Study of Flux and Spectral Variations in the VHE Emission from the Blazar Markarian 501 David Paneque

Astro-ph/0702008 (SLAC-PUB-12334) submitted to ApJ

OUTLINE

1- Motivation to observe Mrk 501 (again...)

2- Report of the results from the Mrk 501 observations performed with MAGIC (more *details in the paper***)**

- **3- Prospects for GLAST observations on Mrk 501**
- **4- Conclusions and outlook**

<u>1- Motivation to observe Mrk 501 (again...)</u>

The physics related to Mrk 501 (and AGNs in general) is not yet understood, despite these guys have been studied for >= 10 years (see talks from Padovani, Celotti... in GLAST symposium) Culprits

1 - Time evolving broad band spectra

Coordination of instruments covering different energies needed

2 - Poor sensitivity to study high energy part (E>1 GeV)

Large observation times (with EGRET and "old" IACTs) were required to have a decent signal to make physics. Most of our HBL's knowledge relates to the high state

Current experimental data allows for a big inter-model and intra-model degeneracy

More and "higher quality" data required to constrain models

Present and near future:

New Generation of IACTs came online (low Eth, high sensitivity)

GLAST in operation next year (~25 more sensitive than EGRET)

Excellent laboratory for studying High Energy blazar emission

Strong gamma ray source (0.2-0.5 crabs in low state) z = 0.034; low EBL absorption, we see "almost" intrinsic features

Things we know about Mrk 501 (and HBLs in general)

Dominant gamma-ray emission mechanism is believed to have a leptonic origin (SSC, EC) , at least in high (flaring) state

- Fast variations (few hours in VHE)
- X rays- Gamma-rays correlation (in general)

2-The used instrument: MAGIC Telescope

Largest Imaging Air Cherenkov Telescope (IACT) for performing γ-ray astronomy. In operation since Sept. 2004

17 m \oslash mirror dish (239 m²)3.5° Field of View camera with 576high-QE PMTsFast repositioning $t_R < 40 \text{ s}$

Trigger threshold energy: ~50 GeV Minimum energy for spectral analysis : 100 GeV Angular resolution per incoming photon: 0.1°-0.15° Energy resolution : 20%-30% Point source sensitivity: 2.5% Crab / 50 hours

2-The used instrument: MAGIC Telescope

Largest Imaging Air Cherenkov Telescope (IACT) for performing γ-ray astronomy. In operation since Sept. 2004

Latest public reports given in the Glast Symposium: Galactic: Cortina (Torres) et al. **Extragalactic:** Mazin et al. **Discovery of BLLac as γ-ray** emitter; first LBL at VHE astro-ph/0703084

2- Analysis of the MAGIC data (24 nights, 32 h) June-July 2005

Flux and spectra determined on a night-by-night basis

Obs. Nights				Gamm	a-Flux	Power Law fit to spectra				
MJD	T_{obs} a	$\rm ZA^b$	$S_{comb}{}^{ m c}$	$F_{>150 \ GeV}^{\rm d}$	$F_{>150 \ GeV}$	$K_0{}^{ m e}$	a^{f}	$\chi^2/NDF^{ m g}$	= P ^h	
Start	(h)	(deg)	sigma	$(rac{10^{-10} \ ph}{cm^2 \cdot s})$	$(Crab \ Units)$	$(\frac{10^{-10} \ ph}{cm^2 \cdot s \cdot 0.3 TeV})$			(%)	
53518.980	0.75	19.10-28.95	6.44	1.19 ± 0.25	0.37 ± 0.08	2.63 ± 0.48	2.17 ± 0.25	2.7/8	95.2	
53521.966	1.85	9.97 - 30.10	8.90	1.51 ± 0.17	0.47 ± 0.05	2.94 ± 0.33	2.61 ± 0.16	10.8/7	15.0	
53524.969	0.58	19.18 - 27.73	6.98	2.04 ± 0.29	0.64 ± 0.09	3.71 ± 0.53	2.47 ± 0.23	1.6/6	95.0	
53526.975	0.98	9.96 - 28.94	8.69	1.63 ± 0.22	0.51 ± 0.07	3.26 ± 0.38	2.49 ± 0.17	3.8/9	92.4	
53530.973	0.47	15.22 - 22.32	6.52	1.53 ± 0.32	0.48 ± 0.10	2.28 ± 0.65	1.97 ± 0.49	1.1/3	78.9	
53531.959	0.90	15.21 - 25.15	6.98	1.29 ± 0.24	0.41 ± 0.07	2.69 ± 0.38	2.57 ± 0.30	9.1/6	16.6	
53532.936	0.53	23.80 - 30.11	5.44	1.50 ± 0.28	0.47 ± 0.09	2.41 ± 0.53	2.34 ± 0.36	1.2/7	99.2	
53533.933	1.63	12.85 - 30.09	7.83	1.44 ± 0.17	0.45 ± 0.05	2.46 ± 0.32	2.55 ± 0.19	10.3/8	24.2	
53534.940	2.07	9.95-30.09	9.56	1.43 ± 0.15	0.45 ± 0.05	2.71 ± 0.27	2.68 ± 0.16	8.9/9	44.8	
53535.934	3.43	9.95 - 30.07	18.58	2.69 ± 0.13	0.85 ± 0.04	4.45 ± 0.24	2.42 ± 0.06	11.9/12	45.3	
53536.947	2.68	9.95 - 29.93	7.01	0.75 ± 0.13	0.24 ± 0.04	1.36 ± 0.21	2.73 ± 0.29	5.7/7	57.1	
53537.971	3.08	9.95 - 30.10	11.52	1.25 ± 0.10	0.39 ± 0.03	2.08 ± 0.19	2.46 ± 0.14	8.2/8	41.4	
53548.931	0.87	9.98 - 20.68	6.12	1.21 ± 0.25	0.38 ± 0.08	2.39 ± 0.38	2.28 ± 0.27	0.6/6	99.6	
53551.905	1.09	12.86 - 25.15	32.02	11.08 ± 0.32	3.48 ± 0.10	17.37 ± 0.51	2.09 ± 0.03	26.2/11	0.6	
53554.906	0.68	15.21 - 22.32	12.52	3.52 ± 0.30	1.11 ± 0.09	5.91 ± 0.47	2.26 ± 0.11	3.9/9	92.1	
53555.914	0.44	12.85 - 22.32	6.08	1.27 ± 0.34	0.40 ± 0.11	2.96 ± 0.62	1.97 ± 0.29	1.9/6	92.5	
53557.916	0.54	12.84 - 19.06	8.40	2.25 ± 0.32	0.71 ± 0.10	3.91 ± 0.48	2.30 ± 0.21	6.5/7	48.5	
53559.920	0.98	9.94 - 17.22	10.05	1.85 ± 0.23	0.58 ± 0.07	3.10 ± 0.33	2.25 ± 0.13	8.4/8	39.9	
53560.906	0.76	9.96 - 19.07	24.39	9.93 ± 0.38	3.12 ± 0.12	14.35 ± 0.56	2.20 ± 0.04	22.5/11	2.1	
53562.911	1.63	9.94 - 16.79	11.08	2.19 ± 0.37	0.69 ± 0.12	2.83 ± 0.30	2.34 ± 0.13	14.1/8	8.2	
53563.921	0.85	9.94 - 15.16	18.69	5.53 ± 0.28	1.74 ± 0.09	7.89 ± 0.39	2.25 ± 0.06	11.5/9	24.3	
53564.917	0.34	9.94 - 15.18	8.91	2.89 ± 0.46	0.91 ± 0.15	4.88 ± 0.56	2.27 ± 0.20	5.4/6	49.7	
53565.920	2.57	9.95 - 28.93	11.62	1.71 ± 0.13	0.54 ± 0.04	2.73 ± 0.22	2.49 ± 0.12	10.7/8	21.6	
53566.953	1.91	9.99-30.10	11.63	1.33 ± 0.11	0.42 ± 0.04	2.16 ± 0.20	2.28 ± 0.13	7.4/10	69.0	

2.1- Light curves (LCs): Gamma, X-rays, Optical

7

2.1- Light curves (LCs): Gamma, X-rays, Optical

8

2.1- Light curves (LCs): Gamma, X-rays, Optical

David Paneque

Flaring and *Flickering* (see talk S.Wagner on GLAST Symposium)

Assumption: Flux variation (flare) on the top of a stable emission

$$F(t) = a + \frac{b}{2^{-\frac{t-t_0}{c}} + 2^{\frac{t-t_0}{d}}}$$

a: pedestal (not fit)

- **b: amplitude of flux variation** t_0 : ~ peak position (not fit)
- c, d: flux-doubling times 12

2.2- Intra-night flux variations (E > 150 GeV)

Assumption: Flux variation (flare) on the top of a stable emission

	$b \ ({10^{-10} \ ph \over cm^2 \cdot s})$	$c \ (s)$	$d \ (s)$	$\chi^2/NDF^{\rm d}$	P^{e} (%)
Jun30	13.2 ± 4.7	$\begin{array}{c} 81{\pm}41\\ 95{\pm}24 \end{array}$	$50{\pm}23$	20.0/15	$17.3^{\rm f}$
Jul09	20.3 ± 3.3		185 ${\pm}40$	4.2/7	75.8

- a: pedestal (not fit)
- **b:** amplitude of flux variation
- t_0 : ~ peak position (not fit)
- c, d: flux-doubling times

LCs for different energy ranges (4 min bins)

Active night: June 30

Flare is NOT seen in all energies

All energies are compatible with a constant flux emission, except for the range 250-600 GeV, where a constant emission is highly improbable

Results from fit with the idealistic flare function

$$F(t) = a + \frac{b}{2^{-\frac{t-t_0}{c}} + 2^{\frac{t-t_0}{d}}}$$

E > 150 *GeV*

($\frac{b}{(\frac{10^{-10} \ ph}{cm^2 \cdot s})}$	$c \ (s)$	$d \ (s)$	$\chi^2/NDF^{\rm d}$	P^{e} (%)
Jun30	13.2 ± 4.7	$\begin{array}{c} 81 \pm 41 \\ 95 \pm 24 \end{array}$	$50{\pm}23$	20.0/15	17.3 ^f
Jul09	20.3 ± 3.3		185 ${\pm}40$	4.2/7	75.8

a: pedestal (not fit)

- **b: amplitude of flux variation** t_0 : ~ peak position
- c, d: flux-doubling times

Fit gives rather compatible numbers for these 2 energy ranges

June 30th (250 GeV<E < 600 GeV)

$\frac{a^{\mathbf{c}}}{(\frac{10^{-10} \ ph}{cm^2 \cdot s})}$	a (Crab Units)	$\frac{b}{(\frac{10^{-10} \ ph}{cm^2 \cdot s})}$	$c \ (s)$	d (s)	$\chi^2/NDF^{\rm d}$	Р ^е (%)
$3.30 {\pm} 0.23$	$3.0{\pm}0.2$	7.5 ± 2.8	110 ± 57	61 ± 26	5.2/6	51.8

LCs for different energy ranges (4 min bins)

Active night: July 9 Flare is seen in all energy ranges

LCs for different energy ranges (4 min bins)

Active night: July 9

Flare is seen in all energy ranges

Time delay of 4 ± 1 minute between highest and lowest energy ranges

First time in VHE !!

Results from fit with the idealistic flare function

$$F(t) = a + \frac{b}{2^{-\frac{t-t_0}{c}} + 2^{\frac{t-t_0}{d}}}$$

E > *150 GeV*

a: pedestal (not fit)

b: amplitude of flux variation
t₀: ~ peak position
c, d: flux-doubling times

($\frac{b}{\frac{10^{-10} \ ph}{cm^2 \cdot s}})$	$c \ (s)$	$d \ (s)$	$\chi^2/NDF^{\rm d}$	P^{e} (%)
Jun30	13.2 ± 4.7	$\begin{array}{c} 81{\pm}41\\ 95{\pm}24 \end{array}$	$50{\pm}23$	20.0/15	17.3 ^f
Jul09	20.3 ± 3.3		185 ${\pm}40$	4.2/7	75.8

Fit gives rather compatible numbers for these 2 energy ranges

July 9th: Combined fit to all LCs with symmetric flare (c=d); Chi2/NDF =14/12

					<u> </u>
Energy Range (TeV)	$\overset{a^{\mathrm{a}}}{(\frac{10^{-10} \ ph}{cm^2 \cdot s})}$	a (Crab Units)	$b \ ({10^{-10} \ ph \over cm^2 \cdot s})$	$c \ (s)$	$\begin{array}{c} t_0 - t_0^{LC \ E \ 0.15 - 0.25 TeV} {}_{\rm b} \\ (s) \end{array}$
0.15-0.25	$4.23 {\pm} 0.49$	$2.48{\pm}0.28$	$8.6 {\pm} 3.7$	143 ± 92	0 ± 68
0.25 - 0.6	$2.55 {\pm} 0.24$	$2.32{\pm}0.09$	9.3 ± 2.5	95 ± 28	7 ± 36
0.6 - 1.2	$0.53 {\pm} 0.10$	$1.96{\pm}0.37$	$2.7 {\pm} 0.9$	146 ± 56	111 ± 91
1.2-10	$0.23 {\pm} 0.06$	1.51 ± 0.39	$4.0 {\pm} 0.9$	103 ± 19	239 ± 40

 $\mathbf{P} = \mathbf{0} \mathbf{3}$

LCs for different energy ranges (4 min bins)

Active night: July 9 Flare is seen in all energy ranges

Combined fit with flare location common for all energy ranges is less probable

Chi2/NDF =25.6/15 (*P* =0.04)

If flare position is the same, then the shape of the flare should change with energy

Paneque

Results from fit with the idealistic flare function

$$F(t) = a + \frac{b}{2^{-\frac{t-t_0}{c}} + 2^{\frac{t-t_0}{d}}}$$

E > *150 GeV*

a: pedestal (not fit)

b: amplitude of flux variation
t₀: ~ peak position
c, d: flux-doubling times

_					
_	b	с	d	$\chi^2/NDF^{\rm d}$	$P^{\rm e}$
($\left(\frac{10^{-10} \ ph}{cm^2 \cdot s}\right)$	(s)	(s)		(%)
Jun30	13.2 ± 4.7	81 ± 41	$50{\pm}23$	20.0/15	17.3^{f}
Jul09	$20.3{\pm}3.3$	95 ± 24	$185 {\pm} 40$	4.2/7	75.8

July 9th: Combined fit to all LCs with symmetric flare (c=d); Chi2/NDF = 25.6/15Common flare location for all energy rangesP = 0.04

Energy Range (TeV)	$a^{a} \ (rac{10^{-10} \ ph}{cm^{2} \cdot s})$	a (Crab Units)	b $\left(\frac{10^{-10} \ ph}{cm^2 \cdot s}\right)$	c (s)	$t_0 - t_0^{LC \ E \ 0.15 - 0.25 TeV}$ b (s)
0.15-0.25 0.25-0.6 0.6-1.2 1.2-10	$\begin{array}{c} 4.23 \pm 0.49 \\ 2.55 \pm 0.24 \\ 0.53 \pm 0.10 \\ 0.23 \pm 0.06 \end{array}$	2.48 ± 0.28 2.32 ± 0.09 1.96 ± 0.37 1.51 ± 0.39	5.4 ± 2.2 5.7 ± 1.5 2.6 ± 0.8 3.9 ± 1.0	301 ± 210 162 ± 63 153 ± 56 97 ± 22	$\begin{array}{c} 0 \pm 42 \\ 0 \pm 42 \\ 0 \pm 42 \\ 0 \pm 42 \end{array}$

David Paneque

LCs for different energy ranges (4 min bins)

Active night: July 9

Flare is seen in all energy ranges

Time delay of 4 ± 1 minute between highest and lowest energy ranges

First time in VHE !!

Photons at different energies were emitted simultaneously

TF

 $\Delta T = 4 \pm 1 min; \Delta E \sim 1 TeV$

$$E_{QG} = \frac{L}{c} \cdot \frac{\Delta E}{\Delta t} = (0.6 \pm 0.2) \cdot 10^{17} GeV$$

LCs for different energy ranges (4 min bins)

Active night: July 9

Flare is seen in all energy ranges

Time delay of 4 ± 1 minute between highest and lowest energy ranges

First time in VHE !!

Flux variations are larger at the largest energies

First time in VHE !!

2.3 historical light curves (@ VHE) from Mrk501

In 2005 campaign, lower flux than in 1997 and 2004, but larger than in 1998-1999

2.3 historical light curves (@ VHE) from Mrk501

23 days periodicityobserved by HEGRACT 1 data in 1997Kranich 2000(PhD thesis)Osone 2006

(Astropart. Phys. 26), also in RXTE data

In 2005 campaign, lower flux than in 1997 and 2004, but larger than in 1998-1999 ²⁴

2.3 - Flux variability vs Energy

Quantification following prescription given in *Vaughan et al. 2003*

All the observing nights (low and high state) included

Agreement iwht X-ray data (see next slide)

Variability might be caused by injection of higher energy particles (shorter cooling times)

Comparison with Fvar at X-rays (Gliozzi et al. 2006, ApJ, 646)

Collection of X-ray and gamma-ray data over years 1997-2000 and 2004

Comparison with Fvar at X-rays (Gliozzi et al. 2006, ApJ, 646)

In general, F_{var} increases with energy

Highest F_{var} value was not obtained in 2007, when Xray (and gamma) flux was highest

2.3 - Flux variability vs Energy

Quantification following prescription given in *Vaughan et al. 2003*

All the observing nights (low and high state) included

 F_{var}^{Mrk501} increases with energy aslo at X-rays (see Gliozzi et al. 2006)

 $F_{var}^{Mrk501}(VHE) > F_{var}^{Mrk501}(X-rays)$

The highest $F_{var}^{Mrk501}(X-rays)$ is ~0.6 (in 1998). In 1997, year with very high activity, the highest $F_{var}^{Mrk501}(X-rays)$ was ~0.4. Perhaps flux variability is highest when activity is not largest

David Paneque

Fractional variability vs energy

2.4 - Overall flux levels Low : Flux (E>150 GeV) < 0.5 Crab 12 days</p> Medium : Flux > 0.5 Crab && Flux < 1.0 Crab 8 days High : Flux > 1.0 Crab (Flare nights excluded) 2 days

Evidence of hardening of spectra with flux level

Agreement with previous evidences (Pian et al 1998, Tavecchio et al. 2001...) which used the VERY BIG flare of 1997

Flux Level ^m	T_{obs} a (h)	${ m ZA^b}\ (deg)$	$S_{comb}{}^{ m c}$ sigma	$F_{>150~GeV}{}^{ m d} \ ({10^{-10}~ph\over cm^2 \cdot s})$	$F_{>150\ GeV}$ (Crab Units)	$rac{{K_0}^{ m e}}{(rac{10^{-10}\ ph}{cm^2\cdot s\cdot 0.3TeV})}$	a^{f}	$\chi^2/NDF^{ m g}$	P^{h} (%)
Low	17.2	9.96-30.1	16.7	$1.24\pm~0.08$	0.39 ± 0.02	$2.31{\pm}0.13$	2.45 ± 0.07	7.8/7	34.6
Medium	11.0	9.95-30.0	22.8	$2.11\pm~0.09$	0.66 ± 0.03	3.57 ± 0.15	2.43 ± 0.05	2.9/7	89.4
High	1.52	9.95 - 22.3	21.7	$4.62{\pm}~0.21$	1.45 ± 0.07	$7.13{\pm}0.32$	2.28 ± 0.05	4.8/7	68.7

2.5 - Spectra for the 2 nights with the highest VHE activity

Curved spectra is favoured over simple power law

2.6 - Position of spectral peak before and after EBL correction Model used: 'low' EBL from Kneiske et al 2004

2.7 Spectra for the flaring nights (pre-flare and flare)

Definition of **pre-flare** and **flare** in the LC

June 30th ← Highest VHE activity → July 9th

2.7 Spectra for the flaring nights (pre-flare and flare)

During **flaring part**, the spectra seems a bit harder; yet not significant

Results of the fit with a log-parabola on the active nights

	MJD Start	$T_{obs} \stackrel{ m a}{} (h)$	$S_{comb}{}^{ m c}$ sigma	$F_{>150\ GeV}{}^{ m d} \ ({10^{-10}\ ph\over cm^2\cdot s})$	$F_{>150 \ GeV}$ (Crab Units)	$rac{K_0}{(rac{10^{-10}\ ph}{cm^2\cdot s\cdot 0.3TeV})}$	a	b	χ^2/NDF	P^{-1} (%)
Jun30	53551.905 53551.924	0.46 0.63	$\begin{array}{c} 22.3\\ 24.7\end{array}$	$10.99{\pm}0.48$ $11.15{\pm}0.43$	$3.46{\pm}0.15$ $3.50{\pm}0.14$	$19.8{\pm}1.0$ $17.2{\pm}0.8$	$1.97{\pm}0.08$ $1.87{\pm}0.08$	$0.27{\pm}0.14$ $0.34{\pm}0.13$	8.2/9 13.8/10	$\begin{array}{c} 51.2 \\ 18.1 \end{array}$
Jul09	53560.906 53560.923	0.40 0.36	15.2 19.6	7.64 ± 0.48 12.39 ± 0.60	$\begin{array}{c} 2.40 \pm 0.15 \\ 3.89 \pm 0.19 \end{array}$	$12.7{\pm}1.1$ $19.3{\pm}1.3$	2.11 ± 0.12 2.00 ± 0.10	$0.57{\pm}0.34$ $0.44{\pm}0.23$	$6.4/8 \\ 8.9/8$	59.8 35.2

David Paneque

2.8 - Hardness ratio F(1.2 -10TeV)/F(0.25-1.2TeV) vs time

Hardness ratio is a bit higher during the flare for both nights, but not very significant (1-2 sigmas)

Hardness ratio is probably NOT constant during flare July 9th

2.9 - Hardness ratio F(1.2 -10TeV)/F(0.25-1.2TeV) vs Flux

Larger spread in points from the flare (with respect to pre-flare)

Evolution of points for flare July 9th shows a clear loop pattern rotating counterclockwise; this might indicate similar variability, cooling, acceleration timescales, as pointed out by Kirk&Mastichiadis (1999)

David Paneque

Comparison with Hardness ratio at X-rays (Gliozzi et al. 2006)

When pattern is clear, it is actually rotating clockwise; i.e. *opposite pattern to the gamma-ray flare observed in July 9th* David Paneque

37

2.10 - Correlation spectral index - gamma flux (E>150 GeV)

All 24 nights included Flare nights split into 2 ("pre-flare" and "flare")

Constant fit gives Chi2/NDF = 76.6/25 (Prob 4 e-7)

David Paneque

2.11 - Overall SED during these observations

Very dynamic spectra in VHE: 3 flux levels + 2 active nights = = 5 different spectra

Unluckily, we do not have simultaneous broad band X-rays: big intra-model degeneracy

It is important to organize multiwavelength campaigns

SED fit with one zone SSC model (model from Tavecchio et al. 2001)

spectrum	$\gamma_{ m min}$	$\gamma_{ m br}$	$\gamma_{ m max}$	n1	n2	B Gauss	${ m K}$ particle/ cm^3	R cm	Doppler factor	
June 30	1	10^{6}	10^{7}	2	3.5	0.52	$2.5 \cdot 10^4$	10^{15}	25	
June $30 (bis)$	1	$5\cdot 10^5$	10^{7}	2	3.5	0.115	$2.5 \cdot 10^4$	10^{15}	50	39
Low flux	1	10^{5}	$5\cdot 10^6$	2	3.2	0.55	$1.6 \cdot 10^4$	10^{15}	25	

!!!!!!! A LOT **! ! ! ! ! ! ! !**

There are no data points in the very important range 0.1-100 GeV

20

 $\log \nu [Hz]$

15

97 Apr 16

98 Apr 29

25

.....

40

June 99

!!!!!! ALOT !!!!!!

Uniform Time coverage !!

!!!!!! ALOT !!!!!!

!!!!!! ALOT !!!!!!

Mrk 501 is NOT in the 3rd EGRET catalogue

EGRET detected Mrk 501 with confidence (5.2 sigma @ E>500 MeV) only once; flare in March 1996

David Paneque

Image: Mrk 501 is NOT in the 3rd EGRET catalogue

EGRET detected Mrk 501 with confidence (5.2 sigma @ E>500 MeV) only once; flare in 1996

Kataoka et al. 1999, Apj 514

Mrk 501 is at a distance of $5x10{26}$ cm; teh luminosity of 44 erg/s corresponds to $\sim 4 \times 10^{-10}$ erg cm-2 s-1, in agreement with Tavecchio 2001.

BUT TeV flux in 1996 is a at least a factor 10 lower than in 1997

David Paneque

Simultaneous and good quality measurements are badly needed !! How much time will GLAST need to detect Mrk 501??

Simultaneous and good quality measurements are badly needed !! How much time will GLAST need to detect Mrk 501??

Estimate of required time to achieve 5 sigmas

I used Benoit's macro:

http://confluence.slac.stanford.edu/display/SCIGRPS/Significance+estimator+tool

```
High

a = 1.45

F(>0.1GeV) = 2.30 \times 10^{-7} \text{ cm}^{-2} \text{ s}^{-1}

Low 1

a = 1.45

F(>0.1GeV) = 3.64 \times 10^{-8} \text{ cm}^{-2} \text{ s}^{-1}

Low 2

a = 1.45

F(>0.1GeV) = 1.45 \times 10^{-8} \text{ cm}^{-2} \text{ s}^{-1}
```

Simultaneous and good quality measurements are badly needed !! How much time will GLAST need to detect Mrk 501??

Estimate of required time to achieve 5 sigmas

I used Benoit's macro:

http://confluence.slac.stanford.edu/display/SCIGRPS/Significance+estimator+tool

```
High

a = 1.45

F(>0.1 \text{GeV}) = 2.30 \times 10^{-7} \text{ cm}^{-2} \text{ s}^{-1} \longrightarrow 0.25 \text{ days}

Low 1

a = 1.45

F(>0.1 \text{GeV}) = 3.64 \times 10^{-8} \text{ cm}^{-2} \text{ s}^{-1} \longrightarrow 2.4 \text{ days}

Low 2

a = 1.45

F(>0.1 \text{GeV}) = 1.45 \times 10^{-8} \text{ cm}^{-2} \text{ s}^{-1} \longrightarrow 7.6 \text{ days}

Isnt't it impressive ? ; is it too optimistic ??
```

Benoit's macro has been tested by Vincent Lonjou using the DC2 analysis; **it seems to be working correctly**.

http://www.cesr.fr/~lonjou/files/mkn421_1day/mkn421_1day.html

Although we have to be aware of limited photon statistics;

Nphtons = F(>0.1GeV)*Area (cm2)*Time(s)*FractionSky*Eff(E) =

=2.3e-7 x 1.e4 x 3600. x 6. x 1./5 x $Eff(E) = 10 x Eff(E) \sim 5 ph$

High flux0.25 days

Therefore, we get 5 sigmas (TS=25) with \sim 5 photons

statistical uncertainty on flux above 100 MeV: **62.5** % statistical uncertainty on index: **13.7** %

In order to have more photon statistics (and reduce flux error) we have to integrate over somewhat larger times

High flux (Tavecchio 2001), observed during 1 day

TS: 99.93 significance: 10.00

statistical uncertainty on flux above 100 MeV: 31.3 statistical uncertainty on index: 6.9

Low 1 flux (Tavecchio 2001), observed during 1 week TS: 72.56 significance: 8.52 statistical uncertainty on flux above 100 MeV: 36.0

statistical uncertainty on index: 7.5

Anyhow, they are STILL very impressive numbers !!!

GLAST Blazar group plans Multiwavelength campaigns We submitted 2 RXTE proposals to observe bright TeV sources.

Sources observable from the Nordern hemisphere:

Mrk 421, Mrk 501, 1es1959+650

MAGIC already agreed in participating

VERITAS very much interested in participating too (private communication from Krawzcynski)

Sources observable from the Soudern hemisphere:

PKS 2155

HESS already agreed in participating

CONCLUSIONS

Observations of Mrk 501 with MAGIC allowed us to study flux and spectra variations down to 100 GeV on a night by night basis

1 - Changes in flux and spectra on several timescales: *months, days, and few minutes*

- **2 Intra-day variations with flux-doubling times ~2 minutes** *Much shorter than previous Mrk 501 and Mrk 421 observations*
- **3 Flux variability increases with energy**
- 4 Time delay of ~4 minutes between flare location at E <0.25 TeV and E > 1.2 TeV
- **5 Spectra hardens with flux**

6 - Detection of the IC peak in the SED for the most active nights New IACTs increased our capability to study blazars (low/high) GLAST has excellent capability to study these bright TeV sources

Good times for blazar gamma-ray astronomy !!

David Paneque