GeV-photon absorption in cosmologically evolving quasar environments

Anita Reimer, HEPL & KIPAC, Stanford University GLAST-lunch talk, 1 March 2007

Motivation

Can one distinguish between "intrinsic" and EBL-caused absorption by redshift-dependence of optical depth? $\gamma\gamma \rightarrow e^+e^-$

The cross section maximizes at $x=(1-y^{-1})^{1/2}\approx 0.7$, where $y=0.5\epsilon_1\epsilon_2(1-\cos\theta)>1$ (ϵ_1,ϵ_2 in m_ec^2 , $\theta=$ photon interaction angle) is the threshold condition of the pair production process.

$\gamma\gamma \rightarrow e^+e^-$ in accretion disk & BLR radiation field of quasars

If the γ -ray emission region is located not well beyond the BLR, mandatory for γ -ray production that involve external photon fields, intrinsic γ -ray absorption features in FSRQ spectra have to be expected at E(1+z) \geq several tens of GeV.

Black hole (BH) evolution and accretion rates

Cosmic accretion history has similar redshift dependence as cosmic star formation rate • accretion onto SMBH seems proportional to star formation rate on cosmic level

→ models for co-evolution of SMBHs and host galaxies

BH evolution and accretion rates

Netzer & Trakhtenbrot (2006):

- ·sample: ~10⁴ SDSS type-I AGN (RL & RQ) spectra, z≤0.75
- •study of 4D-space: M_{BH} , L_{acc}/L_{edd} , z, (metallicity)
- · M_{BH} (L_{5100} , FWHM(H_{B})) from reverb. mapping result of Kaspi etal. '05 $\cdot L_{acc}/L_{edd}$ (L₅₁₀₀, M_{BH}, f₁=7) •Results: $L_{acc}/L_{edd} \sim z^{\gamma(M)}$

Marconi et al. (2004): [see also: Granato etal '04, Lapi etal '06, Fontano etal '06, etc.]

•assume: AGN activity caused by mass accretion onto BH ("AGN relics") •estimate evolution of BHMF of AGN relics using 10 continuity equation (relates LF & accretion rate; BH og M_{BH}(z) [M⊚] duty cycle, accretion efficiency, Eddington ratio as parameters) & constraints from local BHMF, energetics from XRB

•estimate accretion history (& aver. BH lifetime)

 \rightarrow "anti-hierarchical" BH growth \rightarrow see Lapi's ABC model

Black hole evolution and accretion rates

Three evolution models: Netzer et al 2006 (complemented by Lapi etal), Marconi et al 2004, no evolution (\dot{M}_{acc} =0.1...1 M_{edd})

BH demographics implies: redshift-dependent BH growth/accretion rates with higher rates at larger redshifts.

Is the "intrinsic opacity" redshift-dependent?

Is the "intrinsic opacity" redshift-dependent?

Redshift-dependence of opacity in almost all cases.

For case of non-evolving accretion rates: redshift-dependence due to interplay of pair production near threshold and cosmological energy red-shifting.

Is the "intrinsic opacity" redshift-dependent?

In all cases $E(\tau_{\gamma\gamma}=1)$ due to intrinsic absorption decreases with redshift, similar to the FS-relation for EBL absorption.

⇒ "evolutionary conspiracy" approaches reality?

Conclusion

Any observed redshift-dependence of absorption features in FSRQs, that are prone to intrinsic absorption, can therefore NOT serve as a secure signature of absorption occuring in the EBL radiation field.

On the source selection ...

Only "naked" jet sources (i.e. AGN without noticable opt/UV external radiation fields close to the γ -ray emission region) are suitable for studies of the evolution of the EBL on the basis of a Fazio-Stecker relation (or similar approaches) using GLAST's LAT.

⇒ BL Lac objects?

BUT:

• EGRET identified blazars: ~20% BL Lacs, ~80% FSRQs

• "GLAST constraints on EBL will require bright, hard spectra blazars at z>2-3, e.g., 3C279-like, x10-100 more luminous (or like PKS0528+134, but with harder intrinsic spectrum)"