

Investigating the Blazar Sequence with the LAT

Benoît Lott

Science Goals: specific issues investigated with a few bright sources

Issue	Approach	Targets	Data (quality)
Jet structure/ composition: innermost part (ionic,e*e:,Poynting flux)	Search for "X-ray pre-cursors" to γ-flares, time delays (reveal e*e content)	flaring bright blazars	soft X-ray, pre- to post-flare (~2 weeks, sample every 3 hrs)
Jet structure/ composition: γ-ray emitting part (pe ⁻ ,e ⁺ e ⁻ ,B)	Identify operating radiation processes via broadband modeling with state-of-the-art emission models leptonic vs hadronic models?	bright variable FSRQs, LBLs	Simultaneous broadband SED + variable info (hysteresis, light curve, flare profiles)
	Estimate total jet luminosity: $U_{particle} + U_{B} + U_{kin,jet}$	blazars that are hard X-ray sources	hard X, soft γ–ray data
	Search for neutron-decay/cascade features	flaring bright QSOs, HBLs, radio galaxies	X and TeV; multi– λ at most highly variable synchrotron flares
Location of γ-ray production site	LE/HE cospatial/single zone? - measure lags of IR/opt/UV/X-ray/TeV to γ -rays	flaring HBLs	Simultaneous monitoring in IR/opt/UV/X-ray/TeV to temporally resolve flares
Location of energization site	$\tau_{\gamma\gamma}$ to set minimum distance of emitting region from black hole, and Γ_{bulk}	FSRQs	correlated X-ray
<mark>γ-ray flare production:</mark> importance of external photon fields	Measure of putative target photon fields (BLR, torus, accretion disk)	FSRQs, LBLs	BLR line strength during γ – activity
<mark>γ-ray flare production:</mark> relation to U _B dissipation	Modeling of correlated variability behavior between opt-GeV,X-TeV	flaring bright blazars	Simultaneous monitoring in IR/opt/UV/X to temporally resolve flare, long data trains
	Polarization behavior near LE-peak at time of γ -flare	bright QSOs with peak at IR/optical	Optical polarization at hour temporal resolution

Anita Reimer Greg Madejski

"Blazar Sequence": blazars as a population long-term evolution of AGNs, history of galaxies physical parameters driving this evolution?

GLAST LAT Project

GLAST Science lunch talk, October 12 2006

Radio-Loud AGNs

Elliptical or "disturbed" galaxies, exhibiting prominent radio lobes

Fanarov-Riley I

Emission peaks near the center less–collimated jets, no hot spot lower power ($L_{radio} < 10^{42}$ erg/s)

Fanarov-Riley II

Bright outer edges, hot spots well–collimated jets, still relativistic in lobes, high power: $L_{radio} > 10^{42}$ erg/s emission lines 10 times brighter than FRI

GLAST Science lunch talk, October 12 2006

Active Galaxy Nucleus

Blazars

Relativistic jet aligned with the direction of sight!

Two flavors: FSRQs and BLLacs

Common properties

GLAST LAT Project

- Smooth, broad, non-thermal continuum (radio to γ -rays)
- Compact, flat-spectrum ($\alpha_r < 0.5$) radio sources ($f_{core} >> f_{extended}$)
- Rapid variability (high $\Delta L/\Delta t$), high and variable polarization (P_{opt} > 3%)
- Superluminal motion
- Indication of "beaming": strong flux amplification
- Similar "two-hump" spectral energy distributions (SEDs)

GLAST Science lunch talk, October 12 2006

FSRQs

• Defining property:

GLAST LAT Project

strong emission lines \Rightarrow dense broad line region clouds (equivalent width EW >5 Å)

- Parent population: FR II ("Unification", Urry and Padovani)
- High power (~10⁴⁶⁻⁴⁸ erg/s)
- Low v_{peak} (IR)
- •Possible presence of a "Blue bump" (thermal emission from the disk)
- 46 FSRQs in 3EG catalog high redshift 0.1 < z < 2.3
- •External Compton model (including external radiation fields) needed to account for the SEDs

EGRET MW campaign

BLLacs

• Defining property:

GLAST LAT Project

nearly lineless (EW < 5 Å) \Rightarrow dilute surrounding gas

- "Low" power (~10⁴⁵⁻⁴⁶ erg/s)
- Parent population: FR I ("Unification")
- Low ν_{peak} (Opt/IR): LBL
 High ν_{peak} (UV/X-rays): HBL (TeV)
- 14 BLLacs in 3EG catalog, 0< z < 0.9
- SSC models "mostly able" to reproduce SEDs

Classification of an object may change with time (ex: BLLac)

Stefano Ciprini

Project GLAST Science lunch talk, October 12 2006
Redshift distribution for 3EG Blazars

Mukherjee et al. 1999

GLAST LAT Project

Candidate Gamma-Ray Blazar Survey

Blazar Sequence: « Grand Unification » (?)

Average SEDs of blazars binned according to radio luminosity

126 blazars in total28 with a spectral indexmeasured by EGRET

GLAST LAT Project

Blazar Sequence: Caveats

- 1) Small sample, data not taken simultaneously Opposite trend observed in a flaring source: v_{peak} might increase with luminosity.
- 2) No correction for attenuation due to Extragalactic Background Light in HBLs
- 3) Selection effects potentially present: only radio-selected FSRQs are included

The overall trend does not show up in the 3 samples taken individually.

Driving parameter: radiation energy density (?)

Ghisellini et al. 2002

Evolutionary sequence

Other authors as well:

D'Elia & Cavaliere, Maraschi et al. Böttcher & Dermer 2002

Evolutionary link FSRQ \rightarrow LBL \rightarrow HBL via reduction of the accretion rate \dot{M}/M_{Edd} ("1D- problem")

Consequence: BH mass in BLLacs should be greater than in FSRQs.

Current data don't confirm this trend.

 τ_{repr} = reprocessing optical depth (αL_{disk} in the model)

Disk luminosity

Maraschi & Tavecchio 2003

Disk models

Standard "a" disk (Shakura & Sunyaev 1973): Geometrically thin, optically thick

Low accreation rate, high temperature, low luminosity:

Heat energy generated by viscosity stored in gas, advected into the BH (not radiated)

ADAF (Advection-Dominated Accretion Flow, Narayan & Yi 1994) ADIOS (Advection-Dominated Inflow-Outflow Solutions, Blanford & Begelman 1999, wind blows away part of the accreting mass) Geometrically thick disk (gas "puffs up") Two-temperature plasma: $T_p >> T_e$ electrons cool efficiently, protons don't

ADAF/ADIOS could be very common at low accretion rate (X-ray binaries, SgrA*) and present in BLLacs

ADAF/ADIOS offer favorable conditions for the launch of a jet:

- some particles are not bound (Bernouilli parameter is positive);
- a low radiation field is less likely to "quench" a jet via Coulomb-drag.

GLAST LAT Project

GLAST Science lunch talk, October 12 2006

The Power – v_{peak} correlation

"This is the first time the SEDs of BL Lacs have been studied with a sample of over 300 objects. (...) On the grounds of our results we conclude that the blazar sequence scenario is not valid."

From P. Padovani (Barcelona 2006)

Giommi et al. in prep.

GLAST Science lunch talk, October 12 2006

GLAST assets

GLAST Science lunch talk, October 12 2006

Blazar LogN-Log S

