Transients in 10 Seconds or Less:
Catching Gamma-Ray Bursts In the

MICHIGAN

L A\4L )

Act with ROTSE

Dr. Eli Rykoff

University of Michigan

January 18%, 2007
SLAC/KIPAC

o

ROTSE




Outline

Gamma-Ray Bursts

Prompt Optical Emission from GRBs
The ROTSE-Ill Telescope Array
Recent Results

The ROTSE-IIl Transient Search



Gamma-Ray Bursts



Gamma-Ray Bursts (GRBS)

 What are they?

— Energetic explosions, releasing over
10°1 ergs in y-rays in 10s of seconds

— Cosmological distances, z ~ 0.2-6+
— Variable, diverse, and rare

« About 2/day In the universe visible
to Earth
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Gamma-Ray Bursts

Detected by satellites such as Swift
Two types of GRBs: long and short
Variability on millisecond timescales

Bursts have “afterglows”
— X-ray, optical, radio...

— Only ~50% of bursts
have detectable optical
emission

Beppo-SAX X-Ray afterglow of
GRB970228



Compactness Problem

 The y-ray spectrum Is non-thermal
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Ultrarelativistic Outflow

e Time dilation

— The ejected material is travelling near the speed of
light; it is right behind the emitted photons

— The actual size of the GRB emission region is
~ 2cl™t ~10% cm (70 A.U.)

« Emitted light is blue-shifted into y-rays

« Emitting region is optically thin if emitting
material has Lorentz factor I > 100
— Some of the fastest bulk flows In the Universe



Fireball Model

The Internal/External Shock model

Synchrotron emission from shock-
accelerated electrons

Prompt y-rays from internal shocks

external shocks

Afterglow from reverse  forward
external forward SN

shock in ambient eltivisti .
environment .J/,>)>y;mdmnon | afterglow
Outflow is collimated ™ | prompt optica

engine
internal

— We look down the shocks
center of a jet -

circumburst
medium




High Energy Em|SS|on from GRBS

 GRB emission has | GRBY41017
been seen to very

—
OI

high energies
« What is the true A PR

high energy profile? =}~ X
_SynChrOtron + 10;90‘2 160 10\:‘ 1&)4 166 10° 16‘“ 16‘2 1(‘)14

photon energy [eV]
Inve rse'Com pton? Pe’er & Waxman 2003, from Gonzalez, et al, 2003

FEBRUARY 17, 1994 BURST
] T T T T T 1 T T

| ULYSSES
25-50 keV Extended/Delayed EGRET =

emission

1200

pry
[=}
[ -

L
s

=3 =
(A®SY) SIDHING NOLOH

Hurley, et al., 1994



Optical Afterglows

e Forward external shock accelerates electrons
with a power-law spectral energy distribution

* Relativistic electrons emit synchrotron
emission

— Requires ambient magnetic field
 Ejecta decelerates into |
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Collimated Outflow: GRB Jets
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galaxies (Bloom et al, 2002)

GRB Progenitors

e Clues to long burst origins:
— Assoclated with star-forming regions & host

— Some bursts associated with core-collapse
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The Collapsar Model

* Very massive (> 20 My) rapidly rotating
star

» Core collapses into a black hole

« Stellar material (~ 0.1 M) accretes onto
the black hole, with

jets out the poles
e Simultaneous
supernova

— This peaks after
1-2 weeks

NASA/Skyworks Digital



GRBs at Cosmological Distances

« BATSE GRBs were
Isotropic on the sky

* Absorption features
In afterglows + host

Sl ety ST galaxy emission
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Prompt Optical Observations



Prompt Optical Emission &
Early Afterglows

Late afterglow tells us about the
environment, not the central engine

— At 10 s post-burst, probing 10> cm (200 AU)

Early observations more
directly measure
conditions in explosion

Prompt flash from
reverse shock predicted

Through 1999, only one
afterglow imaged early

5 T T T T
| + ROTSE V

22222

GRB 990123

"

x u?%é

10 +
.. = E3
- -
© = ES
o E3
=
Z 15—
x 3x10% T T T T 1
2 L
- L}
Fox
7]
20—
1x10*f ]
&
0 el ; ; i
4} 20 40 80 80 100
25 L Lo sl L R | I Lol L L L
10" 102
s

Akerlof et al., 1999



The ROTSE Project

 The Robotic Optical Transient Search
Experiment (ROTSE-III) telescopes
— Successors to ROTSE-I telephoto array
— Rapid response to GRB triggers
— Simple optical and mechanical design
— Global distribution

 Worldwide collaboration

— U-Mich, LANL, UNSW, U-Texas, MPIK, several
Turkish institutions, GSFC

What happens In the fTirst mir



ROTSE-Ill Specifications

0.45 m telescopes

1.85° x 1.85° field (f/1.9)
Unfiltered 2k X B
Fast (6 s) readout
~ 40 deg/s max. slew speed §
All automated, no“pegpier ‘Rt
the oop e |

Built for rapid response to
GRB triggers

Median GRB alert response [EAPERSSEEEs s

time Is 7 seconds

17th mag for short (5s)
exposures; 18.5 for 60s exp.



ROTSE-IIl Worldwide
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The GRB Coordinates Network

 The GRB Coordinates Network (GCN)
makes prompt follow-up possible

» A satellite detects a GRB, sends the
position down In
real-time to GSFC "

» Amessage is sent  |[ANENWERP]
over the Internetto  [RENQIZPVSSNE
robotic telescopes

e Grad students are

woken up at
Inconvenient times
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Automated Detection of Afterglows

Calibrate Stack

—
Images Images

l~10s/image llm-lOm

Search For
New/Variable
Objects

1

Candidates
Put On Web Page

~I1m-5m




Automated Detection

 We have announced optical
counterparts in as little as 4 minutes

from the start of y-ray emission

« Until November, 2006 we required a
person to confirm a counterpart

 New system that can announce
counterparts automatically within ~ 30 s
of the GRB
— Expect 3-5 per year that can be identified
In this way




Prompt Observations

Fraction of GRBs

04F 04—
% 5
03F L, 03F E
: = C
- = C
&)
3
0.2 = 021
.9
3
A .|
0.1 = 01
10 100 1000 0.1 1.0 10.0 100.0 1000.0
Total Response Time (s) Total Response Time / Burst Duration

 Respond “rapidly” to ~ 1/3 of GRB
triggers from Swift

e First exposure Is contemporaneous with
y-ray emission for over 10% of all Swift
bursts



Technical Challenges

 Remote locations with limited bandwidth
 Temperature range from 0°F - 110°F

* Wind speeds up to 110 mph

e Rain, snow, sleet, halil...

e Troubleshooting must be done
remotely, with limited diagnostics

f




Prompt Counterparts
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» Brighter by a factor of 50 In < 5 seconds
« Afterglow does not fit the models



GRB 060927

High redshift event:
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Other ROTSE Science

« ROTSE-III telescopes always taking
Images

— Fast optical transient search (eg, Rykoft, et al,
2005)

— Microquasar & X-ray Binary optical
MONItOring (eg, Baykal, et al, 2006)

— Supernova searches (eg, Quimby, PhdT, 2006)
— Blazar I\/Ionitoring (eg, Aharonian, et al., 2006)



Fast Optical Transients



Untriggered GRB Afterglows

o Untriggered GRBs

— Even If a satellite doesn’t detect it, there are ~ 2
GRBs/day visible to the earth

— Advantage: We know what these optical
afterglows look like

— Disadvantage: Rare

 Orphan GRB Afterglows

— After the jet break, afterglows should be visible
off axis

— Advantage: Rate might be > 200/day
— Disadvantage: We don’t know what they look like



Untriggered GRBs

e Search designed to look for untriggered
GRBs

— We know what we’re looking for

« How much coverage Is required?
— 2 GRBs/day visible to earth (from BATSE)
— ~ 50% with visible afterglows
— 1/day/40000 deg? —
— ~ 110 deg? - yr effective coverage required

e Search strategy to have as much coverage
as possible



Search Strategy

o Search equatorial stripe covered by SDSS

— Deep, 5 band images to identify hosts, quiescent
counterparts

— Equatorial region visible from North and South
« Require rapid identification for follow-up

« Take pairs of images, each pair separated by
30 minutes
— Require transient in 4 consecutive images

— Effective coverage time is 30 minutes, assuming a
typical transient is brighter than our limiting
magnitude for 1+ hour



Results

 Through March 2005, covered 1.74 deg? - yr with
limiting magnitudes better than 17.5

— Four telescopes operational from May 2004
— Search is ongoing - now around ~ 4 deg? - yr

 Found
— Many new cataclysmic variables
— Several m-dwarf flares
— Two supernovae from dwarf galaxies (2005cg, 2005ch)
— No unidentified transients

— And many asteroids
o All are known



Results
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e Sensitive to ~ 50% of typical afterglows




Conclusion

GRBs probe extreme physics
— High energies, high luminosities, fast variability

Early optical & multiwavelength observations
provide constraints on models
— Onset of the afterglow Is not well understood

Rapid, automated optical afterglow
localizations are possible

Optical transient searches are possible, but
finding “orphan afterglows” is difficult
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