Two recent developments with Gamma Ray Burst Classification

And their implications for GLAST

Eric Charles

Glast Science Lunch Nov. 2, 2006

Outline

- Numerology, taxonomy and phrenology of GRBs
 - Salient facts for GLAST
 - Rates, spectra, variability, performance
 - Previous observations MeV GeV
 - GRM models and phenomenology (phrenology?)
- Recent developments
 - Dichotomy in SHB/LSB environment
 - LSB: SFR. Consistent w/ SNe collapse
 - SHB: Older galaxies. Could favor binary merger model.
 - Non-observation of SNe in long bursts
 - Implications for GRB classification w/ GLAST data
- Conclusions

GLAST Performance I: LAT

http://www-glast.slac.stanford.edu/software/IS/glast_lat_performance.htm

GLAST Performance II: GBM

FoV = 9.5 sr ~200 GRBs/year, > 50 in LAT FoV

GBM $A_{eff} \sim 100$ cm 1% of LAT A_{eff} For E⁻¹ ~ E⁻² Sensitivity ~ LAT

BGO crystals (2)

NaI crystals (12)

Salient features of GRBs I: Light curves

Ŷ

Highly variable. Spikes 1ms and shorter: LAT single g resolution ~ 0.5 us LAT deadtime ~ 27 us GBM deadtime ~ 3 us EGRET deadtime ~ 200 ms

Diverse: no characteristic shape (Individual spikes are more similar)

Bimodal duration distribution: ~ 0.2 s (short) ~ 20 s (long)

Canonical 2s division for long/short

Caveat:

I suspect some effort went into finding set of 12 bursts that all look different from each other.

Tricky combinatorial problem. Probably solved with visual search.

Salient features of GRBs II: spectra

Salient features of GRBs III: classification

(b)

0.8

0.050

1.0

Long Soft Bursts (LSB)

Norris 2002, Norris & Bonnel 2006

0.025

0.000

Lag (s): 25-50 keV, 100-300 keV

-0.025

-0.050

Some more GRB Key features

Agreed features:
Collimated, relativistic
Long/short dichotomy
Decaying afterglows/ re-flaring
Cosmological redshifts
Band spectrum
E _n ~ 40 KeV - 1 MeV
Some SNe association
Energy reservoir ~ SNe scale

Disputed features: Jet opening angle value Energy transport mechanism HE γ emission mechanism Source of high variability, large $\Delta t / t$ Observation angle Bulk Lorentz factor ($\Gamma \sim 30-1000$) Circumburst environment/ fields Cephid type relations (standard candles?) Polarziation Degree SNe association

GLAST Performance III: Projections

Plot from N. Omodei's talk @ San Servolo, June 2006

GLAST Performance IV: Backgrounds

Egret observations I: High energy component

Ŷ

Egret observations II: photons

Do observe photons co-incident w/ bursts However Egret GRB observations only marginally quantitative

Particularly hampered for short bursts

- 1) Deadtime for pointing photons is similar to short burst time of 200ms
- 2) Short bursts are fainter, need more active area

Delayed emission observed, but statistics too low to say much beyond that

Summary: GLAST results will quickly re-define HE emission picture

Taxonomy of GRB models

GRB model predictions for GLAST

Entire slide stolen from H. Tajima's glast science lunch talk in 2004. Could have taken slide from any of many talks. Point is that w/ Glast w/ get a first quantitative look at important energy band for GRB

Ŷ

GLAST input on key questions

- Unification schemes
 - ie. viewing angle dependence, standard energy reservoir
 GLAST good for model testing
- Bulk Lorentz factor
 - Glast measures cut-off in MeV-GeV spectra
- Time Variability
 - \bullet Glast has ${\Delta}t$ resolution down to ~30us
 - Temporal localization of MeV-GeV emission
- Energy transport
 - Significant number of photons in MeV-GeV range
 - Measure position/ ration of SED peaks
 - \bullet Constrains energy fraction ϵ_{B} ϵ_{e}
 - High energy power law fits
 - Constrains emitter energy distribution

Long Burst Host Galaxy Associations

Bloom et al., ApJ,2002

Long-soft bursts localized to SF galaxies No observed offset from galaxy core

First Short Burst Host Associations

Swift detection of rapidly decaying afterglow (~300s) of short (40ms) GRB 050509b Allowed host association

Prochaska+05 Gorosabel+05, Fox+05, Pedersen+05, Covino+05, Berger+05, Soderberg+06, Levan+06

Gehrels et. al. 2005

Gathering evidence of different progenitors

Properties of Short-Hard Burst hosts

	redshift	host classification	SFR (M yr ⁻¹)	burst offset [kpc]
050509B	0.225	E	< 0.1	39 ± 13
050709	0.160	Irr/late-type dwarf	> 0.3	3.5 ± 1.3
050724	0.258	early (E+SO)	< 0.05	2.4 ± 0.9
050813	0.722 (1.7?)	E?	< 0.2	33.2 ± 17.6

Diverse star forming rates. But lower than for long bursts Offset from galaxy centers.

Bloom+05, Gorosabel+05; Gehrels+05, Prochaska+05...

Missing SNe in LSB GRB

Non-observation of SNe in long bursts to less that 0.01 of "standard SN"

GRB	Z	† 90	notes
060505	0.089	4s	faint burst
060614	0.125	102s	hard to soft evolution

astro-ph/0608313. Fynbo et.al.

Ų

But were they really long-soft bursts?

Points about GRB classification w/ GLAST

- Clear evidence for at least two types of GRB progenitors
 - Duration, spectral index, host galaxy type, afterglow
- Accurate taxonomy required for obvious reasons
 - Model building/testing work better without outliers to explain
 - Using GRB for cosmology require accurate inputs
 - Low statistics, measurements can be badly pulled by outliers
- Any information that GLAST can add to taxonomy question is useful
 - Study GLAST specific burst classifications
 - Many GLAST bursts w/ no prompt SWIFT data
 - Provide x-correlation for those bursts which do
 - 25-35% of GBM bursts have significant number of LAT γs
 - What can LAT γs add to GRB classification?

Lessons from Phrenology

"Be cautious in the interpretation of bumps"

Conclusions

- Recent results have refined (or challenged) existed GRB taxonomy
 - Localization of Short-Hard burst to halo of older, elliptical galaxies favor compact binary merger models over SNe
 - Missing SNe in two recent bursts prompt re-examination of Long/Short burst differentiation
- GLAST will be have much to add to this discussion
 - GBM covers critical 8 KeV 30 MeV range
 - Measuring peak of prompt spectra past 1MeV
 - Sensitivity in 5MeV 100 GeV range commensurate w/ Swift
 - Constrains emission mechanism model
 - May provide good discrimination between burst types
 - Improved time resolution may add information about HE emission
- Will need to re-examine GRB classification in light of GLAST data before running off to measure dark energy