

Area Space Telescope

Local Group of Galaxies in the EGRET era and perspectives for GLAST

Igor V. Moskalenko Stanford

Local Group of Galaxies

- > Milky Way and M31 are the dominant galaxies in the group
- > Many others are irregular or dwarf spheroidal
- > Additional members are still being discovered

Local Group of Galaxies in 3D

One More Picture of the Local Group

<u>Type:</u> Irr/SB(s)m <u>Magnitude:</u> 0.9 <u>Size:</u> 650 x 550 arcmin ~few kpc <u>Distance:</u> ~50 kpc

Small Magellanic Cloud: SMC

<u>Type:</u> Im IV-V <u>Magnitude:</u> 2.3 <u>Size:</u> 280 × 160 arcmin <kpc <u>Distance:</u> ~60 kpc

I. Moskalenko

Andromeda Galaxy: M31

<u>Type:</u> SA(s)b I-II (Hubble: ordinary spiral sshaped with well defined arms) <u>Magnitude:</u> 3.4 <u>Size:</u> 185.0 x 75.0 arcmin >50 kpc

Distance: 725 kpc

Triangulum Galaxy: M33

Summary: EGRET Observations

Source

LMC

SMC

M31

- LMC detection: CR density is similar to MW
- SMC non-detection: CR density is smaller than in the MW (otherwise it would be ~2.4×10⁻⁷ cm⁻² s⁻¹)
- CRs are galactic and not universal !
- M31 non-detection: has to have smaller CR density than the MW (size M31>MW!)

L_{MW}(>100 MeV)~5.4×10³⁹ erg/s (SMR00) ~3×10⁴³ phot/s

F_{MW}(@M31 distance) ~ 4.4×10⁻⁷cm⁻² s⁻¹

F(>100 MeV), cm ⁻²
(1.9±0.4)×10 ⁻⁷
<0.5×10 ⁻⁷
<0.8×10 ⁻⁷
Sreekumar et al.(1992-94)

S⁻¹

10

Simplified diffuse emission model

- $\checkmark\,$ CR intensity is proportional to the rate of SN explosion $\,$ ~R $\,$
- Assuming the same emissivity per H atom
- \checkmark %-ray luminosity is proportional to the total gas mass \sim M
- ✓ Gamma-ray production: brems, IC, π^0 only π^0 , brems
- [Source (injection) spectrum

GLAST LAT Project

- * Interstellar radiation field (IC, e[±] energy losses)
- * Nuclear & particle production cross sections
- * Energy losses: ionization, Coulomb, brems, IC, synch
- * Transport equations for all CR species
- * Fix propagation parameters

 $q_{\rm v}$

same as in MW]

Some Math (Pavlidou & Fields 2001)

Transport equation for CR number density (steady-state leaky-box):

$$\frac{\partial N_i(T,t)}{\partial t} = Q_i(T,t) + \frac{\partial}{\partial T} \left[b_i(T) N_i(T,t) \right] - \frac{1}{\tau_{\rm esc}} N_i(T,t)$$

Trivial solution:

$$0 = Q_p(T) - \frac{1}{\tau_{\rm esc}} N_p(T)$$

In terms of CR flux:

$$\phi_p(T) = l_{\rm esc} Q_p(T)$$

 $l_{\rm esc} = \tau_{\rm esc} v$ $l_{\rm esc}(G) \sim l_{\rm esc}(MW)$

Assuming CR injection rate proportional to SN rate: $Q_p^G \propto \mathscr{R}_G$

CR flux in a galaxy G:

$$\frac{\phi_p^G}{\phi_p^{\mathrm{MW}}} = \frac{\mathscr{R}_G}{\mathscr{R}_{\mathrm{MW}}} = f_G$$

I. Moskalenko

Some Math (Cont'd)

$$\gamma$$
-ray flux from a galaxy: $F_{\gamma}^{G} = \frac{1}{4\pi d^{2}} \frac{M_{gas}}{m_{p}} q_{\gamma}^{G}$

 $q_{\gamma}^{G}(>100 \text{ MeV}) = 2.36 \times 10^{-25} f_{G} \text{ photons s}^{-1} (\text{H atom})^{-1}$

Emissivity calcs q(>100 MeV): $pp \rightarrow \pi^0 \times 1.55$ (bremss) $\times 1.5$ (A>1 nuclei)

$$F_{\gamma}^{G}(>100 \text{ MeV}) = 2.34 \times 10^{-8} f_{G} \frac{M_{\text{gas}}}{10^{8} M_{\odot}}$$
$$\times \left(\frac{d}{100 \text{ kpc}}\right)^{-2} \text{ photons cm}^{-2} \text{ s}^{-1}$$

Combined:

Properties of the LG galaxies $\Rightarrow \gamma$ -ray flux

Observed Properties of Selected Local Group Galaxies				M_{gas}	
				Σ	$L = \frac{d^2}{d^2}$
Galaxy	SN RATE (century ⁻¹)	Adopted f	$HI M_{\bullet} M_{\bullet} (\times 10^4 M_{\odot} \text{ kpc}^{-2}) (\times$	$H_2 M_{\odot} M_{\odot}$	$\frac{\text{total}}{\times 10^4} M_{\odot} \text{ kpc}^{-2})$
LMC 50. крс	0.1, ^a 0.23, ^b 0.49 ^c	0.14	$22 \pm 6^{d,e,f,g} 5.5 \times 10^{8}$	³ 4.63 ^s 1.2×10 ⁸	26.6 6.7×10 ⁸
SMC 60. kpc	0.065, ^b 0.12 ^c	0.04	$17 \pm 4^{d,h}$ 6.1×10 ⁸	0.76 ^g 0.3x10 ⁸	17.8 6.4×10 ⁸
M31 7.25kpc	0.9, ⁱ 1.21, ^c 1.25 ^j	0.45	$0.9 \pm 0.2^{d,k}$ 4.7×10 ⁹	⁹ 0.06 ¹ 0.3×10 ⁹	0.92 5.0×10 ⁹
M33 7.95kpc	0.28, ^m 0.35, ⁱ 0.68°	0.17	0.26 ± 0.05^{d} 1.6×10^{9}	0.004ª 0.3×10 ⁸	0.264 1.6×10 ⁹
NGC 6822	0.04°	0.02	0.05 ± 0.02^{d}	0.006 ^p	0.056
IC 10	0.082-0.11 ^q	0.04	0.016 ± 0.003^{r}	$\gtrsim 10^{-5s}$	0.016
MW	~2.5		HI ~ F	1 ₂	(2-6)x10 ⁹

PREDICTED GAMMA-RAY FLUX AND GLAST REQUIREMENTS FOR SELECTED LOCAL GROUP GALAXIES

	FLUX > 100 MeV		GLAST SIGNIFICANCE		
Galaxy	Prediction (photons cm ⁻² s ⁻¹)	EGRET Value/Limit (photons cm ⁻² s ⁻¹)	2 yr (σ)	10 yr (σ)	GLAST ON-TARGET 5 σ Exposure Time (yr)
LMC	11×10^{-8}	$(14.4 \pm 4.7) \times 10^{-8}$	42	93	4.6×10^{-3}
SMC	1.7×10^{-8}	$< 4 \times 10^{-8}$	19	43	2.1×10^{-2}
M31	1.0×10^{-8}	$< 1.6 \times 10^{-8}$	13	31	4.1×10^{-2}
M33	0.11×10^{-8}		1.9	4.1	2.31
NGC 6822	2.6×10^{-11}		0.04	0.09	≥10
IC 10	2.1×10^{-11}		0.02	0.05	≥10

I. Moskalenko

✓ Order of magnitude estimates show that LMC, SMC, M31, M33 will be detectable by GLAST, but...

GCGLAST will resolve these galaxies so we need more detailed modeling

LMC Observations by GLAST (simulation)

M31 Observations by GLAST (simulation)

- > SNR rate and distribution
- Gas distribution (at least, surface column density)
- > Magnetic field
- Interstellar radiation field
- Estimates of pulsar contribution (using MW observations)

No new calculations yet!

MW SN Rate

Example: SN age estimates

- > Association with a pulsar \rightarrow t=P/(2dP/dt)
- \succ Using total SN explosion energy and energy loss \rightarrow t=E_{tot}/(dE/dt)
- > Using SNR diameter and expanding velocity → t=DC/2v_s C=1 freely expanding SNR C=2/5 adiabatic expansion (Sedov phase) C=2/7 radiative expansion
 > Using radius and temperature (X-rays) → t=380 R_{pc} (kT,keV)^{-1/2} yr
 > Using synchrotron break frequency →
 - $t=40000 B^{-3/2} v_b^{-1/2} yr$

Distance determination (SN mag., SNR kinematics, HI abs. etc.)

Example: D vs. t

21

Distribution(s) of Extragalactic SNR

Distribution of CR Sources & Gradient in the CO/H₂

CR distribution from diffuse gammas (Strong & Mattox 1996)

SNR distribution (Case &

X_{co}=N(H₂)/W_{co}: Histo - This work, Strong et al.'04 ----- -Sodroski et al.'95,'97 1.9×10²⁰ - Strong & Mattox'96 ~Z⁻¹ -Boselli et al.'02 ~Z^{-2.5} - Israel'97,'00, [0/H]=0.04,0.07 dex/kpc

SNRs in M32 (XMM-Newton)

 		ĭ 1	×-
		- <u> </u>	
			Z
a ser saint		7	
		2	12
	X		· / ·
9 - 9 - 9 - 9 - 9 - 9 - 9			· • • • •
Pietsch (2005)		– M31 –	M33 —

Source type	ident.	class.	ident.	class.
fg Star	6	90	5	30
AGN	1	36		12
Gal	1		1	1
GalCl	1	1		
SSS		18		5
SNR	21	23	21+2	23-2
GlC	27	10		
XRB	7	9	2	
hard		567		267

w

SCH(2000)

SNR(M31) =44

SNR(M33) =44

Complex Type	F_{60}	8.6	No. of
	(Jy)	(GHz)	Complexes
starburst	$F_{60} > 5.4$	yes	13
starburst candidate	$F_{60} \gtrsim 5.4$	yes	5
active complex candidate	$F_{60} \lesssim 5.4$	no	2
active complex	$F_{60} < 5.4$	no	36

nes.Fig. 4. The HII regions (triangles) and SNRs (squares), plottedGLAST-for-lunch, Jan-19-200(over the stellar complexes as defined here.

I. Moskalenko

Parkes HI survey: LMC & SMC

Magnetic Field

B-reg B-rand B-tot z-scale, kpc LMC $1.1 \mu G$ $4.1 \mu G$ $4.6 \mu G$ M31 $\sim 5 \mu G$ $\sim 5 \mu G$ $\sim 7.1 \mu G$ > 1 kpc (6-14kpc) Fletcher et al. (2004) (axisymmetric)

I. Moskalenko

GLAST LAT Project Interstellar Radiation Field: M31

I. Moskalenko

Pulsar Contribution: LMC

I. Moskalenko

GLAST-for-lunch, Jan-19-2006

32

- Further evidence that CR are galactic (not universal/extragalactic)
- Better understanding of the processes governing by the CR production and propagation in the MW and elsewhere
- > More reliable predictions for starburst galaxies
- Study of the history of CR in other galaxies using Be,B observations in stars (chemical evolution)
- Estimates of the EG background from the normal galaxies (Cosmology, Cosmological DM etc.)
- Need targeted multi-wavelength observations or/and archive data
- Large diffuse emitters -we must have them in our diffuse background model !

That's it!

I. Moskalenko

GLAST-for-lunch, Jan-19-2006

35