed to apply the method to the BAT CdZnTe detectors

RI Source in lead Anti-Occulter

Each CZT detector is calibrated individually in "block" sub-array (2048 detectors, = 32K/16 blocks) by gamma-rays from radioactive sources at various incident angles, basis volagtes.

We evaluated all the 32 K CdZnTe detectors individually

$\mu\tau$ distribution on the detector plane

 \rightarrow The diversity of $\mu\tau$ attributes to a difference of crystal ingots

In-flight Calibration with Crab Pulsar Observation

Date

All the event-by-event data are accumulated from December 2004 to September 2006.
We selected time intervals when the Crab is in the BAT FOV.

Sky exposure map in the tangent plane

Timing and Spectral analysis

Folded light curve (15-350 keV)

Counts

Arrival times were converted to the Solar System Barycenter
The values of P and Pdot for each observation are derived fro Jodrell Band Crab Pulsar Monthly Ephemeris

Spectrum of the phase interval 0.95-1.00

$\alpha - \beta$ relation

Ourliers of Ghirlanda relation

1. Earlier case:

The slight X-ray breaks = jet breaks ? (not likely because of the shallow decay after the breaks)

Assuming them as jet breaks, we can calculate " $E\gamma$ "

2. Later case:

The last detection time = lower limit of the jet break time Lower limit of opening angle Lower limit of $E\gamma$

The 3 bursts become outliers of the Ghirlanda relation !!

New Puzzles of GRBs

OK

?

- 1. Cosmological Distance confirmed for short GRBs
- 2. Relativistic Jet The pre-Swift "jet breaks" are indeed jet breaks?
- 3. Afterglow: Synchrotron Shock Model Shallow decay is due to energy injection?
- GRB: Internal Shock
 If energy injection,
 an efficiency problem arises from the prompt γ-ray burst
- 5. Long: Collapsar Massive Star Explosion, ?
 Short: NS-NS, NS-BH Merger Short GRB in star forming region GRB with Mixed characteristics of "short" and "long" GRBs