On the diffuse AGN contribution to the extragalactic γ-ray background (EGRB)

$I_{\gamma > 100 \text{ MeV}} \sim 1.14 \times 10^{-5} \text{ ph cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$
High energy blazars as guaranteed contributors

- 95 blazars detected at >100 MeV (~a few % of EGRB)
- EGRET identified blazars: ~20% BL Lacs, ~80% FSRQs
- 11 blazars (all of BL Lac type) detected at TeVs
Other **guaranteed** contributors to the 100 MeV-10 GeV extragalactic background:

- “normal” spiral galaxies [e.g. Strong et al. 1976]
- radio galaxies
- cascade radiation from GZK-CR propagation in extragalactic radiation fields [e.g. Strong et al. 1974]
- cascade radiation from distant TeV-AGN [e.g. Coppi & Aharonian 1997]

Other **proposed** contributors to the 100 MeV-10 GeV extragalactic background:

- galaxy clusters [e.g. Said et al. 1982]
- GRBs [Totani 1999]
- matter-antimatter annihilation, etc. [e.g. Stecker et al. 1971]
-
The AGN contribution to the EGRB - Many approaches to the problem:

- gamma ray luminosity function
 [Chiang et al. 1995, Chiang & Mukherjee 1998]

- scaling luminosity functions (based on cross-band luminosity correlations):
 - scaling typical blazar SED [Giommi et al. 2006]

- fluctuation analysis [T. Willis (PhD-thesis)]

- AGN unification scheme & emission model
 [Mücke & Pohl 2000]
On the method of scaling luminosity functions

(1) \(GRL = \text{scaled RLF} \)

\[\rho_\gamma(L_\gamma, z) = (1 - \xi) \eta \rho_\gamma(L_\gamma/\kappa, z) + \xi \eta \rho_\gamma(L_\gamma/A\kappa, z) \]

Ansatz: \(\rho_\gamma(L_\gamma, z) = (1 - \xi) \eta \rho_\gamma(L_\gamma/\kappa, z) + \xi \eta \rho_\gamma(L_\gamma/A\kappa, z) \)

with \(L_\gamma = \kappa L_\gamma, \eta = \theta_\gamma / \theta_\gamma, \xi = \text{flare duty cyle}, A = \text{L-amplification for flare/quiet state}, \)

\(p_f(q) = p(\alpha - \Delta \alpha_f,q) \) "spectral hardening in flares"

\[\kappa = 4 \times 10^{-11}, \eta = 1, \xi = 0.03, A = 5, \Delta \alpha_q = 0.2, \Delta \alpha_f = -0.05 \]

100% blazar contribution to EGRB
On the method of scaling luminosity functions

\[(2) \quad GRL = \text{scaled XLF} \]

[Narumoto & Totani 2006]

Ansatz: distr. fct. \(\sim \rho(L_{\gamma}, z) \varepsilon(L_{\gamma}, z) H[S_{\gamma}(L_{\gamma}, z) - S_{\gamma, \lim}(\Omega)] \)

prob. of source with \(L_{\gamma}, z \) be identified in radio band using \(L_{\gamma} = 10^p L_r \)

likelihood ratio method to estimate free parameters

diffuse source contrib.: \(F_{\text{diffuse}} = \int z_{\text{max}} dz \frac{dV}{dz} \int L_{\gamma, \text{min}} dL_{\gamma} S_{\gamma}(L_{\gamma}, z) \rho_{\gamma}(L_{\gamma}, z) \)

PLE-model: \(\rho_{\gamma}(L_{\gamma}, z) = \eta \frac{L_r}{L_{\gamma}} \rho_r(L_r, z) \) with \(\rho_r \sim (L_r^{\gamma_1} + L_r^{\gamma_2})^{-1} \) for FSRQs

plus lum. evolution [Dunlop & Peacock 1990]

\(\eta = \text{normalization}, \ L_{\gamma} = 10^p L_r \)

LDDE-model: \(\rho_{\gamma}(L_{\gamma}, z) = \kappa \frac{L_x}{L_{\gamma}} \rho_x(L_x, z) \) with \(\rho_x \sim (L_x^{\gamma_1} + L_x^{\gamma_2})^{-1} \) for type-1 AGN

plus lum.-dependent density evolution [Hasinger et al. 2005]

\(\kappa = \text{normalization}, \ L_{\gamma} = 10^q L_x \)
On the method of scaling luminosity functions

\[L_\gamma = 10^{3.52} L_x \]

2.7GHz

\[
\log_{10}(F_\gamma \text{ [erg s}^{-1} \text{ cm}^{-2}])
\]

EGRET blazars

\[L_\gamma = 10^{3.23} L_r \]

0.5-2keV

\[
\log_{10}(L_r \text{ [erg s}^{-1}])
\]

\[
\log_{10}(\nu F_{\nu \text{ [Jy Hz]}})
\]

\[
\log_{10}(\nu L_{\nu > 100 \text{ MeV} \text{ [erg s}^{-1}])
\]
On the method of scaling luminosity functions

Results

PLE-model: best-fit \((p, \gamma_1) = (3.28, 0.69), \eta = 10^{-0.7}\),

50\((-100)\)% source contribution to the EGRB

LDDE-model: best-fit \((q, \gamma_1) = (3.52, 1.04), \kappa = 10^{-4.7}\),

20-25\% source contribution to the EGRB

LDDE-model reproduces \(z\)- & \(L\)-distr. of E-blazars better than PLE-model
On the method of scaling luminosity functions

Predictions for GLAST

- dominant blazar contribution to EGRB below GLAST detection limit
- ~1750 blazars (~14% of EGRET-EGRB) detectable with GLAST
Scaling typical blazar SED

[Giommi et al. 2006]

Method:

- scale typical (3C 279) EGRET-blazar SEDs, interpreted in a simplistic SSC, to the integrated blazar flux intensity at CMB energies

- SSC constrained by $F_{\text{diff,blazar}}(94\text{GHz})$, $\alpha_{r,\mu}$, $\alpha_{\mu,x}$; $\alpha_{\mu,\gamma}$

Result:

either sources like 3C 279 or SSC-LBLs are not representative of blazars contributing to the EGRB, or their duty cycles @ γ-rays is low
Critical assessment of the radio - gamma ray luminosity correlation

[Mücke et al. 1997]

Why?

Biases expect to contaminate:

- redshift dependence of quantities ($L_\gamma - L_r$):

 answer: partial correlation analysis $R_{12.3} \sim R_{12} - R_{13}R_{23}$

 flux correlation

- instrument sensitivity limits/incomplete samples

- (non-periodic) flux variability of sources

 comment: Do not use mean flux values, more appropriate contemporaneous data!
The effect of sample flux limits in L-correlations

Ingredients: - sample L_r, L_γ from radio/γ-ray lum. function

- sigmoidal probability distribution for sample flux limit:
 - radio: $\sim 0.5 \ldots 2$ Jy (flux-limited sample), ~ 0.1 mJy (complete sample)
 - gamma: $\sim 0.5 \ldots 5 \times 10^{-7}$ cm$^{-2}$s$^{-1}$, $\sim 10^{-11}$ cm$^{-2}$s$^{-1}$
correlation relation: \(\log L_\gamma = A + B \log L_r + \varepsilon(\sigma) \), \(B=0.8...1.5, \sigma=0.05 \)

- partial correlation analysis can recover simple PL correlations for complete & flux-limited samples on a >99.5% significance level, however:
 there is a stronger redshift-dependence of the luminosity in flux-limited samples as in complete samples

- the use of averaged flux values induce a bias caused by the restriction of the dynamical range in the correlation diagram (i.e. \(R \) is not distributed in the Null hypothesis as expected from statistics)

\(\rightarrow \) chance probab. are underestimated by \(\sim \)factor 3!
The effect of sample flux limits in L-correlations

Be aware of biases when studying cross-band luminosity correlations in flux-limited samples!
The effect of sample flux limits in L-correlations

• $L_\gamma - L_r$ problematic for EGRET-blazars?

 No! - Intrinsic relation might be hidden in large scatter of $L_\gamma - L_r$ diagram (e.g. from rapid variability, diff. Doppler factors, emission components, etc.);
 energy content of particles in radio-to-γray band may still be correlated

• derivation of gamma ray luminosity function from radio luminosity function often based on biased correlation studies

Be aware of biases when studying cross-band luminosity correlations in flux-limited samples!
Unification scheme based modeling

[Mücke & Pohl 2000]

Basic Idea:

If beaming due to relativistic bulk motion of a plasma blob near to the line-of-sight occurs in blazars, there must exist a population of sources with a jet pointing away from us, contributing to the EGRB.

Unification scheme [e.g. Urry & Padovani 1995]:

FSRQs = beamed population of FR-II radio galaxies
BL Lacs = beamed population of FR-I radio galaxies

→ model observed LogN-LogS of BL Lacs/FSRQs; extrapolate to flux values below instrument-threshold

Model constraints:
observed LogN-LogS, \(N_{\text{BL Lacs}} / N_{\text{FSRQ}} \) & redshift distribution of blazars
Unification scheme based modeling

Ingredients: - template source spectrum from:
 extended DS93 EIC-loss dominated emission model
 with instan.&cont. particle injection, time-integrated γ-fluxes
Unification scheme based modeling

Ingredients (contd):

- distribution of bulk Lorentz factors: $P(\Gamma) \sim \Gamma^{-\alpha_{\Gamma}}$

 from unification scheme: $\alpha_{\Gamma} = 4/2.3$ for FRI/FRII

- uniform distribution of viewing angles

- luminosity evolution: $L \sim \exp(T(z)/\tau)$, $\tau = 0.3/0.2$ for FRI/FRII

- injected particle energy distrib.: $\rho_{FR}(E_{in}) \sim E_{in}^{-\delta}$, $\delta = 3/3.9$ f. FRI/FRII

- homogeneous distribution of sources

- sigmoidal distribution for sensitivity limit: $0.4...2.1 \times 10^{-7}$ cm$^{-2}$ s$^{-1}$

- fixed parameters: $B, R_b, L_{acc},$ inj. e$^{-}$ spectrum, integr. time 10^6s

- free parameters: $E_{in,1}$, normalization of $\rho(E_{in})$

 → generate data sets using MC; determine free parameters by model constraints
Unification scheme based modeling

Results

FSRQs

BL Lacs

FSRQs

BL Lacs
Unification scheme based modeling

Results & Predictions

- main power to EGRB from AGN at $\sim 10^{-8}$ cm$^{-2}$ s$^{-1}$
- $\sim 10^3$ more AGN with GLAST

\textbullet 20-40% ($z_{\text{max}}=3$) bzw. 35-85% ($z_{\text{max}}=5$) of the EGRB explainable by unresolved radioloud AGN, of which 70-90% are of BL Lac/FR-I type

*in 10$^{-6}$ cm$^{-2}$ s$^{-1}$ (>100MeV)
Summary

- gamma ray luminosity function: [Chiang et al. 1995, Chiang & Mukherjee 1998]
 < 25% blazar contribution

- scaling luminosity functions (based on cross-band luminosity correlations):
 ~ 20-100% blazar contribution

- fluctuation analysis: [T. Willis (PhD-thesis) 1996]
 ~ 5-100% point source contribution

- AGN unification scheme & emission model: [Mücke & Pohl 2000]
 ~ 20-85% radio-loud AGN contribution
 (of which 70-90% are of BL Lac/FR-I type)
The cascade contribution of TeV-blazars

- cosmological TeV-blazars guaranteed to contribute to EGRB @ GeVs
- typical blazar spectra must break below <100GeV, or blazars do not explain entirely the EGRB @ GeVs