

The Spectrum of Markarian 421 Above 100 GeV with STACEE

Jennifer Carson UCLA / Stanford Linear Accelerator Center February 2006

Outline

- I. Science goal for γ -ray detections from active galaxies
 - Understanding particle acceleration
- II. Brief overview of VHE gamma-ray astronomy
- III. Ground-based detection techniques
 - Atmospheric Cherenkov technique
 - Imaging vs. wavefront sampling
- IV. STACEE
- V. Markarian 421
 - First STACEE spectrum
 - Detection of high-energy peak?
- VI. Prospects for the future

Blazars

STA EEC

Radio-loud AGN viewed at small angles to the jet axis

- bright core
- \geq 3% optical polarization
- strong multi-wavelength variability

Blazars

Radio-loud AGN viewed at small angles to the jet axis

- bright core
- \geq 3% optical polarization
- strong multi-wavelength variability
- Double-peaked SED: synchrotron emission + ?

What physical processes produce the high-energy emission?

Is the beam particle an e⁻ or a proton?

Blazar High-Energy Emission Models Is the beam particle an e^- or a proton? **Leptonic models:** Jet axis • Inverse-Compton scattering iaht to off accelerated electrons Earth Synchrotron self-Compton and/or Synchrotron photon External radiation Compton Proton-induced Ambient cascade Shock photon or

synchrotron

Blac

hole

Shock

Inverse-Compton

scattering

Blazar High-Energy Emission Models Is the beam particle an e⁻ or a proton?

- Inverse-Compton scattering off accelerated electrons
- Synchrotron self-Compton and/or
- External radiation Compton
- Hadronic models:
- Accelerated protons
- Gamma rays from pion decay or
- Synchroton gamma-ray photons

Blazar High-Energy Emission Models Is the beam particle an e⁻ or a proton?

- Inverse-Compton scattering off accelerated electrons
- Synchrotron self-Compton and/or
- External radiation Compton
- Hadronic models:
- Accelerated protons
- Gamma rays from pion decay or
- Synchroton gamma-ray photons

Gamma-ray observations around 100 GeV can distinguish between models

Exploring the Gamma-ray Spectrum

Atmospheric Cherenkov Technique

Single-dish Imaging Telescopes

Whipple 10-meter

Wavefront Sampling Technique

Wavefront Sampling Technique

Exploring the Gamma-ray Spectrum

Whipple 10-meter

CELESTE

Whipple 10-meter

Exploring the Gamma-ray Spectrum

The High-Energy Gamma Ray Sky

2005 – 31 sources!

+ 8-15 add. sources in galactic plane.

Cherenkov light intensity on ground \rightarrow energy of gamma ray Cherenkov pulse arrival times at heliostats \rightarrow direction of source

STACEE

Solar Tower Atmospheric Cherenkov Effect Experiment

STACEE

Solar Tower Atmospheric Cherenkov Effect Experiment

- PMT rate @ 4 PEs: ~10 MHz
- Two-level trigger system (24 ns window):
 - cluster: ~10 kHz
 - array: ~7 Hz
- 1-GHz FADCs digitize each Cherenkov pulse

STACEE Advantages / Disadvantages

- 2-level trigger system ⇒
 good hardware rejection of hadrons
- GHz FADCs ⇒ pulse shape information
- Large mirror area (64×37m²) ⇒
 low energy threshold

STACEE Advantages / Disadvantages

- 2-level trigger system ⇒
 good hardware rejection of hadrons
- GHz FADCs ⇒ pulse shape information
- Large mirror area (64×37m²) ⇒
 low energy threshold

But...

- Limited off-line cosmic ray rejection \Rightarrow **limited sensitivity**: 1.4 σ /hour on the Crab Nebula
- Compare to Whipple sensitivity: 3σ /hour above 300 GeV

STACEE Data

Observing Strategy: Equal-time background observations for every source observation (1-hour "pairs")

Utilize two properties of gamma-ray showers:

- 1. Linear correlation: Cherenkov intensity and gamma-ray energy
- 2. Uniform intensity over shower area

200 GeV gamma ray

500 GeV proton

New method to find energies of gamma rays from STACEE data:

- 1. Reconstruct Cherenkov light distribution on the ground from PMT charges
- 2. Reconstruct energy from spatial distribution of light

Results:

fractional errors < 10% energy resolution ~25-35%

Markarian 421

• Nearby: z = 0.03

- First TeV extragalactic source detected (Punch et al. 1992)
- Well-studied at all wavelengths except 50-300 GeV
- Inverse-Compton scattering is favored
- High-energy peak expected around 100 GeV
- Only one previous spectral measurement at ~100 GeV (Piron *et al.* 2003)
 Blazejowski e

STACEE Detection of Mkn 421

- Observed by STACEE January May 2004
- 9.1 hours on-source + equal time in background observations
- $N_{on} N_{off} = 2843$ gamma-ray events
- 5.8σ detection
- 5.52 ± 0.95 gamma rays per minute
- Energy threshold ~198 GeV for $\alpha = 1.8$

- Six energy bins between 130 GeV and 2 TeV
- Find gamma-ray excess in each bin
- Convert to differential flux with effective area curve

Spectral Analysis of Mkn 421

First STACEE spectrum

Spectral Analysis of Mkn 421

First STACEE spectrum

2004 Multiwavelength Campaign

2004 Multiwavelength Campaign

- STACEE coverage: 40% of MW nights
- ~90% of STACEE data taken during MW nights
- STACEE combines low and high flux states

Multiwavelength Results

Blazejowski et al. 2005

Multiwavelength Results

Blazejowski et al. 2005

STACEE + Whipple Results

STACEE + Whipple Results

- STACEE's first energy bin is ~90 GeV below Whipple's.
- STACEE result:
- \rightarrow is consistent with a flat or rising SED.
- \rightarrow suggests that the high-energy peak is above ~200 GeV.
- \rightarrow slghtly is inconsistent with most past IC modeling.
- Combined STACEE/Whipple data suggest that the peak is around 200-500 GeV.
- SED peak reflects peak of electron energy distribution.

• STACEE will operate for another year

- STACEE will operate for another year
- Imaging arrays coming online, $E_{threshold} \approx 150 \text{ GeV}$
 - HESS: 5σ Crab detection in 30 seconds!
 - VERITAS: 2 (of 4) dishes completed

VHE Experimental World

- STACEE will operate for another year
- Imaging arrays coming online, $E_{threshold} \approx 150 \text{ GeV}$
 - HESS: 5σ Crab detection in 30 seconds!
 - VERITAS: 2 (of 4) dishes completed
- GLAST launch in 2007!

- Two instruments:
 → LAT: 20 MeV >300 GeV
 → GBM: 10 keV 25 MeV
- LAT energy resolution ~ 10%
- LAT source localization < 0.5'

EGRET Sources

GLAST Potential

5σ Sources from Simulated **One Year All-sky Survey**

Results of one-year all-sky survey. (Total: 9900 sources)

Galactic Halo Galactic Plane

Conclusions

- Gamma-ray observations of AGN are key to understanding particle acceleration in the inner jets
- Many new VHE gamma-ray detectors & detections
- STACEE
 - "1st-generation" instrument sensitive to ~100 GeV gamma rays
 - Energy reconstruction is successful
 - 5.8σ detection of Markarian 421
 - Preliminary spectrum between 130 GeV and 2 TeV
 - Second spectrum of Mkn 421 at 100-300 GeV
 - High-energy peak is above ~200 GeV
- Bright future for gamma-ray astronomy

Cosmic Ray Background Rejection

What we have:

- Hardware hadron rejection (~10³)
- Off-source observations for subtraction
- χ^2 from shower core reconstruction ('templates')
- Timing information & χ^2 from wavefront fit
- RMS on average # photons at a heliostat
- Limited directional information
 - reconstruction precision ~0.2°, FOV ~0.6°

Some initial success with the Crab nebula...

- 5.4 hours on-source after data quality cuts
- 3.0σ before hadron rejection
- Cut on core fit χ^2 + wavefront fit χ^2 + direction: **5.7** σ !

Field Brightness Correction

Extra light in FOV from stars will increase trigger rate due to promotions of sub-threshold cosmic rays

Field Brightness Correction

Extra light in FOV from stars will increase trigger rate due to promotions of sub-threshold cosmic rays

Correct using information from FADCs to equalize light levels

STACEE Atmospheric Monitor

- Goal: measure atmospheric transmission and detect clouds.
- Meade 8" S-C scope, Losmandy equatorial mount with PC-controlled "goto" pointing/tracking,
 SBIG CCD camera for pointing and photometry.
- Two IR radiometers (cloud detectors).
- Full Weather station.

Methods for Finding the Shower Core

1. Finding the centroid

- If we sampled the entire shower, we could find its centroid.
- The *early* part of the shower is contained within the array.
- Use the first few nanoseconds of the shower to find the centroid.

2. 'Template' method

- # PEs vs. shower core position
- One template per PMT and energy
- Fit core and energy with maximum likelihood estimator
- Pros:
 - precise
 - χ^2 for hadron rejection
- Con: 'black box'

STACEE

Monitor

Calibrating the Detector

Atmospheric

Air shower simulations & Atmospheric monitoring

Calibrating the Detector

Calibrating the Detector

STACEE AGN Targets

Which objects are most scientifically promising?

3C 66A

- z = 0.444
- Strong source at energies < 10 GeV
- One questionable measurement at TeV energies
- High redshift \Rightarrow heavy absorption
- STACEE flux limit (Bramel *et al.* 2005)

STACEE AGN Targets

Which objects are most scientifically promising?

Mkn 421

- z = 0.031
- Well-studied at TeV energies
- Target of multi- λ variability studies
- One previous measurement at 50-300 GeV
- High-energy peak is at ~100 GeV
- Potential to constrain the optical EBL
- STACEE detection (Carson 2005)

STACEE AGN Targets

Which objects are most scientifically promising?

W Comae

- z = 0.102
- Hard EGRET spectrum: $\alpha = 1.73$
- Limits only at TeV energies
- STACEE observations can test model predictions

• STACEE flux limit (Scalzo *et al.* 2004)

Predicted differences around 100 GeV

Leptonic models no emission predicted above 100 GeV Hadronic models significant emission above 100 GeV

STACEE Measurement of W Comae

STACEE flux limit constrains hadronic emission models $\Phi < \sim 2.5 \times 10^{-10} \text{ cm}^{-2} \text{ s}^{-1}$ for hadronic models above 165 GeV

STACEE Measurement of W Comae

STACEE flux limit constrains hadronic emission models $\Phi < \sim 2.5 \times 10^{-10} \text{ cm}^{-2} \text{ s}^{-1}$ for hadronic models above 165 GeV

