

Juri Poutanen

University of Oulu, Finland

Boris Stern

AstroSpace Center, Lebedev Phys. Inst., Moscow, Russia

PLAN

- 1. Gamma-ray burst spectral properties
- 2. Problems with "standard" shock models
- 3. Particle heating
 - Synchrotron
 - Synchrotron self-Compton
 - Quasi-thermal Comptonization

4. Summary

Details in : Stern & Poutanen 2004, MNRAS, 352, L35 Poutanen & Stern 2005, Il Nuovo Cimento C, 28, 443 (astro-ph/0502424)

GRB from a jet formed during a collapse of a massive star into a black hole.

Weiqun Zhang, S.E. Woosley, A. MacFyden

NIVERSITY

Poynting flux dominated outflow

UNIVERSITY

Energy spectra

`Band' (or `GRB') function: $dN/dE \sim E^{\alpha} \exp(-E/E_0) \quad E < (\alpha - \beta) E_0$ $dN/dE \sim E^{\beta} \quad E > (\alpha - \beta) E_0$

High energy emission

UNIVERSITY

GRB 990123: prompt optical emission

Briggs et al. 1999; Galama et al. 1999

UNIWERSIT

Spectral properties

- Broad distribution of low energy spectral indices with peak at photon index α ≈ -1, and the hardest spectra are with α ≈ 0.
- Hard-to-soft spectral evolution during pulses
- High energy emission at 100 MeV with α ≈ -1 (GRB 941017)
- Prompt optical emission (GRB 990123)

Standard synchrotron shock model

- 1. $\epsilon_B < 1$ fraction of available energy goes to magnetic fields
- 2. $\epsilon_e < 1$ fraction of available energy goes to electrons
- 3. Electrons are assumed to obtain all this energy instantaneously

(acceleration time << cooling time)

Synchrotron shock model

Electrons are assumed to obtain all this energy instantaneously

(acceleration time << cooling time),

BUT

Electron cooling time << light-crossing time

Spectra from cooling electrons

(e.g. Bussard 1984; Imamura & Epstein 1987; Ghisellini, Celotti, Lazzati 2000; review by Ghisellini in 2003 Rome symp.)

Simulations

Large Particle Monte-Carlo code Stern et al. (1995) PROCESSES: Synchrotron emission Compton scattoring

Synchrotron emission Compton scattering pair production pair annihilation synchrotron self-absorption and particle thermalization

HEATING: Electrons/pairs obtain equal amount of energy per unit time

Radiative processes

- If Thomson optical depth $\tau_T \sim 10^{-8}$ then $\gamma \sim \sqrt{(y/\tau_T)} \sim 10^4$ and synchrotron is the main cooling mechanism
- If $\tau_T \sim 10^{-2} \cdot 10^{-4}$ then $\gamma \sim 10 \cdot 100$ and synchrotron self-Compton (Stern & Poutanen 2004)
- If τ_T~1 then γ~1-2 and quasi-thermal Comptonization (e.g.Ghisellini & Celotti 1999; Stern 1999, 2003)

Optical depth

- Thomson optical depth of the (matter dominated) ejecta
 - $T_{ejecta} = 0.3 E_{kin,iso, 54} R_{15}^{-2} \Gamma_2^{-1}$
- Thomson optical depth in the
 - external shock

 $\tau_{T,ext} = 2 \times 10^{-4} R_{15}^{-1} M_{-5} W_3^{-1}$ for wind (M_{-5} - mass loss rate in 10⁻⁵ solar masses per year; W_3 - wind velocity in 10³ km/s)

 $\tau_{\rm T,ext} = 2 \times 10^{-8} R_{17} n_{\rm ISM}$ for ISM

Synchrotron emission $\tau_{\rm T} = 2 \ge 10^{-8}$ l = 0.3, B = 10 G

UNIMERSITY

Evolution of parameters

UNIMERSITY

High energy emission

UNIVERSITY

SUMMARY

Standard shock models with particle injection produce "cooling" spectra ($F_F \sim E^{-1/2}$).

Heating / reacceleration

during the life-time of a source is needed.

- Radiative processes depend on τ_{T} and compactness
- For synchrotron emission, only τ_T ~ 10⁻⁸ can be reaccelerated
- Quasi-thermal Comptonization does not give very hard spectra and peaks at too high energy
- Synchrotron self-Compton emission of nearly monoenergetic electrons / pairs produces:

(1) hard BATSE spectra $F_E \sim E^{-1}$ and spectral evolution

(2) prompt optical flash with $F_E \sim E^2$

(3) 100 MeV-10 GeV emission (potentially observable by GLAST)