Spectral analysis of the 511 keV Line Gillard William

(C.E.S.R) From P. Jean et al. A&A, in press (astro-ph/0509298)

I. Introduction II. Annihilation spectrum 1. Independent model 2. Astrophysical model III. Positrons in the Galactic bulge IV. Conclusion

Introduction:

The view of INTEGRAL-SPI

Morphological analysis by model fitting :

- Bulge :

2D Gaussian shaped emission : ~8°×7° FWHM Flux = $(1.09 \pm 0.04) 10^{-3} \gamma/s/cm^{-2}$ Positron production rate: 1.5×10⁴³ e⁺/s - Galactic disk : emission detected (~3-4 σ) Flux ~ 4-6 $10^{-4} \gamma/s/cm^{-2}$ Positron production rate: 0.3×10⁴³ e⁺/s can be attributed to e⁺ produced by ²⁶Al & ⁴⁴Ti

Spectral analysis of the 511 keV line -GILLARD. W

Independent model

Positronium

Unstable bounded state between a positron and an electron

Orthopositronium: $\tau = 1,4.10^{-7}$ s Spectrum : Continuum

Parapositronium: $\tau = 1,25.10^{-7}$ s Spectrum : 511 keV Line

Independent model

Independent model

Life and death of the positron Energy loss

e⁺ loss this energy by Columbian interaction:

- ☆ Ionization, excitation of atoms & molecules
- \Rightarrow Interaction with free electrons
- \Rightarrow IC, Bremss, Sync, Scattering on P-Waves Positronium in flight by charge exchange with H, H₂ or He

Thermalized positron

1: Charge exchange:

- $\begin{array}{l} e^+ + H \rightarrow Ps + H^+ \\ e^+ + H_2 \rightarrow Ps + H_2^+ \\ e^+ + He \rightarrow Ps + He^+ \end{array}$
- 2: Radiative combination:
- $e^+ + e^- \rightarrow Ps$ 3: Direct annihilation with free electrons: $e^+ + e^- \rightarrow 2\gamma$

4: Direct annihilation with bounded electrons: $e^+ + H \rightarrow 2\gamma + H^+$ $e^+ + H_2 \rightarrow 2\gamma + H_2^+$

 $e^+ + He \rightarrow 2\gamma + He^+$

5: Annihilation on dust grains

Annihilation spectra: Life and death of the positron

	T (K)	elements		
MM	80	H ₂ , He		
СМ	100	HI, He		
WNM	8000	HI, He		
WIM	8000	HII, e ⁻ , He		
HM	106	HII, e ⁻ , He ⁺⁺		

Annihilation spectra: Astrophysical model

$$S_{ISM}(E) = I_{e^+e^-} \times \sum_{i=1}^{5} f_i \times S_i(E, x_{gr}) + A_c \left(\frac{E}{511}\right)^s$$

f_i : contribution of phase i S_i: Spectrum of phase i, convolved with response of SPI

Parameters	Measured values
\mathbf{f}_m (Molecular)	$0.00 \stackrel{+0.08}{-0.00} \stackrel{+0.02}{-0.00}$
f_c (Cold)	$0.00 \stackrel{+0.23}{_{-0.00}} \stackrel{+0.04}{_{-0.00}}$
\mathbf{f}_{wn} (Warm Neutral)	$0.49 \begin{array}{c} +0.02 \\ -0.23 \end{array} \begin{array}{c} +0.02 \\ -0.04 \end{array}$
\mathbf{f}_{wi} (Warm Ionized)	$0.51 \begin{array}{c} +0.03 \\ -0.02 \end{array} \begin{array}{c} +0.02 \\ -0.02 \end{array}$
\mathbf{f}_h (Hot)	$0.00 \stackrel{+0.005}{-0.00} \stackrel{+0.00}{-0.00}$
\mathbf{x}_{gr} (Grain fraction)	$0.00 \stackrel{+1.20}{-0.00} \stackrel{+0.20}{-0.00}$

Ps fraction : 93.5 ±0.3%

In agreement with : 93±4% Kinzer et al. 2001 94±4% Harris et al. 1998 94±6% Churazov et al. 2005

Positrons annihilate in warm phases of the ISM

Positron in the Galactic Bulge

Diffusion of positron ?

n [cm ⁻³]	φ _v [%]	f _i [%]	half-size [pc]	E _{ql} [keV]	d _{max} [pc]	R < 600 pc
10 ³ – 10 ⁷	< 1	< 8	3 -30	10 ⁻³	1.	Molecular medium
~ 10 ²	< 1	< 23	~ 5	0.03	4.8	Cold neutral medium
~ 6.5	~ 20	~ 49	0.1 - 50	2.9	47.9	Warm neutral medium
~ 6.5	~ 10	~ 51	10 - 100	5.5	44.0	Warm ionized medium
~ 0.01	> 70	< 0.5	50 - 100	270	5600	Hot medium

If e⁺ are uniformly distributed and annihilate without propagating then the phase fractions = filling factors => f_{hot} ~ 70% but observations yield f_{hot} < 0.5% => no sources in hot phase ?

=> e⁺ escape the hot phase ?

Positron in the Galactic Bulge

Diffusion of positron ?

N [cm ⁻³]	φ _v [%]	f _i [%]	half-size [pc]	E _{ql} [keV]	d _{max} [pc]	R < 600 pc
10 ³ – 10 ⁷	< 1	< 8	3 -30	10 ⁻³	1.	Molecular medium
~ 10 ²	< 1	< 23	~ 5	0.03	4.8	Cold neutral medium
~ 6.5	~ 20	~ 49	0.1 - 50	2.9	47.9	Warm neutral medium
~ 6.5	~ 10	~ 51	10 - 100	5.5	44.0	Warm ionized medium
~ 0.01	> 70	< 0.5	50 - 100	270	5600	Hot medium

-> if E > $E_{ql}(n, B) => e^+$ in resonance with Alfvén waves => quasi-linear diffusion (D_{ql})

 -> if E < E_{q1}(n,B) => diffusion regime unknow !!! collisional regime provides an upper-limit => D_{coll}
 -> d_i ~ J (6D_iτ) -> d_{max} = d_{q1} + d_{coll}

For 1 MeV positrons & $B_{bulge} \sim 10 \ \mu G$ (Sofue et al. 1987, LaRosa et al. 2005)

=> 1 MeV positrons escape the hot phase

Conclusion

-Results of the spectral analysis :

-> annihilation emission seems to come mostly from warm media

- => we cannot exclude a fraction (<23%) coming from cold phase
- => we can exclude an hot phase component (<0.5%).
- => we do not need interstellar grains to explain the line shape.

- Comparison with gas content and with our knowledge about propagation of et:

-> positron escape the hot phase

-> low energy positrons E < ~MeV

-Future work :

- -> Spectral analysis of the 511 keV emitted by two bulge regions.
- -> Spectral analysis of the galactic plane e+e- annihilation emission.
- -> Gas content in the galactic bulge (Gillard et al. in prep.)
- -> What is the diffusion regime of low energy positrons

Observation with SPI/INTEGRAL

INTEGRAL

ESA's <u>INTE</u>rnational <u>Gamma-Ray</u> <u>A</u>strophysics <u>Laboratory</u>

Launch : 17 october 2002 Mission duration : 2008 (+?) Orbit : 72 h, excentric

IBIS : <u>I</u>mager on <u>B</u>oard the <u>I</u>ntegral <u>S</u>atellite SPI : <u>SP</u>ectrometer onboard <u>I</u>ntegral JEM-X : <u>J</u>oint <u>E</u>uropean <u>M</u>onitor for <u>X</u>-rays OMC : <u>O</u>ptical <u>M</u>onitoring <u>C</u>amera 15 - 10000 keV, 12', R \approx 20 - 8000 keV, 2.5°, R \approx 3 - 35 keV, 3', R \approx 550 nm (V band), 6"

Origin of positrons Observationnal facts

- Annihilation rates:

 $(1.5\pm0.1) \times 10^{43} s^{-1}$ in the bulge $(0.3\pm0.2) \times 10^{43} \text{ s}^{-1}$ in the disk

- Bulge to disk luminosity ratio: B/D ~ 3-9
- Energy of e⁺ in the bulge: E < 10 MeV

How to produce ~ $2 \times 10^{43} e^{+}/s$? - β^+ isotopes produced in stars (Colgate, 1970; Clayton, 1973) -> 56Co : SNe -> ²⁶AI : SNII, WR -> 44Ti : SNII -> ²²Na : O-Ne Novae - Cosmic-ray

- Compact sources
- -> p + p -> p + n + π^+ and π^+ -> μ^+ -> e^+
- -> Pulsars (Sturrock, 1971; Ramaty, 1978)
- -> Black-holes (Lingenfelter & Ramaty, 1982; Rees, 1982)

- Dark matter

Origin of positrons Supernovae

- SNII -> e⁺ from ⁵⁶Co do not escape the ejecta (Chan & Lingenfelter, 1993)

- SNIa -> a fraction **f** of e^+ from ⁵⁶Co escape the ejecta

Galactic Rate : $R_{e^+} \propto f \times v_{SNIa} \times M_{56}$

 M_{56} ~ 0.6 M* & v_{SNIa} ~ 0.003 yr⁻¹

-> f is uncertain (< 5%, Milne, The & Leising, 2001)

Although SNeIa belong to the old population their distribution seems to give $(B/D)_{SNeIa} < 1$

Origin of positrons SNIc/GRB/Hypernovae

asymetric explosion of a WR star

-> e⁺ from ⁵⁶Co released in the ISM : => N_{e+} ~ 2 × 10⁵⁴ (Cassé et al., 2003) => Need 0.2 event per millenium in the bulge

-> e⁺ produced in the jet : => $N_{e^+} \sim 10^{56}$ (Parizot et al., 2004)

However massive stars are located mostly in the disk & a single hypernova cannot fill the bulge

Classical novae

Thermonuclear runaway in the enveloppe of an accreting WD in a binary system.

²²Na -> ²²Ne + β^+ - in ONe novae only

-> José, Coc & Hernanz, 2003 : M₂₂ ~ 6 × 10⁻⁹ M* & v_{ONe} ~ 10 yr⁻¹. => R_{e+} ~ 10⁴¹ s⁻¹

 Origin of positrons
Cosmic-ray
p + p -> p +n + π ⁺ π ⁺ -> μ ⁺ -> e ⁺
E > 10 MeV Contribution of π^+ in the central region assuming $R_{e^+} \sim R_{\pi^+} \sim R_{\pi 0} \sim R_{\gamma > 100 MeV}$

$$F_{511keV,\pi^+} \sim (2-1.5f_{Ps}) \times F_{100MeV} \sim 6 \times 10^{-5} \gamma s^{-1} cm^{-2}$$

Pulsars

- Harding & Ramaty, 1987 $R_{e^+} \propto B \times P^{-1.7} s^{-1} pulsar^{-1}$. e.g. $R_{e^+} \sim 10^{36} s^{-1}$ for the Crab E > 10 MeV

Total galactic pulsars => R_{e+} ~ 10⁴⁰ s⁻¹

Cheng, Ho & Ruderman, 1986

Origin of positrons
 LMXB

 e^+e^- in jets through $\gamma + \gamma \rightarrow e^+ + e^-$

- Positron yield from a jet not clearly known : -> $R_+ \sim 10^{41} s^{-1}$ with a large uncertainty -> $E \le 1 \text{ MeV}$
- (B/D)_{LMXB} ~ 0.9 (Grimm et al. 2002)
- $R_{bulge} = N_{\mu Q}(Bulge) \times R_{+} \implies R_{bulge} \sim 5 \times 10^{42} e^{+/s}$
- $R_{disk} = N_{\mu Q}(Disk) \times R_{+}$ => $R_{disk} \sim 6 \times 10^{42} e^{+/s}$

Guessoum, Jean & Prantzos, in prep.

Dark matter

```
- neutralinos : \chi + \chi \rightarrow e^+ + e^-

m_{\chi} \sim 0.1 - 1 \text{ TeV} => \chi + \chi would produce not only e<sup>+</sup> but also other particles

emitting HE \gamma => not observed with EGRET
```

```
    light dark matter (Boehm et al., 2003)
    "Fayet" particle : f + f -> e<sup>+</sup> + e<sup>-</sup>
    m<sub>f</sub> ~ 10 - 100 MeV => low energy e<sup>+</sup> & no HE γ.
    distribution in the bulge only
```