On the diffuse AGN contribution to the extragalactic γ-ray background (EGRB)

Anita Reimer, HEPL/Stanford University GLAST-lunch talk, 23 February 2006

High energy blazars as guaranteed contributors

95 blazars detected at >100 MeV (~a few % of EGRB)

• EGRET identified blazars: ~20% BL Lacs, ~80% FSRQs

11 blazars (all of BL Lac type) detected at TeVs

Other guaranteed contributors to the 100 MeV-10 GeV extragalactic background:

- "normal" spiral galaxies [e.g. Strong et al. 1976]
- radio galaxies
- cascade radiation from GZK-CR propagation in extragalactic radiation fields [e.g. Strong et al. 1974]
- cascade radiation from distant TeV-AGN [e.g. Coppi & Aharonian 1997]

Other proposed contributors to the 100 MeV-10 GeV extragalactic background:

- galaxy clusters [e.g. Said et al. 1982]
- **GRBs** [Totani 1999]

- matter-antimatter annihilation, etc. [e.g. Stecker et al. 1971]

The AGN contribution to the EGRB -Many approaches to the problem:

- gamma ray luminosity function [Chiang et al. 1995, Chiang & Mukherjee 1998]

- scaling luminosity functions (based on crossband luminosity correlations):

[Padovani et al. 1993, Stecker et al. 1993, 1996, Salamon & Stecker 1994, ..., Narumoto & Totani 2006]

- scaling typical blazar SED [Giommi et al. 2006]

- fluctuation analysis [T. Willis (PhD-thesis)]

- AGN unification scheme & emission model [Mücke & Pohl 2000]

(2) GRL = scaled XLF [Narumoto & Totani 2006]

Ansatz: distr.fct. ~ $\rho_{\gamma}(L_{\gamma}, z) \in (L_{\gamma}, z) H[S_{\gamma}(L_{\gamma}, z) - S_{\gamma, lim}(\Omega)]$ prob. of source with L_{γ}, z be identified in radio band using $L_{\gamma} = 10^{p} L_{r}$ likelihood ratio method to estimate free parameters diffuse source contrib.: $F_{diffuse} = \int^{zmax} dz \ dV/dz \ \int_{L_{\gamma}, min} dL_{\gamma} S_{\gamma}(L_{\gamma}, z) \ \rho_{\gamma}(L_{\gamma}, z)$ PLE-model: $\rho_{\gamma}(L_{\gamma}, z) = \eta L_{r}/L_{\gamma} \ \rho_{r}(L_{r}, z)$ with $\rho_{r} \sim (L_{r}^{\gamma 1} + L_{r}^{\gamma 2})^{-1}$ for FSRQs

plus lum.evolution [Dunlop & Peacock 1990] η =normalization, L_y=10^PL_r

LDDE-model: $\rho_{\gamma}(L_{\gamma}, z) = \kappa L_{x}/L_{\gamma} \rho_{x}(L_{x}, z)$ with $\rho_{x} \sim (L_{x}^{\gamma 1} + L_{x}^{\gamma 2})^{-1}$ for type-1 AGN plus lum.-dependent density evolution [Hasinger et al. 2005] κ =normalization, $L_{\gamma}=10^{9}L_{x}$

Results

LDDE-model reproduces z- & L-distr. of E-blazars better than PLE-model

Predictions for GLAST

dominant blazar contribution to EGRB below GLAST detection limit
 ~1750 blazars (~14% of EGRET-EGRB) detectable with GLAST

Scaling typical blazar SED

[Giommi et al. 2006]

Method:

- scale typical (3C 279) EGRET-blazar SEDs, interpreted in a simplistic SSC, to the integrated blazar flux intensity at CMB energies

Result:

either sources like 3C 279 or SSC-LBLs are not representative of blazars contributing to the EGRB, or their duty cycles @ γ -rays is low

Critical assessment of the radio – gamma ray luminosity correlation

[Mücke et al. 1997]

Why?

Biases expect to contaminate:

- redshift dependence of quantities (L_{γ} - L_{r}):

answer: partial correlation analysis $R_{12.3} \sim R_{12} - R_{13}R_{23}$ flux correlation

- instrument sensitivity limits/incomplete samples
- (non-periodic) flux variability of sources
 comment: Do not use mean flux values,
 more appropriate contemporaneous data!

The effect of sample flux limits in L-correlations

Ingredients: - sample L_r , L_γ from radio/ γ -ray lum. function

sigmoidal probability distribution for sample flux limit:
 radio: ~0.5...2Jy (flux-limited sample), ~0.1mJy (complete sample)
 gamma: ~0.5...5 10⁻⁷cm⁻²s⁻¹

The effect of sample flux limits in L-correlations

correlation relation: log L_{γ} = A+B log L_{r} + $\epsilon(\sigma)$, B=0.8...1.5, σ =0.05

 partial correlation analysis can recover simple PL correlations for complete & flux-limited samples on a >99.5% significance level, however:

there is a stronger redshift-dependence of the luminosity in flux-limited samples as in complete samples

• the use of averaged flux values induce a bias caused by the restriction of the dynamical range in the correlation diagram (i.e. R is not distributed in the Null hypothesis as expected from statistics)

→ chance probab. are underestimated by ~factor 3!

The effect of sample flux limits in L-correlations

• $L_{\gamma} - L_{r}$ problematic for EGRET-blazars ?

No ! – Intrinsic relation might be hidden in large scatter of $L_{\gamma}-L_{r}$ diagram (e.g. from rapid variability, diff.Doppler factors, emission components, etc.); energy content of particles in radio-to- γ ray band may still be correlated

 derivation of gamma ray luminosity function from radio luminosity function often based on biased correlation studies

> Be aware of biases when studying cross-band luminosity correlations in flux-limited samples !

Unification scheme based modeling [Mücke & Pohl 2000]

Basic Idea:

If beaming due to relativistic bulk motion of a plasma blob near to the line-of-sight occurs in blazars, there must exist a population of sources with a jet pointing away from us, contributing to the EGRB.

Unification scheme [e.g. Urry & Padovani 1995]:

FSRQs = beamed population of FR-II radio galaxies BL Lacs = beamed population of FR-I radio galaxies

→ model observed LogN-LogS of BL Lacs/FSRQs; extrapolate to flux values below instrument-threshold

Model constraints: observed LogN-LogS, $N_{\text{BLLac}}/N_{\text{FSRQ}}$ & redshift distribution of blazars

Ingredients: - template source spectrum from:

extended DS93 EIC-loss dominated emission model

with instan. & cont. particle injection, time-integrated γ -fluxes

Ingredients (contd):

- distribution of bulk Lorentz factors: $P(\Gamma) \sim \Gamma^{-\alpha\Gamma}$

from unification scheme: α_{Γ} =4/2.3 for FRI/FRII

- uniform distribution of viewing angles
- luminosity evolution: L ~ $exp(T(z)/\tau)$, $\tau=0.3/0.2$ for FRI/FRII
- injected particle energy distr.: $\rho_{FR}(E_{in}) \sim E_{in}^{-\delta}$, $\delta = 3/3.9$ f. FRI/FRII
- homogeneous distribution of sources
- sigmoidal distribution for sensitivity limit: 0.4...2.1 10⁻⁷ cm⁻² s⁻¹
- -fixed parameters: B,R_b,L_{acc},inj.e⁻ spectrum, integr. time 10⁶s

-free parameters: $E_{in,1}$, normalization of $\rho(E_{in})$

generate data sets using MC; determine free parameters by model constraints

Results & Predictions

					_		
	FSRQs		BL Lacs				
	inst.inj.	cont.inj.	inst.inj.	cont.inj	″ ^{–2} Е— В	L Lacs/FRI	-
E _{in,1}	$10^{44.3} \mathrm{erg}\mathrm{s}^{-1}$	$10^{44.2} \mathrm{erg}\mathrm{s}^{-1}$	$10^{43.6} \mathrm{erg}\mathrm{s}^{-1}$	10 ^{43.6} erg s	-4 F	SRQs/FRII	-
ρ ₀ d.N/dV	$(3.4 \pm 0.5) \cdot 10^{\circ}$ 393 ± 64	$(1.4 \pm 0.2) \cdot 10^{6}$ 311 ± 50	60.7 ± 20.2 1913 ± 638	39.5 ± 13 1246 ± 4	E	→ GLAS	г
N[%]	17^{+3}_{-2}	20^{+4}_{-2}	83 ⁺² 0.42	80^{+2}_{-4}	<u> </u>		-
P _{NS} P _Z	0.98	0.98	0.42	0.56	-6		1
Sunres	1.21 ± 0.20	1.22 ± 0.20	3.24 ± 1.08	$3.16 \pm 1.$	8 .		
Surres [%]	27 ⁺⁵	28 ⁺⁵	73 ⁺³	72+3			-
Surres,tot	27-3	20_3	10-5			oradiatad	
	FSRQs		BL Lacs			predicted	
	inst.inj.	cont.inj.	inst.inj.	cont.inj	_ 10		! .]
Ein 1	$10^{44.3} \mathrm{erg} \mathrm{s}^{-1}$	10 ^{44.2} erg s ⁻¹	10 ^{43.6} erg s ⁻¹	10 ^{43.6} erg s	ŏ́ —12	-10 -8 -	-6 -
ρ ₀	$(2.3 \pm 0.4) \cdot 10^{6}$	$(1.0 \pm 0.2) \cdot 10^{6}$	59.1 ± 19.7	63.9 ± 21	loa	S(>100 MeV) [cr	n ⁻² s ⁻¹]
d.√/dV	269 ± 44	233 ± 38	1864 ± 621	2016 ± 6	5	() / L	,
N[%]	12^{+3}_{-1}	10^{+2}_{-1}	87+1	90^{+1}_{-2}			
P _{NS}	0.94	0.94	0.40	0.59	- main po	wer to EGRB fr	om
PZ	0.99	0.83	0.75	0.48	AGN of ~	$10^{-8} \text{cm}^{-2} \text{s}^{-1}$	••••
Sunres	1.31 ± 0.21 0 ± 2	1.28 ± 0.21 0 ± 1	5.49 ± 1.83	8.50 ± 2.53	AUN UI		
Sumres [70]	9 ± 2	9 1 1	38 ± 15	59 ± 20	.103	no ACNI with C	ACT
Surres.tot [%]	19^{+4}_{-2}	13^{+3}_{-2}	81+2 -4	87 ⁺² ₋₃	-~10° mo	re agin with G	LAJI

*in 10^{-6} cm⁻² s⁻¹ (>100MeV)

• 20-40% (z_{max}=3) bzw. 35-85% (z_{max}=5) of the EGRB explainable by unresolved radioloud AGN, of which 70-90% are of BL Lac/FR-I type

Summary

- gamma ray luminosity function: [Chiang et al. 1995, Chiang & Mukherjee 1998]

< 25 % blazar contribution

- scaling luminosity functions (based on crossband luminosity correlations):

[Padovani et al. 1993, Stecker et al. 1993, 1996, Salamon & Stecker 1994, ..., Narumoto & Totani 2006; scaling SED: Giommi et al. 2006]

~ 20-100% blazar contribution

- fluctuation analysis: [T. Willis (PhD-thesis) 1996]
 - ~ 5-100% point source contribution

- AGN unification scheme & emission model: [Mücke & Pohl 2000]

~ 20-85% radio-loud AGN contribution

(of which 70-90% are of BL Lac/FR-I type)

The cascade contribution of TeV-blazars

VHE γ

cosmological TeV-blazars guaranteed to contribute to EGRB @ GeVs

 typical blazar spectra must break below <100GeV, or blazars do not explain entirely the EGRB @ GeVs