Transients in 10 Seconds or Less: Catching Gamma-Ray Bursts in the Act with ROTSE

Dr. Eli Rykoff University of Michigan

January 18th, 2007 SLAC/KIPAC

Outline

- Gamma-Ray Bursts
- Prompt Optical Emission from GRBs
- The ROTSE-III Telescope Array
- Recent Results
- The ROTSE-III Transient Search

Gamma-Ray Bursts

Gamma-Ray Bursts (GRBs)

- What are they?
 - Energetic explosions, releasing over 10^{51} ergs in γ -rays in 10s of seconds
 - Cosmological distances, z ~ 0.2-6+
 - Variable, diverse, and rare
 - About 2/day in the universe visible to Earth

GRB 990123 as seen by the Compton Gamma Ray Observatory (CGRO)

Gamma-Ray Bursts

- Detected by satellites such as Swift
- Two types of GRBs: long and short
- Variability on millisecond timescales
- Bursts have "afterglows"
 - X-ray, optical, radio...
 - Only ~50% of bursts have detectable optical emission

Beppo-SAX X-Ray afterglow of GRB970228

Compactness Problem

The γ-ray spectrum is non-thermal

Ultrarelativistic Outflow

- Time dilation
 - The ejected material is travelling near the speed of light; it is right behind the emitted photons
 - The actual size of the GRB emission region is $\sim 2c\Gamma^2 t \sim 10^{14}$ cm (70 A.U.)
- Emitted light is blue-shifted into γ-rays
- Emitting region is optically thin if emitting material has Lorentz factor $\Gamma > 100$

- Some of the fastest bulk flows in the Universe

Fireball Model

- The Internal/External Shock model
- Synchrotron emission from shockaccelerated electrons
- Prompt γ-rays from internal shocks
- Afterglow from external forward shock in ambient environment
- Outflow is collimated
 We look down the center of a jet

High Energy Emission from GRBs

- GRB emission has been seen to very high energies
- What is the true high energy profile?
 - Synchrotron + Inverse-Compton?

Pe'er & Waxman 2003, from Gonzalez, et al, 2003

Optical Afterglows

- Forward external shock accelerates electrons with a power-law spectral energy distribution
- Relativistic electrons emit synchrotron
 emission
 - Requires ambient magnetic field
- Ejecta decelerates into ambient medium, and afterglow fades as a power-law

Collimated Outflow: GRB Jets

GRB Progenitors

- Clues to long burst origins:
 - Associated with star-forming regions & host galaxies (Bloom et al, 2002)
 - Some bursts associated with core-collapse Supernovae (eg, GRB 030329) (Hjorth, et al, 2003)

970228	970508	970828	971214	980326	980329	980519
4	+	1. A. C.				1. 820
980613	980703	981226	990123	990506	990510	990705
•						
990712	991208	991216	000131	000301c	000418	000926
2	No.			会子	: *	And A
010222	010921	011030	011121	011211	020127	020305
1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-			4		at 1
020322	020331	020405	020410	020427	020813	020903
	+-	-		1		
021004	021211	030115	030323	030329	040924	041006

Fruchter, et al., 2006

Pian, et al., 2006

The Collapsar Model

- Very massive (> 20 M_☉) rapidly rotating star
- Core collapses into a black hole
- Stellar material (~ 0.1 M_{\odot}) accretes onto the black hole, with jets out the poles
- Simultaneous supernova

 This peaks after 1-2 weeks

GRBs at Cosmological Distances

- BATSE GRBs were isotropic on the sky
- Absorption features in afterglows + host galaxy emission lines give distance to GRB

Djorgovski, et al, 1998

GRB980703

Prompt Optical Observations

Prompt Optical Emission & Early Afterglows

- Late afterglow tells us about the environment, not the central engine
 At 10 s post-burst, probing 10¹⁵ cm (200 AU)
- Early observations more directly measure conditions in explosion
- Prompt flash from
 reverse shock predicted
- Through 1999, only one afterglow imaged early

Akerlof et al., 1999

The ROTSE Project

- The Robotic Optical Transient Search Experiment (ROTSE-III) telescopes
 - Successors to ROTSE-I telephoto array
 - Rapid response to GRB triggers
 - Simple optical and mechanical design
 - Global distribution
- Worldwide collaboration
 - U-Mich, LANL, UNSW, U-Texas, MPIK, several Turkish institutions, GSFC

What happens in the first min

ROTSE-III Specifications

- 0.45 m telescopes
- 1.85° x 1.85° field (f/1.9)
- Unfiltered 2k x 2k CCD
- Fast (6 s) readout
- ~ 40 deg/s max. slew speed
- All automated, no^Mpercent and the loop
- Built for *rapid* response to GRB triggers
- Median GRB alert response time is 7 seconds
- 17th mag for short (5s) exposures; 18.5 for 60s exp.

ROTSE-III Worldwide

3b, McDonald, Texas

The Sun Never Rises on the ROTSE Empire

The GRB Coordinates Network

- The GRB Coordinates Network (GCN) makes prompt follow-up possible
- A satellite detects a GRB, sends the position down in real-time to GSFC
- A message is sent over the Internet to robotic telescopes
- Grad students are woken up at inconvenient times

Automated Detection of Afterglows

GRB 061007

Automated Detection

- We have announced optical counterparts in as little as 4 minutes from the start of γ-ray emission
- Until November, 2006 we required a person to confirm a counterpart
- New system that can announce counterparts automatically within ~ 30 s of the GRB
 - Expect 3-5 per year that can be identified in this way

Prompt Observations

- Respond "rapidly" to ~ 1/3 of GRB triggers from Swift
- First exposure is contemporaneous with γ-ray emission for over 10% of all Swift bursts

Technical Challenges

- Remote locations with limited bandwidth
- Temperature range from 0°F 110°F
- Wind speeds up to 110 mph
- Rain, snow, sleet, hail...
- Troubleshooting must be done remotely, with limited diagnostics

Prompt Counterparts

Fading Afterglows

Blue: BAT, Magenta: XRT, Red: ROTSE-III (Optical)

Rising Afterglows

GRB 061007

- Brighter by a factor of 50 in < 5 seconds
- Afterglow does not fit the models

GRB 060927

- High redshift event: z=5.4
- Extremely bright
- Rapid response by ROTSE-IIIa
- Optical afterglow already fading < 3 s after the start of the burst!

Other ROTSE Science

- ROTSE-III telescopes always taking images
 - Fast optical transient search (eg, Rykoff, et al, 2005)
 - Microquasar & X-ray Binary optical monitoring (eg, Baykal, et al, 2006)
 - Supernova searches (eg, Quimby, PhdT, 2006)
 - Blazar Monitoring (eg, Aharonian, et al., 2006)

Fast Optical Transients

Untriggered GRB Afterglows

- Untriggered GRBs
 - Even if a satellite doesn't detect it, there are ~ 2
 GRBs/day visible to the earth
 - Advantage: We know what these optical afterglows look like
 - Disadvantage: Rare
- Orphan GRB Afterglows
 - After the jet break, afterglows should be visible off axis
 - Advantage: Rate might be > 200/day
 - Disadvantage: We don't know what they look like

Untriggered GRBs

- Search designed to look for untriggered GRBs
 - We know what we're looking for
- How much coverage is required?
 - -2 GRBs/day visible to earth (from BATSE)
 - $\sim 50\%$ with visible afterglows
 - 1/day/40000 deg² \rightarrow
 - $\sim 110 \text{ deg}^2 \cdot \text{yr}$ effective coverage required
- Search strategy to have as much coverage as possible

Search Strategy

- Search equatorial stripe covered by SDSS
 - Deep, 5 band images to identify hosts, quiescent counterparts
 - Equatorial region visible from North and South
- Require rapid identification for follow-up
- Take pairs of images, each pair separated by 30 minutes
 - Require transient in 4 consecutive images
 - Effective coverage time is 30 minutes, assuming a typical transient is brighter than our limiting magnitude for 1+ hour

Results

- Through March 2005, covered 1.74 deg² · yr with limiting magnitudes better than 17.5
 - Four telescopes operational from May 2004
 - Search is ongoing now around ~ 4 deg² · yr
- Found
 - Many new cataclysmic variables
 - Several m-dwarf flares
 - Two supernovae from dwarf galaxies (2005cg, 2005ch)
 - No unidentified transients
 - And many asteroids
 - All are known

Results

Sensitive to ~ 50% of typical afterglows

Conclusion 🗆 🗆

- GRBs probe extreme physics

 High energies, high luminosities, fast variability
- Early optical & multiwavelength observations provide constraints on models
 - Onset of the afterglow is not well understood
- Rapid, automated optical afterglow localizations are possible
- Optical transient searches are possible, but finding "orphan afterglows" is difficult