

Jennifer Carson GLAST lunch talk September 7, 2006

Working groups & themes

- TeV Particle
- Gamma Astronomy focus on
- UHECR mention
- Neutrino Astronomy mention
- Dark Matter
- Gravitational Waves mention
- New Technologies

Morning plenary talks, afternoon "working groups"

Gamma astronomy

Gamma-ray astronomy wavebands

Ground-based air shower particle detectors

MILAGRO/HAWC: E >1-100 TeV

Ground-based atmospheric Cherenkov telescopes MAGIC, HESS, VERITAS: 0.1-100 TeV

F. Krennrich

HESS

Data-taking since July 2002

Camera shelter

solution and the second second

ROTSE 3c robotical optical telescope

> Weather/atmospheric monitoring

> > HESS I telescope

120 m

Security fence

D. Horns

HESS observations of SNR Vela jr.

HESS observations of SNR Vela jr.

HESS extragalactic source: PKS 2155 🛸

The brightest southern hemisphere extragalactic object

Low var compared to Mkn's until Crab-level fluxes end July 2006 (ATel 867)

- ∇ VHE "quiescent" state *extremely* interesting for modelling steady state emission is rarely mentioned
- ∇ Promising candidate for GLAST-HESS observations (steep spectrum)

B. Giebels

MAGIC highlights of the first year

Crab Nebular SZA & LZA

Galactic Center

HESS J1813

HESS J1834

¹³CO cloud

LSI+61 303 Mrk421 (0.031) Micro-Quasar New Source

Mrk501 (z=0.034) 1ES2344 (z=0.044)

Mrk180 (0.045) New source 1ES1959 (0.047) 1ES1218 (z=0.18) PG 1553 (Z>0.25) New Source New source

M. Teshima

13 TeV AGN

Radio galaxy: blazar viewed offaxis (~35 deg.)

Source	Redshift	Spectral Index	Туре	First Detection
M87	0.004	2.9	FRI	HEGRA
Mkn 421	0.031	2.2	BL Lac	Whipple
Mkn 501	0.034	2.4	BL Lac	Whipple
1ES 2344+514	0.044	2.9	BL Lac	Whipple
Mkn 180	0.045	3.3	BL Lac	MAGIC
1ES 1959+650	0.047	2.4	BL Lac	Tel. Array
PKS 2005-489	0.071	4.0	BL Lac	HESS
PKS 2155-304	0.116	3.3	BL Lac	Mark VI
H1426+428	0.129	3.3	BL Lac	Whipple
H2356-309	0.165	3.1	BL Lac	HESS
1ES 1218+304	0.182	3.0	BL Lac	MAGIC
1ES 1101-232	0.186	2.9	BL Lac	HESS
PG 1553	>0.25	4.0	BL Lac	HESS/MAGIC

Extragalactic Background Light: EBL in near-IR F. Krennrich

Milagro: ground-based particle detector

Milagro sky survey

Diffuse emission from Cygnus region

- Strong & Moskalenko standard model
 - Fit to EGRET < 1 GeV
 - Increase π^0 and IC component throughout Galaxy
 - Milagro ~5x above prediction
 - Unresolved sources?
 - Proton accelerators?

J. Goodman

VHE source accounting

- 12 Blazars
- 1 Radio galaxy
- 2 Microquasars
- 2 Shell-type SNRs
- 10 PWNe
- 4 Composite PWNe/SNRs
- 1 Binary pulsar
- 15 UIDs (12+3)

47 sources + diffuse region!

Very near future: VERITAS status

F. Krennrich

Very near future: VERITAS-4

Start 3-telescope operation in September 2006 Full array operation in Jan. 2007 Significant site access issues!

F. Krennrich

Near future: MAGIC-II

. Teshima

Near future: HESS-II

D. Horns (for

Photon Energy (GeV)

Not-so-near future: High Altitude Water Cherenkov Experiment

450 PMT (25x18) shallow (1.4m) layer 273 PMT (19x13) deep (5.5m) layer 175 PMT outriggers

Instrumented Area:	$\sim 40,000 \text{m}^2$
PMT spacing:	2.8m
Shallow Area:	3500m ²
Deep Area:	2200m ²

900 PMTs (30x30)5.0m spacingSingle layer with 4m depth

Instrumented Area:	22,500m ²
PMT spacing:	5.0m
Shallow Area:	22,500m ²
Deep Area:	22,500m ²

A. Smith

Not-so-near future: High Altitude Water Cherenkov Experiment

A. Smith

Far future: High Energy All Sky Transient Radiation Observatory

Array

- 1. 217 telescopes
- 2. 8 hexagonal rings + 1
- 3. 80m separation

Telescope and Detector

- 1. ø10m equivalent
- 2. QE = 0.25 (Bialkali)
- 3. 15° field of view

Facts and Figures

- 1. Outer radius: 640m
- 2. Single cell area: 5543m²
- 3. Total area: 1.06km²

S. Fegan, V. Vassiliev, UCLA, astro-ph/0511342

S. Swordy

Far future: High Energy All Sky Transient Radiation Observatory

Current IACTAs Narrow field of view <0.01 km² @ 40 GeV 0.05-0.1 km² @ 100 GeV 0.2-0.3 km² @ 10 TeV **Square KM Array Continuum of modes** Trade area for solid angle **Parallel mode** Narrow field of view 1 km² @ 40 GeV 2 km² @ 100 GeV 4-5 km² @ 10 TeV "Fly's Eye" mode Wide field of view 0.02-0.03 km² @ 40 GeV 0.1-0.2 km² (*a*) 100 GeV 3-4 km² @ 10 TeV

S. Swordy

Far future: Cherenkov Telescope Array

Far future: Cherenkov Telescope Array

Not to scale !

S. Swordy

"Kifune's Plot"

M. Teshima

VHE science questions & answers

- Cosmic Rays: supernova remnant origin? Not clear despite TeV detections: great techniques to probe hadrons!
- Relativistic jets: blazars, GRBs, microquasars, how do they work? *Testing emission models in jets! Probing closer to central objects!*
- Galaxy in diffuse gamma rays: have we accounted for all contributors? *TeV detection, need more data with wide FOV and high ang. resolution!*
- How transparent is the universe to gamma rays? Probably more than previously thought, z ~ 1-1.5 at 100 GeV?
- GRBs: what are the prospects for very high energy emission? Early afterglow (X-ray flares) for IACTs at 100 GeV, low EBL!
- What is the future of this field?

Like X-ray astronomy but at a higher level! (TeV vs. keV)!

F. Krennrich

Cosmic rays

- \rightarrow Second knee or ankle/dip
- \rightarrow Very important for the origin of UHECRs
- \rightarrow Composition is crucial to spectrum

P. Blasi

UHE discrepancy?

Neutrino astronomy

Neutrino eyes see farther (z>1), and deeper (into compact objects) than gamma-photons, and straighter than HECRs, with no absorption at (almost) any energy

Hanoi 2006, Neutrino Astrophysics

Neutrino-rays versus Cosmic-Rays and Photons

Vs come from central engines

- near R_s of massive BHs
- even from dense "hidden" sources
 cf. vs vs. γs from the sun

 Vs not affected by cosmic radiation (except for annihilation resonance)
 Vs not bent by magnetic fields

 enables neutrino astronomy

Also, besides Energy and Direction, ν 's carry Flavor

Good news: nothing stops them Bad news: nothing stops them

The optical Cherenkov technique

K. Hanson

Gravitational waves

Recipe for Making Gravitational Waves

Ingredients: Large quantity of mass/energy (any type will do)

Directions:

- Compress into a small, irregular lump (two lumps work better)
- Shake or stir vigorously

(Adapted from P. Brady)

Nature's Kitchen

Gravitational Waves 101

THE GRAVITATIONAL WAVE SPECTRUM

Gravitational wave detector concept

Needed technology development to measure:

 $h = \Delta L/L < 10^{-21}$ $\Delta L < 4 \times 10^{-18}$ meters

R. Weiss

The LIGO detectors

e.g. NS/NS Binary inspiral in Virgo Cluster

$$h = \frac{\Delta L}{L} \sim 10^{-21}$$

 $L \sim 4 \times 100 \,\mathrm{km} \implies \Delta L \sim 0.1 \,\mathrm{fm}$

How do they do this? Talk by R.Weiss

Latest News

- LIGO has reached design sensitivity, one year observation run in progress (S5)
- Major breakthroughs in numerical simulation of BH-BH merger
- LISA Pathfinder passed PDR, now in Phase B/C
- LIGO and VIRGO have joined forces
- Enhanced LIGO run (S6) now planned
- Advanced LIGO funding start in 2008
- LISA in Phase A, transition to Phase B in 2007 deferred

LIGO works!

Strain Sensitivity for the LIGO 4km Interferometers

Toward Direct Detection

	LIGO Ir	spiral K	First Detection by 2010	year
	From	Initial	Enhanced	Advanced
NS/NS	Observed binary pulsars + Pop. Synth. Kalogera et al.	0.007 - 0.04 - 0.13	0.06 - 0.3 - 1	20-1200-4000
NS/BH	Pop. Synth. Bethe/Brown/Lee	0.14 - 0.8 - 3	I - 6 - 24	400-2400 -10000
NS/NS	Short gamma ray bursts Nakar et al	0.001 - 0.3	0.01 - 3	2-300
NS/BH	Short gamma ray bursts Nakar et al	0.01 - 3	0.1 - 30	20-1000
BH/BH	Population Synthesis	0.03 - 0.4	0.2 - 4	80-15000

(Table by Kip Thorne)

P

And lots of other stuff...

Dark matter detections (direct & indirect), WMAP update, New detector technologies, Neutrinos, neutrinos, neutrinos...

http://www.icecube.wisc.edu/tev/