Particle Acceleration in SNR

Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology

Outline

- Introduction.
- Science.
- · GLAST analysis.

March 23, 2006 GLAST lunch

- Origin of cosmic ray protons?
 - Particle accelerator in the Universe?
 - Many evidences for electron acceleration.
 - Electron is efficient gamma-ray emitter.
 - Synchrotron radiation, Compton scattering.

No smoking gun for proton acceleration found.

- Why so hard to find proton acceleration?
 - Nuclear interaction.
- How to distinguish gamma-ray from proton origin?
 - Spectrum.
 - Angular distribution.

- Interaction with matters.
 - Bremsstrahlung.
 - $E < E_{cou}$: ϵ^{-1} (independent of parent energy spectrum).
 - $E > E_{cou}$: $E^{-p} \Rightarrow e^{-p}$ (no change). • E_{cou} : $230 \left(\frac{n}{10 \text{ cm}^{-3}} \right) \left(\frac{\tau_{age}}{1000 \text{ yr}} \right) \text{keV}$
 - ϵ_{cou} (p)= $m_e/m_p E_{cou}$, ϵ_{cou} (e) = E_{cou} .
 - π⁰ decays.
 - $E^{-p} \Rightarrow \epsilon^{-p}$ (no change).
 - $\pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm}$
 - Synchrotron, Compton

- Young shell-type supernova: SN1006.
 - Power law spectrum from rim is best described by synchrotron emission by ultra-relativistic electrons.
 - First evidence of particles accelerated to > 10¹⁴ eV.

- Evidence of proton bremsstrahlung in AX J1714-3912.
 - Spectrum is inconsistent with synchrotron model.
 - Power law index, no energy cut off
 - Upper limits from CMPTEL and EGRET rule out electron bremsstrahlung.
 - Cloud A is 6 kpc away, not connected with RX J1713-3946

- Chandra observation of RX J1713-3946.
 - Similar spectrum independent of luminosity.

H. Tajima GLAST lunch, MAR. 23, 2006

- Energy cut off higher than electron acceleration model.
 - Separate zones for acceleration and X-ray emission?
 - More efficient particle acceleration than standard DSA?
 - Non-linear shock acceleration models.

- XMM Observation of RX J1713-3946.
 - Photon index is uniform around 2.1–2.5.
 - Same emission mechanism responsible for X-radiation.
 - Radial profile exclude spherical radiation.
 - N_H in rim is higher than interior by 3–4 x 10²¹ cm⁻²
 - Consistent with NANTEN observation of X-ray bright part
 - N_H ~ 3 x 10²¹ cm⁻².
 - Higher electron injection rate in the rim?

Moriguchi et al. 2005

Funk

- HESS observation of RX J1713-3946
 - Evidence for particle acceleration > 100 TeV.
 - Azimuth profile does not match very well with NANTEN.
 - Detailed 3D analysis required for better understanding.

H. Tajima GLAST lunch, MAR. 23, 2006

- Electron and proton give different spectra.
 - 2-zone electron model.
 - Both models are not quit right.

- Feedback from accelerating cosmic rays.
 - Field amplification of plasma.
 - Efficient cosmic ray acceleration.

- Differentiate electron and proton models.
 - π⁰ spectrum below 1 GeV is constrained by π⁰ production and decay kinematics.
 - Independent of acceleration model.
 - π^0 spectrum above 1 GeV constrains proton spectrum.

- Poor GLAST PSF make it difficult to resolve RX J1713-3946.
 - Maximum likelihood fit cannot be used without a model.
 - Image deconvolution required.

Richardson-Lucy •

$$\boldsymbol{\psi}_{j}^{r+1} = \boldsymbol{\psi}_{j}^{r} \sum_{i} \tilde{\phi}_{i} \frac{P_{ij}}{\sum_{k} P_{ik} \boldsymbol{\psi}_{k}^{r-1}}$$

- Ψ_i^r : deconvolved image
- $\tilde{\phi}_i$: observed image
- P_{ii} : PSF kernel
- ψ : normalized, non-negative. Can be used for event-by-event data with varying PSF.

$$\psi_j^{r+1} = \frac{1}{N} \psi_j^r \sum_n \frac{P_j(n)}{\sum_n P_k(n) \psi_k^{r-1}}$$

Adaptive Maximum Entropy Method

$$\psi_{j}^{r+1} = \psi_{j}^{r} \left[\sum_{i} \tilde{\phi}_{i} \frac{P_{ij}}{\sum_{i} P_{ik} \psi_{k}^{r-1}} - \alpha \left(\ln \frac{\psi_{j}^{r}}{\chi_{j}} - \sum_{k} \psi_{k}^{r} \ln \frac{\psi_{k}^{r}}{\chi_{k}} \right) \right] \qquad \chi_{i} = \sum_{k} \Pi_{ik} \psi_{k}$$
(adaptive "defau

(adaptive "default" image)

- Suppress local maximum/minimum due to noise by applying entropic penalty.
- **Two Channel Decomposition Method** •

 $\psi = \psi_{PS} + \psi_{DF}$

Avoid entropic penalty for known point sources.

- Deconvolved image gives better representation of input image.
 - NW rim clearly stands out.
 - Poor image at low statistics.
 - Deconvolution can not fix statistical fluctuation.

H. Tajima GLAST lunch, MAR. 23, 2006

Radial profile is much improved after deconvolution.

Summary

- GLAST will give conclusive proof on the origin of gamma-rays from RX J1713-3946.
 - In conjunction with X-ray and TeV measurements.
 - Measure parent proton spectrum.
- Image deconvolution is a key to study extended sources.
 - R-L method is promising.
 - Future improvements.
 - Energy dependent PSF.
 - Event by event PSF.

