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Outline of the Talk:

m Short description of Swift & its main findings
= Swift finds a flat decay phase In the early X-ray
afterglow of many GRBs: Fy < was expected
m Possible Explanations:
+ Energy injection into the afterglow shock
¢ viewing angle slightly outside emitting region
¢ Afterglow efficiency increases with time
¢ A two component jet model
m Possible implications:
¢ [he efficiency of the gamma-ray emission
¢ I'he Kinetic energy In the afterglow shock
m Conclusions
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Swift’s Main Discoveries so far:

m Short-hard GRBs
¢ First detection of their afterglows
¢ redshifts (z ~ 0.2-0.7) = energy & event rate
+ Host galaxies (different from long-soft GRBS)
+ Constraints on contemporaneous supernova
m Early afterglow emission
¢ Flat decay phase in many X-ray light curves
¢ X-ray flares in many cases
+ Dim early optical emission (reverse shock)
= GRBs at high redshifts (z = 6.29) — cosmology
m Resolved rise time of SGR 1806-20 giant flare
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Decay

L Ry 1 R O0U Fenativistic wiraiow Shock

+ The source must remain active for up to a
few hours with L oc ~t0-°

+ might be possible for a magnetar (Usov 1992)
where | oc t° > t“ (Dai & ILu 1998; Dai 2004)




m The magnetar model Is able to reproduce the
right energy scale and time scale

1
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= It has many potential problems:
+ How to launch a collimated relativistic jet
+ What sets the GRB duration & energy
+ Hard to explain the observed diversity
+ How to avoid collapse into a black hole



Type |l Energy Injection:

m The outflow Is ejected within the duration of
the GRB (typically tens of seconds)

m It naturally has some spread In Lorentz factors

m [he outflow naturally sorts itself out in order of
Increasing velocity - faster ahead of slower

m Slower outflow takes longer to catch up with
the afterglow shock & deposit Its energy

m — gradual energy Injection (Sari & Mészaros “00)
until the slower outflow that carries most of the
energy catches up with the afterglow shock



= has predictions for
the evolution of the
broad band spectrum
& the light curves

forward., _
shock

reverse«—
shock

1. Unperturbed ext. medium
2. Shocked external medium
3. Shocked ejecta

4. Freely expanding ejecta (Sari & Meszaroes 2000)




Implications of Type Il Energy Injection:

Distribution of energy with ejecta 4-velocity
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2. Viewing angle outside the emitting region

m Smaller F, f, E .,
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Implications of viewing angle interpretation:

m If the regions of prominent gamma-ray and
afterglow emission coincide, then a smaller
typical photon energy, fluence and peak flux are
expected: X-ray flashes (YYamazaki et al. ‘02,03, 04)

= [his does not show up In the data: it might
suggest that these two regions do not coincide

= Along some lines of sight there Is a bright
gamma-ray emission but dim afterglow
emission = high gamma-ray efficiency and/or
low afterglow efficiency



3. Increase In afterglow Efficiency:
(Granot, Konigl & Piran 2006)
® The energy In the afterglow shock Is constant
m The emission Is from along our line of sight
m The afterglow efficiency initially increases with
time, due to a change in one or more of:
¢ ¢, = fraction of energy In relativistic electrons
¢ £ = fraction of energy in the magnetic field
¢ &, = fraction of electrons that are relativistic
m [ he shock microphysics parameters eventually
saturate at some asymptotic values
= This may have interesting implications for
relativistic collisionless shocks




Inferring the Kinetic Energy:
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Implications for y-ray Efficiency
me =E /E)¢/(1-e)=xf;k=E[E (1), T=E()/E 4
m k ~ 1 from the X-ray afterglow flux at t =10 hr

m T = 10 If the early flat decay phase Is Interpreted
as energy Injection into afterglow shock: € 2 0.9

m Such high efficiencies are very hard to produce

m If the flat decay phase Is due to an increase In the
afterglow efficiency thenf~1 & ¢ ~ 0.5

m [fralso E, (t = 10 hr) Is underestimated (e.g., &, ~
0.1 instead of 1) then possibly k ~0.1 & & ~ 0.1

m — a typical afterglow kinetic energy = 10> erg
(= 10> erg) for a uniform (structured) jet



4. A Two Component Jet:

(Granot, Konigl & Piran 2006) - wide jet: 'y ~ 20-50

------------ — narrow jet: [ ', > 100
0 observer

| e I ottt | }
= Motivation:

+ In the collapsar model the wide jet IS
produced by the cocoon (Ramirez-Ruiz et al.
200002

+ Neutron decoupling in a hydromagnetically
driven neutron rich jet (\Vlahakis et al. 2003)
- tdec o 1ﬂ0_2(4_k)/(3_4) for Pext & [ =, tdec,n<< tdec,w
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Afterglow light
curves for a two
component jet:

m E > E Isrequired
for the wide jet to
dominate the flux
at late times
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Two component jet: Explaining the flat decay

= [he X-ray afterglow of GRB 050315 requires that
F=E;, w/Eison 2 30 and more generally f > 1 so that

the required gamma-ray efficiency Is not lowered
m E /E. = 100 is challenging for theoretical models
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Simultaneous Optical light curves

= The optical light curves do not show a similar
flat decay phase or a similar steepening at its end

m This Is problematic for most models
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Conclusions:

M There are different possible explanations for the

early

flat decay phase In the X-ray afterglows

M the different explanations may potentially be
distinguished via multi-wavelength observations

M There are potentially interesting implications for

oT
T

ne gamma-ray efficiency

ne afterglow kinetic energy.

& Collisionless relativistic shocks

M A lot

of work still remain to be done
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